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Abstract: Iddi and Molenberghs (2012) merged the attractive features of the so-
called combined model of Molenberghs et al (2010) and the marginalized model
of Heagerty (1999) for hierarchical non-Gaussian data with overdispersion. In this
model, the fixed-effect parameters retain their marginal interpretation. Lee et al
(2011) also developed an extension of Heagerty (1999) to handle zero-inflation
from count data, using the hurdle model. To bring together all of these features,
a marginalized, zero-inflated, overdispersed model for correlated count data is
proposed. Using an empirical dataset, it is shown that the proposed model leads
to important improvements in model fit.
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1 Introduction

Count data are gathered in a multitude of settings. For their univariate
form, a generalized linear model (GLM) based on the Poisson distribution is
regularly assumed, a member of the exponential family. Four features have
called for extension. First, because empirical data generally exhibit more
heterogeneity than that provided by the mean-variance relationship of the
Poisson (overdispersion, but underdispersion is also possible), a collection
of extensions has been proposed, such as the negative binomial (NB).
Second, the occurrence of zeros beyond what is predicted by the Poisson
are often encountered. Models addressing this are, for example, the zero-
inflated Poisson (ZIP) and the zero-inflated negative binomial (ZINB).
Third, assuming measurements are taken hierarchially, within-unit associ-
ation is likely present. The generalized linear mixed model (GLMM) is a
commonly used random-effecs model to address this. While this model is
well established, further complication arises when overdispersion and zero
inflation are also present. To address this, overdispersion, Molenberghs et al
(2010) introduced the combined model (CM) that decomposes the Poisson
mean into two multiplicative components, one for each phenomenon.
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Fourth, by including individual-specific random effects into the predictor,
the fixed effects no longer have a marginal interpretation but are interpreted
conditional upon the random effects. We present a model that, while mak-
ing use of the aforementioned random effects, still admits a marginal in-
terpretation. This multilevel marginal model (MMM) approach is based on
Heagerty (1999). This model further simultaneously accounts for overdis-
persion and zero-inflation. The model is illustrated with real data.

2 Zero-Inflated, Overdispersed, Marginalized
Multilevel Model

Let Yij denote count j = 1, . . . , ni for cluster i = 1, . . . , N,, following
a Poisson distribution with mean number of events λij . We formulate a
model that allows for all four issues mentioned in the introduction (Iddi
and Molenberghs 2012). The proposed model is:

P (Yij = yij) =

{
πmij + (1− πmij )fi(0|λmij ) if yij = 0,

(1− πmij )fi(yij |λmij ) if yij = 1, 2, . . .

where the marginal mixing probability πmij and marginal Poisson mean
λmij = E(Yij) are related to covariates: logit(πmij ) = x′1ijβ

m and log(λmij ) =
x′2ijα

m. Next, a conditional specification follows:

P (Yij = yij |θij , bi) =

{
πcij + (1− πcij)fi(0|θij , b1i, λcij) if yij = 0,

(1− πcij)fi(yij |θij , b1i, λcij) if yij = 1, 2, . . .

where the probit πcij = Φ−1(∆1ij+z′1ijb1i) and λcij = θijexp(∆2ij+z′2ijb2i).
The overdispersion random effect, θij ∼ Gamma(uij , vij) is introduced in

the Poisson model. For bi = (b1i, b2i)
′ ∼ N(0, D) and based on

λmij =

∫
b

∫
θ

θijexp(∆ij + z′ijbi)dGθdFb =

∫
b

E(θij)exp(∆ij + z′ijbi)dFb (1)

where Gθ(·) and Fb(·) are the cumulative distribution function of θij and

bi respectively, we derive: ∆1ij =
√

1 + z′1ijDz
′
1ijΦ

−1
[
expit(x′1ijβ

m)
]

and

∆2ij = −log(uijvij)+x′2ijα
m− 1

2z
′
2ijDz

′
2ij . Thanks to the probit link, closed

forms exist. The marginal mean still uses the logit, enabling an odds-ratio
interpretation.

3 Estimation

We proceed via maximum likelihood. The observed data likelihood for sub-
ject i, conditional on the overdispersion random effect is:

fi(β, α,D, φ) =

∫
b

ni∏
j=1

f(yij |bi)f(bi|D)dbi,
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TABLE 1. Epilepsy Trial. Parameter estimates (standard errors) for the
marginalized models (bottom). RE: random effect.

Zero-Inflated Combined Zero-Inflated
MMM MMM MMM Comb. MMM

Effect Par. Est.(s.e.) Est.(s.e.) Est.(s.e.) Est.(s.e.)
Poisson Part

Interc. placebo α00 1.396(0.189) 1.375(0.170) 1.476(0.196) 1.428(0.183)
Slope placebo α01 -0.014(0.004) -0.004(0.005) -0.025(0.008) -0.012(0.007)
Interc. treatment α10 1.226(0.190) 1.378(0.172) 1.220(0.197) 1.337(0.186)
Slope treatment α11 -0.012(0.004) -0.007(0.005) -0.019(0.008) -0.005(0.007)
Slope diff. α01 − α11 0.002(0.006) -0.003(0.007) 0.013(0.011) 0.008(0.010)
Std. Dev. RE σ1 1.076(0.086) 0.973(0.082) 1.063(0.087) 1.009(0.086)

Zero-Inflated Part
Intercept β0 -2.296(0.296) -2.428(0.321)
Slope β1 0.066(0.017) 0.066(0.018)
Std. Dev. of RE σ2 1.254(0.192) 1.292(0.208)

Overd. Par. v = 1
u 0.406(0.0348) 0.179(0.018)

Correlation ρ -0.138(0.1601) -0.080(0.167)
AIC -6810 -7222 -7664 -7682

from which the likelihood follows. The distribution of Yi conditional on bi
and marginal over θij is given for the zero-inflated combined model by:

f(yij |bi) = I(yij = 0)πij + (1− πij)
(
uj + yij − 1
uj − 1

)
×

(
vj

1 + κijvj

)yij ( 1

1 + κijvj

)uj
κ
yij
ij .

In fitting the MMM, the conditional distributions are specified by replacing
the terms x′1ijβ and x′2ijα in the zero-inflated version of the combined
model with the analytical expressions for ∆1ij and ∆2ij , respectively, as
the mean models relate separately to these terms. Implementation is within
SAS NLMIXED.

4 Analysis of Epilepsy Data

A description of the data is provided in Molenberghs et al (2010). The
data come from a randomized, double-blinded, parallel group multi-center
study aimed at comparing placebo with a new anti-epileptic drug (AED),
in combination with one or two other AED’s. Weekly seizure counts are
available. We fit our model and several sub-models to the data. Denote the
number of epileptic seizures for patient i at week j by Yij and the occasion
on which Yij was measured by tij . Assuming that Yij follows a combined
model with λcij = θijκij , assume θij ∼ Gamma(u, v), and

ln(κij) =

{
α00 + α01tij + bi if placebo,
α10 + α11tij + bi if treated.
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The marginal model for the zero-inflated probabilities is given by ln(πmij ) =
β0 +β1tij . The corresponding conditional models are specified by introduc-
ing a normally distributed random intercept, b1i ∼ N(0, σ2

1) in the Poisson
model and b2i ∼ N(0, σ2

2) in the binomial model and the correlation be-
tween the binomial and count components is represented by ρ.
Results of these models are presented in Table 1. Generally, the fixed-
effect parameters are close to each other. Their interpretations are not just
subject-specific but can be extended to the whole population. Use ‘CO’ for
combined and ‘ZI’ for zero inflation. Comparing the MMM and ZIMMM to
the COMMM and ZICOMMM models, we see improvement in the model
fit owing to the gamma random effects. Also, model fit improves if the
normal random effects are supplemented with zero-inflation. Therefore, it
is key that the more complex model results in a considerably improvement
in the model. This is essential for inferences and for prediction.

5 Concluding Remarks

We have proposed a flexible model to simultaneously address issues of zero-
inflation, overdispersion, and data hierarchies, while retaining a population-
averaged interpretation of fixed effect parameters like in classical Poisson
models. Through an empirical study, we have demonstrated that it is not
sufficient to address either two of the three phenomena, while ignoring the
remaining one. Our extension led to considerable improvement, thereby
ensuring parameter interpretation is for the whole population, where a
population may be defined in terms of fixed-effects profile. A marginal in-
terpretation is often of interest to public health experts, who seek solutions
or interventions for the population at large and therefore might find con-
ditional models such as the GLMM or the combined model cumbersome.
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