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22.1 Introduction

The rising costs of drug development and the challenges of new and re-
emerging diseases are putting considerable demands on efficiency in the drug
candidates selection process. A very important factor influencing duration and
complexity of this process is the choice of endpoint used to assess drug efficacy.
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Often, the most sensitive and relevant clinical endpoint might be difficult to
use in a trial. This happens if measurement of the clinical endpoint (1) is costly
(e.g., to diagnose cachexia, a condition associated with malnutrition and in-
volving loss of muscle and fat tissue, expensive equipment measuring content
of nitrogen, potassium and water in patients’ body is required); (2) is difficult
(e.g., involving compound measures such as encountered in quality-of-life or
pain assessment); (3) requires a long follow-up time (e.g., survival in early
stage cancers); or (4) requires a large sample size because of low event inci-
dence (e.g., short-term mortality in patients with suspected acute myocardial
infarction). An effective strategy is then proper selection and application of
biomarkers for efficacy, replacing the clinical endpoint by a biomarker that is
measured more cheaply, more conveniently, more frequently, or earlier. From
a regulatory perspective, a biomarker is considered acceptable for efficacy de-
termination only after its establishment as a valid indicator of clinical benefit,
i.e., after its validation as a surrogate marker[10].

These considerations naturally lead to the need of proper definitions. An
important step came from the Biomarker Definitions Working Group[7, 23],
their definitions nowadays being widely accepted and adopted. A clinical end-
point is considered the most credible indicator of drug response and defined
as a characteristic or variable that reflects how a patient feels, functions, or
survives. During clinical trials, endpoints should be used, unless a biomarker
is available that has risen to the status of surrogate endpoint. A biomarker is
defined as a characteristic that can be objectively measured as an indicator
of healthy or pathological biological processes, or pharmacological responses
to therapeutic intervention. A surrogate endpoint is a biomarker, intended for
substituting a clinical endpoint. A surrogate endpoint is expected to predict
clinical benefit, harm, or lack of these.

Surrogate endpoints have been used in medical research for a long
time[25, 13]. Owing to unfortunate historical events and in spite of potential
advantages, their use has been surrounded by controversy. The best known
case is the approval by the Food and Drug Administration (FDA) of three
antiarrhythmic drugs: encainide, flecainide, and moricizine. The drugs were
approved because of their capacity to effectively suppress arrhythmias. It was
believed that, because arrhythmia is associated with an almost fourfold in-
crease in the rate of cardiac-complication-related death, the drugs would re-
duce the death rate. However, a post-marketing trial showed that the active-
treatment death rate was double the placebo rate. A risk was also detected for
moricizine[20]. Another example came with the surge of the AIDS epidemic.
The impressive early therapeutic results obtained with zidovudine, and the
pressure for accelerated evaluation of new therapies, led to the use of CD4
blood count as a surrogate endpoint for time to clinical events and overall
survival[42], in spite of concern about its limitations as a surrogate marker for
clinically relevant endpoints[21].

The main reason behind failures was the incorrect perception that surro-
gacy simply follows from the association between a potential surrogate end-
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point and the corresponding clinical endpoint, the mere existence of which
is insufficient for surrogacy[13]. Even though the existence of an association
between the potential surrogate and the clinical endpoint is undoubtedly a
desirable property, what is required to replace the clinical endpoint by the
surrogate is that the effect of the treatment on the surrogate endpoint reli-
ably predicts the effect on the clinical endpoint. Owing to a large extent the
lack of appropriate methodology, this condition was not checked in the early
attempts and, consequently, negative opinions about the use of surrogates in
the evaluation of treatment efficacy emerged[13, 26, 27].

Currently, the steady advance in many medical and biological fields is dra-
matically increasing the number of biomarkers and hence potential surrogate
endpoints. The genetics and ’omics revolutions have largely contributed to
this. Indeed, ever more new drugs have well-defined mechanisms of action at
molecular level, allowing drug developers to measure the effect of these drugs
on the relevant biomarkers[43]. There is also increasing public pressure for fast
approval of promising drugs, so it is naturally to then base the approval pro-
cess, at least in part, on biomarkers rather than on long-term, costly clinical
endpoints[22]. Obviously, the pressure will be especially high when a rapidly
increasing incidence of the targeted disease could become a serious threat
to public health or the patient’s (quality of) life. Shortening the duration of
clinical trials not only can decrease the cost of the evaluation process but
also limit potential problems with noncompliance and missing data, which
are more likely in longer studies[10, 59].

Surrogate endpoints can play a role in the earlier detection of safety signals
that could point to toxic problems with new drugs. The duration and sample
size of clinical trials aimed at evaluating the therapeutic efficacy of new drugs
are often insufficient to detect rare or late adverse effects[38, 34]; using sur-
rogate endpoints in this context might allow one to obtain information about
such effects even during the clinical testing phase. Discoveries in medicine
and biology are further creating an exciting range of possibilities for the de-
velopment of potentially effective treatments. This is an achievement, but it
also confronts us with the challenge of coping with a large number of new
promising treatments that should be rapidly evaluated. This is already clear
in oncology, because the increased knowledge about the genetic mechanisms
operating in cancer cells led to the proposing of novel cancer therapies, such
as the use of a genetically-modified virus that selectively attacks p53-deficient
cells, sparing normal cells[49]. Validated surrogate endpoints can offer an effi-
cient route. The role of surrogate endpoints may depend on the trials phase.
Nowadays, their use is more accepted in early phases of clinical research, such
as in phase II or early phase III clinical trials. Using them to substitute for
the clinical endpoint in pivotal phase III trials or to replace the clinical end-
point altogether in all clinical research past a certain point is still controversial
and the subject of scientific debate. It is difficult to precisely define the fu-
ture role of surrogate endpoints in the various trial phases. Ultimately, the
combination of medical and statistical elements, together with practical and
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economical considerations, will help answer this question. While the huge po-
tential of surrogate endpoints to accelerate and improve the quality of clinical
trials is unquestioned, the above considerations indicate that only thoroughly
evaluated surrogates should be used.

Evidently, surrogates should be used only when they have been properly
evaluated. Sometimes, the term ‘validation’ is used, but this requires care-
ful qualification[52]. Like in many clinical decisions, statistical arguments will
play a major role, but ought to be considered in conjunction with clinical and
biological evidence. At the same time, surrogate endpoints can play different
roles in different phases of drug development. While it may be more accept-
able to use surrogates in early phases of research, there should be much more
restraint in using them as substitutes for the true endpoint in pivotal phase
III trials, since the latter might imply replacing the true endpoint by a surro-
gate for all future studies as well, a far-reaching decision. For a biomarker to
be used as a “valid” surrogate, a number of conditions must be fulfilled. The
ICH Guidelines on Statistical Principles for Clinical Trials state that “In prac-
tice, the strength of the evidence for surrogacy depends upon (i) the biological
plausibility of the relationship, (ii) the demonstration in epidemiological stud-
ies of the prognostic value of the surrogate for the clinical outcome, and (iii)
evidence from clinical trials that treatment effects on the surrogate correspond
to effects on the clinical outcome”[36].

Motivating case studies are introduced in Section 22.2. A perspective on
data from a single trial is given in Section 22.3. The meta-analytic evaluation
framework is presented in Section 22.4, in the context of normally distributed
outcomes. Extensions to a variety of non-Gaussian settings are discussed in
Section 22.5. Efforts for unifying the scattered suite of validation measures
are reviewed in Section 22.6. Some alternative computational techniques and
validation paradigms is presented in Section 22.7. Implications for prediction
of the effect in a new trial and for designing studies based on surrogates are the
topics of Section 22.8. The developments presented here based to a large extent
on Burzykowski, Molenberghs, and Buyse[10] and Molenberghs et al [45].

22.2 A Meta-analysis of Five Clinical Trials in Schizo-

phrenia

The data come from a meta-analysis of five double-blind randomized clini-
cal trials, comparing the effects of risperidone to conventional anti psychotic
agents for the treatment of chronic schizophrenia. The treatment indicator for
risperidone versus conventional treatment will be denoted by Z. Schizophrenia
has long been recognized as a heterogeneous disorder with patients suffering
from both ‘negative’ and ‘positive’ symptoms. Negative symptoms are char-
acterized by deficits in cognitive, affective and social functions, for example
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poverty of speech, apathy and emotional withdrawal. Positive symptoms en-
tail more florid symptoms such as delusions, hallucinations and disorganized
thinking, which are superimposed on mental status[39]. Several measures can
be considered to asses a patient’s global condition. Clinician’s Global Impres-
sion (CGI) is generally accepted as a clinical measure of change, even though
it is somewhat subjective. Here, the change of CGI versus baseline will be
considered as the true endpoint T . It is scored on a 7-grade scale used by the
treating physician to characterize how well a subject has improved since base-
line. Another useful and sufficiently sensitive assessment scales is the Positive
and Negative Syndrome Scale (PANSS)[40]. The PANSS consists of 30 items
that provide an operationalized, drug-sensitive instrument, which is highly
useful for both typological and dimensional assessment of schizophrenia. We
will use the change versus baseline in PANSS as our surrogate S. The data
contain five trials and in all trials, information is available on the investiga-
tors that treated the patients. This information is helpful to define group of
patients that will become units of analysis. Figure 22.1 displays the individ-
ual profiles (some of them have been highlighted) for each scale by treatment
group. It seems that, on average, these profiles follow a linear trend over time
and the variability seems to be constant over time.

22.3 Data from a Single Unit

In this section, we will discuss the single unit setting (e.g., a single trial). The
notation and modeling concepts introduced are useful to present and critically
discuss the key ingredients of the Prentice–Freedman framework. Therefore,
this section should not be seen as setting the scene for the rest of the paper.
For that, we refer to the multi-unit case (Section 22.4).

Throughout the paper, we will adopt the following notation: T and S are
random variables that denote the true and surrogate endpoints, respectively,
and Z is an indicator variable for treatment. For ease of exposition, we will
assume that S and T are normally distributed. The effect of treatment on S
and T can be modeled as follows:

Sj = µS + αZj + εSj, (22.1)

Tj = µT + βZj + εT j, (22.2)

where j = 1, . . . , n indicates patients, and the error terms have a joint zero-
mean normal distribution with covariance matrix

Σ =

(
σSS σST

σTT

)
. (22.3)

In addition, the relationship between S and T can be described by a regression
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FIGURE 22.1

Psychiatric Study. Individual and mean profiles for each scale by treatment
group.

of the form

Tj = µ+ γSj + εj . (22.4)

Note that this model is introduced because it is a component of the Prentice–
Freedman framework. Given that the fourth criterion will involve a dependence
on the treatment as well, as in (22.5), it is of legitimate concern to doubt
whether (22.4) and (22.5) are simultaneously plausible. Also, the introduction
of (22.4) should not be seen as an implicit of explicit assumption about the
absence of treatment effect in the regression relationship, but rather as a model
that can be used, when the uncorrected association between both endpoints
is of interest.

We will assume later (Section 22.4) that the n patients come from N differ-
ent experimental units, but for now the simple situation of a single experiment
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will suffice to explore some fundamental difficulties with the validation of sur-
rogate endpoints.

22.3.1 Definition and Criteria

Prentice[49] proposed to define a surrogate endpoint as “a response variable for
which a test of the null hypothesis of no relationship to the treatment groups
under comparison is also a valid test of the corresponding null hypothesis based
on the true endpoint” ([49] p. 432). In terms of our simple model (22.1)–(22.2),
the definition states that for S to be a valid surrogate for T , parameters α and
β must simultaneously be equal to, or different from, zero. This definition is
not consistent with the availability of a single experiment only, since it requires
a large number of experiments to be available, each with tests of hypothesis
on both the surrogate and true endpoints. An important drawback is also that
evidence from trials with non-significant treatment effects cannot be used, even
though such trials may be consistent with a desirable relationship between
both endpoints. Prentice derived operational criteria that are equivalent to
his definition. These criteria require that

• treatment has a significant impact on the surrogate endpoint (parameter
α differs significantly from zero in (22.1)),

• treatment has a significant impact on the true endpoint (parameter β
differs significantly from zero in (22.2)),

• the surrogate endpoint has a significant impact on the true endpoint
(parameter γ differs significantly form zero in (22.4)), and

• the full effect of treatment upon the true endpoint is captured by the
surrogate.

The last criterion is verified through the conditional distribution of the true
endpoint, given treatment and surrogate endpoint, derived from (22.1)–(22.2):

Tj = µ̃T + βSZj + γZSj + ε̃T j, (22.5)

where the treatment effect (corrected for the surrogate S), βS, and the surro-
gate effect (corrected for treatment Z), γZ, are

βS = β − σT Sσ
−1
SS
α, (22.6)

γZ = σT Sσ
−1
SS
, (22.7)

and the variance of ε̃Tj is given by

σTT − σ2
T S
σ−1

SS
. (22.8)

It is usually stated that the fourth criterion requires that the parameter βS

be equal to zero (we return to this notion in Section 22.3.3). Essentially, this
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last criterion states that the true endpoint T is completely determined by
knowledge of the surrogate endpoint S. Buyse and Molenberghs[11] showed
that the last two criteria are necessary and sufficient for binary responses,
but not in general. Several authors, including Prentice, pointed out that the
criteria are too stringent to be fulfilled in real situations[49].

In spite of these criticisms, the spirit of the fourth criterion is very appeal-
ing. This is especially true if it can be considered in the light of an underlying
biological mechanism. For example, it is interesting to explore whether the
surrogate is part of the causal chain leading from treatment exposure to the
final endpoint. While this issue is beyond the scope of the current paper, the
connection between statistical validation (with emphasis on association) and
biological relevance (with emphasis on causation) deserves further reflection.

22.3.2 The Proportion Explained

Freedman, Graubard, and Schatzkin[30] argued that the last Prentice criterion
raises a conceptual difficulty since it requires the statistical test for treatment
effect on the true endpoint to be non-significant after adjustment for the
surrogate. The non-significance of this test does not prove that the effect of
treatment upon the true endpoint is fully captured by the surrogate, and
therefore Freedman, Graubard, and Schatzkin[30] proposed the proportion of
the treatment effect mediated by the surrogate:

PE =
β − βS

β
,

with βS and β obtained respectively from (22.5) and (22.2). In this paradigm,
a valid surrogate would be one for which the proportion explained (PE) is
equal to one. In practice, a surrogate would be deemed acceptable if the lower
limit of its confidence interval of PE was “sufficiently” large.

Some difficulties surrounding the PE have been described in the
literature[11, 19, 60, 14, 44, 28]. The PE will tend to be unstable when β
is close to zero, a situation that is likely to occur in practice. As Freedman,
Graubard, and Schatzkin[30] themselves acknowledged, the confidence limits
of PE will tend to be rather wide (and sometimes even unbounded if Fieller
confidence intervals are used), unless large sample sizes are available or a
very strong effect of treatment on the true endpoint is observed. Note that
large sample sizes are typically available in epidemiological studies or in meta-
analyses of clinical trials. Another complication arises when (22.5) is not the
correct conditional model, and an interaction term between Zi and Si needs
to be included. In that case, defining the PE becomes problematic.

22.3.3 The Relative Effect

Buyse and Molenberghs[11] proposed another quantity for the validation of a
surrogate endpoint: the relative effect (RE), which is the ratio of the effects
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of treatment upon the final and the surrogate endpoint. Formally:

RE =
β

α
, (22.9)

They also suggested the treatment-adjusted association between the surrogate
and the true endpoint, ρZ :

ρZ =
σST√
σSSσTT

. (22.10)

Now, a simple relationship can be derived between PE, RE, and ρZ. Let us
define λ2 = σT Tσ

−1
SS

. It follows that λρZ = σSTσ
−1
SS

and, from (22.6), βS =
β − ρZλα. As a result, we obtain

PE = λρZ

α

β
= λρZ

1

RE
. (22.11)

A similar relationship was derived by Buyse and Molenberghs[11] and by Begg
and Leung[6] for standardized surrogate and true endpoints. Let us now turn
to the more promising meta-analytic framework.

22.4 A Meta-analytic Framework for Normally Dis-

tributed Outcomes

Several methods have been suggested for the formal evaluation of surrogate
markers, some based on a single trial with others of a meta-analytic nature.
The first formal single trial approach to evaluate markers is laid out in the
seminal paper of Prentice[49], who gave a definition of the concept of a surro-
gate endpoint, followed by a set of operational criteria. Freedman, Graubard,
and Schatzkin[30] augmented Prentice’s hypothesis-testing based approach
with the estimation paradigm, through the so-called proportion of treatment
effect explained (PE or PTE). In turn, Buyse and Molenberghs[11] added two
further measures: the relative effect (RE) and the adjusted association (AA).
The PE and RE are hampered by the fact that they are single-trial based, in
which there evidently is replication at the patient level (which is fine for the
AA), but not at the level of the trial. There are further issues surrounding the
PE, to which we return.

22.4.1 A Meta-Analytic Approach

Although the single trial based methods are relatively easy in terms of imple-
mentation, they are surrounded with the difficulties alluded to at the end of the
previous section. Therefore, several authors, such as Daniels and Hughes[19],
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Buyse et al [12], and Gail et al [31] have introduced the meta-analytic approach.
This section briefly outlines the methodology, followed by simplified modeling
approaches as suggested by Tibaldi et al [57].

The meta-analytic approach was formulated originally for two continu-
ous, normally distributed outcomes, and extended in the meantime to a large
collection of outcome types, ranging from continuous, binary, ordinal, time-
to-event, and longitudinally measured outcomes[10]. First, we focus on the
continuous case, where the surrogate and true endpoints are jointly normally
distributed.

The method is based on a hierarchical two-level model. Both a fixed-effects
and a random-effects view can be taken. Let Tij and Sij be the random vari-
ables denoting the true and surrogate endpoints for the jth subject in the ith
trial, respectively, and let Zij be the indicator variable for treatment. First,
consider the following fixed-effects models:

Sij = µSi + αiZij + εSij, (22.12)

Tij = µT i + βiZij + εT ij, (22.13)

where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific ef-
fects of treatment Zij on the endpoints in trial i, and εSi and εT i are correlated
error terms, assumed to be zero-mean normally distributed with covariance
matrix

Σ =

(
σSS σST

σTT

)
. (22.14)

In addition, we can decompose




µSi

µTi

αi
βi


 =




µS

µT

α
β


 +




mSi

mT i

ai
bi


 , (22.15)

where the second term on the right hand side of (22.15) is assumed to follow
a zero-mean normal distribution with covariance matrix

D =




dSS dST dSa dSb

dTT dTa dTb

daa dab
dbb


 . (22.16)

A classical hierarchical, random-effects modeling strategy results from the
combination of the above two steps into a single one:

Sij = µS +mSi + αZij + aiZij + εSij , (22.17)

Tij = µT +mT i + βZij + biZij + εT ij . (22.18)

Here, µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi
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and mT i are random intercepts, and ai and bi are random treatment effects in
trial i for the surrogate and true endpoints, respectively. The vector of random
effects (mSi, mT i ,ai , bi) are assumed to be mean-zero normally distributed
with covariance matrix (22.16). The error terms εSij and εT ij follow the same
assumptions as in the fixed effects models.

After fitting the above models, surrogacy is captured by means of two
quantities: trial-level and individual-level coefficients of determination. The
former quantifies the association between the treatment effects on the true and
surrogate endpoints at the trial level, while the latter measures the association
at the level of the individual patient, after adjustment for the treatment effect.
The former is given by:

R2
trial = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
dSb

dab

)

dbb
. (22.19)

The above quantity is unitless and, at the condition that the corresponding
variance-covariance matrix is positive definite, lies within the unit interval.

Apart from estimating the strength of surrogacy, the above model can also
be used for prediction purposes. To this end, observe that (β + b0|mS0, a0)
follows a normal distribution with mean and variance:

E(β + b0|mS0, a0)

= β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
µS0 − µS

α0 − α

)
, (22.20)

Var(β + b0|mS0, a0)

= dbb

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1 (
dSb

dab

)
. (22.21)

A prediction can be made using (22.20), with prediction variance (22.21). Of
course, one has to properly acknowledge the uncertainty resulting from the
fact that parameters are not known but merely estimated. We return to this
issue in Section 22.8.

Models (22.12) and (22.13) are referred to as the full fixed-effects models. It
is sometimes necessary, for computational reasons, to contemplate a simplified
version. A reduced version of these models is obtained by replacing the fixed
trial-specific intercepts by a common one. Thus, the reduced mixed effect
models result from removing the random trial-specific intercepts mSi and mT i

from models (22.17) and (22.18). The R2 for the reduced models then is:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
.

A surrogate could be adopted when R2
trial is sufficiently large. Arguably,

rather than using a fixed cutoff above which a surrogate would be adopted,
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there always will be clinical and other judgment involved in the decision pro-
cess. The R2

indiv is based on (22.14) and takes the following form:

R2
indiv

= R2
εTi|εSi

=
σ2

ST

σSSσT T

. (22.22)

22.4.2 Simplified Modeling Strategies

Though the above hierarchical modeling is elegant, it often poses a consider-
able computational challenge[10]. To address this problem, Tibaldi et al [57]
suggested several simplifications, briefly outlined here. These authors consid-
ered three possible dimensions along which simplifications can be undertaken.

The first choice is between treating the trial-specific effects as fixed or
random. If the trial-specific effects are chosen to be fixed, a two-stage approach
is adopted. The first-stage model will take the form (22.12)–(22.13) and at the
second stage, the estimated treatment effect on the true endpoint is regressed
on the treatment effect on the surrogate and the intercept associated with the
surrogate endpoint as

β̂i = λ̂0 + λ̂1µ̂Si + λ̂2α̂i + εi. (22.23)

The trial-level R2
trial(f) then is obtained by regressing β̂i on µ̂Si and α̂i, whereas

R2
trial(r) is obtained from regressing β̂i on α̂i only. The individual-level value is

calculated as in (22.22), using the estimates from (22.14).
The second option is to consider the trial-specific effects as random. De-

pending on whether the endpoints are considered jointly or separately (see
next paragraph), two directions can be followed. The first one involves a two-
stage approach with at the first stage univariate models (22.17)–(22.18). The
second stage model consists of a normal regression with the random treatment
effect on the true endpoint as response and the random intercept and random
treatment effect on the surrogate as covariates. The second direction is based
on a fully specified random effects model.

Though natural to assume the two endpoints correlated, this can lead to
computational difficulties in fitting the models. The need for a bivariate model
is associated with R2

indiv
, which is in some cases of secondary importance.

In addition, there is also a possibility to estimate it by making use of the
correlation between the residuals from two separate univariate models. Thus,
further simplification can be achieved by fitting separate models for the true
and surrogate endpoints, the so-called univariate approach.

If in the trial dimension, the trial-specific effects are considered fixed, mod-
els (22.12)–(22.13) are fitted separately. Similarly, if the trial-specific effects
are considered random, models (22.17)–(22.18) are fitted separately, i.e., the
corresponding error terms in the two models are assumed independent.

When the univariate approach and/or the fixed-effects approach are cho-
sen, there is a need to adjust for the heterogeneity in information content
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between trial-specific contributions. One way of doing so is weighting the con-
tributions according to trial size. This gives rise to a weighted linear regression
model (22.23) in the second stage.

In summary, the simplified strategies perform rather well, especially when
outcomes are of a continuous nature[16], and are a valuable addition to the
fully specified hierarchical model, for those situations where the latter is in-
feasible or less reliable.

22.4.3 Some Reflections

A key consideration of the meta-analytic method is the choice of unit of analy-
sis such as, for example, trial, center, or investigator. This choice may depend
on practical considerations, such as the information available in the data, ex-
perts’ considerations about the most suitable unit for a specific problem, the
amount of replication at a potential unit’s level, and the number of patients
per unit. From a technical point of view, the most desirable situation is where
the number of units and the number of patients per unit is sufficiently large.
This issue has been discussed by Cortiñas et al [16]. Of course, in cases where
one has to resort to simplified strategies, one has to reflect carefully on the
status of the results obtained. Arguably, they may not be as reliable as one
might hope for, and one should undertake every effort possible to increase the
amount of information available. Clearly, even an analysis based on a simpli-
fied strategy, especially in the light of good performance, may support efforts
to make more data available for analysis.

Most of the work reported in Burzykowski, Molenberghs, and Buyse[10] is
for a dichotomous treatment indicator. Two choices need to be made for anal-
ysis. First, the treatment variable can be considered continuous or discrete.
Second, when a continuous route is chosen, it is relevant to reflect on the ac-
tual coding, 0/1 and −1/+1 being the most commonly encountered ones. For
models with treatment occurring as a fixed effect only, there is no difference,
since all choices lead to an equivalent model fit, with parameters connected
by simple linear transformations. Note that this is not the case, of course, for
more than three treatment arms. However, of more importance for us here is
the impact the choices can have on the hierarchical model. Indeed, while the
marginal model resulting from (22.17)–(22.18) is invariant under such choices,
this is not true for the hierarchical aspects of the model, such as, for example,
the R2 measures derived at the trial level. Indeed, a −1/ + 1 coding ensures
the same components of variability operate in both arms, whereas a 0/1 cod-
ing, for a positive-definite D matrix, forces the variability in the experimental
arm to be greater than or equal to the variability in the standard arm. Both
situations may be relevant, and it is of importance to illicit views from the
study’s investigators.

When the full bivariate random effect is used, the R2
trial is computed from

the variance-covariance matrix (22.16). It is possible that this matrix be ill-
conditioned and/or non-positive definite. In such cases, the resulting quantities
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computed based on this matrix might not be trustworthy. One way to assess
the ill-conditioning of a matrix is by reporting its condition number, i.e., the
ratio of the largest over the smallest eigenvalue. A large condition number
is an indication of ill-conditioning. The most pathological situation occurs
when at least one eigenvalue is equal to zero. This corresponds to a positive
semi-definite matrix, which occurs, for example, when a boundary solution
is obtained. While it is hard to definitively identify the reason for a zero
eigenvalue, insufficient information, either in terms of the number of trials,
the sample size within trials, or both, may often be the cause and deserving of
careful assessment. Using the simplified methods is certainly an option in this
case; apart from providing a solution to the problem, it may give a handle on
the problem at hand.

22.4.4 Analysis of the Meta-analysis of Five Clinical Trials

in Schizophernia

Let us analyze the schizophrenia study. Here, trial seems the natural unit of
analysis. Unfortunately, the number of trials is not sufficient to apply the full
meta-analytic approach. The use of trial as unit of analysis for the simplified
methods might also entail problems. The second stage involves a regression
model based on only five points, which might give overly optimistic or at
least unreliable R2 values. The other possible unit of analysis for this study
is ‘investigator’. There were 176 investigators, each treating between 2 and 60
patients. The use of investigator as unit of analysis is also surrounded with
problems. Although a large number of investigators is convenient to explain
the between investigator variability, because some investigators treated few
patients, the resulting within-unit variability might not be estimated correctly.

The basic meta-analytic approach and the corresponding simplified strate-
gies have been applied, with results displayed in Table 22.1. Investigator and
trial were both used as units of analysis. However, as there were only five
trials, it became difficult to base the analysis on trial as unit of analysis in
the case of the full bivariate random-effects approach. The results have shown
a remarkable difference in the two cases. Consistently, in all of the different
simplifications, the R2

trial values were found to be higher when trial was used
as unit of analysis. The bivariate full random-effects model does not converge
when trial is used as the unit of analysis. This might be due to lack of sufficient
information to compute all sources of variability, or to the fact that sample
sizes tend to vary across trials. The reduced bivariate random effects model
converged for both cases, but the resulting variance-covariance matrices were
not positive-definite and were ill-conditioned, as can be seen from the very
large value of the condition number. Consequently, the results of the bivariate
random effects model should be treated with caution. Such issues are the topic
of ongoing research. If we concentrate on the results based on investigator as
unit of analysis, we observe a low level of surrogacy of PANSS for CGI, with
R2

trial ranging roughly between 0.5 and 0.68 for the different simplified models.
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This result, however, has to be coupled with other findings based on expert
opinion to fully guarantee the validation of PANSS as possible surrogate for
CGI. Turning to R2

indiv, it ranges between 0.4904 and 0.5230, depending on
the method of analysis, which is relatively low. To conclude, based on the
investigators as unit of analysis, PANSS does not seem a promising surrogate
for CGI.

TABLE 22.1

Schizophrenia study. Results of the trial-level (R2
trial

) surrogacy analysis.

Fixed effects Random effects
Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach
Investigator 0.5887 0.5608 0.5488 0.5447
Trial 0.9641 0.9636 0.9849 0.9909

Bivariate approach
Investigator 0.5887 0.5608 0.9898∗
Trial 0.9641 0.9636 —

Reduced Model

Univariate approach
Investigator 0.6707 0.5927 0.5392 0.5354
Trial 0.8910 0.8519 0.7778 0.8487

Bivariate approach
Investigator 0.6707 0.5927 0.9999∗
Trial 0.7418 0.8367 0.9999∗
∗: The variance-covariance matrix is ill-conditioned; in particular, at least
one eigenvalue is very close to zero.The condition numbers for the three
models with ill-condition matrices, from top to bottom are 3.415E+18,
2.384E+18 and 1.563E+18 respectively.

22.5 Non-Gaussian Endpoints

As is clear from the formalism in Section 22.4, one needs the joint distribu-
tion of the random variables governing the surrogate and true endpoints. The
easiest, though not the only, situation is where both are Gaussian random
variables, but one also encounters binary (e.g., CD4+ counts over 500/mm3,
tumor shrinkage), categorical (e.g., cholesterol levels <200 mg/dl, 200-299
mg/dl, 300+ mg/dl, tumor response as complete response, partial response,
stable disease, progressive disease), censored continuous (e.g., time to unde-
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tectable viral load, time to cardiovascular death), longitudinal (e.g., CD4+
counts over time, blood pressure over time), and multivariate longitudinal
(e.g., CD4+ and viral load over time jointly, various dimensions of quality
of life over time) endpoints. The models used to validate a surrogate for a
clinical endpoint will depend on the type of variables observed in the problem
at hand. Table 22.2 shows some examples of potential surrogate endpoints in
various diseases. In what follows, we will briefly discuss the settings of binary
endpoints, failure-time endpoints, the combination of an ordinal and a survival
endpoint, and longitudinal endpoints.

TABLE 22.2

Examples of possible surrogate endpoints in various diseases (Abbreviations:
AIDS = acquired immune deficiency syndrome; ARMD = age-related macular
degeneration; HIV = human immunodeficiency virus).

Disease Surrogate
Endpoint

Type Final End-
point

Type

Resectable
solid tumor

Time to re-
currence

Censored Survival Censored

Advanced
cancer

Tumor re-
sponse

Binary Time to
progression

Censored

Osteoporosis Bone min-
eral density

Longitudinal Fracture Binary

Cardiovascular
disease

Ejection
fraction

Continuous Myocardial
infraction

Binary

Hypertension Blood pres-
sure

Longitudinal Coronary
heart dis-
ease

Binary

Arrhythmia Arrhythmic
episodes

Longitudinal Survival Censored

ARMD 6-month vi-
sual acuity

Continuous 24-month
visual
acuity

Continuous

Glaucoma Intraoccular
pressure

Continuous Vision loss Censored

Depression Biomarkers Multivariate Depression
scale

Continuous

HIV infec-
tion

CD4 counts
+ viral load

Multivariate Progression
to AIDS

Censored
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22.5.1 Binary Endpoints

Renard et al [50] have shown that extension to this situation is easily done
using a latent variable formulation. That is, one posits the existence of a
pair of continuously distributed latent variable responses (S̃ij , T̃ij) that pro-
duce the actual values of (Sij , Tij). These unobserved variables are assumed
to have a joint normal distribution and the realized values follow by double
dichotomization. On the latent-variable scale, we obtain a model similar to
(22.12)–(22.13) and in the matrix (22.14) the variances are set equal to unity
in order to ensure identifiability. This leads to the following model:

{
Φ−1(P [Sij = 1|Zij, mSi

, ai, mT i
, bi]) = µS +mSi

+ (α+ ai)Zij,

Φ−1(P [Tij = 1|Zij, mSi
, ai, mT i

, bi]) = µT +mT i
+ (β + bi)Zij ,

where Φ denotes the standard normal cumulative distribution function. Re-
nard et al [50] used pseudo-likelihood methods to estimate the model param-
eters. Similar ideas have been used in the case one of the endpoints is con-
tinuous, with the other one binary or categorical[10] (Ch. 6). The case of two
binary outcomes has received further attention, encompassing flexible software
implementation[58].

22.5.2 Two Failure-time Endpoints

Assume now that Sij and Tij are failure-time endpoints. Model (22.12)–(22.13)
is replaced by a model for two correlated failure-time random variables. Burzy-
kowski et al [9] used copulas to this end[15, 35]. One then assumes that the
joint survivor function of (Sij , Tij) can be written as:

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cδ{FSij(s), FTij(t)}, s, t ≥ 0, (22.24)

where (FSij, FTij) denote marginal survivor functions and Cδ is a copula, i.e.,
a distribution function on [0, 1]2 with δ ∈ R1.

When the hazard functions are specified, estimates of the parameters for
the joint model can be obtained using maximum likelihood. Shih and Louis[55]
discuss alternative estimation methods. The association parameter is generally
hard to interpret. However, it can be shown[33] that there is a link with
Kendall’s τ :

τ = 4

∫ 1

0

∫ 1

0

Cδ(u, v)Cδ(du, dv) − 1,

providing an easy measure of surrogacy at the individual level. At the second
stage R2

trial can be computed based on the pairs of treatment effects estimated
at the first stage.

22.5.3 An Ordinal Surrogate and a Survival Endpoint

Assume that T is a failure-time random variable and S is a categorical variable
withK ordered categories. To propose validation measures, similar to those in-
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troduced in the previous section, Burzykowski, Molenberghs, and Buyse[9] also
used bivariate copulas, combining ideas of Molenberghs, Geys, and Buyse[46]
and Burzykowski et al [9]. One marginal distribution is a proportional odds
logistic regression, while the other is a proportional hazards model. The Plack-
ett copula[18] was chosen to capture the association between both endpoints.
The ensuing global odds ratio is relatively easy to interpret.

22.5.4 Methods for Combined Binary and Normally Dis-

tributed Endpoints

Statistical problems where various outcomes of a combined nature are ob-
served are common, especially with normally distributed outcomes on the
one hand and binary or categorical outcomes on the other. Emphasis may be
on the determination of the entire joint distribution of both outcomes or on
specific aspects, such as the association in general or correlation in particu-
lar between both outcomes. Burzykowski, Molenberghs, and Buyse[10] review
extensions of the meta-analytic approach, ranging over continuous, binary,
ordinal, time-to-event, and longitudinally measured outcomes. Here, we focus
on the combination of continuous and binary outcomes.

In this section, we start with a bivariate non-hierarchical setting, where
the joint distribution can always be expressed as the product of a marginal
distribution of one of the responses and the conditional distribution of the
remaining response given the former one. The main problem with this ap-
proach is that no easy expressions for the association between both endpoints
are available. Thus, we opt for a symmetric treatment of both endpoints. We
focus on the case where the true endpoint is continuous and the surrogate is
binary, the reverse case being entirely similar.

Generalized linear mixed models for endpoints of different data types are
challenging[47]. Hence, we concentrate on two-stage fixed-effects models. In

the first stage, let S̃ij be a latent variable of which Sij is the dichotomized

version. A bivariate normal model for S̃ij and Tij is given by[46]:

S̃ij = µSi + αiZij + εSij, (22.25)

Tij = µT i + βiZij + εT ij, (22.26)

where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific ef-
fects of treatment Zij on the endpoints in trial i, and εSi and εT i are correlated
error terms, assumed to be zero-mean normally distributed with covariance
matrix

Σ =

( 1
(1−ρ2)

ρσ√
(1−ρ2)
σ

)
, (22.27)

where σ is the variance of the continuous outcome and ρ is the correlation
between both outcomes. The variance of S̃ij is chosen for computational rea-
sons. Using a probit formulation like Molenberghs Geys, and Buyse[46] and
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owing to the replication at the trial level, we can impose a distribution on the
trial-specific parameters. At the second stage, we assume




µSi

µTi

αi
βi


 =




µS

µT

α
β


 +




mSi

mT i

ai
bi


 , (22.28)

where the second term on the right hand of (22.28) is assumed to follow a
zero-mean normal distribution with dispersion matrix (22.16). Measures to
assess the quality of the surrogate both at the trial and individual level are
then obtained. This case has received full attention in Assam et al [1].

22.5.5 Longitudinal Endpoints

Most of the earlier work focuses on univariate responses. Alonso et al [2] showed
that going from a univariate setting to a multivariate framework represents
new challenges. The R2 measures proposed by Buyse et al [12], are no longer
applicable. Alonso et al [2] based their calculations of surrogacy measures on a
two-stage approach rather than a full random-effects approach. They assume
that information from i = 1, . . . , N trials is available, in the ith of which,
j = 1, . . . , ni subjects are enrolled and they denote further the time at which
subject j in trial i is measured as tijk. If Tijk and Sijk represent the associ-
ated true and surrogate endpoints, respectively, and Zij is a binary indicator
variable for treatment, then along the ideas of Galecki[32], they proposed the
following joint model, at the first stage, for both responses

Tijk = µT i + βiZij + gTij(tijk) + εT ijk,
Sijk = µSi + αiZij + gSij(tijk) + εSijk,

(22.29)

where µT i and µSi are trial-specific intercepts, βi and αi are trial-specific ef-
fects of treatment Zij on the two endpoints and gTij and gSij are trial-subject-
specific time functions that can include treatment-by-time interactions. They
also assume that the vectors, collecting all information over time for patient
j in trial i, ε̃T ij

and ε̃Sij
are correlated error terms, following a mean-zero

multivariate normal distribution with covariance matrix

Σi =

(
ΣTTi ΣTSi
Σ′
TSi ΣSSi

)
=

(
σTTi σTSi
σTSi σSSi

)
⊗ Ri. (22.30)

Here, Ri is a correlation matrix for the repeated measurements.
If treatment effect can be assumed constant over time, then (22.19) can still

be useful to evaluate surrogacy at the trial level. However, at the individual
level, the situation is totally different, the R2

ind is no longer applicable, and
new concepts are needed.

Using multivariate ideas, Alonso et al [2] proposed the variance reduction
factor (V RF ) to capture individual-level surrogacy in this more elaborate
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setting. They quantified the relative reduction in the true endpoint variance
after adjustment by the surrogate as

V RFind =

∑
i{tr(ΣTTi) − tr(Σ(T |S)i)}∑

i tr(ΣTTi)
, (22.31)

where Σ(T |S)i
denotes the conditional variance-covariance matrix of ε̃Tij

given

ε̃Sij
: Σ(T |S)i = ΣTTi−ΣTSiΣ

−1
SSiΣ

′
TSi. Here, ΣTTi and ΣSSi are the variance-

covariance matrices associated with the true and surrogate endpoint respec-
tively and ΣTSi contains the covariances between the surrogate and the true
endpoint. Alonso et al [2] showed that the V RFind ranges between zero and
one, and that V RFind = R2

ind when the endpoints are measured only once.

An alternative proposal is

θp =
∑

i

1

Npi
tr

{(
ΣTTi − Σ(T |S)i

)
Σ−1
TTi

}
. (22.32)

Structurally, both V RF and θp are similar, the difference being the reversal of
summing the trace and calculating the ratio. In spite of this strong structural
similarity, the VRF is not symmetric in S and T and it is only invariant with
respect to linear orthogonal transformations, whereas θp is both symmetric
and invariant with respect to the broader class of linear bijective transforma-
tions.

A common problem of all previous proposals is that they are strongly
based on the normality assumption and extensions to non-normal settings
are difficult. To overcome this limitation, Alonso et al [4], introduced a new
parameter, the so-called R2

Λ, to evaluate surrogacy at the individual level
when both responses are measured over time or in general when multivariate
or repeated measures are available

R2
Λ =

1

N

∑

i

(1 − Λi), (22.33)

where: Λi = |Σi|/ {|ΣTTi| |ΣSSi|}. This parameter not only allows the detec-
tion of more general patterns of association but can also be extended to more
general settings than those defined by the normal distribution. They proved
that R2

Λ ranges between zero and one, and that in the cross-sectional case
R2

Λ = R2
ind

. These authors have shown that R2
Λ = 1 whenever there is a de-

terministic relationship between two linear combinations of both endpoints,
allowing the detection of strong associations in cases where the VRF or θp
would fail in doing so.
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22.6 A Unified Approach

The longitudinal method of the previous section, while elegant, hinges upon
normality of the outcome. First using the likelihood reduction factor (Sec-
tion 22.6.1) and then an information-theoretic approach (Section 22.6.2), ex-
tension and unification will be achieved.

22.6.1 The Likelihood Reduction Factor

Estimating individual-level surrogacy, as the previous developments clearly
show, has frequently been based on a variance-covariance matrix coming from
the distribution of the residuals. However, if we move away from the normal
distribution, it is not always clear how to quantify the association between
both endpoints after adjusting for treatment and trial effect. To address this
problem, Alonso et al [4] and Alonso and Molenberghs[3] considered the fol-
lowing generalized linear models

gT{E(Tij)} = µT i + βiZij , (22.34)

gT{E(Tij |Sij)} = θ0i + θ1iZij + θ2iSij , (22.35)

where gT is an appropriate link function, µT i are the trial-specific intercepts
and βi are trial-specific effects of treatment Z on the true endpoint in trial i.
θ0i and θ1i are trial-specific intercepts and effects of treatment on the true end-
point when the surrogate endpoint is known. Note that (22.34) and (22.35) can
be readily extended to incorporate more complex settings. Other extensions,
such as non-linearity between Sij and gT{E(Tij)} are possible. We assume
a linear relationship between Sij and gT{E(Tij)}, but consider extensions of
(22.34) and (22.35) in the light of simplified modeling strategy, as presented
by Tibaldi et al [57]. They suggested several simplifications for the case of con-
tinuous true and surrogate endpoints. They have introduced the concept of
three possible dimensions along which simplifications can be made: the trial,
endpoint, and measurement error dimensions. Their ideas can be applied out-
side the original mixed model based framework. We consider their trial and
measurement error dimensions.

The trial dimension provides a choice between treating the trial-specific
effects as fixed or random. The former is often chosen out of necessity, when
the latter is too challenging. If the trial-specific effects are chosen fixed, then
(22.34) and (22.35) are used to validate the surrogate endpoint. On the other
hand, if the trial-specific effects are considered random, we extend (22.34) and
(22.35) to appropriate generalized linear mixed-effects models

gT{E(Tij)} = µT +mT i + βZij + biZij , (22.36)

gT{E(Tij|Sij)} = θ0 + cT i + θ1Zij + aiZij + θ2iSij , (22.37)

where µT and β are a fixed intercept and treatment effect on the true endpoint,
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while mT i and bi are a random intercept and treatment effects on the true
endpoint. θ0 and θ1 are a fixed intercept and treatment effect on the true
endpoint when the surrogate is known, and cT i and ai are a random intercept
and treatment effects on the true endpoint when the surrogate is known.

It is often the case in practice that different trials in meta-analysis have
different sizes. Because univariate models are used to evaluate surrogacy in
the information-theoretic approach, there is a need to adjust for the hetero-
geneity in information content between trial-specific contributions. This is the
target of the choices along the so-called measurement error dimension. One
way to account for a variable amount of information per trial is by weight-
ing the contributions according to trial size, thus giving rise to a weighted
linear regression models, particularly when estimating measures for trial-level
surrogacy.

Let us turn to the so-called likelihood reduction factor (LRF). Observe that,
in the case where the true endpoint is continuous and normally distributed,
(22.34) and (22.35) reduce to normal regression models and (22.36) and (22.37)
reduce to linear mixed models. On the other hand, when the true endpoint
is binary, (22.34) and (22.35) reduce to logistic regression models. Alonso
and Molenberghs (2007) used the LRF to evaluate individual level surrogacy,
which is obtained by

LRF = 1 − 1

N

∑

i

exp

(
−G

2

i

ni

)
, (22.38)

where G2
i
denotes the log-likelihood ratio test statistic to compare (22.34) and

(22.35) or (22.36) and (22.37) within trial i. Alonso et al (2005) established
a number of properties for LRF, in particular its ranging in the unit interval
and, importantly, its reduction to R2

ind
in the cross-sectional case.

22.6.2 An Information-theoretic Unification

This proposal avoids the needs for a joint, hierarchical model, and allows
for unification across different types of endpoints. The entropy of a random
variable[54], a time-honored measure of randomness or uncertainty, is defined
in the following way for the case of a discrete random variable Y , taking values
{k1, k2, . . . , km}, and with probability function P (Y = ki) = pi:

H(Y ) =
∑

i

pi log

(
1

pi

)
. (22.39)

The differential entropy hd(X) of a continuous variable X with density fX(x)
and support SfX

equals

hd(X) = −E[log fX(X)] = −
∫

SfX

fX(x) log fX(x)dx. (22.40)
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The joint and conditional (differential) entropies are defined in an analogous
fashion. Defining the information of a single event as I(A) = log pA, the
entropy is H(A) = −I(A). No information is gained from a totally certain
event, pA ≈ 1, so I(A) ≈ 0, while an improbable event is informative.

H(Y ) is the average uncertainty associated with P . Entropy is always
non-negative, satisfies H(Y |X) ≤ H(Y ) for any pair of random variables,
with equality holding under independence, and is invariant under a bijective
transformation[17]. Differential entropy enjoys some but not all properties of
entropy: it can be infinitely large, negative, or positive, and is coordinate
dependent. For a bijective transformation Y = y(X), it follows that hd(Y ) =

hd(X) − EY

(
log

∣∣∣dxdy (y)
∣∣∣
)
.

We can now quantify the amount of uncertainty in Y , expected to be
removed if the value of X were known, by I(X, Y ) = hd(Y ) − hd(Y |X), the
so-called mutual information. It is always non-negative, zero if and only if X
and Y are independent, symmetric, invariant under bijective transformations
of X and Y , and I(X,X) = hd(X). The mutual information measures the
information of X, shared by Y .

We will now introduce the entropy-power[54] for comparison of continuous
random variables. Let X be a continuous n-dimensional random vector. The
entropy-power of X is

EP(X) =
1

(2πe)n
e2h(X). (22.41)

The differential entropy of a continuous normal random variable is h(X) =
1
2 log

(
2πσ2

)
, a simple function of the variance and, on the natural logarithmic

scale: EP(X) = σ2. In general, EP(X) ≤ Var(X) with equality if and only if
X is normally distributed.

We can now define an information-theoretic measure of association[53]:

R2
h =

EP(Y ) − EP(Y |X)

EP(Y )
, (22.42)

which ranges in the unit interval, equals zero if and only if (X, Y ) are inde-
pendent, is symmetric, is invariant under bijective transformation of X and
Y , and, when R2

h → 1 for continuous models, there is usually some degeneracy
appearing in the distribution of (X,Y). There is a direct link between R2

h and
the mutual information:R2

h = 1−e−2I(X,Y ). For Y discrete: R2
h ≤ 1−e−2H(Y ),

implying that R2
h then has an upper bound smaller than 1; we then redefine

R̃2
h =

R2
h

1 − e−2H(Y )
,

reaching 1 when both endpoints are deterministically related.
We can now redefine surrogacy, while preserving previous proposals as

special cases. While we will focus on individual-level surrogacy, all results
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apply to the trial level too. Let Y = T and X = S be the true and surrogate
endpoints, respectively. We consider S a good surrogate for T at the individual
(trial) level, if a “large” amount of uncertainty about T (the treatment effect
on T ) is reduced when S (the treatment effect on S) is known. Equivalently, we
term S a good surrogate for T at the individual level, if our lack of knowledge
about the true endpoint is substantially reduced when the surrogate endpoint
is known.

A meta-analytic framework, with N clinical trials, produces Nq different
R2
hi, and Alonso and co-workers proposed a meta-analytic R2

h:

R2
h =

Nq∑

i=1

αiR
2
hi = 1 −

Nq∑

i=1

αie
−2Ii(Si,Ti),

where αi > 0 for all i and
∑Nq

i=1 αi = 1. Different choices for αi lead to dif-
ferent proposals, producing an uncountable family of parameters. This opens
the additional issue of finding an optimal choice. In particular, for the cross-
sectional normal-normal case, Alonso and Molenberghs (2007) have shown
that R2

h = R2
ind

. The same holds for R2
Λ for the longitudinal case. Finally,

when the true and surrogate endpoints have distributions in the exponential

family, then LRF
P→ R2

h when the number of subjects per trial goes to infinity.
Alonso and Molenberghs[3] developed asymptotic confidence intervals for

R2

h
, based on the idea of[41], to build confidence intervals for 2I(T, S). Let

â = 2nÎ(T, S), where n is the number of patients. Define κ1 : α(a) and δ1 : α(a)
by P (χ2

1(κ1 : α(a)) ≥ a) = α and P (χ2
1(δ1 : δ(a)) ≤ a) = α. Here, χ2

1 is a chi-
squared random variable with 1 degree of freedom. If P (χ2

1(0) ≥ a) = α then
we set κ1 : α(a) = 0. A conservative two-sided 1 − α asymptotic confidence
interval for R2

h
is ∑

i

αi [n−1

i
κi

1 : α
(â), n−1

i
δi

1 : α
(â)] , (22.43)

where 1 − αi is the Bonferroni confidence level for the trial intervals (Alonso
and Molenberghs 2007). This asymptotic interval has considerable computa-
tional advantage with respect to the bootstrap approach used by Alonso et
al (2005). Although ITA involves substantial mathematics, its implementa-
tion in practice is fairly straightforward and less computer-intensive than the
meta-analytic approach. This is a direct consequence of the fact that the mod-
els used in the former are univariate models, which can be fitted using any
standard regression software. However, the performance of this approach has
not been studied in the mixed continuous and binary endpoint settings.

22.6.3 Fano’s Inequality and the Theoretical Plausibility of

Finding a Good Surrogate

Fano’s inequality shows the relationship between entropy and prediction:

E
[
(T − g(S))2

]
≥ EP(T )(1 −R2

h) (22.44)
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where EP(T ) = e2h(T )/(2πe). Note that nothing has been assumed about
the distribution of our responses and no specific form has been considered
for the prediction function g. Also, (22.44) shows that the predictive qual-
ity strongly depends on the characteristics of the endpoint, specifically on
its power-entropy. Fano’s inequality states that the prediction error increases
with EP(T ) and therefore, if our endpoint has a large power-entropy then a
surrogate should produce a large R2

h to have some predictive value. This means
that, for some endpoints, the search for a good surrogate can be a dead end
street: the larger the entropy of T the more difficult it is to predict. Studying
the power-entropy before trying to find a surrogate is therefore advisable.

22.6.4 Application to the Meta-analysis of Five Clinical Tri-

als in Schizophrenia

We will treat CGI as the true endpoint and PANSS as surrogate, although
the reverse would be sensible, too. In practice, these endpoints are frequently
dichotomized in a clinically meaningful way. Our binary true endpoint T =
CGId = 1 for patients classified from “Very much improved” to “Improved”,
and 0 otherwise. The binary surrogate S = PANSSd = 1 for patients with at
least 20 points reduction versus baseline, and 0 otherwise. We will start from
probit and Plackett-Dale models and compare results with the ones from the
information-theoretic approach.

In line with Section 22.5.1, we formulate two continuous latent variables

(C̃GIij, ˜PANSSij) assumed to follow a bivariate normal distribution. The fol-
lowing probit model can be fitted




µ̃Tij
µ̃Sij

ln(σ2)

ln

(
1 + ρ̃

1 + ρ̃

)




=




µ̃Ti
+ β̃iZij

µ̃Si
+ α̃iZij
cσ2

ceρ


 , (22.45)

where µ̃Tij = E(C̃GIij), µ̃
S
ij = E(P̃ANSSij), Var(C̃GIij) = 1, σ2 =

Var(P̃ANSSij) and ρ̃ = corr(C̃GIij, P̃ANSSij) denotes the correlation between
the true and surrogate endpoint latent variables. We can then use the es-
timated values of (µ̃Si

, α̃i, β̃i) to evaluate trial level surrogacy through the
R2

trial. At the individual level, ρ̃2 is used to capture surrogacy.
Alternatively, the Dale[18] formulation can be used, based on




logit(πTij)

logit(πSij)
ln(ψ)


 =




µTi
+ βiZij

µSi
+ αiZij
cψ


 (22.46)

where πTij = E(CGIdij), π
S
ij = E(PANSSdij) and ψ is the global odds ratio

associated to both endpoint. As before, the estimated values of (µSi
, αi, βi)
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can be used to evaluate surrogacy at the trial level and the individual level
surrogacy is quantified using the global odds ratio.

In the information-theoretic approach the following three models are fitted
independently

Φ(πTij) = µTi
+ βiZij , (22.47)

Φ(π
T |S
ij ) = µSTi

+ βSi Zij + γijSij , (22.48)

Φ(πSij) = µSi
+ αiZij , (22.49)

where πTij = E(CGIdij), π
T |S
ij = E(CGIdij|PANSSdij), π

S
ij = E(PANSSdij)

and Φ denotes the cumulative standard normal distribution. At the trial level,
the estimated values of (µSi

, αi, βi) obtained from (22.47) and (22.49) can be
used to calculate the R2

trial
, whereas at the individual level we can quantify

surrogacy using R2
h. As it was stated before, the LRF is a consistent estimator

of R2
h, however, in principle other estimators could be used as well. We will

then quantify surrogacy at the individual level by R̂2
h = 1 − exp

(
−G2/n

)
,

where G2 is the loglikelihood ratio test to compare (22.47) with (22.48) and
n denotes total number of patients. Furthermore, when applied to the binary-
binary setting, Fanos’s inequality takes the form

P (T 6= S) ≥ 1

log |Ψ|

[
H(T ) − 1 +

1

2
ln(1 −R2

h)

]
,

where Ψ = {0, 1} and |Ψ| denotes the cardinality of Ψ. Here, again, Fano’s
inequality gives a lower bound for the probability of incorrect prediction.

Table 22.3 shows the results at the trial and individual level obtained with
the different approaches described above. At the trial level, all the meth-
ods produced very similar values for the validation measure. In all cases,
R2

trial ' 0.50. It is also remarkable that the probit approach, in spite of being

based on treatment effects defined at a latent level, produced a R2
trial

value
similar to the ones obtained with the information–theoretic and Plackett-
Dale approaches. However, as Alonso et al (2003) showed, there is a linear
relationship between the mean parameters defined at the latent level and the
mean parameters of the model based on the observable endpoints and that
could explain the agreement between the probit and the other two procedures.
Therefore, at the trial level, we could conclude that knowing the treatment
effect on the surrogate will reduce our uncertainty about the treatment effect
on the true endpoint by 50%.

At the individual level, the probit approach gives the strongest association
between the surrogate and the true endpoint. Nevertheless, this value describes
the association at an unobservable latent level, rendering its interpretation
more awkward than with information theory, since it is not clear how this
latent association could be relevant from a clinical point of view or how it could
be translated into an association for the observable endpoints. The Plackett-
Dale procedure quantifies surrogacy using a global odds ratio, making the
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TABLE 22.3

Schizophrenia study. Trial-level and individual-level validation measures (95%
confidence intervals). Binary-binary case.

Parameter Estimate 95% C.I.
Trial-level R2

trial
measures

1.1 Information-theoretic 0.49 (0.21,0.81)
1.2 Probit 0.51 (0.18,0.78)
1.3 Plackett-Dale 0.51 (0.21,0.81)

Individual-level measures
R2
h 0.27 (0.24,0.33)

R2
hmax 0.39 (0.35,0.48)

Probit 0.67 (0.55,0.76)
Plackett-Dale ψ 25.12 (14.66;43.02)
Fano’s lower-bound 0.08

comparison between this method and the others more difficult. Note that
even though odds ratios are widely used in biomedical fields the lack of an
upper bound makes difficult their interpretation in this setting.

On the other hand, the value of the R2
hmax illustrates that the surrogate

can merely explain 39% of our uncertainty about the true endpoint, a relatively
low value. Additionally, the lower bound for Fano’s inequality clearly shows
that using the value of PANSS to predict the outcome on CGI would be
misleading in at least 8% of the cases. Even though this value is relatively
low, it is only a lower bound and the real probability of error could be much
larger.

At the trial level, the information-theoretic approach produces results simi-
lar to the ones from the conventional methods, but does so by means of models
that are generally much easier to fit. At the individual level, the information-
theoretic approach avoids the problem common with the probit model in that
the correlation of the latter is formulated at the latent scale and therefore less
relevant for practice. In addition, the information-theoretic measure ranges
between 0 and 1, circumventing interpretational problems arising from using
the unbounded Plackett-Dale based odds ratio.

22.7 Alternatives and Extensions

As a result of the aformentioned computational problems, several alternative
strategies have been considered. For example, Shkedy and Torres Barbosa
(2005) study in detail the use of Bayesian methodology and conclude that
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even relatively non-informative prior have a strongly beneficial impact on the
algorithms’ performance.

Cortiñas, Shkedy, and Molenberghs (2008) start from the information-
theoretic approach, in the contexts of: (1) normally distributed endpoints; (2)
a copula model for a categorical surrogate and a survival true endpoint; and
(3) a joint modeling approach for longitudinal surrogate and true endpoints.
Rather than fully relying on the methods described in Section 22.5, they use
cross-validation to obtain adequate estimates of the trial-level surrogacy mea-
sure. Also, they explore the use of regression tree analysis, bagging regression
analysis, random forests, and support vector machine methodology. They con-
cluded that performance of such methods, in simulations and case studies, in
terms of point and interval estimation, ranges from very good to excellent.

The above are variations to the meta-analytic theme, as described here, in
Burzykowski, Molenberghs, and Buyse[10], and of which Daniels and Hughes
[19] is an early instance. There are a number of alternative paradigms. Fran-
gakis and Rubin[29] employ so-called principal stratification, still using the
data from a single trial only. Drawing from the causality literature, Robins
and Greenland[51], Pearl[48], and Taylor, Wang, and Thiébaut[56] use the
direct/indirect-effect machinery.

It took two decades after the publication of Prentices seminal paper until
an attempt was made to review, classify, and study similarities and differences
between the various paradigms[37]. Joffe and Greene saw two important di-
mensions. First, some methods are based on a single trial while others use
several trials, i.e., meta-analysis. Second, some approaches are based on as-
sociation, while others are based on causation. Because the meta-analytic
framework described earlier is based on association and uses multiple trials,
on the one hand, and because the causal framework initially used a single
trial, on the other, the above dimensions got convoluted and it appeared that
correlation/meta-analysis had to be a pair, just like causal/single trial. How-
ever, it is useful to disentangle the two dimensions and to keep in mind that
proper evaluation of the relationship between the treatment effect on the sur-
rogate and true endpoints is ideally based on meta-analysis. Joffe and Green
state that the meta-analytic approach is essentially causal in so far as the
treatment effects observed in all trials are in fact average causal effects. If a
meta-analysis of several trials is not possible, then causal effects must be esti-
mated for individual patients, which requires strong and unverifiable assump-
tions to be made. Recently, progress has been made regarding the relationship
between the association and causal frameworks[5]. These authors consider a
quadruple Yij = [Tij(Zij = 0), Tij(Zij = 1), Sij(Zij = 0), Sij(Zij = 1)]′, which
is observable only if patient j in trial i would be assessed under both control
and experimental treatment. Clearly, this is not possible and hence some of
the outcomes in the quadruple are “counterfactual.” Counterfactuals are es-
sential to the causal-inference framework, while the above equation also carries
a meta-analytic structure. Alonso et al.[5] assume a multivariate normal for
Yij, to derive insightful expressions. It is clear that both paradigms base their
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validation approach upon causal effects of treatment. However, there is an im-
portant difference. While the causal inference line of thinking places emphasis
on individual causal effects, in a meta-analytic approach the focus is on the
expected causal treatment effect. These authors show that, under broad cir-
cumstances, when a surrogate is considered acceptable from a meta-analytic
perspective, at both the trial and individual level, then it would be good as
well from a causal-inference angle. These authors also carefully show, in line
with comments made earlier, that a surrogate, valid from a single-trial frame-
work perspective, using individual causal effects, may not pass the test from
a meta-analytic view-point, when heterogeneity from one trial to another is
large and the causal association is low. Evidently, more work is needed, espe-
cially for endpoints of a different type, but at the same time it is comforting
that, when based on multiple trials, the frameworks appear to show a good
amount of agreement.

22.8 Prediction and Design Aspects

Until now, we have focused on quantifying surrogacy through a slate of mea-
sures, culminating in the information-theoretic ones. In practice, one may
want to go beyond merely quantifying the strength of surrogacy, and further
use a surrogate endpoint to predict the treatment effect on the true endpoint
without measuring the latter. Put simply, the issue then is to obtain point and
interval predictions for the treatment effect on the true endpoint based on the
surrogate. This issue has been studied by Burzykowski and Buyse[8] for the
original meta-analytic approach for continuous endpoints and will be reviewed
here.

The key motivation for validating a surrogate endpoint is the ability to
predict the effect of treatment on the true endpoint based on the observed
effect of treatment on the surrogate endpoint. It is essential, therefore, to
explore the quality of prediction by (a) information obtained in the validation
process based on trials i = 1, . . . , N and (b) the estimate of the effect of Z on
S in a new trial i = 0. Fitting the mixed-effects model (22.12)–(22.13) to data
from a meta-analysis provides estimates for the parameters and the variance
components. Suppose then that a new trial i = 0 is considered for which data
are available on the surrogate endpoint but not on the true endpoint. We can
then fit the following linear model to the surrogate outcomes S0j :

S0j = µS0 + α0Z0j + εS0j. (22.50)

We are interested in an estimate of the effect β+b0 of Z on T , given the effect
of Z on S. To this end, one can observe that (β+ b0|mS0, a0), where mS0 and
a0 are, respectively, the surrogate-specific random intercept and treatment
effect in the new trial follows a normal distribution with mean linear in µS0,
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µS, α0, and α, and variance

Var(β + b0|mS0, a0) = (1 − R2
trial)Var(b0). (22.51)

Here, Var(b0) denotes the unconditional variance of the trial-specific random
effect, related to the effect of Z on T (in the past or the new trials). The smaller
the conditional variance (22.51), the higher the precision of the prediction, as
captured by R2

trial
. Let us use ϑ to group the fixed-effects parameters and

variance components related to the mixed-effects model (22.12)–(22.13), with

ϑ̂ denoting the corresponding estimates. Fitting the linear model (22.50) to
data on the surrogate endpoint from the new trial provides estimates for mS0

and a0. The prediction variance can be written as:

Var(β + b0|µS0, α0, ϑ)

≈ f{Var(µ̂S0, α̂0)} + f{Var(ϑ̂)} + (1 −R2
trial

)Var(b0), (22.52)

where f{Var(µ̂S0, α̂0)} and f{Var(ϑ̂)} are functions of the asymptotic

variance-covariance matrices of (µ̂S0, α̂0)
T and ϑ̂, respectively. The third term

on the right hand side of (22.52), which is equivalent to (22.51), describes
the prediction’s variability if µS0, α0, and ϑ were known. The first two terms
describe the contribution to the variability due to the use of the estimates of
these parameters. It is useful to consider three scenarios.

Scenario 1. Estimation error in both the meta-analysis and the

new trial. If the parameters of models (22.12)–(22.13) and (22.50) have to be
estimated, as is the case in reality, the prediction variance is given by (22.52).
From the equation it is clear that in practice, the reduction of the variability
of the estimation of β + b0, related to the use of the information on mS0 and
a0, will always be smaller than that indicated by R2

trial. The latter coefficient
can thus be thought of as measuring the “potential” validity of a surrogate
endpoint at the trial-level, assuming precise knowledge (or infinite numbers of
trials and sample sizes per trial available for the estimation) of the parameters
of models (22.12)–(22.13) and (22.50). See also Scenario 3 below.

Scenario 2. Estimation error only in the meta-analysis. This sce-
nario is possible only in theory, as it would require an infinite sample size in
the new trial. But it can provide information of practical interest since, with
an infinite sample size, the parameters of the single-trial regression model
(22.50) would be known. Consequently, the first term on the right hand side
of (22.52), f{Var(µ̂S0, α̂0)}, would vanish and (22.52) would reduce to

Var(β + b0|µS0, α0, ϑ) ≈ f{Var(ϑ̂)} + (1 − R2
trial

)Var(b0). (22.53)

Expression (22.53) can thus be interpreted as indicating the minimum variance
of the prediction of β+b0 , achievable in the actual application of the surrogate
endpoint. In practice, the size of the meta-analytic data providing an estimate
of ϑ will necessarily be finite and fixed. Consequently, the first term on the
right hand side of (22.53) will always be present. Based on this observation,
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Gail et al [31] conclude that the use of surrogates validated through the meta-
analytic approach will always be less efficient than the direct use of the true
endpoint. Of course, even so, a surrogate can be of great use in terms of
reduced sample size, reduce trial length, gain in number of life years, etc.

Scenario 3. No estimation error. If the parameters of the mixed-
effects model (22.12)–(22.13) and the single-trial regression model (22.50) were
known, the prediction variance for β+ b0 would only contain the last term on
the right hand side of (22.52). Thus, the variance would be reduced to (22.51),
which is clearly linked with (22.44). While this situation is, strictly speaking,
of theoretical relevance only, as it would require infinite numbers of trials and
sample sizes per trial available for the estimation in the meta-analysis and in
the new trial, it provides important insight.

Based on the above scenarios one can argue that in a particular application
the size of the minimum variance (22.53) is of importance. The reason is that
(22.53) is associated with the minimum width of the prediction interval for
β + b0 that might be approached in a particular application by letting the
sample size for the new trial increase towards infinity. This minimum width
will be responsible for the loss of efficiency related to the use of the surrogate,
pointed out in Gail et al [31]. It would thus be important to quantify the loss of
efficiency, since it may be counter-balanced by a shortening of trial duration.
One might consider using the ratio of (22.53) to Var(b0), the unconditional
variance of β+b0. However, Burzykowski and Buyse (2006) considered another
way of expressing this information, which should be more meaningful clinically.

22.8.1 Surrogate Threshold Effect

We will outline the proposal made by Burzykowski and Buyse[8] and first
focus on the case where the surrogate and true endpoints are jointly normally
distributed. Assume that the prediction of β+b0 can be made independently of
µS0. Under this assumption the conditional mean of β + b0 is a simple linear
function of α0, the treatment effect on the surrogate, while the conditional
variance can be written as

Var(β + b0|α0, ϑ) = Var(b0)
(
1 −R2

trial(r)

)
. (22.54)

The coefficient of determination R2
trial(r) in (22.54) is simply the square of

the correlation coefficient of trial-specific random effects bi and ai. If ϑ were
known and α0 could be observed without measurement error (i.e., assuming
an infinite sample size for the new trial), the prediction variance would equal

(22.54). In practice, an estimate ϑ̂ is used and then prediction variance (22.53)
ought to be applied:

Var(β + b0|α0, ϑ) ≈ f{Var(ϑ̂)} + (1 − R2
trial(r))Var(b0). (22.55)

Since in linear mixed models the maximum likelihood estimates of the
covariance parameters are asymptotically independent of the fixed effects
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parameters[59], one can show that the prediction variance (22.55) can be ex-
pressed approximately as a quadratic function of α0.

Consider a (1-γ)100% prediction interval for β + b0:

E(β + b0|α0, ϑ) ± z1− γ
2

√
Var(β + b0|α0, ϑ), (22.56)

where z1−γ/2 is the (1 − γ/2) quantile of the standard normal distribution.
The limits of the interval (22.56) are functions of α0. Define the lower and
upper prediction limit functions of α0 as

l(α0), u(α0) ≡ E(β + b0|α0, ϑ) ± z1− γ
2

√
Var(β + b0|α0, ϑ). (22.57)

One might then compute a value of α0 such that

l(α0) = 0. (22.58)

Depending on the setting, one could also consider the upper limit u(α0). We
will call this value the surrogate threshold effect (STE). Its magnitude depends
on the variance of the prediction. The larger the variance, the larger the ab-
solute value of STE. From a clinical point of view, a large value of STE points
to the need of observing a large treatment effect on the surrogate endpoint in
order to conclude a non-zero effect on the true endpoint. In such a case, the
use of the surrogate would not be reasonable, even if the surrogate were “po-
tentially” valid, i.e., with R2

trial(r) ' 1. The STE can thus provide additional
important information about the usefulness of the surrogate in a particular
application.

Note that the interval (22.56) and the prediction limit function l(α0) can be
constructed using the variances given by (22.54) or (22.55). Consequently, one
might get two versions of STE. The version obtained from using (22.54) will be
denoted by STE∞,∞. The infinity signs indicate that the measure assumes the
knowledge of both of ϑ as well as of α0, achievable only with an infinite number
of infinite-sample-size trials in the meta-analytic data and an infinite sample
size for the new trial. In practice, STE∞,∞ will be computed using estimates. A
large value of STE∞,∞ would point to the need of observing a large treatment
effect on the surrogate endpoint even if there were no estimation error present.
In this case, one would question even the “potential” validity of the surrogate.

If the variance (22.55) is used to define l(α0), we will denote the STE by
STEN,∞, with N indicating the need for the estimation of ϑ. STEN,∞ cap-
tures the “practical” validity of the surrogate, which accounts for the need
of estimating parameters of model (22.12)–(22.13). It is possible that a sur-
rogate might seem to be “potentially valid” (low STE∞,∞ value), but might
not be valid “practically” (large STEN,∞ value), owing to the loss of precision
resulting from estimation of the mixed-effects model parameters. The roots
of (22.58) can be obtained by solving a quadratic equation. The number of
solutions of the equation depends on the parameter configuration in l(α0)[8].

STE∞,∞ and STEN,∞ can address concerns about the usefulness of the
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meta-analytic approach, expressed by Gail et al [31]. They noted that, even
for a valid surrogate, the variance of the prediction of treatment effect on the
true endpoint cannot be reduced to 0, even in the absence of any estimation
error. STEN,∞ can be used to quantify this loss of efficiency.

Interestingly, the STE can be expressed in terms of treatment effect on the
surrogate necessary to be observed to predict a significant treatment effect on
the true endpoint. In a practical application, one would seek a value of STE
(preferably, STEN,∞) well within the range of treatment effects on surrogates
observed in previous clinical trials, as close as possible to the (weighted) mean
effect.

STE and its estimation have been developed under the mixed-effects model
(22.12)–(22.13), but Burzykowski and Buyse[8] also derived the STE when,
perhaps for numerical convenience, the two-stage approach of Section 22.4.2
is used. Furthermore, STE can be computed for any type of surrogate. To this
aim, one merely needs to use an appropriate joint model for surrogate and true
endpoints, capable of providing the required treatment effect. Burzykowski
and Buyse[8] presented time-to-event applications.

22.9 Concluding Remarks

Over the years, a variety of surrogate marker evaluation strategies have been
proposed, cast within a meta-analytic framework. With an increasing range
of endpoint types considered, such as continuous, binary, time-to-event, and
longitudinal endpoints, also the scatter of types of measures proposed has in-
creased. Some of these measures are difficult to calculate from fully specified
hierarchical models, which has sparked off the formulation of simplified strate-
gies. We reviewed the ensuing divergence of proposals, which then has trig-
gered efforts of convergence, eventually leading to the information-theoretic
approach, which is both general and simple to implement. These developments
have been illustrated using data from clinical trials in schizophrenia.

While quantifying surrogacy is important, so is prediction of the treatment
effect in a new trial based on the surrogate. Work done in this area has been
reviewed, with emphasis on the so-called surrogate threshold effect and the
sources of variability involved in the prediction process. A connection with
the information-theoretic approach is pointed out.

Even though more work is called for, we believe the information-theoretic
approach and the surrogate threshold effect are promising paths towards ef-
fective assessment and use of surrogate endpoints in practice. Software im-
plementations for methodology described here and beyond are available from
www.ibiostat.be.

A key issue is whether a surrogate is still valid if, in a new trial, the same
surrogate and true endpoints, but a different drug is envisaged. This is the
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so-called “class” question. It is usually argued that a surrogate could still be
used if the new drug belongs to the same class of drugs as the ones in the
evaluation exercise. Of course, this in itself is rather subjective and clinical
expertise is necessary to meaningfully delineate a drug class.
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