On the completeness of the semigraphoid axioms for deriving arbitrary
from saturated conditional independence statements

Marc Gyssens®*, Mathias Niepert”, Dirk Van Gucht®

%Hasselt University and Transnational Univ. of Limburg, Faculty of Sciences, Martelarenlaan 42, B-3500 Hasselt, Belgium
bUniv. of Washington, Dept. of Computer Science & Engineering, Paul G. Allen Center, AC101, 185 Stevens Way, Seattle,
WA 98195-2350, USA
¢Indiana University, Computer Science Division, Lindley Hall, 150 S Woodlawn Ave., Bloomington, IN 47405, USA

Abstract

Conditional independence (CI) statements occur in several areas of computer science and artificial intelli-
gence, e.g., as embedded multivalued dependencies in database theory, disjunctive association rules in data
mining, and probabilistic CI statements in probability theory. Although, syntactically, such constraints can
always be represented in the form I(A, B|C), with A, B, and C subsets of some universe S, their semantics
is very dependent on their interpretation, and, therefore, inference rules valid under one interpretation need
not be valid under another. However, all aforementioned interpretations obey the so-called semigraphoid
axioms. In this paper, we consider the restricted case of deriving arbitrary CI statements from so-called
saturated ones, i.e., which involve all elements of S. Our main result is a necessary and sufficient condition
under which the semigraphoid axioms are also complete for such derivations. Finally, we apply these results
to the examples mentioned above to show that, for these semantics, the semigraphoid axioms are both sound
and complete for the derivation of arbitrary CI statements from saturated ones.

Keywords: conditional independence statement, saturated conditional independence statement, axiom
system, semigraphoid axioms, soundness, completeness

1. Introduction In probability theory, S could be a set of
variables, and I(A, B|C) a probabilistic CI state-
ment [4-6]. A probability distribution P satisfies
I(A,B|C) if A and B are independent conditional
upon C'. Because reasoning over the full joint prob-
ability distribution is almost always intractable, the
presence of probabilistic CI statements may facili-
tate the decomposition of joint probability distri-
butions into smaller parts which are then processed

In numerous areas of computer science, the pres-
ence of constraints allows problems to be “decom-
posed” into simpler ones. Often, these constraints
are conditional independence (CI) statements of the
form I(A, B|C), with A, B, and C pairwise disjoint
subsets of some finite universe S [1].

In database theory, S could be a relation schema,

and I(A, B|C) an embedded multivalued dependency
[2], meaning that the projection of the relation onto
AU B UC can be losslessly decomposed into its
projections onto AU C and BUC.

In data mining, S could be a set of items, and
I(A, B|C) a disjunctive association rule [3] meaning
that C can only be contained in a basket if either
A or B is contained in that basket.
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in sophisticated ways to compute a-posteriori prob-
abilities.

Other examples identified by Studeny [1] of ar-
eas in which conditional independence constraints
arise, include the theory of ordinal conditional func-
tions [7], the Dempster-Shafer theory of belief func-
tions [8, 9], and possibility theory [10].

Sayrafi and two of the present authors intro-
duced measure-based constraints [11, 12], which en-
compass several of the above-cited examples (see
also the work of Dalkilic and Robertson [13] and
Lee [14]). A measure M is an increasing supermod-
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ular function associating nonnegative real numbers’
to the subsets of a universe S; M satisfies the sec-
ondary constraint I(A, B|C) if M(AU B UCQC) +
M(C)=MAUC)+M(BUC).

In view of this wide range of applications, a
deeper theoretical understanding of the mathemat-
ical and algorithmic properties of conditional inde-
pendence is required. Especially Studeny [15] has
brought this issue to the forefront, leading to an im-
pressive body of work on algebraic representations
of conditional independence structures with links to
algebraic geometry [15, 16], supermodular functions
on sets, and algorithms for reasoning with condi-
tional independencies [17-19]. A central notion in
reasoning about conditional independence is the CI
implication problem, i.e., deciding whether a set of
CI statements implies a single CI statement relative
to the semantics given to CI statements in the appli-
cation under consideration. This was at the center
of a study by the present authors and Sayrafi [19],
in which soundness and completeness of axiom sys-
tems for CI implication was investigated.

As was already observed by Studeny [1], sound-
ness and completeness of such systems critically de-
pends on the application under consideration. Also,
it is known, e.g., that, for probabilistic conditional
independence, no finite, sound and complete infer-
ence system exists [20] even though it remains open
whether the probabilistic CI implication problem
for the class of all discrete probability measures is
decidable. For the case of embedded multivalued
dependencies, it has even been proven that the im-
plication problem is undecidable [21, 22].

Despite all these differences, there is a finite infer-
ence system that is sound for all applications men-
tioned above, namely the semigraphoid axiom sys-
tem [5], which is here referred to as System G. The
present authors and Sayrafi [19] investigated exten-
sions of the System G, and proposed a finite infer-
ence system referred to as System A. It was shown
that System A, although not sound, is complete
for the general probabilistic implication problem.
What makes System A so attractive, also beyond
the case of probabilistic conditional independence,
is the existence of a set-theoretical characterization
of derivability under System .A [19], in terms of so-
called meet semi-lattices [23].

M : 25 — R20 is increasing if M(AU B) > M(A) and
supermodular if M(AUBUC)+M(C) > M(AUC)+M(BU
(). By swapping the inequalities, decreasing supermodular,
increasing submodular, and decreasing supermodular mea-
sures are obtained, which lead to essentially the same theory.

The present authors and Sayrafi [19] have also
looked to cases where some CI statements are satu-
rated. Saturated CI statements involve all variables
under consideration. In many cases, restricting the
CI implication problem to saturated CI statements
makes it not only decidable, but also axiomatiz-
able, among other very desirable properties?. This
is, e.g., the case for saturated embedded multival-
ued dependencies (called “multivalued dependen-
cies” for short) and saturated probabilistic CI state-
ments. For the latter case, it is well known that
the semigraphoid System G is sound and complete
for the derivation of saturated CI statements from
saturated CI statements. Unfortunately, System G
also allows for the derivation of unsaturated CI
statements from saturated ones. To circumvent this
caveat, Malvestuto [26] and Geiger and Pearl [27]
proposed an alternative sound and complete set of
inference rules for this purpose, referred to as Sys-
tem S, and which is subsumed by the semigraphoid
rules, but which has the additional advantage that
all the intermediate CI statements derived are also
saturated. The present authors and Sayrafi [19]
were able to generalize this result by showing that it
follows from their theoretical framework that Sys-
tem A is sound and complete for the derivation of
arbitrary CI statements from saturated ones.

Since in all applications mentioned above, Sys-
tem G is sound for the CI implication problem—and
hence in particular for the derivation of arbitrary CI
statements from saturated ones, the above result
begs the question under which conditions System G
is also complete for the derivation of arbitrary CI
statement from saturated ones. It is shown that a
necessary and sufficient condition for this to be the
case is that System A is complete for the derivation
of arbitrary CI statements from saturated ones, and
this regardless of the context in which the CI state-
ments are interpreted. In addition, Theorem 1 and
Corollary 1) state an analogous characterization for
soundness. These results hinge on a “normal form”
result for such derivations (Proposition 2) which
says that whenever an arbitrary CI statement can
be derived from saturated ones under System A, a
“saturated version” of that CI statement can be de-
rived under System S. We show that, for our initial
examples, the results of this paper yield soundness
and completeness of both Systems A and G for de-
riving arbitrary CI statements from saturated ones
(Proposition 3).

2See [24, 25] for examples of very recent work in this area.



2. Preliminaries

Throughout the paper, we consider a finite uni-
verse S, which we shall often leave implicit. With
regard to set notation, we often write AB for the
union A U B, ab for the set {a,b}, and a for the
singleton set {a} if no confusion is possible. For
A C S, we write A for S — A, the complement of A
with respect to S.

We begin by defining conditional independence
(CI) statements as a purely syntactic notion, with-
out being concerned with the semantics.

Definition 1. A conditional independence (CI)
statement is an expression I(A, B|C) where A, B,
and C' are pairwise disjoint subsets of S. If ABC =
S, I(A, B|C) is saturated.

Example 1. Let S = abedefgh be the universe.
Then I(adef,bgh|c) and I(a,blc) are both examples
of CI statements. The former is saturated, whereas
the latter is not.

Finite inference systems are frequently used to
decide logical entailment of such statements at the
syntactic level. If 7 is such an inference system, C
a set of CI statements, and c a single CI statement,
we denote by C 7 ¢ that c is derivable from C under
the inference rules of System Z.

In this paper, we consider System A, introduced
by the present authors and Sayrafi [19] and shown
in Figure 1, and System G, the semigraphoid ax-
ioms of Pearl [5], shown in Figure 2. We also con-
sider System S of Malvestuto [26] and Geiger and
Pearl [27], shown in Figure 3, geared to the case
where only saturated CI statements are considered.
In all three systems, sets occurring within a single
CI statement are considered pairwise disjoint.

We next illustrate derivations under System A.

Example 2. Let S = abcdefgh, and let
C = {I(adef,bgh|c), 1(bd,efglach), I(ad,efg|bch)}.

Then C k4 I(d,e|ch). To see this, observe that,
from I(adef,bgh|c), we can derive I(a,b|c) by re-
peated applications of symmetry and decomposi-
tion, and I(a,b|ch) (1) by strong union. Similarly,
from I(bd,efglach), we can derive I(d,elach) (2),
and from I(ad,efg|bch), we can derive I(d,e|bch)
(3), again by repeated applications of symmetry
and decomposition. Finally, from (1), (2), and (3),
we can derive I(d, e|ch) by strong contraction.

Triviality: I(A,0|C)

Symmetry: I(A, B|C) — I(B, A|C)

Decomposition: I(A, BD|C) — I(A, B|C)
Contraction: I(A, B|CD) & I(A, D|C) — I(A, BD|C)
Strong union: I(A, B|C) — I(A, B|CD)

Strong contraction:

I(A, B|C) & I(D, E|AC) & I(D, E|BC) — I(D, E|C)

Figure 1: The inference rules of System .A.

Triviality: I(A,0|C)

Symmetry: I(A, B|C) — I(B, A|C)

Decomposition: I(A, BD|C) — I(A, B|C)
Contraction: I(A, B|CD) & I(A,D|C) — I(A, BD|C)
Weak union: I(A, BD|C) — I(A, B|CD)

Figure 2: The inference rules of the semigraphoid System G.

Triviality: I(A,0|C)

Symmetry: I(A, B|C) — I(B, A|C)
Weak Contraction:

I(A, BICD) & I(AB, D|C) — I(A, BD|C)
Weak union: I(A, BD|C) — I(A, B|CD)

Figure 3: The inference rules of System S.

Systems A, G, and S are related as follows.
Proposition 1. [19, 26, 27]

1. If C is a set of CI statements and c is a single
CI statement, then (a) C g ¢ implies C 4 ¢
and (b) C s ¢ implies C ¢ c.

2. If C is a set of saturated CI statements and c
is a single saturated CI statement, then C kg ¢
if and only if C Fs c.

Observe that, in a derivation of saturated CI
statements from saturated CI statements under
System S, only saturated CI statements are gener-
ated as intermediate constraints, which is not guar-
anteed in derivations using Systems A4 or G. The
appealing property of System A, however, is that
derivability can be characterized in set-theoretical
terms [19].

In the context of a concrete semantics for CI
statements, derivations can be given a meaning.
Given such a semantics & for CI statements, a set
of CI statements C, and a single CI statement ¢, we
say that C S-implies ¢, denoted C =g ¢, if ¢ holds
whenever all CI statements of C hold.



An inference system Z is sound for &, if, for each
set of CI statements C, and for each single CI state-
ment ¢, C bz ¢ implies C =g ¢; T is complete for
G, if, for each set of CI statements C, and for each
single CI statement ¢, C =g ¢ implies C b7 c.

Example 3. If CI statements are interpreted as
probablistic conditional independence constraints
in the context of discrete probability measures, it
is known that (1) System A is complete; (2) Sys-
tem G is sound; and (3) System A, System G, and
System S are sound and complete if all constraints
under consideration are saturated. [19, 26, 27].

3. Main result

Our main result is concerned with the derivation
of arbitrary CI statements from a set of saturated
CI statements. We show that, in this context, (1)
soundness of System A is equivalent to soundness
of System G, and (2) completeness of System A is
equivalent to completeness of System G, indepen-
dent of the semantics given to the CI statements.

This result relies on Proposition 2. To state it, w
e first need the following notion.

Definition 2. A saturation of a CI statement
I(A, B|C) is a saturated CI statement I(A’, B'|C)
for which A C A" and B C B'.

Example 4. In Example 1, S = abcde fgh. Hence,
I(adef,bgh|c) is a saturation of I(a,b|c).

Proposition 2. Let C be a set of saturated CI
statements, and let c be a single, arbitrary CI state-
ment. If C 4 ¢, then there exists a saturation ¢’ of
¢ such that C s c'.

PROOF. The proof is by structural induction. The
base case, where C contains a saturation of ¢, triv-
ially satisfies Proposition 2. In the inductive step,
we deal with each of the six inference rules of Sys-
tem A. In each case, the inductive hypothesis is
that each of the CI statements in the left-hand side
of the rule has a saturation that can be derived from
C under System S.

For the triviality, symmetry, and decomposition
rules, the induction step is straightforward. We
now deal with the remaining three inference rules
of System A in further detail. For sets X, Y C S,
Xy is short for X NY, and XY is short for X —Y.

e Contraction. Consider the contraction rule
I(A,B|ICD) & I(A,D|C) — I(A,BD|C)
of System A, and let I(AE,BF|CD) and
I(AG,DH|C) be saturations of the CI
statements in the left-hand side.  Hence,
ABCDEF =S = ACDGH, so BEF = GH,
G = BgEgFg, and H = BgEpgFy. From
I(AE, BF|CD), we derive, by symmetry and
weak union, I(AEq, BcFg|CDH), and, from
this and I(AG, DH|C), we derive by, weak con-
traction, [(AEg, BaFaDH|C), a saturation of
I(A,D|C).

e Strong union. Consider the strong union
rule I(A,B|C) — I(A,B|CD) of Sys-
tem A. Let I(AE,BF|C) be a saturation
of I(A,B|C). Hence, D C FEF. From
I(AE, BF|C), we derive, by symmetry and
weak union, I1(AEP, BFP|CD), a saturation
of I(A, B|CD).

e Strong contraction. Consider the strong con-
traction rule

I(A, B|C) & I(D, E|AC) & I(D, E|BC) — I(D, E|C)

of System A, and let (1) I(AF,BG|C), (2)
I(DH,EK|AC), and (3) I(DL,EM|BC)
be saturations of the CI statements in the
left-hand side. Figure 4 shows the mutual
position of all sets involved in these satura-
tions. From (3), we derive, by weak union and
symmetry, I(DpLaLp, EpMaMp|CBG)
(4), and, from (4) and (1), we de-
rive, by weak contraction and symmetry,
I(DGEBLGM, DpLAoLp|C) (5). From (2),
we derive, by weak wunion and symmetry,
I(DgHpHg, EcKpKg|ACF) (6), and from
(6) and (1), we derive, by symmetry and weak
contraction, I(ADrEHrK,DcHpH¢|C)
(7). From (7), we derive, by weak union,
I(EKpKeMaMp,DgHpHg|C DpLALR)
(8), and from (8) and (5), we finally de-
rive, by weak contraction and symmetry,
I(DHpHGLALy, EKpKcMaMp|C), which
is a saturation of I(D, E|C).

We next illustrate Proposition 2 and its proof.

Example 5. Let S = abcdefgh. The set C in
Example 2 consists of saturated CI statements,
whereas I(d, e|ch) is not. We already established
in Example 2 that C F4 I(d,e|ch). We now show
that, from C, we can derive a saturation of I(d, e|ch)
under System S.
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Figure 4: In the inductive proof of Proposition 2, we have in the case of the strong contraction rule that S = ABCFG (left),
S =ACDEHK (middle), and S = BCDELM (right). This last diagram also shows the mutual position of all these sets.

In Example 2, we derived I(a,blc) from
I(adef,bgh|c), I(d,e|ch) (2) from I(bd,efglach)
(2"), and I(d,e|bch) (3) from I(ad,efg|bch) (3'). In
each of these derivations, the former CI statement
is a saturation of the second one, and, hence, no
further work is needed here. Next, from I(a,b|c),
we derived I(a,b|ch) by strong union. In the simu-
lation in the proof of Proposition 2, we derive from
the saturation I(adef,bgh|c) of I(a,blc) the satu-
ration I(adef,bg|ch) (1') of I(a,b|ch) (1), by weak
union. In the final step of the inference in Exam-
ple 2, we derived from (1), (2), and (3) the CI state-
ment I(d, e|ch), by strong contraction. It remains to
show that, from their saturations (1), (2) and (3'),
we can derive a saturation of I(a,b|ch) under Sys-
tem S. To this end, we closely follow the derivation
exhibited in the part “Strong contraction” of the
proof of Proposition 2. From (3'), we derive by weak
union and symmetry, I(ad,ef|bcgh) (4'), and from
(4") and (1"), we derive, by weak contraction and
symmetry, I(befg,ad|ch) (5'). From (2'), we de-
rive, by weak union and symmetry, I1(b, glacdefh)
(6"), and from (6’) and (1’), we derive, by symme-
try and weak contraction, I(adefg,b|ch) (7'). From
(7), we derive, by weak union, I(efg,blacdh) (8),
and, from (8') and (5’), we finally derive, by weak
contraction and symmetry, I(abd,efg|ch), which is
a saturation of I(d, e|ch).

The proof of Proposition 2 reveals that, for each
rule of System A, there exists a saturation of its
right-hand side which can be derived under Sys-
tem S from saturations of its left-hand side. By
Proposition 1, this saturation can also be derived
under System 4, which can be expressed as a con-
dition on the sets involved [19]. This observation al-
lowed us to significantly reduce the number of pos-
sible saturations to be considered. In this regard, it

is noteworthy that, for the strong contraction rule,
the saturation of I(D, FE|C) obtained in the proof of
Proposition 2 is actually the only one that can be
derived from I(AF,BG|C), I(DH,EK|AC), and
I(D, E|AC) under System A, suggesting that there
is a certain “tightness” to Proposition 2.

Proposition 2 also reveals that, in order to de-
rive arbitrary CI statements from saturated ones
under System A or G, one can stay within the
framework of saturated CI statements until the very
last step, which consists of removing the extraneous
variables. In that sense, Proposition 2 can be seen
as a normal form for such derivations.

We now bootstrap Proposition 2 as follows.

Theorem 1. Let C be a set of saturated CI state-
ments, and let ¢ be a single, arbitrary CI statement.
Then C 4 c if and only if C k¢ c.

PROOF. The “only if” follows from Proposition 1.
To see the “if,” assume C 4 c¢. By Proposition 2,
there is a saturation ¢’ of ¢ such that C kg ¢/, and,
hence, by Proposition 1, C kg ¢/. Since {¢'} k¢ ¢,
by decomposition and symmetry, C g c.

Example 6. Let S = abcdefgh. In Example 5, we
showed that C s I(abd, efg|ch), with C the set of
CI statements first introduced in Example 2. By
Proposition 1, C kg I(abd,efg|ch)®. Finally, from
I(abd, efg|ch) we derive I(d,e|ch) by repeated ap-
plications of the symmetry and decomposition rules.

The following corollary is now immediate.

3A derivation under System G can easily be constructed
from a derivation under System S, since the weak contrac-
tion rule can be simulated by the contraction rule, after first
applying the symmetry, the decomposition, and again the
symmetry rule to the second CI statement.



Corollary 1. For every semantics for CI state-
ments, we have the following:

1. G is sound for deriving arbitrary CI statements
from saturated ones if and only if A is;

2. G is complete for deriving arbitrary CI state-
ments from saturated ones if and only if A is.

4. Applications

We now intend to show how the main results of
Section 3 (notably, Theorem 1 and Corollary 1) may
be applied to different semantics for CI statements
to obtain that both Systems A and G are sound
and complete for deriving arbitrary CI statements
from saturated ones. We illustrate this for three
examples considered in Section 1, namely embed-
ded multivalued database dependencies, disjunctive
association rules in data mining, and probabilistic
conditional independence. The following two lem-
mas are immediate consequences of Corollary 1.

Lemma 1. If CI statements are interpreted as em-
bedded multivalued database dependencies, disjunc-
tive association rules in data mining, or conditional
independence statements over discrete probability
measures, then System A is sound for deriving ar-
bitrary CI statements from saturated ones.

PROOF. System G is sound in all these cases [1].

Lemma 2. For every semantics for CI statements,
we have the following. If System G is sound and
System A complete for deriving arbitrary CI state-
ments from saturated ones, then both Systems G
and A are sound and complete for deriving arbi-
trary CI statements from saturated ones.

As already pointed out in Section 1, all three se-
mantics considered here are examples of measure-
based semantics*. As a consequence, Corollary 32
in [19] holds, and we may derive the following.

Lemma 3. If CI statements are interpreted as em-
bedded multivalued database dependencies, disjunc-
tive association rules in data mining, or conditional
independence statements over discrete probability
measures, then the following holds. If System A
is sound for deriving arbitrary CI statements from

4We refer to earlier work of Sayrafi and the present au-
thors for more details on measure-based constraints [12, 19].

saturated ones, and complete for deriving saturated
CI statements from saturated ones, then System A
is also complete for deriving arbitrary CI state-
ments from saturated ones.

Combining Lemmas 1, 2, and 3, we finally obtain
the following.?

Proposition 3. If CI statements are interpreted
as embedded multivalued database dependencies,
disjunctive association rules in data mining, or
conditional independence statements over discrete
probability measures, then both Systems A and G
are sound and complete for deriving arbitrary CI
statements from saturated ones.

PROOF. By Lemmas 1, 2, and 3, it suffices to show
that System A is complete for deriving saturated CI
statements from saturated ones. By Proposition 1,
it suffices to show that System S is already com-
plete for this purpose.® By a reduction argument,
one can show that the implication problem for sat-
urated disjunctive association rules coincides with
that of (full) multivalued database dependencies.”
Finally, System S is complete for the implication
problem of both multivalued database dependencies
and saturated conditional independence statements
on discrete probability measures [26, 27].

Finally, one may wonder if our results have any
bearing on the graphical representation of CI state-
ments in the probabilistic case, and, in particu-
lar, on the separation criterion. This is not the
case, however. Indeed, the closure of a set of sat-
urated probabilistic CI statements with respect to
the symmetry, intersection®, and weak union rules
coincides with the separation criterion in an undi-
rected graph representing the closure of that set of
CI statements [27, 29, 30]. However, the intersec-
tion rule is not generally sound for saturated proba-
bilistic CI statements and, hence, graph separation
does not coincide with the closure under System G.

5Proposition 3 for the case of probabilistic conditional in-
dependence is Theorem 41 in [19], which relied on the hith-
erto unpublished results above.

6 As noted in Example 3, System A is known to be com-
plete for general probabilistic CI statements, so, for this case,
we are already done. Here, we intend to give a more generic
argument that is applicable to other semantics as well.

"The reduction shows that the implication problem for
saturated disjunctive association rules coincides with that of
the so-called multivaled domain dependencies, also known
as pseudo-multivalued dependencies [12, 28]. For these con-
straints, the implication problem coincides with that of mul-
tivalued database dependencies [28].

8The rule I(A, B|CD) & I(A,C|BD) — I(A, BC|D).



5. Conclusions and future work

In this short note, we studied the implication
of arbitrary CI statements from saturated ones.
Our general results hold regardless of the partic-
ular semantics given to CI statements. We also
applied these results to some specific semantics,
notably embedded multivalued database dependen-
cies, disjunctive association rules in data minining,
and probabilistic conditional independence, to show
that, in these cases, both Systems A and G are
sound and complete for deriving arbitrary CI state-
ments from arbitrary ones.

All these examples are measure-based con-
straints [12, 19]. The present authors believe that
the techniques used in Section 4 are applicable in a
generic way to a much larger class of measure-based
constraints. This is the subject of future research.
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