
1 Missing Data

Geert Molenberghs and Emmanuel Lesaffre

1.1 Introduction

Data from longitudinal studies in general,
and from clinical trials in particular, are
prone to incompleteness. As incomplete-
ness usually occurs for reasons outside of
the control of the investigators and may
be related to the outcome measurement of
interest, it is generally necessary to reflect
on the process governing incompleteness.
Only in special but important cases is it
possible to ignore the missingness process.

When patients are examined repeatedly
in a clinical trial, missing data can oc-
cur for various reasons and at various vis-
its. When missing data result from patient
dropout, the missing data have a monotone

pattern. Nonmonotone missingness occurs
when there are intermittent missing values
as well. The focus here will be on dropout.
Reasons typically encountered are adverse
events, illness not related to study medica-
tion, uncooperative patient, protocol vio-
lation, ineffective study medication, loss to
follow-up, and so on.

When referring to the missing-value,
or nonresponse, process, we will use the
terminology of Little and Rubin [1]. A
nonresponse process is said to be missing

completely at random (MCAR) if the miss-
ingness is independent of both unobserved
and observed data and missing at random

(MAR) if, conditional on the observed
data, the missingness is independent of
the unobserved measurements. A process
that is neither MCAR nor MAR is termed
nonrandom (MNAR). In the context of
likelihood and Bayesian [2] inference,
and when the parameters describing the
measurement process are functionally
independent of the parameters describing
the missingness process, MCAR and
MAR are ignorable, whereas a nonrandom
process is nonignorable. Thus, under
ignorable dropout, one can literally ignore
the missingness process and neverthe-
less obtain valid estimates of, say, the
treatment. The above definitions are
conditional on including the correct set of
covariates into the model. An overview
of the various mechanisms, and their
(non-)ignorability under likelihood,
Bayesian, or frequentist inference, is given
in Table 1.

Consider the case in which only one
follow-up measurement per patient is
made. When dropout occurs in a patient,
leaving the investigator without follow-up
measures, one is usually forced to discard
such a patient from analysis, thereby vio-
lating the intention to treat (ITT) princi-
ple, which stipulates that all randomized
patients should be included in the primary
analysis and according to the randomiza-
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Table 1: Overview of Missing Data Mechanisms

Acronym Description Likelihood/Bayesian Frequentist

MCAR missing completely at random ignorable ignorable
MAR missing at random ignorable non-ignorable
MNAR missing not at random non-ignorable non-ignorable

tion scheme. Of course, the effect of treat-
ment can be investigated under extreme as-
sumptions, such as, for example, a worst-
case and a best-case scenario, but such sce-
narios are most often not really helpful.
The focus of this article will be on anal-
ysis techniques for repeated measurements
studies.

Early work regarding missingness fo-
cused on the consequences of the induced
lack of balance of deviations from the study
design [3, 4]. Later, algorithmic develop-
ments took place, such as the expectation-
maximization algorithm (EM) [5] and mul-
tiple imputation [6,7]. These have brought
likelihood-based ignorable analysis within
reach of a large class of designs and mod-
els. However, they usually require extra
programming in addition to available stan-
dard statistical software.

For a long time, clinical trial practice has
put a strong emphasis on methods such as
complete case analysis (CC) and last ob-

servation carried forward (LOCF) or other
simple forms of imputation. Claimed ad-
vantages include computational simplicity,
no need for a full longitudinal model anal-
ysis (e.g., when the scientific question is in
terms of the last planned measurement oc-
casion only), and for LOCF, compatibility
with the ITT principle. However, a CC
analysis assumes MCAR, and the LOCF
analysis makes peculiar assumptions about
the (unobserved) evolution of the response,
underestimates the variability of the re-
sponse, and ignores the fact that imputed
values are no real data.

In recent times, concerted efforts have

been done to bring clinical trial practice
in line with contemporary scientific views
regarding the prevention and handling of
incomplete data. In 2010, a US National
Academy of Sciences report was published,
propagating a shift away from overly sim-
ple methods, in favor of using direct likeli-
hood and Bayesian methods, inverse prob-
ability weighting, and multiple imputation
[8, 9].

A likelihood-based or Bayesian [10] lon-
gitudinal analysis requires only MAR, uses
all data (obviating the need for both delet-
ing and filling in data), and is consis-
tent with the ITT principle. Further-
more, it can also be shown that the incom-
plete sequences contribute to estimands
of interest (treatment effect at the end
of the study), even early dropouts. For
continuous responses, the linear mixed
model is popular and is a direct exten-
sion of analysis of variance (ANOVA) and
MANOVA approaches, but more broadly
valid in incomplete data settings. For
categorical responses and count data, so-
called marginal (e.g., generalized estimat-
ing equations, GEEs) and random-effects
(e.g., generalized linear mixed-effects mod-
els, GLMMs) approaches are in use. Al-
though GLMM parameters can be fitted
using maximum likelihood, the same is not
true for the frequentist GEE method, but
modifications have been proposed to ac-
commodate the MAR assumption [11–13].

Multiple imputation is another approach
gaining clout for the analysis of incomplete
clinical trial data [1, 14, 15].

Finally, MNAR missingness can never
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be fully ruled out based on the observed
data only. It is argued that, rather than
going either for discarding MNAR models
entirely or for placing full faith on them,
a sensible compromise is to make them a
component of a sensitivity analysis.

1.2 Methods in Common Use

We will focus on two relatively simple
methods that have been and still are in ex-
tensive use. Detailed accounts of simple
methods to handle missingness are given
by various authors [8, 16–19].

1.2.1 Complete Case Analysis

A complete case analysis includes only
those cases for analysis for which all mea-
surements were recorded. This method has
obvious advantages. It is very simple to
describe, and because the data structure is
as would have resulted from a complete ex-
periment, standard statistical software can
be used without additional work. Further-
more as the entire estimation is performed
on the same subset of completers, there
is a common basis for inference. Unfor-
tunately, the method suffers from severe
drawbacks. First, there is nearly always
a substantial loss of information. The im-
pact on precision and power is dramatic.
Furthermore, such an analysis will only be
representative for patients who remain on
study. Of course a complete case analy-
sis could have a role as an auxiliary anal-
ysis, especially if a scientific question re-
lates to it. A final important issue about
a complete case analysis is that it is only
valid when the missingness mechanism is
MCAR. However, severe bias can result
when the missingness mechanism is MAR
but not MCAR. This bias can go both
ways, i.e., either overestimating or under-
estimating the true effect.

1.2.2 Last Observation Car-

ried Forward

A method that has received a lot of atten-
tion [20–22] is the last observation carried

forward (LOCF). As noted, in the LOCF
method, whenever a value is missing, the
last observed value is substituted. For the
LOCF approach, the MCAR assumption
is necessary but not sufficient for an unbi-
ased estimate. Indeed, it further assumes
that subjects’ responses would have been
constant from the last observed value to
the endpoint of the trial. These conditions
seldom hold [17]. In a clinical trial set-
ting, one might believe that the response
profile changes as soon as a patient goes
off treatment and even that it would flat-
ten. However, the constant profile as-
sumption is even stronger. Therefore, car-
rying observations forward may bias esti-
mates of treatment effects and underesti-
mate the associated standard errors [17,
23–27]. Further more this method artifi-
cially increases the amount of information
in the data, by treating imputed and actu-
ally observed values on equal footing.

Despite its shortcomings, LOCF has
been the longstanding method of choice for
the primary analysis in clinical trials be-
cause of its simplicity, ease of implementa-
tion, and the belief that the potential bias
from carrying observations forward leads
to a “conservative” analysis in compara-
tive trials. An analysis is called conser-
vative when it leads to no treatment dif-
ference, whereas in fact there is a treat-
ment difference. However, reports of anti-
conservative or liberal behavior of LOCF
are common [28–32], which means that a
LOCF analysis can create a treatment ef-
fect when none exists. Thus, the statement
that LOCF analysis has been used to pro-
vide a conservative estimate of treatment
effect is unacceptable.

Baseline observation carried forward
(BOCF) has been proposed as a method
that partially overcomes LOCF’s short-
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comings, while being consistent with ITT.
That said, it has been criticized severely as
well [8, 33].

It is often quoted that LOCF or CC,
although problematic for parameter esti-
mation, produces randomization-valid hy-
pothesis testing, but this is questionable.
First, in a CC analysis, partially observed
data are selected out, with probabilities
that may depend on post-randomization
outcomes, thereby undermining any ran-
domization justification. Second, if the fo-
cus is on one particular time point, e.g.,
the last one scheduled, then LOCF plugs
in data. Such imputations, apart from
artificially inflating the information con-
tent, may deviate in complicated ways
from the underlying data [8]. Third, al-
though the size of a randomization-based
LOCF test may reach its nominal size un-
der the null hypothesis of no difference in
treatment profiles, there will be other re-
gions of the alternative space where the
power the LOCF test procedure is equal to
its size, which is completely unacceptable.

Historically, an important motivation
behind the simpler methods was their ease
of use. Indeed, the main advantage, shared
with complete case analysis, is that com-
plete data software can be used. How-
ever, with the availability of commercial
software tools, such as, for example, the
SAS procedures MIXED, NLMIXED, and
GLIMMIX, and the R lme4 and nlme li-
braries, this motivation no longer applies.
This is also the motivation of Little et al [8]
to move away from them.

1.3 An Alternative Approach

to Incomplete Data

A graphical illustration is first provided,
using an artificial example, of the various
simple methods that have been considered,
and then so-called direct likelihood analy-
sis is discussed.

1.3.1 Illustration of Simple

Methods

Take a look at an artificial but insightful
example, depicted in Figure 1, which dis-
plays the results of the traditional meth-
ods, CC and LOCF, next to the result of an
MAR method. In this example, the mean
response is supposed to be linear. For
both groups (completers and dropouts),
the slope is the same, but their intercepts
differ. Patients with incomplete observa-
tions dropped out half way through the
study; e.g., because they reached a cer-
tain level of the outcome. It is obviously
an MAR missingness mechanism. Using
a method, valid under the MAR assump-
tion, yields the correct mean profile, be-
ing a straight line centered between the
mean profiles of the completers and in-
completers. If one would perform a CC
analysis, the fitted profile would coincide
with the mean profile of the complete cases
(bold line). Next, under LOCF, data are
imputed (dashed line). The resulting fit-
ted profile will be the bold dashed line.
Clearly, both traditional methods produce
an incorrect result.

Furthermore, in a standard available
case analysis (AC), one makes use of the
information actually available. One such
set of estimators could be the treatment-
specific mean at several designed measure-
ment occasions. With a decreasing sam-
ple size over time, means later in time
would be calculated using less subjects
than means earlier in time. Figure 1 shows
a dramatic instance of this approach, ev-
idently due to the extreme nature of this
illustrative example. The key message is
that such an approach cannot remove ma-
jor sources of bias.

1.3.2 Direct Likelihood Anal-

ysis

For continuous outcomes, Verbeke and
Molenberghs [17] describe likelihood-based



Missing Data 5

Figure 1: Artificial situation, illustrates the results of the traditional MCAR methods—
CC and LOCF—next to the result of the direct likelihood method.



6 Missing Data

mixed-effects models, which are valid un-
der the MAR assumption. Indeed, for lon-
gitudinal studies, where missing data are
involved, a mixed model only requires that
missing data are MAR. As opposed to the
traditional techniques, mixed-effects mod-
els permit the inclusion of subjects with
missing values at some time points (both
dropout and intermittent missingness).

This likelihood-based MAR analysis is
also termed likelihood-based ignorable anal-

ysis or, as used in the remainder of this ar-
ticle, a direct likelihood analysis. In such an
analysis, the observed data are used with-
out deletion nor imputation. In so doing,
appropriate adjustments are made to pa-
rameters at times when data are incom-
plete, due to the within-patient correlation.

Thus, even when interest lies, for exam-
ple, in a comparison between the two treat-
ment groups at the last occasion, such a full
longitudinal analysis is a good approach,
because the fitted model can be used as
the basis for inference at the last occasion.

In many clinical trials, the repeated mea-
sures are balanced in the sense that a
common (and often limited) set of mea-
surement times is considered for all sub-
jects, which allows the a priori specifica-
tion of a “saturated” model. For exam-
ple, a full group-by-time interaction for
the fixed effects combined with an unstruc-
tured covariance matrix. Such a model
specification is sometimes termed mixed-
effects model repeated-measures analysis
(MMRM) [22]. Thus, MMRM is a par-
ticular form of a linear mixed model, rel-
evant for acute phase confirmatory clin-
ical trials, fitting within the direct like-
lihood paradigm. Moreover, this di-
rect likelihood MMRM analysis of vari-
ance (ANOVA) and multivariate analysis
of variance (MANOVA) approaches, but
more generally valid when they are incom-
plete. This response is an unequivocal an-
swer to the common criticism that a di-
rect likelihood method is making strong as-

sumptions. Indeed, its coincidence with
MANOVA for data without missingness
shows that the assumptions made are very
mild. Therefore, it constitutes a very
promising alternative for CC and LOCF.
When a relatively large number of mea-
surements is made within a single subject,
the full power of random effects modeling
can be used [17].

The practical implication is that a soft-
ware module with likelihood estimation fa-
cilities and with the ability to handle in-
completely observed subjects manipulates
the correct likelihood, providing valid pa-
rameter estimates and likelihood ratio val-
ues. Note that similar arguments apply to
the Bayesian case [2, 10, 13].

A few cautionary remarks are warranted.
First, when at least part of the scientific in-
terest is directed toward the nonresponse
process, obviously both processes need to
be considered. Under MAR, both ques-
tions can be answered separately, which
implies that a conventional method can be
used to study questions in terms of the
outcomes of interest, such as treatment ef-
fect and time trend, whereafter a separate
model can be considered to study missing-
ness. Second, likelihood inference is often
surrounded with references to the sampling
distribution (e.g., to construct measures of
precision for estimators and for statistical
hypothesis tests [34]). However, the practi-
cal implication is that standard errors and
associated tests, when based on the ob-
served rather than the expected informa-
tion matrix and given that the parametric
assumptions are correct, are valid. Third,
it may be hard to rule out the operation
of an MNAR mechanism. This point was
brought up in Section 1.1 and will be dis-
cussed further in Section 1.7.
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1.4 Illustration: Orthodontic

Growth Data

As an example, we use the orthodon-
tic growth data, introduced by Potthoff
and Roy [35] and used by Jennrich and
Schluchter [36]. The data have the typical
structure of a clinical trial and are simple
yet illustrative. They contain growth mea-
surements for 11 girls and 16 boys. For
each subject, the distance from the center
of the pituitary to the maxillary fissure was
recorded at ages 8, 10, 12, and 14. Figure
2 presents the 27 individual profiles. Little
and Rubin [1] deleted 9 of the [(11 + 16)
× 4] measurements, rendering 9 incomplete
subjects, which even though it is a some-
what unusual practice has the advantage
of allowing a comparison between the in-
complete data methods and the analysis
of the original, complete data. Deletion
is confined to the age 10 measurements,
and rougly speaking, the complete obser-
vations at age 10 are those with a higher
measurement at age 8. Some emphasis will
be placed on ages 8 and 10, the typical
dropout setting, with age 8 fully observed
and age 10 partially missing.

The simple methods and direct likeli-
hood method from Sections 1.2 and 1.3
are now compared using the growth data.
For this purpose, a linear mixed model
is used, assuming an unstructured mean,
i.e., assuming a separate mean for each
of the eight age × sex combinations, to-
gether with an unstructured covariance
structure, and using maximum likelihood
(ML) as well as restricted maximum like-
lihood (REML). The mean profiles of the
linear mixed model using maximum like-
lihood for all four datasets, for boys, are
given in Figure 3. The girls’ profiles are
similar and hence not shown.

Next to this longitudinal approach, a
full MANOVA analysis and a univariate
ANOVA analysis will be considered, i.e.,
one per time point. For all of these analy-

ses, Table 2 shows the estimates and stan-
dard errors for boys at ages 8 and 10, for
the original data and all available incom-
plete data, as well as for the CC and the
LOCF data.

First, the group means for the boys in
the original dataset in Figure 3 are consid-
ered; i.e., relatively a straight line is ob-
served. Clearly, there seems to be a linear
trend in the mean profile.

In a complete case analysis of the growth
data, the 9 subjects that lack one measure-
ment are deleted, resulting in a working
dataset with 18 subjects. This result im-
plies that 27 available measurements will
not be used for analysis, a severe penalty
on a relatively small dataset. Observing
the profiles for the CC dataset in Figure 3,
all group means increased relative to the
original dataset but mostly so at age 8.
The net effect is that the profiles overes-
timate the average length.

For the LOCF dataset, the 9 subjects
that lack a measurement at age 10 are com-
pleted by imputing the age 8 value. It is
clear that this procedure will affect the ap-
parently increasing linear trend found for
the original dataset. Indeed, the imputa-
tion procedure forces the means at ages 8
and 10 to be more similar, thereby destroy-
ing the linear relationship. Hence, a sim-
ple, intuitively appealing interpretation of
the trends is made impossible.

In case of direct likelihood, two profiles
can now be observed: one for the observed
means and one for the fitted means. These
two coincide at all ages except age 10. As
mentioned, the complete observations at
age 10 are those with a higher measure-
ment at age 8. Due to the within-subject
correlation, they are the ones with a higher
measurement at age 10 as well, and there-
fore, the fitted model corrects in the appro-
priate direction. The consequences of this
are very important. Although it is believed
that the fitted means do not follow the ob-
served means all that well, this neverthe-
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Figure 2: Orthodontic growth data. Raw and residual profiles. (Girls are indicated with
solid lines. Boys are indicated with dashed lines.)

less is precisely what should be observed.
Indeed, as the observed means are based
on a nonrandom subset of the data, the
fitted means take into account all observed
data points, as well as information on the
observed data at age 8, through the mea-
surements that have been taken for such
children, at different time points.

As an aside, note that, in case of di-
rect likelihood, the observed average at age
10 coincides with the CC average, whereas
the fitted average does not coincide with
anything else. Indeed, if the model spec-
ification is correct, then a direct likeli-
hood analysis produces a consistent esti-
mator for the average profile, as if no-
body had dropped out. Of course, this
effect might be blurred in relatively small
datasets due to small-sample variability.
Irrespective of the small-sample behavior
encountered here, the validity under MAR
and the ease of implementation are good

arguments that favor this direct likelihood
analysis over other techniques.

Now compare the different methods by
means of Table 2, which shows the esti-
mates and standard errors for boys at age
8 and 10, for the original data and all avail-
able incomplete data, as well as for the CC
data and the LOCF data.

Table 2 shows some interesting features.
In all four cases, a CC analysis gives an up-
ward biased estimate, for both age groups.
This result is obvious, because the com-
plete observations at age 10 are those with
a higher measurement at age 8, as shown
before. The LOCF analysis gives a cor-
rect estimate for the average outcome for
boys at age 8. This result is not surpris-
ing because there were no missing obser-
vations at this age. As noted, the esti-
mate for boys of age 10 is biased downward.
When the incomplete data are analyzed,
we see from Table 2 that direct likelihood
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Figure 3: Orthodontic growth data. Profiles for the original data, CC, LOCF, and direct
likelihood for boys.



10 Missing Data

Table 2: Orthodontic Growth Data. Comparison of analyses based on means at completely
observed age 8 and incompletely observed age 10 measurement.

Method Boys at Age 8 Boys at Age 10

Original Data

Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)
Direct likelihood, REML 22.88 (0.58) 23.81 (0.51)
MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time point 22.88 (0.61) 23.81 (0.53)
All Available Incomplete Data

Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)
Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 22.88 (0.61) 24.14 (0.74)
Complete Case Analysis

Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
Direct likelihood, REML 24.00 (0.48) 24.14 (0.66)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 24.00 (0.51) 24.14 (0.74)

Last Observation Carried Forward Analysis

Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)
Direct likelihood, REML 22.88 (0.58) 22.97 (0.68)
MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time point 22.88 (0.61) 22.97 (0.72)
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produces good estimates. The MANOVA
and ANOVA per time point analyses give
an overestimation of the average of age 10,
like in the CC analysis. Furthermore, the
MANOVA analysis also yields an overesti-
mation of the average at age 8, again the
same as in the CC analysis.

Thus, direct likelihood shares the ele-
gant and appealing features of ANOVA
and MANOVA for fully observed data, but
it is superior with incompletely observed
profiles.

1.5 Inverse Probability

Weighting

For non-Gaussian outcomes, apart from
random-effects models, non-likelihood
models have also been developed [18],
the most popular one undoubtedly be-
ing generalized estimating equations

(GEE) [18, 37]. This method essentially
allows one to confine attention to the
specification of the first moments of the
outcome sequence, i.e., the mean structure.
When data are incomplete, GEE is gener-
ally valid under MCAR only. Therefore,
Robins, Rotnitzky, and Zhao [11, 19, 38]
have developed so-called weighted gen-
eralized estimating equations (WGEE),
as well as a number of refinements and
extensions in subsequent papers, to allow
use of GEE under not only MAR, but even
under MNAR settings. The method rests
on Horvitz-Thompson ideas [39], weighing
contributions by the inverse probability
of being observed. The method is elegant
and enjoys good properties, but requires
specification of a model for the weights.
More recently, these WGEE have been
extended toward so-called doubly robust
estimating equations, where the weighting
idea is supplemented with the use of
a predictive model for the unobserved
responses, given the observed ones. There
are several excellent reviews [12, 38, 40].
The methodology has been extended to

other non-likelihood-based methods, such
as pseudo-likelihood [41].

1.6 Multiple Imputation

This method was introduced by Rubin in
1978 [6, 7] and has become an important
approach for dealing with the statistical
analysis of incomplete data. Many reviews
and textbooks are available [1, 14, 15, 19].
Originally developed for sample surveys,
the method has spread across a variety of
statistical applications, including epidemi-
ology, medical statistics, and in particular
also clinical trials. Tools for multiple impu-
tation have been incorporated into several
standard statistical software packages.

The basic principle of multiple impu-
tation (MI) is to replace each missing
value with a set of M plausible values.
Each value can be considered a Bayesian
draw from the conditional distribution of
the missing observation given the observed
data, in such a way that the set of imputa-
tions properly represents the information
about the missing value that is contained
in the observed data for the chosen model.
The imputations produce M “completed”
datasets, each of which is analyzed using
the method that would have been appro-
priate had the data been complete. The
model for the latter analysis is called the
substantive model, while that used to pro-
duce the imputations is called the impu-

tation model. A key asset of the MI pro-
cedure is that, to a certain extent, these
two models can be considered separately.
MI is most straightforward to use under
MAR, and most software implementations
make this assumption. However, it is quite
possible to apply it in MNAR settings [14].
Multiple imputation involves three distinct
phases or, using Rubin’s [6] terminology,
tasks:

1. The missing values are filled in M

times to generate M complete data
sets.
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2. The M complete data sets are ana-
lyzed by using standard procedures.

3. The results from the M analyses are
combined into a single inference.

It is worth noting that the first and third
tasks can be conducted by the SAS proce-
dures MI and MIANALYZE, respectively,
at least for particular imputation models.
The second task is performed using one of
the standard data analytic procedures. As
stated earlier, implementations in R and
other packages are also available.

One of the advantages of multiple impu-
tation is that it can easily deal with situa-
tions where not only outcomes but also co-
variates are incomplete [15]. One then for-
mulates a joint distribution over outcomes
and covariates simultaneously, from which
imputations are then drawn.

1.7 Sensitivity Analysis

While likelihood, Bayesian, and semi-
parametric methods, under the assumption
of MAR, have been embraced as primary
analyses for incomplete data [8], all mod-
els make assumptions about the so-called
predictive distribution, i.e., the distribu-
tion governing the missing data, given the
observed ones. Such assumptions are by
default unverifiable from the data, while
they may have an impact on the inferences
drawn. It is therefore necessary to explore
how sensitive the conclusions drawn are to
the unverifiable assumptions. Many sen-
sitivity analyses will take the form of ex-
ploring how deviations from MAR towards
MNAR change the conclusions. There are
several extensive reviews [13, 19].

We broadly define a sensitivity analysis
as one in which several statistical mod-
els are considered simultaneously and/or
where a statistical model is further scru-
tinized using specialized tools, such as di-
agnostic measures. This qualitative defi-
nition encompasses a wide variety of use-

ful approaches. The simplest procedure is
to fit a selected number of (MNAR) mod-
els which are all deemed plausible; alterna-
tively, a preferred (primary) analysis can
be supplemented with a number of modi-
fications. The degree to which conclusions
(inferences) are stable across such ranges
provides an indication of the confidence
that can be placed in them. Modifications
to a basic model can be constructed in dif-
ferent ways.

Such analyses can be complemented
with appropriate (global and/or local) in-
fluence analyses [42]. Another route is to
construct pattern-mixture models, where
the measurement model is considered, con-
ditional upon the observed dropout pat-
tern, and to compare the conclusions with
those obtained from the selection model
framework, where the reverse factoriza-
tion is used [43, 44]. Alternative sensi-
tivity analyses frameworks are provided by
Robins, et al. [40], Forster and Smith [45]
who present a Bayesian sensitivity analy-
sis, and Raab and Donnelly [46]. A fur-
ther paradigm, useful for sensitivity anal-
ysis, is so-called shared parameter mod-
els, where common latent or random effects
drive both the measurement process as well
as the process governing missingness [47,
48].

Nevertheless, ignorable analyses may
provide reasonably stable results, even
when the assumption of MAR is violated,
in the sense that such analyses constrain
the behavior of the unseen data to be sim-
ilar to that of the observed data. A discus-
sion of this phenomenon in the survey con-
text has been given in Rubin, et al. [49].
These authors first argue that, in well-
conducted experiments (some surveys and
many confirmatory clinical trials), the as-
sumption of MAR is often to be regarded
as a realistic one. Second, and very im-
portant for confirmatory trials, an MAR
analysis can be specified a priori without
additional work relative to a situation with
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complete data. Third, although MNAR
models are more general and explicitly in-
corporate the dropout mechanism, the in-
ferences they produce are typically highly
dependent on the untestable and often im-
plicit assumptions built in regarding the
distribution of the unobserved measure-
ments given the observed ones. The qual-
ity of the fit to the observed data need
not reflect at all the appropriateness of
the implied structure governing the un-
observed data. Based on these consid-
erations, it is recommended, for primary
analysis purposes, the use of ignorable
likelihood-based methods or appropriately
modified frequentist methods. To explore
the impact of deviations from the MAR as-
sumption on the conclusions, one should
ideally conduct a sensitivity analysis [17].

1.8 Conclusion

In conclusion, direct likelihood and
Bayesian analyses, robust semi-parametric
methods, or multiple imputation are
preferable because they use all available
information, without the need neither to
delete nor to singly impute measurements
or entire subjects. It is theoretically
justified whenever the missing data mech-
anism is MAR, which is a more relaxed
assumption than MCAR, necessary for
simple analyses, such as CC; LOCF is even
then not guaranteed to provide unbiased
results. There is no distortion of statistical
information, because observations are
neither removed (such as in CC analysis)
nor added (such as in LOCF analysis). As
stated, MAR itself cannot be verified from
the data, and hence a form of sensitivity
analysis should ideally be conducted.
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