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Abstract. Demand forecasting is one of the most crucial aspects of inventory management. For intermittent demand, i.e. demand 
peaks follow several periods of zero or low demands, accurate forecasting is difficult. A framework is developed to support 
inventory management decision making for intermittent demand. Several forecasting methods and inventory management 
policies are compared in this framework. Because mathematical models cannot accurately describe the complex system, a 

simulation model is built. To determine the best combination of a demand forecasting method and an inventory management 
policy, a continuous tabu search metaheuristic is developed to optimize the simulation model. Depending on the experimental 
environment, two options for optimal strategies can be distinguished for a reliable supplier. In addition, the robustness of 
the results to uncertainty on the supply side is investigated. 
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Introduction 

Inventory systems have to cope with uncertainty in demand. The inventory control literature mostly makes use of 

the Normal or Gamma distribution for describing the demand during the lead-time. The Poisson distribution has 
been found to provide a reasonable fit when demand is very low (only a few pieces per year). Less attention has 

been paid to irregular demand. This type of demand is characterized by a high level of variability, but may also 

be of the intermittent type, i.e. demand peaks follow several periods of zero or low demands. Syntetos et al. 
(2005) propose a theoretically coherent scheme for categorizing demand into smooth, erratic, intermittent or 

lumpy. In this categorization scheme, the average inter-demand interval (ADI) and the squared coefficient of variation 

(CV²) of demand are compared with cutoffs of 1.32 for ADI and 0.49 for CV², as follows: 

 Smooth demand: ADI < 1.32, CV² < 0.49; 

 Erratic demand: ADI < 1.32, CV² > 0.49; 

 Intermittent demand: ADI > 1.32, CV² < 0.49; 

 Lumpy demand: ADI > 1.32, CV² > 0.49. 
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Bartezzaghi et al. (1999) consider five characteristics that cause demand to be of the intermittent type: the 

numerousness of potential customers, the heterogeneity of customers, the frequency of customers requests, the 
variety of customers requests and the correlation between customers requests. In practice, items with intermittent 

demand include service or spare parts and high-priced capital goods. A common example of such goods are spare 

parts for an airline fleet. The intermittent character of demand makes accurate forecasting difficult. However, the 
high cost of a modern aircraft and the expense of such repairable spares constitute a large part of the total investment 

of many airline operators. These parts are critical to operations and their unavailability can lead to excessive 

downtime costs. 

Croston’s method is considered to be a common forecasting method for intermittent demand items (Croston, 
1972). This method builds estimates taking into account both demand size and the interval between demand 

occurrences. Despite the theoretical superiority of such an estimation procedure, empirical evidence suggests 

modest gains in performance when compared with simpler forecasting techniques like exponential smoothing and 
(weighted) moving averages (Syntetos and Boylan, 2001). In preliminary research, the presence of interaction between 

demand forecasting and inventory decision making for intermittent demand has been demonstrated in a small 

experimental setup (Ramaekers and Janssens, 2004). In this paper, in order to generalize the results of the previous 
work, a framework is developed for inventory management decision support for intermittent demand. The main 

contributions of this paper are threefold. First, several forecasting methods and inventory management policies for 

intermittent demand are compared in a formal framework in case no disruptions at the supply side occur. Because 

mathematical models cannot accurately describe the complex system, a simulation model is built. Second, the 
model is optimized using a tabu search to find a best strategy in combining inventory decision making and demand 

forecasting for intermittent demand. Third, the robustness of the best strategy to uncertainty in supply is investigated. 
Both qualitative and quantitative factors need to be optimized in this model and the quantitative factors depend 

on the choice of the qualitative factors. For example, if exponential smoothing is used as a forecasting method, 
the smoothing parameter α needs to be optimized. If weighted moving averages is used as a forecasting method, 

the weights need to be optimized. A continuous tabu search metaheuristic is developed for the optimization of the 

quantitative parameters for each combination of qualitative parameters (forecasting method and inventory policy). 
In a next step, the best combination of qualitative factors is determined.    

The organization of the paper is as follows: section 2 provides an overview of related literature; in section 3 the 

simulation model and optimization method are described; the experimental environment is described in section 4; 

section 5 discusses the results; in section 6 the robustness of the results towards uncertainty in supply is investigated 
and in section 7 conclusions are formulated. 

Literature review  

Intermittent demand is difficult to predict, and errors in prediction may be costly in terms of obsolescent stock or 
unmet demand (Syntetos and Boylan, 2005). It is not only the variability of the demand size, but also the variability 

of the demand pattern that make intermittent demand so difficult to forecast. Furthermore, selecting the right periodic 

inventory system for low and intermittent demand is a problem facing many organizations (Sani and Kingsman, 
1997). Syntetos and Boylan (2001) state that intermittent demand creates significant problems in the manufacturing 

and supply environment as far as forecasting and inventory control are concerned. 

The majority of the literature on intermittent demand focuses on forecasting intermittent demand accurately 

(e.g. Croston, 1972; Willemain et al., 1994; Johnston and Boylan (1996; Syntetos and Boylan, 2001; Syntetos 
and Boylan, 2005; Gutierrez et al., 2008; Teunter and Sani, 2009; Teunter and Duncan, 2009) and on methods 

used to compare the performance of the forecasting methods (e.g. Syntetos and Boylan, 2005; Boylan and 

Syntetos, 2007; Mukhopadhyay et al., 2012).  Croston (1972) proposes forecasting intermittent demand by estimating 
demand sizes (when demand occurs) and inter-demand intervals separately. Syntetos and Boylan (2001) show 

that Croston’s method is biased. Syntetos and Boylan (2005) propose a modification to Croston’s estimator and 

demonstrate empirically the improved forecast accuracy achieved. This method is referred to as the approximation 

method by Syntetos and Boylan.  Despite the theoretical superiority of such an estimation procedure, empirical 
evidence suggests modest gains in performance when compared with simpler forecasting techniques (Syntetos and 

Boylan, 2001). However, commonly used forecasting methods are often inappropriate when faced with intermittent 

demand. For example, exponential smoothing places most weight on the more recent data, giving estimates that 
are highest just after a demand and lowest just before a demand.  
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Most papers that address inventory control for intermittent demand items assume that an appropriate forecasting 

method is in place to estimate future demand requirements. They focus on the improvement of stock control rules 
and assume an accurate forecast can be provided (e.g. Silver, 1970; Ward, 1978; Schultz, 1987; Watson, 1987; 

Dunsmuir and Snyder, 1989; Segerstedt, 1994). Relatively simple techniques for inventory management for 

intermittent demand are recommended in the literature. A periodic review system  is recommended for application 
in an intermittent demand context (Sani, 1995). 

The combined performance of the system is investigated in only a few studies (e.g. Sani and Kingsman, 1997; 

Eaves and Kingsman, 2004; Syntetos and Boylan, 2006; Solis et al., 2012). These studies mostly make use of real 

data and predefined control parameter values. Simulation models are used. For example, Sani and Kingsman 
(1997) carry out a simulation using real data, requiring a single run for each data series. Syntetos and Boylan 

(2006) set up a simulation experiment to quantify the inventory implications of the forecasting methods (exponential 

smoothing, Croston, approximation method, simple moving averages), given a periodic order-up-to-level inventory 
model. The control parameter values of the simulation experiment are predefined. However, no attempt to find 

optimal values of the control parameters is made. Neither the influence of uncontrollable factors, e.g. lead time, 

on the optimal policy is investigated. 

Simulation model and optimization method  

Because of the uncertainty present in the inventory system, often mathematical models cannot accurately describe 

the system. Therefore, a simulation model is used in this paper. The main advantage of simulation is that most 

complex, real-world systems which cannot be accurately described by a mathematical model can be evaluated 

analytically (Law and Kelton, 1991). Since the aim in this paper is to decide on the optimal combination of 
forecasting method and inventory management policy, a simulation-optimization method is used. In the following 

subsections, the simulation model, the experimental design and the optimization method are described. 

Simulation model 

This paper focuses on a single-product inventory system facing demand of the intermittent type. The implementation 

of such an inventory control system in practice requires the following steps: (1) choosing the inventory policy; 

(2) choosing the performance criterion; (3) estimating the stochastic features of the system; and (4) determining 

the control parameter values for the inventory policies. 
As inventory policies, two periodic review models are considered: the (R, s, S) policy and the (R, s, Q) policy. 

In the (R, s, S) policy, inventory is checked every R units of time. If the inventory level is at or below the reorder 

point s, a sufficient quantity is ordered to raise it to S. In the (R, s, Q) policy also every R units of time an order 

decision is made. If the inventory level is at or below the reorder point s, a fixed quantity Q is ordered such that 

the inventory level is raised to a value between s and s + Q. A deterministic lead-time of length L is assumed. 

The simulation starts with an initial inventory level I0. 
As performance criterion a cost function is defined. This means that the total costs (including shortage costs) 

are to be minimized. The following costs are considered: unit holding cost per period Ch, ordering cost CO and 

unit shortage cost per period Cs. In the system the demand is the only stochastic element. To generate intermittent 

demand, demand occurrence and demand size are separately generated. The demand occurrence is generated 
according to a first-order Markov process with transition matrix 

   
      

      
  

where p00 is the probability of no order in the next period when there has been no order in the current period and 

p10 is the probability of no order in the next period when there has been an order in the current period. Individual 

order sizes are generated using a Gamma distribution with shape parameter γ and scale parameter β. 
The simulation model aims to find the optimal inventory control policy, the optimal values of s, S and/or Q 

depending on the inventory control policy and also the optimal method to forecast the unknown demand. The 

standard forecasting method for intermittent demand items is considered to be Croston’s method. However, in 
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practice, single exponential smoothing and simple moving averages are often used to deal with intermittent demand. 

These three forecasting methods are compared. The single exponential smoothing (ES) method is easy to apply 
because only three pieces of data are needed to forecast the future: the most recent forecast, the most recent actual 

demand and a smoothing constant α. The smoothing constant determines the weight given to the most recent past 

observations and therefore controls the rate of smoothing or averaging. It is commonly constrained to be in the 
range of zero to one. The equation for ES is: 

Ft = αXt-1 + (1 - α)Ft-1  

where Xt-1 is the most recent actual demand, Ft is the exponentially smoothed forecast for period t and Ft-1 the 
exponentially smoothed forecast of the prior period. 

The assumption of the moving average (MA) forecasting method is that a future value will equal an average of 

past values. The number of past values used to calculate the forecast can vary. The simple n-period moving average 

forecast is calculated as: 

Ft = (Xt-n + Xt-(n-1) + … + Xt-2 + Xt-1)/n. 

Croston's method (Croston 1972) has been developed to provide a more accurate forecast of the mean demand 

per period. Croston's method (CR) applies exponential smoothing separately to the intervals between nonzero 
demands and their sizes. Let It be the smoothed estimate of the mean interval between nonzero demands, and let 

Dt be the smoothed estimate of the mean size of a nonzero demand. Let q be the time interval since the last nonzero 

demand. Croston's method works as follows:  

if Xt = 0 then 

Dt = Dt-1; It = It-1; q = q+1 

else 

Dt = αXt + (1-α)Dt-1; It = αq + (1-α)It-1; q = 1  

where α is the smoothing parameter. Combining the estimates of demand size and interval provides the forecast: 

Ft = Dt/It. 

These estimates are only updated when a demand occurs. When a demand occurs every period, Croston's 

method is identical to single exponential smoothing. The simulation model is developed in Microsoft Excel 

spreadsheets making use of VBA. The simulation model starts by generating intermittent demand. Next, the 
inventory system is simulated for 52 periods. At each review-time, a demand forecast and an order decision are 

made. The total costs of the inventory system are determined. Ten replications are made for each simulation run. 

Experimental design 

The parameters of the inventory system relate both to qualitative and to quantitative factors. The experimental 

design includes two qualitative factors: the forecasting method and the inventory control policy. Three forecasting 

methods are considered: Croston’s method, single exponential smoothing and 4-period simple moving averages. 
Two inventory control policies are considered: the (R, s, S) policy and the (R, s, Q) policy. In addition, depending 

on the choice of the qualitative factors, a set of quantitative factors are part of the experimental design. 

If the (R, s, Q) inventory control policy is used, the reorder point s and order quantity Q are the parameters to 

optimize. If the (R, s, S) inventory control policy is used, the reorder point s and order-up-to-level S are the optimizing 
parameters. A deterministic review period R is considered. The reorder point s can take any discrete value greater 

than or equal to 0. The order-up-to-level S and the order quantity Q can take any discrete positive value. 

In case single exponential smoothing or Croston’s method is used as a forecasting method, the smoothing parameter 

α is the optimizing parameter and, if moving averages is used as a forecasting method, the weights of the past 

values are the parameters to optimize. The smoothing parameter α can take any continuous value between 0 and 

1. The weights of the past values of the moving averages forecasting method can take any continuous value between 0 

and 1, under the condition that the sum of the weights equals 1. 
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Optimization method: Continuous tabu search 

Because the quantitative factors depend on the choice of the qualitative factors, a specific optimization method is 

developed and described in this section. For every combination of forecasting method and inventory management 
policy, the optimal values of the quantitative factors are determined using a continuous tabu search metaheuristic 

(Glover, 1989; Dengiz and Alabas, 2000). The total costs of the inventory system are minimized: the unit holding 

cost, the ordering cost and the unit shortage cost. The specifics of tabu search in the case of continuous variables 
is shortly described below. Once the near-optimal values of the quantitative factors are found for every combination 

of the qualitative factors, the best combination of forecasting method and inventory management policy is chosen. 
In previous research (Ramaekers, 2009), several simulation-optimization methods are compared: Design of 

Experiments (Taguchi), Response Surface Methodology and meta-heuristics (tabu search). Tabu search leads to 

better and more accurate results. Tabu search is a heuristic optimization technique which is developed specifically 

for combinatorial optimization problems. Few works deal with the application to the global minimization of functions 

depending on continuous variables. Hu (1992) is the first to adapt tabu search to continuous optimization. However, 

the algorithm of Hu (1992) is rather far from original tabu search. Siarry and Berthiau (1997) propose an adaptation 
of tabu search to the optimization of continuous functions where the purpose is to keep as close as possible to 

original simple tabu search. As neighborhood of the current solution, they perform a partition of the space around 

the current solution using a set of concentric balls. Inside each ball, a random neighbor is selected. The tabu list 
contains m balls, corresponding to the immediate neighborhoods of the m last retained solutions. Chelouah and 

Siarry (2000) improve the algorithm of Siarry and Berthiau (1997) and propose an Enhanced Continuous Tabu 

Search for the global optimization of continuous functions. They replace the balls by hyper-rectangles for the partition 

of the current solution neighborhood and add diversification and intensification concepts to the algorithm. Our 

method is based on Siarry and Berthiau (1997) and Chelouah and Siarry (2000). In Figure 1, a general flow-chart 

of the TS algorithm is shown. Two issues have to be examined: the generation of current solution neighbors and 

the elaboration of the tabu list. 
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Fig. 1. General flow chart of tabu search 
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To define a neighborhood of the current solution c, a set of hyper-rectangles is used for the partition of the current 

solution neighborhood. The k neighbors of the current solution are obtained by selecting, at random, a single 

point inside each hyper-rectangular zone. In Figure 2, a two-dimensional example of such a partition for k = 4 
neighbors of the current solution is shown. 

 

 

Fig. 2. Partition of current solution neighborhood 

Once a new current solution is determined, the immediate neighborhood of the previous solution is added to 

the tabu list. This immediate neighborhood is also a hyper-rectangle. The tabu list contains m hyper-rectangles 

corresponding to the m last retained solutions. A solution belonging to the tabu list can lose its tabu status if its 

objective value is higher than the aspiration level.  
The tabu search algorithm optimizes the quantitative parameters α, s, S and Q, depending on the forecasting 

method and inventory policy. A neighborhood consists of five neighbors and the tabu list contains five tabu areas. 
Ten simulation runs are made for each experimental choice. The tabu search is stopped after 200 iterations. The 

robustness of the results of the tabu search has been tested by repeating the algorithm several times. Each replication 

led to the same result. The continuous tabu search algorithm was implemented in VBA and runs for about 30 
minutes on an Intel Core 2.3 GHz laptop with 4 GB RAM. 

Experimental environment  

The experimental environment contains the uncontrollable factors of the inventory system: the costs of the inventory 

system and the parameters for generating intermittent demand. These factors can have an effect on the results. 
The optimization method described above, is executed using a single combination of the costs of the inventory 

system and demand. A fractional factorial design of 16 experimental points is set up for these uncontrollable factors 

and the optimization phase is repeated for each experimental point. A fractional factorial design is chosen to get 

good estimates of the effects of the uncontrollable factors at a fraction of the computational effort required for a 
full factorial design.  

Demand occurrence is generated using a first-order Markov process with transition matrices:  

                
        

  

or 

                
        

  

The matrices correspond to a probability of 0.2 that a demand occurs in a certain period for the matrix P1 and 

to a probability of 0.4 that a demand occurs in a certain period for the matrix P2. The size of demand is generated 
using a Gamma distribution with 4 different combinations of the scale parameter γ and the shape parameter β. 

The values of the combinations are shown in Table 1. Levels 1 and 3 lead to an expected order size of 6. Levels 2 

and 4 lead to an expected order size of 12. The levels of the costs of the inventory system are given in Table 2. 

The initial inventory level I0 = 5. The deterministic lead time L = 1. 
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Table 1. Parameters of the Gamma distribution 

Level γ β     

1 6 1     

2 12 1     

3 3 2     

4 24 0.5     

Table 2. Levels for the costs of the inventory system 

Level Co Ch Cs    

1 100 2 5    

2 200 4 10    

 

The fractional factorial design is shown in Table 3. This fractional factorial design makes it possible to determine 

the impact of the uncontrollable factors as the cost structure and the demand on the optimal strategy in inventory 

decision making and demand forecasting for intermittent demand. Although only 16 experimental points are 
investigated in this paper, the results can be generalized to draw conclusions with respect to an optimal strategy 

in combining inventory decision making and demand forecasting for intermittent demand since the levels of costs 

can be seen in relation to each other rather than as absolute values. 

Table 3. Experimental design for uncontrollable factors 

Experiment Co Ch Cs Freq γ β 

1 200 4 10 0.4 12 1 

2 100 4 5 0.4 12 1 

3 200 2 5 0.4 24 0.5 

4 100 2 10 0.4 24 0.5 

5 200 2 5 0.4 3 2 

6 100 2 10 0.4 3 2 

7 200 4 10 0.4 6 1 

8 100 4 5 0.4 6 1 

9 200 2 10 0.2 12 1 

10 100 2 5 0.2 12 1 

11 200 4 5 0.2 24 0.5 

12 100 4 10 0.2 24 0.5 

13 200 4 5 0.2 3 2 

14 100 4 10 0.2 3 2 

15 200 2 10 0.2 6 1 

16 100 2 5 0.2 6 1 

Discussion of the results for a reliable supplier 

Each run of a single experiment from the fractional factorial design leads to a best inventory policy, together with 

its set of near-optimal parameter values, and to a best forecasting method, together with its set of near-optimal 
parameter values. This section discusses the results of the reliable supplier. The results can be found in Table 4. 

This section aims to investigate which design factors have an influence on the choice of inventory policy and 

forecasting method. The levels of the design factors can be found in the fractional factorial design in Table 3. In 
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this section, the results of Table 4 are analyzed to determine the influence of the design factors in Table 3. For 

example, for the first eight experimental points, the demand frequency is high and for the last eight experimental 
points, the demand frequency is low. The results in Table 4 are studied in order to find an effect of this difference in 

demand frequency. An attempt is made to simplify and structure these findings in a limited set of rules, which are 

generated by a classification tree. 

Table 4. Optimal results based on tabu search for a reliable supplier 

Experiment                         Best strategy 

1 MA/FOQ ROP=0 Q=25 

2 ES/OUL s=0 S=1 

3 MA/OUL s=0 S=30 

4 MA/OUL s=0 S=25 

5 MA/FOQ s=0 Q=20 

6 MA/OUL s=0 S=15 

7 MA/FOQ s=0 Q=15 

8 ES/OUL s=0 S=1 

9 MA/FOQ s=0 Q=20 

10 ES/OUL s=0 S=1 

11 CR/OUL s=0 S=1 

12 ES/OUL s=0 S=1 

13 MA/OUL s=0 S=1 

14 MA/OUL s=0 S=1 

15 MA/OUL s=0 S=15 

16 ES/OUL s=0 S=1 

 

Eight experimental points have the order-up-to-level inventory management (OUL) policy with S = 1 as best 
strategy but with various best forecasting methods. For the other eight experimental points, the best strategy is an 

OUL-inventory management policy with S ≥ 15 or a fixed order quantity (FOQ) model with Q ≥ 15. An FOQ-

inventory management policy as best goes together with the moving averages (MA) method as best forecasting 
method. Also in case the OUL-inventory management policy with S ≥ 15 is best, MA shows to be the best forecasting 

method. In case the OUL-inventory management policy with S=1 is best, no specific forecasting method is preferred. 

The results also indicate that the parameters of the forecasting method have no significant impact on the results. 
In the next paragraphs, the influence of the uncontrollable factors on the results is examined in further detail.  

To investigate the impact of the demand frequency, the results are compared for both levels of the demand 

frequency (column Freq in Table 3). When the demand frequency is generated using matrix P1, corresponding to 

a probability of 20% of having a non-zero demand in a certain period, an order-up-to-level S of 1 unit is near-optimal. 
When the demand frequency is generated using matrix P2, which corresponds to a probability of 40% of having 

demand in a certain period, the order-up-to level S or fixed order quantity Q has a value between 15 and 30. This 

can be explained because the intermittent character of demand is more outspoken with a low probability of non-zero 
demand, leading to a near-optimal order-up-to level S = 1 unit. When the intermittent character of demand is less 

outspoken (40%), it is better to order a quantity of at least 15 units. The only exception to this order-up-to-level S = 1 

unit for a demand probability of 20% occurs when both the ordering cost and the unit shortage cost are high and 

the unit holding cost is low. In these circumstances it is better to order a larger quantity because it is less costly to 
hold inventory than to have a stock-out or to order a small quantity every time. Inversely, when a demand probability 

of 40% is used, it is better to use an order-up-to-level S = 1 unit when both the ordering cost and the unit shortage 

cost are low and the unit holding cost is high. The same reasoning as above can be made here. It can also be noted 
that when the demand frequency is doubled, Croston’s method becomes less useful as forecasting method. When 

the results are compared for changing the parameters of the demand size, no significant impact of these changes 

can be detected. This means the only impact of demand is due to the demand frequency, and not on the size of 

demand (when it occurs). 
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Changes in the cost structure of the inventory system have a significant impact on the results. When the ordering 

cost is at its low level, an OUL-inventory management policy is used with the order-up-to-level S = 1, except 
when the unit holding cost is low, the unit shortage cost is high and the demand probability of a certain period 

equals 40%. The latter factor combination favors holding more units in inventory. It changes the best policy to a 

policy with an order-up-to level S or fixed order quantity between 15 and 30. When the ordering cost is at its high 

level, the order-up-to-level S or fixed order quantity Q is between 15 and 30, except when the unit holding cost is 
high, the unit shortage cost is low and the probability of a non-zero demand in a certain period equals 20%. In a 

certain period, as an explanation, the opposite reasoning of above can be used. 

When the unit holding cost is at its low level, an order-up-to-level S or fixed order quantity Q between 15 and 
30 is best, unless both the ordering cost and the unit shortage cost are low and the probability of a non-zero demand 

in a certain period equals 20%. With this combination of factor levels, an inventory policy with an order-up-to-level 

S = 1 is better used because this combination favors lower inventory levels. When the unit holding cost is at its high 

level, an order-up-to-level S = 1 is the best choice, unless the ordering cost and unit shortage cost are high and the 
probability of a non-zero demand in a certain period is 40%. This combination of factor levels favors a higher 

inventory level and, by this, an order-up-to-level Q or fixed order quantity S between 15 and 30 is better used. 

A unit shortage cost at its low level implies an order-up-to-level S = 1 unit, except when the unit holding cost 
is low and the probability of a non-zero demand in a certain period equals 40%. When the shortage cost is low, it 

is not necessary to keep a high level of inventory. Therefore, an order-up-to-level S = 1 is the best policy. However, 

if the holding cost is low and the intermittent character of demand is not so outspoken, it is better to have more 

units in inventory. A unit shortage cost at its high level leads to an order-up-to-level S or a fixed order quantity Q 
between 15 and 30, except when the unit holding cost is high and the probability of a non-zero demand in a certain 

period equals to 20%. The same reasoning as before can be used to explain this exception. 
 

 

Fig. 3. Classification tree 
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Overall, it can be concluded that the uncontrollable factors have an impact on the best strategy on the combination 

of an inventory management policy and a demand forecasting method for intermittent demand. Furthermore, 

some interactions between the uncontrollable factors have been observed. To study this interaction in more detail, 

a classification tree is constructed using the C4.5 algorithm, a well-known algorithm in data mining (Quinlan 

(1993)). The classification tree, generated by the algorithm with the use of the simulation data, is represented in 

Figure 3. Using this tree, it can be decided which of both strategies is best: an order-up-to-level inventory management 
policy with S = 1 or an order-up-to-level inventory management policy with S ≥ 15 or a fixed order quantity 

model with Q ≥ 15. Three factors are required to determine the best strategy in combining inventory decision 

making and demand forecasting: the frequency of demand, the order cost and the inventory cost. If one of these 
three factors is unknown, the knowledge of the stock-out cost can be used to make a classification. Summarizing, 

it can be stated that if three factors out of four factors (frequency of demand, order cost, inventory cost and stock-out 

cost) are fixed, the best strategy is formulated. 

A good classification is necessary because there is a considerable increase in the costs of the inventory system 
when using an alternative strategy. When a fixed order quantity inventory management policy with Q ≥ 15 is 

used instead of an order-up-to-level inventory management policy with S = 1, total costs are on average 20% 

higher. In the opposite case, when an order-up-to-level inventory management policy with S = 1 is used instead of 
an order-up-to level inventory management policy with S ≥ 15 or a fixed order quantity model with Q ≥ 15, total 

costs increase with more than 40% on average. 

Discussion of the results for an unreliable supplier 

Studies in literature mainly focus on uncertainty in demand. In many inventory models the continuous availability 

of supply at any time in the future is an implicit assumption. However, uncertainty may be present at the supply 

side too. This type of uncertainty occurs in delivery time, in interruption of delivery during a certain period, or in 

mismatches in order and delivery in order and delivery in terms of quality or quantity. In this section, the focus is 

on uncertainty in availability. The supplier alternates randomly between an available and an unavailable state. 

When the supplier is available, the order is delivered after the usual lead time. When the supplier is unavailable, 
the order is executed when the supplier turns available again. In the simulation model, uncertainty in supply is 

randomly generated. In every period, there is 20% chance that the supplier is unavailable. If the supplier is 

unavailable, the order is delivered one lead time after the supplier becomes available again. 
First, the strategies found in Table 4 are also used to determine output measures for the inventory system with 

an unreliable supplier. Table 5 contains 95% confidence intervals (CI) for the difference in total costs between a 

reliable and an unreliable supplier. For eight of the experimental points, the difference in costs between the reliable 

and the unreliable case is significant. The alternative with the unreliable supplier has higher total costs than the 
one with the reliable supplier. The experimental points with a significant difference in costs are those experimental 

points for which the best strategy for a reliable supplier has an order-up-to-level S = 1. For the other experimental 

points, the best strategy for a reliable supplier has an order-up-to-level or fixed order quantity Q ≥ 15. 

Table 5. Confidence intervals for comparing costs of a reliable and an unreliable supplier 

Experiment Confidence interval  

1 -150.68 149.88  

2 -516.98 -248.38  

3 -74.65 97.89  

4 -135.08 -5.64  

5 -25.81 144.886  

6 -65.95 74.03  

7 -103.07 139.35  

8 -369.92 -144.44  

9 -117.40 131.08  
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Experiment Confidence interval  

10 -359.40 -124.36  

11 -679.87 -279.44  

12 -597.74 -290.24  

13 -459.96 -108.36  

14 -507.49 -263.19  

15 -100.16 91.3  

16 -232.57 -33.19  

 

Next, a new best combination of forecasting method and inventory management policy is determined for the 
inventory management system with intermittent demand and an unreliable supplier. Furthermore, the near-optimal 

settings for the safety stock and the fixed order quantity or order-up-to-level are determined. 
Table 6 shows the best strategy for the inventory system with an unreliable supplier. For these eight experimental 

points, the best strategy for the inventory system with intermittent demand and no uncertainty in supply is an order-

up-to-level inventory management policy with S = 1. When the results in Table 6 are compared to the results in 

Table 4, the experimental points can be divided in two categories. For the experimental points 2, 8, 13 and 16, the 

best strategy is an inventory management policy with a fixed order quantity Q ≥10. When a fixed order quantity 
inventory management policy is used, the moving averages method is always the best forecasting method. For the 

experimental points 10, 11, 12 and 14, the best strategy is an order-up-to-level inventory management policy with 

S = 1, which is the same strategy as found for the inventory system with a reliable supplier. When the order-up-to-level 
S = 1 is the best inventory management policy, no specific forecasting method is preferred. 

Table 6. Results of tabu search for an unreliable supplier 

Experiment                     Best strategy 

2 MA/FOQ s=0 Q=18 

8 MA/FOQ s=0 Q=12 

10 ES/OUL s=0 S=1 

11 CR/OUL s=0 S=1 

12 MA/OUL s=0 S=1 

13 MA/FOQ s=0 Q=10 

14 ES/OUL s=0 S=1 

16 MA/FOQ s=0 Q=10 

Conclusions 

When demand is of the intermittent type, a framework is developed for inventory management decision support. 

A best strategy in combining inventory decision making and demand forecasting is proposed, using a simulation 

model. An experimental design is set up to determine the impact of the cost structure and the demand. Depending 
on the experimental environment, two options for best strategies can be distinguished: an order-up-to level inventory 

management policy with an order-up-to level equal to 1 and a reorder point equal to 0 or an inventory management 

policy with a fixed order quantity Q > 1 or an order-up-to level S > 1 and a reorder point equal to 0. Four factors 
of the experimental environment have an influence on which of the two strategies is best chosen: the frequency of 

demand, the inventory holding cost, the order cost and the stock-out cost. When the level of three factors out of 

these four are fixed, it is possible to determine the best strategy.  
It is important to know which of both strategies is best because there is a significant increase in total costs of 

the inventory system if the wrong strategy is chosen. Although only an incomplete number of experimental points 

are investigated in this paper, the results can be generalized to draw conclusions with respect to a best strategy in 

combining inventory decision making and demand forecasting for intermittent demand since the levels of costs 
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can be seen in relation to each other rather than as absolute values. The robustness of the results to uncertainty in 

the supply side is investigated. One specific type of uncertainty in supply is considered: uncertainty in availability. 
This uncertainty in availability causes a significant difference in performance measures compared to the reliable 

situation. For intermittent demand, uncertainty in availability leads to significantly higher total costs for those 

experimental points that led to the optimal policy of an order-up-to level equal to 1 without uncertainty in availability. 
A new best strategy in combining inventory decision making and demand forecasting is determined for these 

points: a fixed order quantity inventory management policy with a fixed order quantity Q > 1 and a reorder point 

equal to 0.  
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