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1 Introduction

Ever more commonly does one jointly collect longitudinal and time-to-
event outcomes, the latter possibly censored. While an extensive amount
of literature is available for Gaussian and other longitudinal outcomes, and
literature on the joint modeling of a longitudinal outcome and a single time
to event is rapidly growing, methods for the more general setting where at
least two longitudinal sequences of perhaps different data types are jointly
recorded has received less attention so far, especially when one or more
of the sequences consist of times-to-event. Nevertheless, such designs are
not uncommon in practice, as our two case studies, introduced in the next
section, underscore. Recently, Njagi et al. (2012) formulated joint models
for pairs of jointly measured outcomes where for each type of outcome, two
sets of random effects are considered, the conjugate and the normal random
effects, extending the so-called combined model introduced by Molenberghs
et al. (2010). However, the joint model is formulated conditionally upon
the random effects, with then the random-effects distribution specified, the
parameters have a subject-specific interpretation. This poses difficulties
when scientific research is geared towards marginal, population-averaged
effects. To allow for such interpretation nevertheless, we supplement the
work of Njagi et al. (2012) by a model with marginal interpretation. Focus
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is on the case where a repeated continuous and a repeated time-to-event
outcome are measured simultaneously (the base model referred to as JCS;
the marginalized version JCS-M), as well as on the situation of a bivariate
repeated time-to-event outcome (BSS and BSS-M). The marginalization is
done following ideas of the so-called marginalized multilevel model (MMM)
proposed by Heagerty (1999).

2 Motivating case study

The first set data are from a study with the objective to check whether
the follow-up of chronic heart failure (CHF) patients, by means of a tele-
monitoring program, reduced mortality and re-hospitalization rates. Heart
rate was longitudinally collected from 80 patients, recorded each day for
a period of between 182 to 186 days. In addition, the following variables
were also recorded: patient’s gender, age, and heart rhythm at baseline.
Our analysis of these data will be focusing on testing for a joint effect of
heart rhythm on repeated time-to-hospitalization (as patients might expe-
rience multiple hospitalization) as well as on the longitudinal heart rate.
The second set is a so-called comet assay. The data were collected in four
groups of six male rats that received a daily oral dose of a compound in
three dose levels (low, medium, high) or vehicle control. A cell suspension
was prepared for each animal, from each of which three replicate samples
were prepared for scoring. There were 50 randomly selected non-overlapping
cells per sample, scored for DNA damage using a semi-automated scoring
system. A total of 150 liver cells per animal was scored. DNA damage was
assessed through the software system by measuring percentage of tail in-
tensity and tail moment, these two responses has heavy tailed distribution
and more or less similar to Weibull’s. The data take the form of a multi-
level structure where a cell suspension or slide, containing three replicate
samples, is nested within an animal. In this paper, we target one clustering
level, i.e., the slide. We also target two dose levels, low and medium.

3 Method and Estimation

3.1 Ingredients

There are three components to be involved to propose the joint models:
linear mixed model (for longitudinal continuous outcomes), the combined
model (for repeated, overdispersed time-to-event data), and the marginal-
ization approach. We refer to Verbeke and Molenberghs (2000) to review
the linear mixed model (LMM),

Yij = x′ijξ + z′ijbi + εij . (1)
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where Yij denotes the response of interest, for the ith subject, measured
at time τij , i = 1, 2, . . . , N , j = 1, 2, . . . , ni. The xij and zij are p- and
q-vectors of known covariates, with ξ a p-dimensional vector containing
the fixed effects. The bi and εi are assumed to be independent and dis-
tributed bi ∼ N(0, D) and εi ∼ N(0,Σi), respectively. This assumption
is also applied to the rest of the paper. Meanwhile, the combined model
(Molenberghs et al, 2012) for time-to-event outcomes can be the Weibull-
gamma-normal model, specified as

Yij |bi, θij ∼ Weibull(ρ, kij), (2)

kij = λθije
x̃′ijξ+z̃′ijbi , (3)

θij ∼ Gamma(α, β), (4)

with Yij the time-to-event outcome of individual i at occasion j. The design
vectors x̃ij and z̃ij play a role similar to their counterparts in the linear
mixed model. Further, κij is the mean function, ρ is the shape parame-
ter, and the parametrization of the linear predictor is chosen in analogy
with (1). Furthermore, regarding the marginalization, we adopt the idea of
Heagerty (1999). A fully general MMM formulation is:

g(µmij ) = x̃′ijξ
m, (5)

g(µcij) = ∆ij + z̃′ijai, (6)

ai ∼ Fa(0, D), (7)

Y cij = Yij |ai ∼ FY c(µ
c
ij , v). (8)

Retaining notational conventions used so far, (5) and (6) can be seen as
specifying the marginal and conditional means, respectively, thereby linking
them through so-called connector function ∆ij . Each outcome Yij follows
an exponential family model with distribution FY c , as specified in (8). The
g(·) is a link function applied to both means. The function ∆ij depends
on the covariates, marginal parameters, and random-effects specification.
It connects the marginal and conditional means and can be obtained from
solving the integral equation: g−1(x′ijξ

m) = µmij =
∫
a
g−1(∆ij + z̃′ijai) dFa.

The MMM idea applies without difficulty to the combined model, with the
integral equation now becomes:

g−1(x̃′ijξ
m) = µmij =

∫
a

∫
θ

g−1(∆ij + z̃′ijai) dΘθ dFa.

For the Weibull-gamma-normal MMM, with gamma distributed overdis-
persion effects as in (4), the connector becomes:

∆ij = − log(αβ) + x̃′ijξ
m − z̃′ijDz̃ij/2. (9)
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3.2 The Proposed Joint Models

We introduce the following notation for a general Weibull model with both
conjugate and normal random effects:

ω(t, λ, ρ, θ, µ, b) = λρtρ−1θeµ+be−λ
ρθeµ+b .

Then, the joint distribution for the continuous and time-to-event outcomes,
conditional upon the random effects is:

f(ti,yi|bi,θi) =
∏
k

ω(tik, λ, ρ, θik, µik = x̃′ikξ, z̃
′
ikbi)

× 1

(2π)
ni
2 |Σi|

1
2

e−
1
2 (yi−Xiξ−Zibi)

′Σ−1
i (yi−Xiξ−Zibi).(10)

Here, Σi = σ2Ini , with In denoting the identity matrix of dimension n.
Then, implementing the MMM requires marginalization over the Weibull
model only, given that the linear mixed model contribution trivially marginal-
izes. This implies that the connector function (9) applies without any prob-
lem. Moreover, in the same spirit, one can consider a joint model for two
repeated time-to-event sequences. The association is induced by shared
normal random effects:

f(t1i, t2i|θ1i,θ2i, bi) =
∏
j

ω(t1ij , λ1, ρ1, θ1ij , µ1ij , bi)

·
∏
k

ω(t2ik, λ2, ρ2, θ2ik, µ2ik, γbi). (11)

The θ1i and θ2i are assumed to be independent. This process is closely re-
lated to the marginalization of a single sequence of repeated time-to-event
outcomes, presented above. Also here, connector function (9) is used. Fi-
nally, regarding estimation, the fitting method of Molenberghs et al. (2010)
is employed. It consists of analytically integrating the marginal form of (10)
and (11) over the gamma and numerically over the normal random effects.
This result that a standard software, such as the SAS procedure NLMIXED
can be used to fit the model.

4 Application

With ψ(t, λ, ρ, µ, b, α, β) = λρtρ−1eµ+bαβ
(λtρβeµ+b+1)α+1

and ξ(C, λ, ρ,mu, b, α) = 1(
λC

ρ
k
eµk+b

α +1

)α , respectively the marginal con-

ditional density of the Weibull combined model and its form with allowing
right censoring, we fit the model of

f(yij , tik|bi) =
1√

2πσ2
e−

1
2σ2

[yij−(β0+β1xi+β2τij+β3xiτij+bi)]
2

·ξ(Cik, λ, ρ, µik, γbi, α).
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to analyze the chronic heart failure data, and the model of

f(t1ij , t2ij |bi) = ψ(t1ij , λ1, ρ1, µ1ij , bi, α1) · ψ(t2ij , λ2, ρ2, µ2ij , γbi, α2).

employed for the comet assay data. The analysis results can be seen in
Table 1. In the comet analysis, we observe similar point estimates and pre-
cision for both the BSS and the BSS-M. There is statistically significant
evidence that the dose level has an effect on the hazard of the tail inten-
sity and of the tail moment in both models (conditional and marginal).
Direct marginal interpretation is possible. The shared parameter’s pres-
ence is statistically significant, indicating that the two survival processes
are correlated. Also here, the likelihood ratios are similar. Turning atten-
tion to the heart failure analysis, a few observations are in place. First,
estimates of the two models are similar. Second, there is no statistically
significant evidence that heart rhythm has an effect on the evolution of
heart rate, both in the joint model and its marginalized one. In contrast,
however, there is no significant effect of heart rhythm on the hazard of
time-to-hospitalization in the marginalized joint model whereas this is not
true in the joint model. This is important and requires careful qualifi-
cation. Third, the shared estimate is statistically significant, pointing to
non-negligible correlation between the continuous and survival processes.
Overall, such a result should not be treated as problematic, but rather as
resulting from genuine differences in parameter interpretation between the
marginal and conditional formulations.

5 Concluding Remarks

Our work builds upon and extends work of Molenberghs et al.(2010),
Molenberghs et al. (2012), Njagi et al. (2012), and Heagerty (1999), bring-
ing in additional features e.g. the model can be marginalized in the sense of
carrying marginal parametric regression functions that have a population-
averaged interpretation; and the time-to-event outcomes are allowed to be
right censored. Furthermore, even though the model is relatively complex
in the sense that it extends and amends a conventional generalized linear
mixed model in various ways, the marginalization using a so-called con-
nector function on the one hand and the numerical technique of partial
marginalization, renders the model relatively easy to fit, through standard
statistical GLMM software, with minimal additional programming. While
focus has been placed on bivariate longitudinal sequences, the methodology
could be extended without trouble to more than two outcomes. Addition-
ally, left-censoring and even interval censoring could be considered as well.
For conciseness, this has not been made explicit here.



6 A Joint Model with Marginalization

TABLE 1. The Chronic Heart Failure Data (With censoring) and The Comet
Data. ’JCS’ refers to joint continuous survival model; ’BSS’ refers to the bi-
variate survival model; ’M’ and ’Cens’ means marginalized and with censoring,
respectively.

Par. JCS-Cens JCS-Cens-M Par. BSS BSS-M

Est.(s.e.) Est.(s.e.) Est.(s.e.) Est.(s.e.)

Longitudinal process The first survival process

β0 3.4683(0.2393) 3.6728(0.0852) ξ1 -3.3509(0.1109) -3.3521(0.1109)
β1 -0.1853(0.3543) -0.1487(0.1140) λ1 2.7610(0.2343) 2.8741(0.2468)
β2 -0.0003(0.0001) -0.0004(0.0001) α1 9.7570(2.3903) 9.7713(2.4071)
β3 -0.0003(0.0002) -0.0002(0.0002) σ1

2 0.0773(0.0236) 0.0770(0.0234)
σ2 0.1530(0.0021) 0.1531(0.0021)

Survival process The second survival process

ξ -0.1812(0.0438) -0.3724(0.3233) ξ2 -2.4161(0.0911) -2.4167(0.0910)
λ 0.0018(0.0024) 0.0047(0.0012) λ2 0.2351(0.0158) 0.2411(0.0164)
α 10.241(3.5079) 5.1688(6.7443) α2 52.870(40.013) 52.871(39.968)
σb

2 3.9922(9.1030) 0.1821(0.1413) σ2
2 0.0391(0.0142) 0.0393(0.0146)

γ 0.3775(0.1740) 1.1670(0.4422) γ 0.7958(0.1161) 0.7958(0.1161)

-2LL 11745 11688 19624 19624
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