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Abstract

We consider a conceptual correspondence between the missing data setting, and joint model-
ing of longitudinal and time-to-event outcomes. Based on this, we formulate an extended shared
random effects joint model. Based on this, we provide a characterization of missing at random,
which is in line with that in the missing data setting. The ideas are illustrated using data from
a study on liver cirrhosis, contrasting the new framework with conventional joint models.
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1 Introduction

In the missing data setting, three main classes of models have been developed: the so-called selection

(SEM), pattern-mixture (PMM), and shared-parameter (SPM) frameworks; see for example Molen-

berghs and Kenward (2007). The SEM and PMM approaches are defined by different factorizations

of the joint distribution of the data and the missing value processes. In the SPM, on the other hand,

both data and the missing value process are assumed to depend on latent variables, conditional upon

which independence is assumed.

∗This is the accepted version of the following article: Njagi, E.N., Molenberghs, G., Kenward, M.G., Verbeke, G., and
Rizopoulos, D. (2014). A characterization of missingness at random in a generalized shared-parameter joint modeling
framework for longitudinal and time-to-event data, and sensitivity analysis. Biometrical Journal, 56, 1001–1015, which
has been published in final form at [DOI: 10.1002/bimj.201300028]
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Originally due to Rubin (1976), a classification of missing value processes within the SEM has

been developed. In a frequentist paradigm, with outcomes only missing, this classification can

be expressed as follows: Missing completely at random (MCAR), implying that, conditional upon

covariates, the missing value mechanism does not depend on outcomes; missing at random (MAR),

implying that conditional on covariates and observed outcomes, the mechanism does not further

depend on missing outcomes; and, finally, when MCAR and MAR do not hold, we have a missing not

at random (MNAR) process, in which, conditional on covariates and observed outcomes, the missing

value mechanism does depend on unobserved outcomes. The taxonomy has also been transposed to

the PMM (Molenberghs et al., 1998) and SPM (Creemers et al., 2011) frameworks.

Given that models for missing data often make unverifiable assumptions about the missing value

mechanism, a recurring theme is that of sensitivity analysis (Verbeke and Molenberghs, 2000; Molen-

berghs and Verbeke, 2005). As assumptions regarding the missing value mechanism are varied, the

stability of inferences, or lack thereof, provides a guide on the caution with which the inferences

need to be embraced. Though sensitivity analysis has primarily been done under the SEM and PMM

frameworks, Creemers et al. (2010) considered it in the context the SPM.

The joint longitudinal and time-to-event setting is slightly different, given that a time-to-event is

also collected. An example is in prostate cancer, where, after treatment for cancer, prostate-specific

antigen measurements are collected over time, alongside the time-to-disease-recurrence (Law et al.,

2002; Yu et al., 2004, 2008). In HIV/AIDS studies, apart from the time to onset of AIDS or

death, viral load and CD4 cell count may be recorded repeatedly over time (DeGruttola and Tu,

1994; Rizopoulos, 2011). The objectives may be three-fold: first, to study the survival outcome,

accounting for the longitudinal covariate; second, to study the longitudinal outcome, accounting

for possibly non-random drop-out caused by the occurrence of events; and third, to examine the

association structure between the two outcomes (Tsiatis and Davidian, 2004; Rizopoulos et al.,

2009; Verbeke et al., 2010; Rizopoulos, 2012).

Among the three objectives, the first one is arguably the most common. This objective is usually

achieved within the SPM framework. A sub-model for the time-to-event is linked to one for the

longitudinal process using a shared latent structure, say a normal random effect, conditional on

which independence is assumed (Tsiatis and Davidian, 2004; Verbeke et al., 2010; Rizopoulos, 2011,

2012). Like in the missing data setting, there are challenges. The longitudinal covariate may be

measured with error, its values are likewise only available at the specific time points at that the
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patient appears at the clinic for longitudinal measurements, and the time-to-event may also be

censored (Tsiatis and Davidian, 2004).

As such, though interest is on the time-to-event accounting for the “true” longitudinal process, the

joint density incorporates not only the censoring but also the visiting and measurement probabilities

(Tsiatis and Davidian, 2004). The visiting probabilities represent the process which generates the

time points at which measurements are available (Rizopoulos, 2012). To identify the relationship of

interest, under likelihood inference, it is assumed that the probabilities of censoring and visiting can

depend on past visit times and longitudinal measurements, but not further on the future longitu-

dinal measurements and event time (Tsiatis and Davidian, 2004; Verbeke et al., 2010; Rizopoulos,

2012). These conditions mirror the MAR assumption mentioned earlier. The assumptions are again

unverifiable based on the data, raising sensitivity issues. Rizopoulos (2012) for instance considers the

second objective mentioned above, and highlights the consideration of different parameterizations of

the longitudinal process in the survival sub-model, as a possible route for sensitivity analysis.

Undeniably, there is a strong connection between the missing data and the joint longitudinal and

time-to-event settings. In this paper, we take a slightly different perspective on joint models than is

prevalent in the literature, and argue that conceptually, the two settings actually correspond. Based

on this, we build an extended shared random effects joint model, similar in spirit to that of Creemers

et al. (2011) in the context of longitudinal data subject to missing observations, but now transposed

to the current more complex setting. The added layer of complexity stems from the fact that data

can now be coarsened in various ways: the longitudinal sequence can be incomplete; the time-to-

event outcome can be censored; both of these can occur simultaneously. Coarsening refers to the

phenomenon that data observed are less refined than the, possibly counterfactual, full data.

Within the extended framework, we provide a characterization of MAR, consistent to the one in the

missing data setting, and juxtapose it with more conventional joint models. This opens routes for

sensitivity analysis.

The organization of the paper is as follows. In the following section, we briefly review missing

data concepts, the various modeling frameworks, and the characterization of MAR in each of these

frameworks. We review the generalized shared-parameter modeling (GSPM) framework of Creemers

et al. (2011), and its MAR characterization. In Section 3, we introduce the problem of joint modeling

of longitudinal and time-to-event data and illustrate the correspondence between this problem and
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that of missing data. Based on this, we introduce our extended framework, and derive its MAR

characterization. We provide an illustrative application in Section 4, and finally provide some closing

remarks in Section 5.

2 Background on Missing Data

2.1 Notation

Let Yij denote the outcome for the ith subject measured at the jth occasion, i = 1, . . . , N , j =

1, . . . , ni. Additionally, define a missingness indicator, Rij , which takes the value 1 if Yij is observed,

and 0 otherwise. We then have Y i and Ri, representing the measurement and missingness process

vectors for subject i, respectively. Further partition Y i into its observed and unobserved components

Y o
i and Y m

i , respectively. We also define θ and ψ to be the parameter vectors for the measurement

and missingness processes, respectively. We suppress the covariate vector xi in the notation. Hence,

we write f(yi, ri|θ,ψ) for the full data density.

2.2 Modeling Frameworks

The selection model (SEM) starts from the factorization f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ), in

contrast to the PMM representation which is based upon f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ). The

conventional SPM incorporates a vector of shared latent variables bi, conditional upon which inde-

pendence of the measurement and missingness processes is assumed, i.e.,

f(yi, ri|θ,ψ) =
∫
f(yi|bi,θ)f(ri|bi,ψ)f(bi) dbi. (1)

2.3 Characterization of Missing at Random

First, we consider MAR in the various frameworks. By definition, under the SEM framework, missing-

ness is MAR if f(ri|yi,ψ) = f(ri|yoi ,ψ). Under the PMM framework, the missing-data mechanism

is MAR if

f(ymi |yoi , ri,θ) = f(ymi |yoi ,θ) (2)

(Molenberghs et al., 1998). In (2), the so-called predictive distribution of the unobserved outcomes,

given the observed ones, is made explicit. Thus, in the PMM setting, MAR can be seen to mean

that the unobserved outcomes can be predicted from the observed outcomes and covariates, without

further reference to the missingness mechanism.
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Under conventional SPM in (1), MAR cannot hold without reducing to MCAR, in which case bi

drops from at least one of the factors in the integrand of (1). Creemers et al. (2011) generalized the

SPM (GSPM) by expanding the random-effects structure:

f(yi, ri|gi,hi, ji,ki, `i,mi, qi)

= f(yoi |gi,hi, ji, `i)f(ymi |yoi , gi,hi,ki,mi)f(ri|gi, ji,ki, qi). (3)

The random-effects structure is more general; the random effects gi are shared among all processes,

hi, ji, and ki are shared between two processes only, while `i, mi, and qi are specific to one. Using

this general formulation, the above-mentioned authors established that GSPM (3) is MAR if and

only if ∫
f(yoi |gi,hi, ji)f(ymi |yoi , gi,hi,ki)f(ri|gi, ji,ki)f(bi) dbi∫

f(yoi |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(yoi |gi,hi)f(ymi |yoi , gi,hi)f(bi) dbi

f(yoi )
. (4)

A convenient proper sub-class of GSPM (3) that satisfies MAR:

f(yi, ri|gi,hi, ji,ki, `i,mi, qi) = f(yi, ri|ji, `i,mi, qi)

= f(yoi |ji, `i)f(ymi |yoi ,mi)f(ri|ji, qi). (5)

3 Joint Modeling of Longitudinal and Time-to-event Data

We consider now the setting in which it is intended to observe both a longitudinal and time-to-event

outcome between the start and the planned end of a study. We examine three scenarios to illustrate

the correspondence between this setting and that of missing data.

Scenario 1. For subjects who drop out before the planned end of the study, we observe longitudinal

information prior to drop-out, as well as the censoring time. Consequently, for these subjects, we

observe neither the latter part of the longitudinal sequence nor the survival time.

Scenario 2. For subjects who experience the event within the study period, such that the event

censors the longitudinal sequence, we observe longitudinal information prior to the event, as well as

the survival time. For these subjects, longitudinal data after the event, as well as the censoring time,

are unobserved. The latter means, of course, that no censoring occurs.
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Scenario 3. Finally, for subjects who reach the end of the study without experiencing the event, full

longitudinal information as well as the censoring time are observed. For these subjects, the survival

time remains unobserved.

From these three scenarios, we note that this setting always entails a part of the data being observed,

and a part unobserved. We must also consider the mechanism that causes the coarsening, which

consists of the union of the missingness mechanism in the longitudinal outcome, and a certain choice

mechanism, related to the time-to-event outcome, which determines whether either the event time

or censoring time is observed. Note that further scenarios are possible, even though we will restrict

attention to these three in the current paper. For example, it is possible for the longitudinal process

to terminate early, while the patient is still followed for the event.

3.1 Additional Notation

We extend the notation of Section 2.1 to let Ti and Ci denote the survival and censoring times,

respectively. Additionally, let Do
i = min(Ti, Ci), and Dm

i = max(Ti, Ci).

We also introduce a vector of missingness indicators, R∗i = (R′i,Wi)
′, where Wi = 1 if the survival

time is observed and zero otherwise. The full set of stochastic components is then:

Qi = (Yi
o′,Y m

i
′, Do

i , D
m
i ,R

∗′
i )
′ = (Zo

i
′,Zm

i
′,R∗i )

′, (6)

where Zo
i = (Yi

o′, Do
i )
′ and Zm

i = (Y m
i
′, Dm

i )′. Hence, we can represent the information in a form

that parallels that for incomplete longitudinal data, but with each of the three vectors combining

both longitudinal and time-to-event information. The information in Zo
i and Zm

i depends on the

particular scenario, which sets this notation apart from that found in the literature.

3.2 The Extended Framework

Define the following shared random-effects model for these data:

f(yoi ,y
m
i , d

o
i , d

m
i , ri

∗|bi) = f(yoi |bi)f(ymi |yoi , bi)f(doi |bi)f(dmi |doi , bi)f(ri∗|bi). (7)

Here, bi encompasses an elaborate random effects structure, which contains the following 31 sets of

random effects: 1 shared between all five components, 5 shared between four components, 10 shared

between three components, another 10 shared between two components, and 5 specific to a single

component. These random effects are assumed independent. It is unwieldy to spell them all out as
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was done in (3), but the nature of the decomposition is identical. As we see below, the advantage of

such a framework is that appropriate subsets of random effects can be chosen so that MAR holds.

We make the following points. First, model (7) is the generic shared random-effects model for

this setting under this factorization. Such a general structure implies, for instance, that at the

time of drop-out, there are processes which may stop, while other processes may get modified.

Second, specific sub-models may be considered that are deemed appropriate for the application

at hand. This is important, because the full set of random effects will typically be too elaborate

for practical purposes. Third, for every application, it is important to consider the implication of

the corresponding simplification, especially in terms of the underlying coarsening mechanism. It

is then important to carefully distinguish between the case where the coarsening does not depend

on unobserved measurements, on the one hand, and the coarsening mechanism is MAR, on the

other hand. Fourth, the extended model in (7) is obviously based on conditional independence

assumptions: given the collection of random effects bi, the processes yi, di, and ri are independent

of one another. Of course, if all 31 random effects would be present, there still would be a rich

association structure present between the various outcomes, which may be simplified by omitting

one or more of these components, as will be done to allow for MAR in the next section. Fifth, the

model a priori allows for dependence between doi and dmi , regardless of the random-effects structure

adopted, stemming from the penultimate factor on the right hand side of (7). In other words, Ti

and Ci would be allowed to depend on one another. In full generality, this would be problematic

because Tsiatis (1975) has shown that there is no information available from the data on the joint

distribution of (Ti, Ci). The simplest way out is to force independence, by writing the corresponding

factor as f(dmi |doi , bi) = f(dmi |bi), with perhaps even the random effect removed. However, it is not

our purpose to provide a general framework of which every member is identifiable, but rather one

that generates more identifiable special cases than conventionally considered, in particular the MAR

version of the next section. In addition, classes of non-identifiable models can be considered as part

of a sensitivity analysis.

3.3 Characterization of Missing at Random

Extended model (7) allows for a characterization of MAR, in the same spirit as (4). We can define

MAR by either starting from a SEM-based or from a PMM-based factorization of the model. Under
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a SEM factorization, the requirement is:

f(r∗i |yoi ,ymi , doi , dmi ) = f(r∗i |yoi , doi ), (8)

implying
f(yoi ,y

m
i , d

o
i , d

m
i , r

∗
i )

f(yoi ,y
m
i , d

o
i , d

m
i )

=
f(yoi , d

o
i , r
∗
i )

f(yoi , d
o
i )

. (9)

From a PMM perspective, the requirement is:

f(yoi ,y
m
i , d

o
i , d

m
i , r

∗
i )

f(yoi , d
o
i , r
∗
i )

=
f(yoi ,y

m
i , d

o
i , d

m
i )

f(yoi , d
o
i )

. (10)

Using the specific form of (7), MAR holds if and only if:∫
f(yoi |bi)f(ymi |yoi , bi)f(doi |bi)f(dmi |doi , bi)f(r∗i |bi)f(bi) dbi∫

f(yoi |bi)f(doi |bi)f(r∗i |bi)f(bi) dbi

=

∫
f(yoi |bi)f(ymi |yoi , bi)f(doi |bi)f(dmi |doi , bi)f(bi) dbi∫

f(yoi |bi)f(doi |bi)f(bi) dbi
. (11)

Recall that bi as used here generically refers to the set of random effects that apply to the factor

concerned.

3.4 A Sub-class of the Generalized SPM

Consider the following sub-class of model (7):

f(yoi ,y
m
i , d

o
i , d

m
i , r

∗
i |bi) =

f(yoi |gi,hi,ki)f(ymi |yoi ,mi)f(d
o
i |gi,hi, `i)f(dmi |doi ,mi)f(r

∗
i |gi,ki, `i), (12)

where gi, hi, ki, `i, and mi are part of the 31 sets of random effects described earlier. Note that

under this sub-class, the random effects driving the missing-data components yi
m and dmi do not

appear in any of the other three stochastic components. Next, we show that this sub-class satisfies

the MAR property. Let b̃i be shorthand for the set of random effects (gi, hi,ki, `i, and mi), and
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bi be shorthand for the same set but excluding mi. Then, from a SEM-based factorization,

f(r∗i |yoi ,ymi , doi , dmi )

=
f(yoi ,y

m
i , d

o
i , d

m
i , r

∗
i )

f(yoi ,y
m
i , d

o
i , d

m
i )

=

∫
b̃i
f(yoi |gi,hi,ki)f(ymi |yoi ,mi)f(d

o
i |gi,hi, `i)f(dmi |doi ,mi)f(r

∗
i |gi,ki, `i)f(b̃i) db̃i∫

r∗i

∫
b̃i
f(yoi |gi,hi,ki)f(ymi |yoi ,mi)f(doi |gi,hi, `i)f(dmi |doi ,mi)f(r∗i |gi,ki, `i)f(b̃i) db̃i dr∗i

=

∫
mi

f(ymi |yoi ,mi)f(d
m
i |doi ,mi)f(mi) dmi∫

mi
f(ymi |yoi ,mi)f(dmi |doi ,mi)f(mi) dmi

×

∫
bi
f(yoi |gi,hi,ki)f(doi |gi,hi, `i)f(r∗i |gi,ki, `i)f(bi) dbi∫

r∗i

∫
bi
f(yoi |gi,hi,ki)f(doi |gi,hi, `i)f(r∗i |gi,ki, `i)f(bi) dbi dr∗i

=
f(yoi , d

o
i , r
∗
i )

f(yoi , d
o
i )

= f(r∗i |yoi , doi ). (13)

Alternatively, one could start from a PMM-based factorization. In this case,

f(ymi , d
m
i |yoi , doi , r∗i )

=
f(yoi ,y

m
i , d

o
i , d

m
i , r

∗
i )

f(yoi , d
o
i , r
∗
i )

=

∫
b̃i
f(yoi |gi,hi,ki)f(ymi |yoi ,mi)f(d

o
i |gi,hi, `i)f(dmi |doi ,mi)f(r

∗
i |gi,ki, `i)f(b̃i) db̃i∫

dmi

∫
ym

i

∫
b̃i
f(yoi |gi,hi,ki)f(ymi |yoi ,mi)f(doi |gi,hi, `i)f(dmi |doi ,mi)f(r∗i |gi,ki, `i)f(b̃i) db̃i dymi ddmi

=

∫
mi

f(ymi |yoi ,mi)f(d
m
i |doi ,mi)f(mi) dmi∫

dmi

∫
ym

i

∫
mi

f(ymi |yoi ,mi)f(dmi |doi ,mi)f(mi) dmi dymi dd
m
i

×

∫
bi
f(yoi |gi,hi,ki)f(doi |gi,hi, `i)f(r∗i |gi,ki, `i)f(bi) dbi∫

bi
f(yoi |gi,hi,ki)f(doi |gi,hi, `i)f(r∗i |gi,ki, `i)f(bi) dbi

= f(ymi , d
m
i |yoi , doi ). (14)

The above results show that the sub-class satisfies MAR. Therefore, a sufficient condition for our

extended model to satisfy MAR is that the random effects influencing the observed measurements

and/or the coarsening mechanism do not influence the missing measurements, given the observed

ones. This is equivalent to the condition that all information about the missing measurements stems

from the observed measurements and covariates only.
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3.5 An MAR Counterpart to an Extended Shared-parameter Joint Model for Longitudinal

and Time-to-event Data

The developments in Sections 3.3 and 3.4 allow us to construct an MAR counterpart for any member

of the extended model (7), with exactly the same fit to the observed data. This can be done by

integrating over the distribution of the missing components given the observed ones (Molenberghs

et al., 2008). Therefore, f(ymi |yoi , bi) and f(dmi |doi , bi) in (7) need to be replaced with, respectively,

h(ymi |yoi ,m∗i ) =

∫
b∗i
f(ymi |yoi , bi)db∗i ,

h(dmi |doi ,m∗i ) =

∫
b∗i
f(dmi |doi , bi)db∗i , (15)

where integration over b∗i is over all random effects in the full set bi, except possibly those that are

specific to either ymi , or dmi , or both.

This non-uniqueness is an important and somewhat disconcerting point. At first, it may seem that it

dismisses the use of the proposed framework. However, it is important to see that this is not particular

to the model described here. Rather, it always occurs when data are incomplete, as brought forward

in Molenberghs and Verbeke (2004). The same is true for models with unobservables such as random

effects, as studied by Verbeke and Molenberghs (2011). More generally, whenever the model specifies

more than what is available in the data, such non-uniqueness occurs. This has been brought forward

in Molenberghs et al. (2012). It means that great care is needed when interpreting results from

models with incomplete and censored observations, just as well as for random-effects models, models

with latent variables and latent classes, factor-analytic models, etc. This implies that apart from

goodness-of-fit, which still has a place but only addresses how well a model described the observed

data, sensitivity analysis needs to be done, studying how assumptions about the unobservables, given

the observables, influence the inferences drawn. The advantage of our framework is that this is

clearly brought to the foreground, reducing the risk of a false sense of security (Creemers et al.,

2010).

Obviously, if for instance bi above is a single common random effect, then the marginalization

provided above means that if patients’ estimated longitudinal profiles would be extended beyond

the point of censoring, then, for a given combination of baseline covariates, the MAR model would

reduce the predicted post-censoring trajectories to a common profile. The MNAR model would

produce different trajectories. This is of course because the subject-specific effects (random effects)

would come then into play under the MNAR, while the same is not the case under the MAR. In
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addition, if, for censored patients, we would consider their predicted hazard for death, then, for

patients having the same combination of baseline covariates, the MAR would produce a common

predicted hazard curve, while the MNAR would produce different curves.

3.6 A Narrow Definition, and Its Limitations

We will now adopt a narrow definition of a joint model, and examine its main limitation, namely,

that it defies an MAR characterization.

Before considering the narrow definition, we first set out some results on MAR in the PMM and

SEM settings. We can then use a decomposition either in a PMM format:

f(zoi , z
m
i , r

∗
i |θ∗,ψ∗) = f(zoi |r∗i ,θ∗)f(zmi |zoi , r∗i ,θ∗)f(r∗i |ψ∗), (16)

or in a SEM format:

f(zoi , z
m
i , r

∗
i |θ∗∗,ψ∗∗) = f(zoi , z

m
i |θ∗∗)f(r∗i |zoi , zmi ,ψ∗∗). (17)

Note that parameters are framework-specific. Further, the number of components in Zo
i and Zm

i

varies from subject to subject, in line with what is common in the missing data literature (Rubin,

1976; Little and Rubin, 2002).

In a PMM, MAR is:

f(zmi |zoi , r∗i ,θ∗) = f(zmi |zoi ,θ∗), (18)

whereas in a SEM it is:

f(r∗i |zoi , zmi ,ψ∗∗) = f(r∗i |zoi ,ψ∗∗). (19)

Equation (18) implies that the distribution of the unobserved outcomes given the observed ones does

not further depend on the coarsening mechanism.

The narrow definition assumes a single common underlying random-effects structure, as opposed to

our extended approach. Decomposing this model in a SEM fashion:

f(zoi , z
m
i , r

∗
i , b
∗∗
i |θ∗∗,ψ∗∗,ω∗)

= f(zoi |b∗∗i ,θ∗∗)f(zmi |zoi , b∗∗i ,θ∗∗)f(r∗i |zoi , zmi , b∗∗i ,ψ∗∗)f(b∗∗i |ω∗), (20)

= f(zoi |b∗∗i ,θ∗∗)f(zmi |zoi , b∗∗i ,θ∗∗)f(r∗i |b∗∗i ,ψ∗∗)f(b∗∗i |ω∗), (21)

with ω∗ parameterizing the random-effects distribution, and the step from (20) to (21) following

from conditional independence. Formulation (21) means that coarsening cannot depend on the
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unobserved longitudinal measurements and the future time (whether survival or censoring), given the

random effect. Hence, by construction, we have MNAR, unless in the trivial case where the random

effect drops out from either the Z-factors, or from the r-factor, or from both. In the latter case

MCAR applies. As stated in Creemers et al. (2011) for longitudinal data, this means that such a

narrow formulation cannot admit MAR. This is in contrast to our results in Sections 3.3 and 3.4,

where MAR conditions are established for the extended framework.

4 The Liver Cirrhosis Data

These data are from a randomized clinical trial, conducted in Copenhagen, of which the goal was to

assess whether Prednisone prolonged survival in patients with liver cirrhosis (Andersen et al., 1993).

Liver cirrhosis is a disease in which the liver function deteriorates due to injury. Patients were enrolled

between 1962–1969, randomized to either Prednisone or placebo, and followed-up until 1974. Follow-

up visits were planned at 3, 6, and 12 months after treatment, and once a year thereafter. We use

data on 251 and 237 patients from the Prednisone and placebo groups, respectively. Among other

variables recorded at follow-up were several biochemical variables, including bilirubin, albumin, and

prothrombin. In this analysis, we consider the quasi-continuous prothrombin index, viewed a marker

for severity of liver fibrosis.

We formulate an extended model for these data, following the logic of the framework proposed, and

illustrate the implications of MAR and MNAR. To this end, we set out by considering the following

decomposition into five factors, dropping the subject index i from notation, to avoid clutter:

f(yo|g,h,k)f(ym|yo,m)f(do|g,h, `)f(dm|do,m)f(r|g,k, `). (22)

The three underlined factors are identifiable from data, whereas the other two are not. Note that

(22) is consistent with MAR, because there is no random-effects link between the unidentifiable

factors and the identifiable ones.

We need to distinguish between the situations where either an event or censoring occurs. First, in

both cases, the factors

f(yo|g,h,k), (23)

f(r|g,k, `) (24)
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are identifiable, with the factor

f(ym|yo,m) (25)

unidentifiable. Second, in case an event occurs, the additional identifiable factor is:

f(do = t|g,h, `) (26)

with the final unidentifiable factor equal to:

f(dm = c|do = t,m). (27)

Third, when censoring occurs, the additional identifiable factor is:

f(c, T ≥ C|g,h, `) (28)

and the remaining unidentifiable one takes the form:

f(dm = t|c, T ≥ C,m). (29)

In both cases, data-based modeling of the identifiable factors, combined with any choice for the

unidentifiable ones, leads to an MAR model. Deviations from MNAR can be studied by inserting

additional random effects, present in the identifiable factors, into the unidentifiable components.

Most factors are straightforward to model. Factor (28) is evaluated as follows:

f(c, T ≥ C|g,h, `) =

∫ t=∞

t=c
f(c, t|g,h, `)dt

= f(c|g,h, `)
∫ t=∞

t=c
f(t|c, g,h, `)dt

= f(c|g,h, `){1− F (t = c|c, g,h, `)}. (30)

Turning to the liver cirrhosis data, we opt for a single random effect, g; i.e., the random effects h,

k, and ` in (22) are dropped. For the longitudinally recorded prothrombin index, we assume the

following linear mixed model:

Y o
ij = β0 + β1vij + β2Xi + β3Xivij + gi + εij , (31)

where gi ∼ N(0, σ2g), εij ∼ N(0, σ2), and gi and εij are independent. Further, vij is the time

at which the jth measurement for the ith individual was taken, and Xi the treatment indicator.

While the main effect of treatment is expected to be zero, stemming from randomization, it is kept
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in the model to absorb small departures in randomization equilibrium. Model (31) completes the

specification for (23).

For the survival time T and censoring time C, we assume separate proportional hazards models, with

exponential baseline:

fi(t|gi) = λ1 exp(Xiξ1 + κ1gi) exp{−λ1t exp(Xiξ1 + κ1gi)}, (32)

fi(c|gi) = λ2 exp(Xiξ2 + κ2gi) exp{−λ2c exp(Xiξ2 + κ2gi)}, (33)

where κ1 and κ2 are scale factors. The model (32) now represents (26). Given (32)–(33), and

assuming conditional independence between T and C, (28) can easily be computed as in (30):

f(ci, Ti ≥ Ci|gi) = λ2 exp(Xiξ2 + κ2gi) exp{−λ2c exp(Xiξ2 + κ2gi)}

×exp{−λ1 exp(Xiξ1 + κ1gi)c}. (34)

Finally, we formulate a model for the dropout indicator. Let 0 indicate that a measurement has

been observed at that occasion, and 1 that the patient has dropped out at that occasion. Then,

Ri consists of zeros, followed by a single 1. For someone completing the scheduled visits, the entire

sequence would consist of 0s. We assume a logistic regression model of the form (Creemers et al.,

2011):

logit{P (Rij = 1|Rij−1 = 0)} = ζ0 + κ3gi + ζ1tij + ζ2Xi + ζ3Xitij , (35)

where κ3 is a scale parameter. Model (35) represents (24).

This now completes the specification of the identifiable components of the model. We refer to

this as model (A). The model was fitted using the NLMIXED procedure in SAS, version 9.3. Both

prothrombin and time were rescaled to the unit interval, for numerical stability and without statistical

or substantive consequences. The results are provided in Table 1 in the column ‘ (A) MAR’. It is

notable that the three scale parameters are highly statistically significant. Given that the estimates

are negative, a higher patient-specifc prothrombin profile then corresponds to a reduced hazard of

death and of censoring, and reduced odds of drop-out.

The non-identifiable components still remain. Similar to pattern-mixture models, these can be iden-

tified only by unverifiable identifying restrictions. Consider the longitudinal process, Y i, partitioned

into the observed and missing components Y o
i and Y m

i , respectively. Assuming a linear mixed model

framework such as described earlier, and invoking properties of the multivariate normal distribution,
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it is easy to derive the predictive distribution of the missing outcomes, given the observed ones.

In particular, such a derivation can be done assuming either MAR or MNAR. For example, under

MAR, the conditional mean E(Y m
ij |yio) needs to be calculated marginalized over gi, whereas under

MNAR, one can consider the mean E(Y m
ij |yio, gi), conditional on the random effect. The second

choice deviates from what is prescribed by (22) and hence is of MNAR type. Because our longitudinal

model is of a random-intercepts type, and hence the corresponding marginal model, marginalized

over the random effect gi has a compound-symmetry structure, Creemers et al. (2010) showed that

the predictive distributions are:

Y m
i |yoi , gi ∼ N(β0 + β1vij + β2Xi + β3Xivij + gi, σ

2Ii), (36)

Y m
i |yoi ∼ N(β0 + β1vij + β2Xi + β3Xivij , σ

2
gJi + σ2Ii), (37)

with Ii an identity matrix, Ji a matrix of 1s with dimensions equal to the number of missing

measurements for subject i, and the mean function resulting from (31). Recall that the fit to the

observed data will not be affected by the choice between both, as the difference between both is

entirely in terms of the so-called predictive distribution, i.e., the distribution of what is unobserved,

given what is observed.

Based on (36)–(37), we illustrate the MAR versus MNAR choices graphically, for six censored pa-

tients, three from each treatment arm. Their estimated prothrombin mean profiles are extended

beyond the point of censoring, under the MAR and MNAR assumptions. In Figure 1, the estimated

extended prothrombin mean profiles for these six patients, both under the MNAR and MAR models,

are presented. The MNAR model predicts different trajectories, while the predicted trajectories under

MAR reduce to a common profile. These observations originate from the fact that the subject-specific

effect gi (random effects) come into play under the MNAR models, while the same is not the case

for MAR.

The MNAR model considered here is not the only option. One could, for example, also consider

more conventional joint models. Two such models have been added to Table 1. In both, a Weibull

model is formulated for the event time:

fi(t|gi) = λ1ρ1t
ρ1−1 exp(Xiξ1 + κ1gi) exp{−λ1tρ1 exp(Xiξ1 + κ1gi)}.

In the first conventional model, denoted by (B), censoring is assumed non-informative, with contri-
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bution to the likelihood derived from:

Si(c|gi) = exp{−λ1tρ1 exp(Xiξ1 + κ1gi)}.

In the extended version of this model, referred to as (C), the censoring time is described via a Weibull

model as well:

fi(c|gi) = λ2ρ2c
ρ2−1 exp(Xiξ2 + κ2gi) exp{−λ2tρ2 exp(Xiξ2 + κ2gi)}.

Models (B) and (C) are shared-parameter models because gi is common to the event-time and longi-

tudinal models, the latter of which still formulated by (31). Note that both models are automatically

of an MNAR type, because no measures have been taken to restrict the impact of the random effect

gi.

In all three models, inferences of, for example, the treatment effect and treatment-by-time interactions

is qualitatively the same. This strengthens the evidence that the findings are stable and trustworthy.

The advantage of model (A) is that it allows to construct predictions under the MAR assumption,

and examine how these change for specific choices of MNAR predictions.

5 Concluding Remarks

In this paper, we have used the strong connection between the longitudinal, time-to-event, and

missing data settings, to build an extended shared random effects joint model, similar in spirit to

that of Creemers et al. (2011) in the context of longitudinal data subject to missing observations, but

now transposed to the current more complex setting. In doing so, we have taken a slightly different

perspective on joint models than is prevalent in the literature.

Within this extended framework, we have provided a characterization of MAR, consistent to the one

in the missing data setting. While the framework has been built conceptually, we have illustrated

the ideas through an analysis of data from a study on liver cirrhosis. We have also illustrated the

implications of MAR and MNAR.

It is still possible, within the elaborate random effects structure, to formulate additional alternative

models, all making different assumptions. The stability of inferences across such models can then

be considered. This provides a rich avenue for sensitivity analyses. For example, we were able

to contrast our MAR model (A), with its MNAR counterpart (graphically), as well as with more
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Table 1: Liver Cirrhosis Data. Parameter estimates (standard errors) for an MAR analysis, a

conventional joint model for the longitudinal and time-to-event outcome, and one where also the

censoring time is modeled (extended JM) .

(A) (B) (C)

Effect Parameter MAR Conventional JM Extended JM

Longitudinal process (Prothrombin)

Intercept β0 0.4278 (0.0082) 0.4326 (0.0080) 0.4330 (0.0079)

Time β1 0.0635 (0.0178) 0.0967 (0.0175) 0.1027 (0.0177)

Treatment β2 -0.0390 (0.0117) -0.0409 (0.0114) -0.0405 (0.0113)

Treatment-by-time β3 0.0320 (0.0258) 0.0315 (0.0257) 0.0370 (0.0258)

Measurement error σ2 0.0113 (0.0003) 0.0111 (0.0003) 0.0111 (0.0003)

Survival time

Treatment ξ1 0.0142 (0.1502) 0.0493 (0.1378) 0.0324 (0.1214)

Scale λ1 2.3331 (0.2515) 1.9817 (0.2161) 4.2064 (0.4192)

Shape ρ1 0.9076 (0.0443) 0.9569 (0.0455)

Scale factor κ1 -8.5000 (0.7232) -6.7345 (0.6980) -2.6694 (0.6496)

Censoring time

Treatment ξ2 -0.1424 (0.1550) -0.1572 (0.1477)

Scale λ2 4.2095 (0.4983) 3.6254 (0.4291)

Shape ρ2 1.0450 (0.0638)

Scale factor κ2 -4.8568 (0.9870) -2.8537 (0.8941)

Dropout process

Intercept ζ0 -2.1166 (0.1161)

Time ζ1 2.6940 (0.3535)

Treatment ζ2 -0.2015 (0.1656)

Treatment-by-time ζ3 0.5807 (0.4862)

Scale factor κ2 -4.7932 (0.6159)

Shared effect

Variance of random effects σ2g 0.0129 (0.0010) 0.0123 (0.0010) 0.0119 (0.0009)
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conventional joint models (B) and (C). The fact that inferences about scientific parameters remain

roughly unaltered, strengthens confidence in the findings.

Finally, the method proposed in this paper comes at a computational cost. Even though it is possible

to use, without too much difficulty, existing statistical software, multi-dimensional random effects

structures will make the method more complicated. This is not particular to the proposed model

but rather to any mixed model that is at least as complex as a generalized linear mixed model

with increasing dimension of the random-effects vector. Various authors have considered ways to

simplify the model fitting. This includes, for example, pseudo-likelihood or composite likelihood,

an account of which is given in Molenberghs and Verbeke (2005) and Molenberghs et al. (2011).

Further treatment of this topic is outside the scope of this paper.

SAS code for models (A) and (C) can be found in the Supplementary Materials.
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Figure 1: Extrapolation of prothrombin profiles based on the MNAR (bold dashed lines) and its

corresponding MAR model (bold solid lines). Each line brings together the patient’s observed mea-

surements and the predicted post-censoring profile.
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