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Abstract

In applied statistical data analysis, overdispersion is a common feature. It can be addressed using
both multiplicative and additive random effects. A multiplicative model for count data incorporates
a gamma random effect as a multiplicative factor into the mean, whereas an additive model assume
a normally distributed random effect, entered into the linear predictor. Using Bayesian principles,
these ideas are applied to longitudinal count data, based on the work of Molenberghs, Verbeke, and
Demétrio (2007). The performance of the additive and multiplicative approaches is compared using
a simulation study.
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1 Introduction

Overdispersion refers to the presence of excess variability in a data set, relative to the model-based vari-

ance. It is common in practice and often results from unexplained heterogeneity in the study population.

An ubiquitous example is extra-Poisson variation in count data. Hinde (1982) mentions inappropriate

independence assumptions and omitted explanatory variables as important reasons for overdispersion.

One solution is the use of a so-called multiplicative model (Brillinger 1986; Manton et al. 1981), in the

sense of including a random effect as a factor in the mean model. The most common example is the

negative-binomial model, where a gamma random effect is used in the Poisson mean (Greenwood and

Yule 1920; Ehrenberg 1959), that is, Y |µ ∼ Poisson(µ), µ ∼ Γ(α1, α2). Customarily, α1 and α2 are

estimated using maximum likelihood. However, this precludes the use of prior information. To allow

for this, several researchers proposed a Bayesian approach in which prior information is used for model
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parameters α1 and α2 (Deely and Smith 1998; Schluter et al. 1997). Nevertheless, none of these authors

has obtained a closed-form solution. Bradlow et al. (2000) has obtained closed forms by approximating

the ratio of two gamma functions with a polynomial expansion. Computation is facilitated because the

gamma distribution is conjugate for the Poisson. This implies, at the same time, that for other outcome

types, specific conjugate distributions need to be considered.

Alternatively, additive models introduce random effects into the linear predictor (Aitkin 1996), a natural

approach when overdispersion is thought to arise from the omission of key cofactors. Such random effects,

in count-data models or, more generally, throughout the exponential family, are typically assumed to be

normally distributed.

Both of these ideas were brought together in a so-called combined model by Booth et al. (2003) and

Molenberghs et al. (2007). Moreover, Aregay et al. (2012) adopted a Bayesian approach based on

Markov Chain Monte Carlo for longitudinal overdispersed data. However, less attention has been devoted

to evaluation of the relative performance of the additive and multiplicative models. In this paper, we

extend the additive model and compare it to the multiplicative model, from a Bayesian perspective.

Simulations are used to this effect.

The paper is structured as follows. Section 2 is devoted to the description of a motivating set of data.

Section 3 formalizes the additive and multiplicative models. The data are analyzed in Section 4 and the

simulation study is described and results reported in Section 5.

2 Anti-epileptic Drug Data

The data were obtained from 89 epileptic patients in which 44 were assigned to the new anti-epileptic

drug (AED) and the rest to the placebo group. The patients were measured weekly, followed during 16

weeks, with some of them extended to 27 weeks. The outcome is the number of seizures experienced

during the most recent week and the research question is the reduction in the number of seizures by the

new therapy. Ample details are given elsewhere, including in Aregay et al. (2012) and references therein.
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3 Overdispersion Models

In turn, we introduce an additive and multiplicative overdispersion model for the data in Section 2. The

approach simultaneously accounts for data hierarchies and extra-Poisson dispersion.

3.1 An Additive Overdispersion Model

To account for overdispersion, McLachlan (1997) among others extends the generalized linear model

framework (GLM) by adding an additive random effect to the linear predictor. This is appealing whenever

overdispersion is believed to arise from un-modeled heterogeneity, e.g., through covariate omission. We

here extend their work to longitudinal count data by considering two separate random effects; one for

clustering and the other for overdispersion not already accommodated.

Let Yij be the number of epileptic seizures for patient i in week j, (i = 1, 2, . . . , 89; j = 1, 2, . . . , ni),

where ni is the number of repeated measurements for patient i. Assume Yij|bi, θij ∼ Poisson(λij), with

parameter given by:

ln(λij) = β00 · treati + β01 · (1 − treati) + β10 · treati · tij + β11 · (1 − treati) · tij + bi + θij . (1)

Here, tij denotes the time in weeks at which Yij is measured, treati is 1 for a treated (AED) subject

and 0 for a placebo subject. We further assume an independent vague normal prior for the “fixed

effect” parameters β = (β00, β01, β10, β11)
′; θij ∼ N(0, σ2

θ) is the overdispersion parameter; bi ∼ N(0, σ2

b)

represents the subject-specific effect. The hyper-parameters σ−2

θ and σ−2

b are assumed to have a flat

Gamma prior distribution: σ−2

θ ∼ Γ(0.01, 0.01) and σ−2

b ∼ Γ(0.01, 0.01) (Gelman 2006).

3.2 A Multiplicative Overdispersion Model

The multiplicative overdispersion model coincides with the combined model proposed by Molenberghs et

al. (2007). In this model, the overdispersion parameter is entered as a multiple factor into the mean of

the Poisson distribution. While in the additive approach all random effects enter the predictor function

directly, here an outcome-type-specific random effect is introduced, customarily of a conjugate type. For

instance, a gamma distribution is often used for count data or times-to-event, whereas a beta distribution

is considered for binomial data. While a convenient choice in view of parameter estimation and inferences,
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the lack of generality could be seen as a disadvantage. On the other hand, conjugacy comes with its

advantages, as discussed in Molenberghs et al. (2010).

We now assume that Yij |bi, θij ∼ Poisson(θijκij) with

ln(κij) = β00 · treati + β01 · (1 − treati) + β10 · treati · tij + β11 · (1 − treati) · tij + bi,

bi ∼ N(0, σ2

b ), and θij ∼ Γ(α1, α2). For convenience of interpretation and identifiability, we assume

α1 = α2, and denote the common parameter simply by α. Thus, E(θij) = 1 and var(θij) = 1/α. We

assumed the same prior distribution for the parameters as in Section 3.1, with the exception that a

uniform prior distribution is assumed for α ∼ U(0, 100).

4 Analysis of the Anti-epileptic Drug Data

For model fitting, we adopted a Bayesian approach using MCMC through R2WinBUGS (Sturtz et al.

2005) package. For each one of the models, we used three chains of 100,000 iterations, a 10,000 burn-in

sequence, and 100 thinning. Note that the thinning parameter is large, to remove residual autocorrelation

from the sequence. The Deviance Information Criteria (DIC, Spiegelhalter et al. 2002; Gelman et

al. 2004) was used for model selection. As Johnson (2007) points out, the DIC comes with certain

disadvantages in the context of hierarchical data. Now, similar but different drawbacks apply to all

information criteria, and these drawbacks may vary across settings (Verbeke and Molenberghs 2000).

Therefore it is advisable to consider several, perhaps just a few, and check whether the broad conclusions

agree across them.

Convergence was checked using trace plots and estimated potential scale reduction factors, R̂ (Gelman

and Rubin 1992). The values of R̂ for all parameters were close to one, which implies good convergence

(Table 1). In addition, the trace plots considered indicate convergence for all model parameters.

A summary of the model fits is shown in Table 1. The DIC value of the multiplicative overdispersion

model is smaller than that for the additive overdispersion model, indicating a better fit for the first. In

general, both models provide similar result for the posterior mean estimate, the standard deviations, and

the 95% credible intervals. In neither model is there a significant treatment effect. The variance of the
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random effect is approximately 1.2 in both models. However, the posterior estimate of the intercept for

the additive overdispersion model is slightly smaller than for the multiplicative overdispersion model.

The variance of the overdispersion parameter, σ2

θ = 0.4021, for the additive model indicates the presence

of extra-variability in the data, which is in line with the value of the variance of the overdispersion

parameter for the multiplicative model: α=2.482 and var(θij) = 1/2.482 = 0.4029. When we compare

the result of the variance of the random effect with the variance of the overdispersion parameter, the first

one is larger than the second one, which shows that the between-subject variability is larger than the

extra-model variability. Note that the MC errors are much smaller than the posterior standard deviation,

indicating the efficiency of the posterior sample mean for the corresponding population estimand.

Furthermore, to compare both models, the posterior predicted values for each individual were calculated.

Results are shown in Figure 1. Both models returned similar predictions. The correlation between the

posterior predictive values for the number of epileptic seizures under both models correlated as highly as

0.999. Additionally, we graphically investigated the relationship between the overdispersion parameters

for both models; the result is shown in Figure 2. They are highly correlated, with a small amount of

non-linearity visible in the relationship. They correlate as highly as 0.97. The above results provide the

motivation for a simulation study to investigate the relative performance of both models.

5 Simulation Study

Using simulations, we studied the performance of the additive and multiplicative overdispersion models

in terms of parameter estimation and computation time. We first present the setup, then the estimation

strategy, and finally the results. In particular, data will be generated under both the additive and

multiplicative model, and then both models will be fitted to such simulated data.

5.1 Setup of the Simulation Study

5.1.1 Definition of the Simulation Scenarios

The general principles of this simulation study are similar to the ones of Aregay et al. (2012).

In the first setting, we simulated data according to both models in Section 3, with true values of β00=2,
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Table 1: Epilepsy Data. Posterior summary statistics for the the additive and multiplicative models.

Par. Mean SD MC error 95% Credible interval R̂

Add Mult Add Mult Add Mult Add Mult Add Mult

β00 0.4696 0.6485 0.1874 0.1854 0.0048 0.0042 (0.0895, 0.8379) (0.2813, 0.9949) 1.00 1.00

β01 0.736 0.9117 0.1808 0.1835 0.0045 0.0042 (0.3755,1.094) (0.5538,1.269) 1.00 1.00

β10 -0.0133 -0.0117 0.0076 0.0075 1.42E-04 1.52E-04 (-0.0284, 0.0012) (-0.0262, 0.0036) 1.00 1.01

β11 -0.0273 -0.0249 0.0078 0.0078 1.38E-04 1.53E-04 (-0.0430, -0.0119) (-0.0398, -0.0091) 1.00 1.01

β10- β11 0.0132 0.0131 0.0109 0.0108 1.99E-04 2.03E-04 (-0.0079, 0.0348) (-0.0084, 0.0348) 1.00 1.00

β10/β11 0.5384 0.5098 0.9448 0.5744 0.0179 0.0107 (-0.0486, 1.532) (-0.1411, 1.69) 1.00 1.05

σ2

b 1.19 1.186 0.2042 0.2084 3.64E-03 3.86E-03 (0.8668,1.662) (0.8563, 1.666) 1.00 1.00

σ2

θ 0.4021 - 0.0364 - 2.36E-04 - (0.3359,0.4772) - 1.00 1.00

α - 2.482 - 0.2109 - - 0.0043 (2.093, 2.93) 1.00 1.00

DIC 4868.32 4838.73

β01=-2, β10=0.05, β11=0.2 and different overdispersion levels. The true values of the dispersion parameter

α for the multiplicative overdispersion model were 0.25, 1, and 25, representing high, moderate, and low

overdispersion, respectively (Aregay et al. 2012). The standard deviation of the overdispersion parameter

(σθ) for the additive model was varied by specifying different values: 2, 0.8, and 0.2, also here indicating

high, moderate, and low overdispersion. We selected these values because when we simulated the data

under the multiplicative model with α=0.25, 1, and 25 and fitting the additive model to the simulated

data, we obtained estimated values of σθ around 2, 0.8, and 0.2, respectively. The values for σb were

equal to 0.1 and 0.5 (Aregay et al. 2012). Covariates for treatment and time were included. The number

of time points was equal to 2, 5, 10, and 20. The sample sizes were 30, 60, and 120 subjects; equally

divided between the two treatment arms (experimental and placebo). Note that in setting 1, we used

also unbalanced time points up to a maximum of 27 similar to the epilepsy data set for 60 subjects. All

of these choices taken together led to 84 scenarios. For each scenario, 100 data sets were sampled. Note

that the second and third settings are presented in the Supplementary Appendix.
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Figure 1: Epilepsy Data. Comparison of additive and multiplicative models using fitted individual profiles.

5.1.2 Fitting Procedure

Both models were fitted for each simulated data set using a Bayesian approach. JAGS (Plummer, 2003)

was the Bayesian software used and it was evoked within R via the package R2jags (Su and Yajima,

2011). We used one chain of size 60,000 MCMC iterations with 30,000 iterations burn-in, and 100

thinning. This nicely stabilizes the sequence and avoids auto-correlation. Note that we considered the

same prior distribution for the parameters as in Section 3.1 and Section 3.2.

5.2 Simulation Results

The results for the first setting with sample size 60 subjects and cluster size 10 are shown in Table 2.

From the table, we can clearly see that both models provide similar bias, relative bias, variance, and MSE

for all the parameters when the data are simulated with low overdispersion, regardless of the model. We

noticed that there was high bias and high MSE in α for the data simulated from the multiplicative model

with low overdispersion. However, the bias and the MSE of σθ is small for the data simulated from model
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Figure 2: Epilepsy Data. Correlation between the overdispersion parameter obtained from the additive

model and the logarithm of the overdispersion parameter obtained from the multiplicative model.

(1). Hence, caution should be used with the estimate of α when using the multiplicative model for data

with low values of overdispersion.

On the other hand, when the data are generated with high and moderate overdispersion levels in the

multiplicative setting, the bias and the MSE of the intercept for the additive model (misspecified model)

were higher than for the multiplicative model. The reverse is true when the data are generated from

model (1). Moreover, for the higher overdispersion scenarios for the data generated under model (1), the

bias and MSE of σb for the multiplicative model (misspecified model) were higher than for the additive

model (Figure 3). However, for the other scenarios, the bias and the MSE of σb obtained from both

models were similar (Figure 4). Besides, the bias and the MSE of the slopes obtained from both models

were similar under all scenarios for moderate and higher overdispersion levels (Table 2; see Supplementary

Appendix).
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The performance of both models was compared in terms of their computation time as well. The results are

shown in Table 3. When the data are generated with high and moderate overdispersion levels, regardless

of the model, the computation time of the additive model is smaller than that of the multiplicative model.

This indicates that the additive model converges quickly compared to the multiplicative model. However,

when the data are generated with low overdispersion level, especially with σb = 0.1, the computation

time of the additive model does not differ much from the multiplicative model.

In addition to the first setting, two other settings with different true values of the regression coeffi-

cients were considered. The results of these settings were similar to the first setting (see Supplementary

Appendix). Hence, changing the true values of the regression coefficients does not affect the results.

In all scenarios, in which data are simulated from the multiplicative model with high and moderate

overdispersion, fitting the additive model slightly underestimates the intercepts, that is, the bias of the

intercepts is negative. In contrast, when the data are simulated under an additive model with high and

moderate overdispersion, fitting the multiplicative model slightly overestimates the intercepts (Table 2;

see Supplementary Appendix).

Furthermore, we investigated the effect of sample size and cluster size. As expected, the bias and the

MSE of the parameters decrease as the cluster and sample sizes increase (Figures 3–8; see Supplementary

Appendix). We noticed that, in most of the cases, for data simulated from the multiplicative model with

cluster size 2, the bias and MSE of β01 and β11 obtained from the additive model were much higher than

from the multiplicative model. The reverse is true for data simulated from model (1); see Supplementary

Appendix. Hence, caution should be used when employing both models for overdispersed data with small

cluster sizes.

The results of the data generated with unbalanced time points and 60 subjects, similar in structure to

the motivating data set, are shown in Table 4. The results of this setting were similar to the results of

the first setting (Table 2). Moreover, we have generated data with sample sizes n = 30 and n = 120 with

unbalanced time points; the results (details not shown) were similar to the results of the balanced time

points with the same sample size (see Supplementary Appendix).
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Figure 3: MSE of σb for data generated from additive model and fitting the additive model (solid line)

and multiplicative model (dashed line). The x-axis represents the value of σθ and the y-axis represents

the MSE. n = 60.

In general, both models perform similarly, except that the additive model provides smaller bias and MSE

for σb for data generated from model (1) with higher overdispersion levels. Note that, when data are

generated with σb = 0.5, in most of the scenarios, the bias and MSE of the parameters are slightly smaller

than when generated under σb = 0.1.

We observe that, while underdispersion is also possible, it is not possible to generate it directly in a

hierarchical fashion. As a consequence, the current study should not be seen as making statements about

underdispersion as well.
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Table 2: Summary of the simulation results for n = 60, t = 10, for data generated and fitted using the

additive and multiplicative models, for different overdispersion levels.

α σθ

σb Par. 0.25 1 25 2 0.8 0.2

Add Mult Add Mult Add Mult Add Mult Add Mult Add Mult

0.1 β00 Bias -1.789 -0.011 -0.483 -0.012 -0.022 -0.015 -0.056 1.554 0.015 0.305 -0.004 0.015

Rel.Bias -0.895 -0.005 -0.241 -0.006 -0.012 -0.008 -0.028 0.777 0.008 0.152 -0.002 0.008

var 0.099 0.062 0.023 0.0001 0.004 0.003 0.071 0.146 0.012 0.012 0.003 0.003

MSE 3.300 0.063 0.256 0.016 0.004 0.003 0.074 2.562 0.012 0.104 0.003 0.003

β01 Bias -1.912 -0.008 -0.535 -0.022 -0.051 -0.064 0.019 1.673 -0.016 0.301 -0.019 0.0003

Rel.Bias 0.956 0.004 0.268 0.011 0.025 0.032 -0.009 -0.837 0.008 -0.151 0.009 -0.0002

var 0.169 0.127 0.085 0.069 0.079 0.059 0.103 0.142 0.080 0.049 0.074 0.074

MSE 3.825 0.127 0.371 0.069 0.082 0.063 0.104 2.942 0.0801 0.140 0.074 0.074

β10 Bias -0.001 -0.003 -0.0001 0.0003 -0.0005 0.001 0.005 0.008 0.0007 <0.0001 0.0002 0.0002

Rel.Bias -0.028 -0.058 -0.011 0.007 -0.010 -0.002 0.096 0.160 0.160 <0.0001 0.004 0.004

var 0.003 0.002 0.0001 0.0004 <0.0001 6.12E-05 0.002 0.003 0.0003 0.0003 6.19E-5 6.17E-5

MSE 0.003 0.002 0.0001 0.0004 <0.0001 6.33E-05 0.002 0.003 0.0003 0.0003 6.19E-5 6.17E-5

β11 Bias 0.016 -0.005 0.005 0.001 0.004 0.007 -0.001 -0.004 0.001 -0.0007 0.001 0.001

Rel.Bias 0.081 -0.027 0.023 0.007 0.020 0.034 -0.005 -0.022 0.005 -0.004 0.006 0.005

var 0.003 0.003 0.002 0.001 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.001

MSE 0.003 0.003 0.002 0.001 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.001

σb Bias 0.212 0.170 0.087 0.083 0.015 0.019 0.172 0.679 0.061 0.093 0.021 0.022

Rel.Bias 2.120 1.702 0.870 0.828 0.154 0.199 1.718 6.786 0.606 0.929 0.212 0.222

var 0.007 0.006 0.002 0.002 0.0005 0.0005 0.006 0.017 0.001 0.003 0.0004 0.0004

MSE 0.052 0.035 0.009 0.009 0.0007 0.0009 0.0351 0.477 0.001 0.002 0.0009 0.0009

α Bias - 0.003 - 0.021 - 9.714 - - - - - -

Rel.Bias - 0.011 - 0.021 - 0.389 - - - - - -

Var - 0.0005 - 0.014 - 151.08 - - - - - -

MSE - 0.0005 - 0.015 - 245.44 - - - - - -

σθ Bias - - - - - - -0.006 - -0.008 - -0.003 -

Rel.Bias - - - - - - -0.003 - -0.010 - -0.017 -

Var - - - - - - 0.008 - 0.002 - 0.0008 -

MSE - - - - - - 0.008 - 0.002 - 0.0008 -

0.5 β00 Bias -1.759 -0.0104 -0.497 0.008 -0.007 0.020 -0.028 1.604 -0.002 0.313 -0.0006 0.018

Rel.Bias -0.879 -0.005 -0.249 0.004 -0.003 0.010 -0.014 0.802 -0.0001 0.156 -0.0003 0.009

var 0.102 0.078 0.023 0.027 0.009 0.009 0.081 0.147 0.018 0.019 0.011 0.011

MSE 3.196 0.078 0.270 0.027 0.009 0.009 0.082 2.719 0.018 0.117 0.011 0.011

β01 Bias -2.029 -0.009 -0.559 0.0006 -0.0367 -0.068 0.039 1.714 0.003 0.287 -0.026 -0.008

Rel.Bias 1.015 0.005 0.279 -0.0003 0.018 0.034 -0.019 -0.857 -0.001 -0.144 0.013 0.004

var 0.282 0.161 0.096 0.082 0.064 0.067 0.132 0.154 0.061 0.066 0.071 0.069

MSE 4.402 0.161 0.409 0.082 0.065 0.071 0.134 3.093 0.061 0.148 0.071 0.070

β10 Bias -0.012 0.002 -0.002 -0.004 -0.001 0.001 0.002 0.004 -0.001 -0.001 -0.001 -0.001

Rel.Bias -0.241 0.049 -0.030 -0.078 -0.022 0.028 0.046 0.084 -0.020 -0.021 -0.021 -0.021

var 0.003 0.002 0.0005 0.0005 <0.0001 7.13E-05 0.008 0.002 0.0003 0.0003 5.85E-5 5.89E-5

MSE 0.003 0.002 0.0005 0.0005 <0.0001 7.33E-05 0.008 0.002 0.0003 0.0003 5.97E-5 6.0E-5

β11 Bias 0.029 0.001 0.009 -0.002 0.001 0.006 -0.008 -0.014 -0.002 -0.0003 0.002 0.002

Rel.Bias 0.149 0.005 0.046 -0.008 0.006 0.030 -0.038 -0.068 -0.008 -0.001 0.008 0.009

var 0.005 0.003 0.002 0.001 0.001 0.0009 0.003 0.004 0.001 0.001 0.001 0.001

MSE 0.006 0.003 0.002 0.001 0.001 0.0009 0.003 0.004 0.001 0.001 0.001 0.001

σb Bias -0.054 -0.004 -0.017 -0.004 -0.0006 0.018 -0.017 0.425 0.0004 0.028 0.018 0.019

Rel.Bias -0.108 -0.008 -0.034 -0.008 -0.001 0.036 -0.033 0.849 0.001 0.056 0.036 0.037

var 0.019 0.024 0.008 0.007 0.003 0.004 0.023 0.025 0.006 0.006 0.004 0.004

MSE 0.022 0.024 0.008 0.007 0.003 0.004 0.023 0.205 0.006 0.007 0.004 0.004

α Bias - -0.003 - 0.012 - 8.814 - - - - - -

Rel.Bias - -0.010 - 0.012 - 0.353 - - - - - -

Var - 0.0005 - 0.009 - 169.91 - - - - - -

MSE - 0.0005 - 0.009 - 247.58 - - - - - -

σθ Bias - - - - - 0.021 - 0.002 -0.003 -

Rel.Bias - - - - - 0.011 - 0.002 -0.015 -

Var - - - - - 0.007 - 0.001 0.0008 -

MSE - - - - - 0.007 - 0.001 0.0008 -
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Table 3: Computational time of the simulation results for n = 60, t = 10, for data generated and fitted

using the additive and multiplicative models, for different overdispersion levels.

Data generated from additive model

σθ

2 0.8 0.2

Add Mul Add Mul Add Mul

σb = 0.1 computational time 14:22:04 21:38:11 15:26:09 21:17:58 15:37:41 16:34:31

Data generated from multiplicative model

α

0.25 1 25

Add Mul Add Mul Add Mul

σb = 0.1 computational time 17:13:14 22:20:25 16:53:57 21:29:50 17:02:43 17:21:31

Data generated from additive model

σθ

2 0.8 0.2

Add Mul Add Mul Add Mul

σb = 0.5 computational time 14:25:40 21:37:17 14:11:42 20:31:43 14:26:06 16:28:56

Data generated from multiplicative model

α

0.25 1 25

Add Mul Add Mul Add Mul

σb = 0.5 computational time 14:48:46 23:05:47 14:24:29 21:34:04 14:34:58 17:02:43

6 Concluding Remarks

This paper focused on the comparison of two existing models, with additive and multiplicative approaches

to account for overdispersion. A Bayesian view was adopted. First, a comparison of the two models

was undertaken using a previously analyzed set of data on patients with epileptic seizures. Second, a

simulation study with a total of 108 scenarios was conducted. Furthermore, we extended the additive

model to allow for data hierarchies. In the additive model, the overdispersion parameter θij is introduced

into the linear predictor, whereas in the multiplicative model it is introduced into the mean of the Poisson

distribution.

The Deviance Information Criterion was used to select the best model. The multiplicative model per-

formed better than the additive model. However, the results of the posterior estimate of the parameters
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Figure 4: MSE of σb for data generated from multiplicative model and fitting the additive model (solid

line) and multiplicative model (dashed line). The x-axis represents the value of α and the y-axis represents

the MSE. n = 60.

obtained from the two models were similar. Both models produce non-significant differences between the

treatment and placebo groups. Moreover, the estimates of the variance of the random effects were similar

in both models. Note that both the posterior mean of the dispersion parameter α of the multiplicative

model and the variance of the overdispersion parameter of the additive model, σ2

θ, indicate that there is

excess variability in the data.

To study the relationship between both models, the correlation between the overdispersion parameter θij

obtained from the additive model and the log(θij) obtained from the multiplicative model was calculated.

It was found to be 0.97, which shows that they are highly correlated; this is not surprising, of course.

In addition, the individual posterior predictive value of the two models was highly correlated (ρ = 0.99),

underscoring that both models produce similar predictions over the follow-up period. These individual

posterior predictive values were closer to the observed individual profiles, which shows that both models

fit the data very well. These results suggest that both model formulations can be used in conjunction

perhaps also jointly with the simpler model having no overdispersion parameters. Thus, these taken
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Figure 5: Bias of β10 for data generated from additive model and fitting the additive model (solid line)

and multiplicative model (dashed line). The x-axis represents the value of σθ and the y-axis represents

the bias result. n = 60.

together can be used for sensitivity analysis purposes. Let us give a few examples. If the simpler model

differs from the results obtained under the more elaborate models, but these do not differ too much

between them, then likely there is overdispersion, neglected by the simpler model but taken up (in

various ways) by the more elaborate models. As another example, if both overdispersion models are very

different, then either overdispersion is of a very particular shape, picked up by one but not by the other.

It is then even possible that there is something else misspecified by them model, and further scrutiny is

necessary.

The main findings of our simulation study were as follows. For low overdispersion levels, both models

produce similar bias, relative bias, variance, and MSE for all parameters. However, if the data are

simulated with moderate to high overdispersion levels, both models produce different result in terms of

the intercept, while still maintaining agreement in terms of slopes and variance of the random effect, with

the exception that the additive model provides smaller bias and MSE of σ2

b than the multiplicative model

for data simulated from the additive model with high overdispersion.
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Figure 6: Bias of β10 for data generated from multiplicative model and fitting the additive model (solid

line) and multiplicative model (dashed line). The x-axis represents the value of α and the y-axis represents

the bias result. n = 60.

We also studied the properties of the dispersion parameter α and the variance of the overdispersion

parameter, σθ. For data generated with high and moderate overdispersion levels, we obtained unbiased

and precise estimate of α and σθ. However, for low overdispersion level, there is bias, as well as imprecise

estimates for α, while we still found unbiased and precise estimates for σθ. Hence, we should be careful

with the result of α for data with low overdispersion levels.

To assess robustness of the results relative to the choice of true values, three setting were considered. In

all cases, the conclusions are in line with expectation. Hence, the results do not depend on the choice of

the true values. Besides, the effect of sample size and cluster size was studied. The bias, relative bias,

variance, and MSE decrease as the cluster size and sample size increase. Note that both the additive

and multiplicative models produce bias and imprecise estimates of β01 and β10 with cluster size 2. Thus,

caution should be exercised when using these models for small cluster sizes.

In summary, both models can be used as useful alternatives for overdispersed data. The additive model is

more uniform in terms of using a normal distribution for the overdispersion random effect, whatever the
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Figure 7: MSE of σb (top figure) and Bias of β10 (bottom figure) for data generated from multiplicative

model and fitting the additive model (solid line) and multiplicative model (dashed line). Cluster size=10.

member of the exponential family used would be. On the other hand, the multiplicative model requires

specific distributions for the overdispersed parameter for the exponential family under consideration while

it is a better choice in terms of parameter estimation and inference. According to the simulation study

in this paper, both models perform similarly, except that the additive model produces slightly smaller

bias and MSE for σb than the multiplicative model for data generated from the additive model with

high overdispersion levels. Computationally, the additive model converges faster than the multiplicative

model. We recommend to extend the additive model to other exponential family members such as, for

example, the binomial model, the Weibull- and exponential-type models, and then compare them with

multiplicative model.
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Figure 8: MSE of σb (top figure) and Bias of β10 (bottom figure) for data generated from Additive model

and fitting the additive model (solid line) and multiplicative model (dashed line). Cluster size=10.
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Table 4: Summary of the simulation result for n = 60 with unbalanced time points for data generated

and fitted using the additive and multiplicative models, for different overdispersion levels.

α σθ

σb Par. 0.25 1 25 2 0.8 0.2

Add Mult Add Mult Add Mult Add Mult Add Mult Add Mult

0.1 β00 Bias -1.813 -0.038 -0.503 -0.027 -0.034 -0.002 0.017 1.660 0.005 0.319 -0.0009 0.015

RelBias -0.903 -0.019 -0.252 -0.013 -0.017 -0.0009 0.008 0.830 0.003 0.159 -0.0005 0.008

var 0.057 0.035 0.039 0.008 0.027 0.002 0.041 0.085 0.008 0.008 0.001 0.002

MSE 3.342 0.036 0.316 0.009 0.027 0.002 0.041 2.842 0.008 0.110 0.001 0.002

β01 Bias -1.894 -0.032 -0.526 -0.036 -0.041 0.007 -0.012 1.650 -0.010 0.304 0.002 0.019

RelBias 0.945 0.016 0.263 0.018 0.021 -0.003 0.006 -0.825 0.005 -0.152 -0.0008 -0.009

var 0.116 0.054 0.039 0.036 0.038 0.016 0.047 0.094 0.023 0.022 0.013 0.013

MSE 3.701 0.055 0.316 0.038 0.039 0.016 0.047 2.817 0.023 0.115 0.013 0.013

β10 Bias -0.005 0.0009 -0.0005 0.001 -0.0005 -5.65E-05 -0.001 0.003 -0.0009 -0.0008 0.0002 0.0001

RelBias -0.104 0.019 -0.009 0.020 -0.009 -0.001 -0.020 0.068 -0.018 -0.0160 0.004 0.002

var 0.0003 0.0003 8.95E-05 6.51E-05 1.11E-05 1.07E-05 0.0003 0.0006 5.64E-05 6.22E-05 8.27E-6 9.54E-6

MSE 0.0003 0.0003 8.97E-05 6.61E-05 1.13E-05 1.07E-05 0.0003 0.0006 5.71E-05 6.29E-05 8.31E-6 9.56E-6

β11 Bias 0.005 -0.0008 0.002 0.002 0.0004 -0.004 0.0005 0.001 -0.0003 -0.0003 -0.0003 -0.0003

RelBias 0.026 -0.004 0.009 0.009 0.002 -0.002 0.002 0.007 -0.001 -0.001 -0.002 -0.001

var 0.0007 0.0004 0.0001 0.0001 4.96E-05 5.4E-05 0.0004 0.0008 0.0001 0.0001 5.04E-05 4.44E-5

MSE 0.0007 0.0004 0.0002 0.0001 4.98E-05 5.41E-05 0.0004 0.0008 0.0001 0.0001 5.05E-05 4.45E-5

σb Bias 0.163 0.127 0.065 0.055 0.014 0.014 0.133 0.615 0.045 0.075 0.016 0.014

RelBias 1.629 1.272 0.650 0.545 0.138 0.142 1.329 6.154 0.454 0.747 0.163 0.143

var 0.006 0.004 0.002 0.0009 0.0004 0.0005 0.005 0.020 0.0009 0.002 0.0005 0.0003

MSE 0.032 0.020 0.006 0.004 0.0006 0.0007 0.0231 0.399 0.003 0.007 0.0008 0.0005

α Bias - 0.015 - 0.021 - 5.297 - - - - - -

RelBias - 0.060 - 0.021 - 0.212 - - - - - -

Var - 0.007 - 0.007 - 79.789 - - - - - -

MSE - 0.008 - 0.007 - 107.85 - - - - - -

σθ Bias - - - - - - -0.002 - 0.0009 - -0.006 -

RelBias - - - - - - -0.001 - 0.001 - -0.028 -

Var - - - - - - 0.004 - 0.0008 - 0.0004 -

MSE - - - - - - 0.004 - 0.0008 - 0.0004 -

0.5 β00 Bias -1.830 -0.023 -0.458 -0.025 -0.022 -0.007 0.014 1.629 0.005 0.318 0.0005 0.019

RelBias -0.915 -0.011 -0.229 -0.012 -0.011 -0.004 0.007 0.815 0.003 0.159 0.0003 0.009

var 0.074 0.044 0.021 0.015 0.012 0.013 0.055 0.129 0.018 0.017 0.011 0.012

MSE 3.424 0.045 0.231 0.016 0.013 0.013 0.055 2.725 0.018 0.119 0.011 0.012

β01 Bias -1.854 -0.024 -0.548 0.006 0.0008 0.019 -0.032 1.652 8.0E-05 0.319 0.004 0.026

RelBias 0.927 0.012 0.274 -0.003 -0.0004 -0.009 0.016 -0.826 -4E-05 -0.159 -0.002 -0.013

var 0.135 0.059 0.039 0.041 0.025 0.025 0.077 0.109 0.029 0.029 0.026 0.026

MSE 3.572 0.059 0.340 0.041 0.025 0.025 0.078 2.837 0.029 0.132 0.026 0.027

β10 Bias -0.001 0.0004 -0.004 0.0007 -6.03E-05 0.0002 -0.002 0.002 -0.002 -0.001 -0.0004 -0.0004

RelBias -0.026 0.008 -0.072 0.014 -0.001 0.004 -0.043 0.034 -0.032 -0.029 -0.008 -0.008

var 0.0004 0.0003 0.0001 9.58E-05 1.27E-05 1.84E-05 0.0004 0.0008 6.64E-05 7.33E-05 1.00E-5 1.07E-5

MSE 0.0004 0.0003 0.0001 9.63E-05 1.27E-05 1.85E-05 0.00008 0.002 6.88E-05 7.54E-05 1.02E-5 1.09E-5

β11 Bias 0.003 0.0009 0.004 -3.15E-05 -0.0008 -0.0007 0.002 0.002 0.0003 -0.0001 1.00E-05 4.3E-06

RelBias 0.013 0.005 0.022 -0.0002 -0.004 -0.004 0.009 0.011 0.001 -0.0006 5.0E-05 2.17E-05

var 0.0007 0.0004 0.0002 0.0002 6.45E-05 6.39E-05 0.0004 0.0009 0.0001 0.0001 6.82E-05 7.4E-05

MSE 0.0007 0.0004 0.0002 0.0002 6.51E-05 6.44E-05 0.0004 0.0009 0.0001 0.0001 6.82E-05 7.4E-05

σb Bias -0.065 -0.009 -0.005 0.016 0.009 0.009 -0.008 0.379 0.017 0.030 0.013 0.013

RelBias -0.131 -0.018 -0.011 0.032 0.017 0.018 -0.017 0.758 0.034 0.060 0.025 0.026

var 0.016 0.018 0.006 0.007 0.004 0.004 0.018 0.032 0.006 0.006 0.004 0.004

MSE 0.019 0.018 0.006 0.007 0.004 0.004 0.018 0.176 0.006 0.007 0.004 0.004

α Bias - 0.012 - 0.009 - 4.573 - - - - - -

RelBias - 0.046 - 0.009 - 0.183 - - - - - -

Var - 0.007 - 0.006 - 78.11 - - - - - -

MSE - 0.007 - 0.006 - 99.02 - - - - - -

σθ Bias - - - - - 0.011 - 0.005 -0.005 -

RelBias - - - - - 0.006 - 0.006 -0.024 -

Var - - - - - 0.004 - 0.0009 0.0003 -

MSE - - - - - 0.004 - 0.0009 0.0003 -
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