Developing a practical decision support tool (DST) for the application of gentle remediation options

Andy Cundy¹, Kene Onwubuya¹, Paul Bardos^{1,2}, Markus Puschenreiter³, Nele Witters⁴, Jaco Vangronsveld⁴, Michel Mench⁵ and Ingo Mueller⁶.

¹ School of Environment and Technology, University of Brighton, Brighton, UK.

² r3 Environmental Technology Ltd., Reading, UK.

³ University of Natural Resources and Life Sciences (BOKU), A-3430 Tulln, Austria.

⁴ Centre for Environmental Sciences, Hasselt University, D 3590 Diepenbeek, Belgium.

⁵ UMR BIOGECO INRA 1202, University of Bordeaux 1, F-33405 Talence, France.

⁶ Saxon State Agency for Environment and Geology, D-01109 Dresden, Germany.

GREENLAND – Gentle remediation of trace element contaminated land*: Project Objectives

- Assess the efficiency tested in long-term (> 5 year duration) field trials
- Test the possibilities for biomass valorisation
- Evaluation of a set of soil tests to assess **GRO** performance
- Enhance the efficiency of GRO (e.g. by selection of most effective plants, microbes, and soil amendments)
- **Development** of a decision support stakeholder system, engagement guidance, and publication of a guide for practical application

University of Brighton

* FP7-KBBE-266124; 2011-2014

Contents and context

- "Gentle" remediation options (GROs) offer strong benefits in terms of deployment costs and sustainability for a range of problems, however, awareness and take up is low
- Decision support tools could help, but the take up and acceptance of bespoke systems by stakeholders, such as specialist softwares, is low.
- Greenland is therefore adopting a transparent and simple framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GROs appear to be a viable option

Risk management strategies/techniques that result in no gross reduction (or a net gain) in soil functionality as well as risk management.

Encompass a number of technologies which include the use of plant (phyto-), fungal (myco-) or microbiologically-based methods, with or without chemical additives, for reducing contaminant transfer to local receptors by *in situ* stabilisation or extraction of contaminants

Subject of intensive research and development over a number of years.

BUT application of GRO as practical site solutions on trace element contaminated sites is still in its relative infancy.

Number of barriers to the wider adoption of GRO relate to stakeholder awareness and confidence, such as:

- (1) stakeholder uncertainty relating to their time-scale and effectiveness as risk management methods;
- (2) (within Europe at least) the issue that GRO services are offered by relatively few consultants and contractors, which has limited their availability, and
- (3) there is limited awareness of their role as practical site solutions.

Hence, GROs are often simply excluded from decision making.

Effective stakeholder engagement, coupled with efficient and simple decision support, is therefore a key principle in the successful adoption and application of GROs (and in ensuring that the full wider economic and other benefits of GRO methods are realised).

Key output of the Greenland project is to develop and trial / evaluate practical decision support (based on Greenland and other case studies), focussed on GRO, which can be integrated into existing, well-established and utilised (national) DSTs / decision-frameworks, to ensure ease of operation and wide usage.

Greenland decision support framework

and time investment

Documenting the decision support framework

This simple tiered framework has been provided in an *MS Excel* format, and tested using Lommel (BE) and Biogeco (FR) Greenland sites, plus Olympics redevelopment (London). Based on model developed in Onwubuya et al (2009)

Format is compatible with CLR11, but portability to other countries also assessed (Germany and Sweden initially).

Model Procedures for the Management of Land Contamination

Contaminated Latel Report 11

Developing decision support tools for the selection of "gentle" remediation approaches

Kene Onwubuya ^a, Andrew Cundy ^{a,*}, Markus Puschenreiter ^b, Jurate Kumpiene ^c, Brian Bone ^d, Jon Greaves ^d, Phillip Teasdale ^a, Michel Mench ^e, Pavel Tlustos ^f, Sergey Mikhalovsky ^a, Steve Waite ^a, Wolfgang Friesl-Hanl ^g, Bernd Marschner ^h, Ingo Müller ⁱ

Additional tools supporting Phase 1 (Feasibility)

Definitions

Scope and risk management capability (High Level Operating Windows) Practical examples Contaminant matrix

GRO	Definition
Phytoextraction	The removal of metals or organics from soils by
	accumulating them in the biomass of plants. When
	aided by use of soil amendments, this is termed aided
	phytoextraction.
Phytodegradation / phytotransformation	The use of plants (and associated microorganisms
	such as root-zone bacteria) to uptake, store and
	degrade organic pollutants.
Rhizodegradation	The use of plant roots and associated root-zone
	microorganisms to degrade organic pollutants.
Rhizofiltration	The removal of pollutants from aqueous sources by
	plant roots and associated microorganisms.
Phytostabilisation	Reduction in the bioavailability of pollutants by
	immobilizing or binding them to the soil matrix and /
	or living or dead biomass in the soil. When aided by
	use of soil amendments, this is termed aided
	phytostabilisation.
Phytovolatilisation	Use of plants to take pollutants from the growth
	matrix, transform them and release them into the
	atmosphere.
In situ immobilisation / phytoexclusion	Reduction in the bioavailability of pollutants by
	immobilizing or binding them to the soil matrix
	through the incorporation into the soil of organic or
	inorganic compounds, singly or in combination.
	Phytoexclusion, the implementation of a stable
	vegetation cover using plants which do not extract
	contaminants can be combined with in situ
	immobilisation.

Phase 1 (Feasibility)

Definitions Scope and risk management capability (High Level Operating Windows)

Practical examples Contaminant matrix

Key questions: Does the site require immediate redevelopment (< 1 year)</td> Are your local regulatory guidelines based on total soil concentration values? Is the site under hard-standing, or has buildings under active use? Do you require biological functionality of the soil after site treatment? Is the treatment area large, and contaminants are present but not at strongly elevated level Is the economic case for intervention and use of "hard" remediation strategies marginal? Are you redeveloping the site for soft end-use (biomass generation, urban parkland etc)?

Phase 1 (Feasibility)

Definitions Scope and risk management capability (High Level Operating Windows) **Practical examples**

Contaminant matrix

Site name	Biogeco GRO type			(Aided)phytostabilization		
Location	Saint-Médard d'Eyrans, France		rance C	Origin of soil contamination		WOOD WAShings (start: 1846 – partly closed:)
Site type	wood	preservation s	ite I	Implementation of field trial		start: 2006 – end:
Current land use	brownfield, sto	brownfield, storage of building materials		Duration (actual or expected)		actual:9 years
End land use	phytomanaged area		a s	Surface area		10 ha (2 fenced plots, 150 m ² for each)
Soil	Initial values	Labile pool*		Soil pore waters	Soil pore water	Biogeco
characteristics		untreated	best treatme	nt untreated	Best treatment	
pН	7.1			7.16±0.12	7.32±0.11	in differ
Sand, silt, clay (%)	85.8 - 8.3 - 5.9			mg C L ⁻¹	mg C L ^{.1}	The second second
Organic C (%)	0.93			29.4±8.8 a	40.9±4.7 a	The second se
CEC	3.5	µg L ⁻¹ (R)	µg L-1 (R)) µg L-1	μg L-1	And the second sec
As (mg/kg)	9.8	nd	nd	1.8 ± 0.5a	2.6 ± 0.3b	and the second sec
Cd (mg/kg)	0.12	nd	nd	nd	nd	
Cr (mg/kg	23	nd	nd	0.4 ± 0.1a	0.25 ± 0.15a	the second s
Cu (mg/kg)	674	285±10 (0.54)a	141±10 (0.2	2)b 519 ± 6a	665 ± 10b	
Pb (mg/kg)	27	nd	nd	nd	nd	State of the second of the
Zn (mg/kg)	46	5 ± 1 (0.10)a	4 ± 1 (0.15)a 29 ± 3 a	22 ± 4 ab	
diffusion in gol thin \$ o	for 6 years: 3: Phi	Top maintar comp	las after 6 ver			

Core stakeholder	Function	Remark	Main site operators
Lyonnet SA	Site owner and tenant		BioGeCo
UMR BIOGECO INRA 1202	Site operator		👩 🎉 🌉 🔊 🔤 🚳
Dr M Mench et al	Scientists	Scientific driven	
ADEME, Aquitaine Regional Council, EU FP7 Greenland	Funding organization		
Greenland partners	Scientific collaborations		
University of Orléans and Bordeaux	Scientific collaborations	M. Motelica; Ph. Le Coustumer	SCIENCE & IMPACT

Conceptual model and relevant contaminant linkages

Representing long-term in situ stabilization /phytoexclusion trials (Arnoldstein, AT); phytoextraction (Bettwiesen, SW); aided phytostabilisation (Bordeaux, FR)

Phase 1 (Feasibility)

Definitions

Scope and risk management capability (High Level Operating

Windows)

Practical examples

Contaminant matrix

Highlights when research / trials have shown effectiveness at (a) pot/greenhouse and (b) field scale

GRO Contaminant	Phytoextraction	Phytostabilisation (including aided phytostabilisation)	In situ immobilisation / phytoexclusion
Arsenic	\checkmark	\checkmark	\checkmark
Barium	×	×	×
Cadmium	\checkmark	\checkmark	\checkmark
Chromium	\checkmark	\checkmark	×
Copper	\checkmark	\checkmark	\checkmark
Lead	\checkmark	\checkmark	\checkmark
Mercury	\checkmark	\checkmark	×
Nickel	\checkmark	\checkmark	×
Selenium	\checkmark	\checkmark	×
Zinc	\checkmark	\checkmark	×

Includes modules on:

stakeholders

for....)

Planner (.....)

Stakeholder engagement (models for engagement, principles of stakeholder engagement and GRO, criteria for the identification of different stakeholders categories / profiles)

Includes modules on:

Sustainability assessment (economic, environmental and social benefits, linking to the HOMBRE DST, and links to SURF-UK indicator sets)

Sustainability assessment module (Onwubuya 2013)

Sustainability Elements	Source Parameters	Information Sources	Key Decisions
Environment	Procedure 1 Use SURF framework and retrieve headline indicators Procedure 2 Outline various parameters that may be considered in a typical LCA procedure. Information will be retrieved from source which will be highlighted in the 'information sources' column. Utilises EPA sponsored website LCAccess which provides abundance information regarding Life cycle inventory data sources. The primary focus of this source is on LCI databases and LCI data providers. Follow link provided in the 'information sources column	Procedure 1. SURF-UK: indicator descriptions Procedure 2 http://www.epa.gov/nrmrl/std/lca/lca.html	 Procedure 1 In order to establish and consider possible impacts that a remediation option (s) may have on the environment, a semi-quantitative assessment approach can be utilised in form of a Multi Criteria Analysis (MCA). Sustainability indicators (as detailed in the SURF indicator) should be identified using the information source (weblink) provided. The indicators to be considered can then be ranked in form of greater or lesser importance (e.g. 3 - High /2-Medium/1-Low weighting), and then scored (out of 5). A ranking order can then be established accordingly to show most suitable to least suitable technology. Procedure 2 This step can be considered in tandem with Procedure 1 or afterwards if additional information is deemed necessary. A more complicated LCA quantitative assessment can be carried out. An LCA inventory should be collated using any of the applicable sources outlined in the web address provided and full life cycle analysis carried out. This, however, is a resource hungry process and requires huge time investment . Following the review of the indicators, all applicable indicators should be considered during DST selection.

Similar produced for Economic and Social indicators – utilises SuRF sustainability indicators (semi-quantitative ranking system, Procedure 1) followed by web-links to more resource-hungry quantitative analysis (LCA etc for "Environment" and "Economic" indicators) as needed

Includes modules on:

Outline cost calculator (user-entered cost data – allows estimation of economic value proposition of GRO). Module "calibrated" using data from Greenland sites - use to test the cost calculator and give input examples

General Site Information		General Plant Information			
Name of site		Plant used			
Country					
Site type		Rotation speed of crop	1 year		
Site coordinates					
Distance to crop supplier	km	Remediated surface/plant	m²/plant		
Distance to biomass processor	km		0 ha/plant		
Size of site	m²				
	0 ha	Kg of dry mass per harvest per h	a Kg DM/ha		
Depth of contamination	m	Of which% is in			
Density soil	ton/m ³	Plant part 1	plant part 1		
Total weight per ha	0 ton	% of total biomass plant part 1	100		
		Plant part 2	plant part 2		
Discount rate	4 %	% of total biomass plant part 2			
		Plant part 3	plant part 3		
General contamination inform	nation	% of total biomass plant part 3			
Extraction (0) or stabilisation (1)?	1	Plant part 4	plant part 4		
Define metal(s):		% of total biomass plant part 4			
Concentration in soil	1	Plant part 5	plant part 5		
Concentration in solution		% of total biomass plant part 5			
Start:					
Start concentration	mg/kg soil	Extraction in mg/kg DM per harvest per part, only for extraction			
Contamination in soil	0 kg/ha	plant part 1	mg/kg DM		
		plant part 2	mg/kg DM		
stabilisation for how long?	15 years	plant part 3	mg/kg DM		
		plant part 4	mg/kg DM		
		plant part 5	mg/kg DM		

Additional tools supporting Phase 3 (Design Stages)

Detailed operating windows

Technical datasets and design / implementation guidance

GREENLAND: FP7-KBBE-266124

Appendix 6: Stakeholder engagement guidelines for application of "gentle" remediation approaches (GROs).

Introduction

Definitions and key concepts

Stakeholder engagement is a broad inclusive and continuous process between a project and those potentially affected by it. The World Bank (2012) describes the aims of stakeholder engagement as building up and maintaining an open and constructive relationship with stakeholders and thereby facilitating a project's management of its operations, including its environmental and social effects and risks. Effective stakeholder engagement is also seen as reducing key remediation project risks, for example failure to gain acceptance and delays due to antagonistic relationships; and also as means of reducing project management costs and timescale (RESCUE 2005; REVIT 2007).

Need for stakeholder engagement when applying GRO.

Stakeholder involvement has been identified as a key requirement for the optimal application of sustainable remediation strategies (CL:AIRE, 2011), and in site regeneration more widely (REVIT, 2007; RESCUE, 2005). Effective and sustained stakeholder engagement is critical to the acceptance of GROs, particularly for larger

Aim is to produce practical, usable tool to interface with existing DSTs (e.g. HOMBRE) and national guidance.....

- Aims to communicate the potential wider benefits and risk management capabilities of GRO, supported by information on large-scale examples of successful GRO application, presented in a robust and non-technical way
- This is an area where demonstrator sites (e.g. the Greenland case studies and others) can make a significant contribution to decision support via providing evidence on the effectiveness of GRO under varying site contexts and conditions – "windows of opportunity"
- DST is currently being validated by the GREENLAND project advisory board (representing key regulators) and contaminated land consultants in workshop events, finalisation date December 2014

This project is financially supported by the European Commission under the Seventh Framework Programme for Research (FP7-KBBE-266124, Greenland)

