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In this paper, we present a paraconsistent description logic based
on quasi-classical logic. Compared to the four-valued descrip-
tion logic, quasi-classical description logic satisfies all of the
three basic inference rules (i.e., modus ponens, modus tollens
and disjunctive syllogism) so that the inference ability of quasi-
classical description logic is closer to that of classical logic. Quasi-
classical description logic combines three inclusions (i.e., mate-
rial inclusion, internal inclusion and strong inclusion) of four-
valued description logic so that quasi-classical description logic
satisfies the intuitive equivalence. Moreover, we develop a ter-
minable, sound and complete tableau algorithm for quasi-classical
description logic. As an important result, the complexity of rea-
soning problems in quasi-classical description logic is proved to
be no higher than that of reasoning problems in description logic.

Key words: ontology, description logic, quasi-classical logic, paracon-
sistent logic, multiple-valued Logic, inconsistency-tolerant reasoning,
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1 INTRODUCTION

In an open, constantly changing and collaborative environment like Seman-
tic Web, an ontology may often contain inconsistencies due to many reasons,
such as modeling errors, migration from other formalisms, merging ontolo-
gies and ontology evolution [13, 16, 10, 12, 11]. As the logical foundation of
the Web Ontology Language (OWL), description logics (DLs) are unable to
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deal with inconsistency in knowledge bases. Since DLs follow the classical
semantics, according to the fact ex contradictione quodlibet, if an ontology
contains a single contradiction then the classical entailment is explosive. That
is, every formula is a logical consequence of an inconsistent ontology. Thus,
conclusions drawn from an inconsistent ontology are completely meaning-
less. To order to solve the problem, inconsistency handling in OWL and DLs
has received extensive interests in the community in recent years.

There are many methods to handle inconsistencies in DLs, which can be
divided into two types of approaches. One is based on the assumption that
inconsistencies indicate erroneous data which are to be repaired in order to
obtain a consistent ontology, e.g., by pinpointing the parts of an ontology
which cause the inconsistencies and removing or weakening axioms in these
parts to restore consistency [30, 27, 18, 26, 25]. The other, called paracon-
sistent approach, does not simply avoid the inconsistencies but tolerate them
by applying a non-standard reasoning method to obtain meaningful answers
[24, 33, 16, 20, 21, 22, 23, 11, 37, 38]. For the latter, inconsistencies are
treated as a natural phenomenon in realistic data to be tolerated in reasoning.
Compared with the former, the latter acknowledges and distinguishes the dif-
ferent epistemic statuses between “the assertion is true” and “the assertion is
true with conflict”. One of paraconsistent reasoning in DLs is based on Bel-
nap’s four-valued semantics [5]. However, the four-valued semantics is weak
in a sense that it does not satisfy some classical inference rules, such as:

modus ponens (MP) {C(a), C v D} |= D(a)

modus tollens (MT) {¬D(a), C v D} |= ¬C(a)

disjunctive syllogism (DS) {¬C(a), C tD} |= D(a)

where C,D are concepts and a an individual in DLs. A total negation is in-
troduced in [20] to strengthen the capability of paraconsistent reasoning in
four-valued DLs. However, since the total negation is not contained in the
syntax of the four-valued DLs, it is difficult to define a suitable meaning for
the two logical connectives “t” and “v”, and the so-called intuitive equiv-
alence inference rule: O |= C v D if and only if O |= ¬C t D(a) for
any individual a. These shortcomings are inherent limitations of four-valued
logics in paraconsistent reasoning. We expect that a paraconsistent logic can
satisfy as many inference rules in classical logics as possible so that its se-
mantics could be as close to classical semantics as possible.

To find a satisfiable paraconsistent semantics, we investigate the problem
of defining a suitable paraconsistent semantics for DLs based on the quasi-
classical logic (QC logic) proposed in [6, 17] which could tolerate inconsis-
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tencies by forbidding the mixing applying of both the resolution rules and the
disjunction rule. This problem is challenging in that it is not straightforward
to extend the QC semantics for propositional logic to DLs. Specifically, in the
setting of DLs, it is difficult to define a suitable meaning for the two logical
connectives “t” and “v”, which are two key constructors in DLs.

We present a paraconsistent extension of description logic ALC, called
quasi-classical description logicALC (QCALC for short), which is an exten-
sion of ALC with quasi-classical semantics. The contributions of our work
are summarized as follows. Two QC semantics, called “weak semantics” and
“strong semantics”, are introduced for ALC. The weak semantics is a refor-
mulation of the four-valued semantics. In contrast, the strong semantics is
introduced to strengthen the capability of paraconsistent reasoning in ALC.
Strong semantics refines the interpretation of the disjunction of concepts in
order to enhance the capability of paraconsistent reasoning. Moreover, the in-
terpretation of a subsumption is redefined in both of the semantics so that the
intuitive equivalence could hold. QC entailment (written by “|=Q”) between
an ontology and a formula is presented. We show that QC entailment satis-
fies both three basic inference rules (i.e., MP, MT and DS) and the intuitive
equivalence. Therefore, QC ALC is more suitable to deal with inconsisten-
cies than four-valued description logic ALC. A tableau algorithm for QC
ALC, called QC tableau algorithm, is proposed to implement paraconsistent
reasoning in ALC based on a notion called complement of an axiom which is
used to reverse both the information of being true and being false under QC
semantics. Furthermore, we state that our QC tableau algorithm is decidable,
sound and complete in deciding whether a QC ABox is QC consistent. Fi-
nally, we show that the complexity of QC consistency checking of a QCALC
ABox is PSPACE-complete.

The rest of this paper is organized as follows. In the next section, we give
a short introduction of ALC. In Section 3, we introduce the semantics of
QC ALC. In Section 4, we consider two basic reasoning tasks of QC ALC,
namely QC consistency problem and QC entailment problem. In Section 5,
we present a QC tableau algorithm for QCALC and prove that it is decidable,
sound and complete. Finally, we summarize this paper and give some future
works in the concluding section.

2 PRELIMINARIES

In this section, we introduce some basic notions of DLs, a well-known fam-
ily of knowledge representation formalisms. For more comprehensive back-
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ground knowledge, we refer the reader to the Description Logic Handbook
[1] and Chapter 3 of the Handbook of Knowledge Representation [34].

DLs are fragments of first-order logic. That is, they can be translated
into first-order logic [7]. DLs are different from their predecessors such as
semantic networks and frames in that they are equipped with a formal, logic-
based semantics. In DLs, elementary descriptions are concept names (unary
predicates) and role names (binary predicates). Complex descriptions are
built from them inductively using concept and role constructors provided by
the particular DL in consideration.

In this paper, we consider theALC which is a simple yet relatively expres-
sive DL, where AL is the abbreviation of attributive language and C denotes
“complement”. Let NC and NR be pairwise disjoint and countably infinite
sets of concept names and role names respectively. Let NI be an infinite set
of individual names. We use the letters A and B for concept names, the letter
R for role names, and the letters C and D for concepts. > and ⊥ denote the
top concept and the bottom concept respectively. The set of ALC concepts is
the smallest set such that:

• every concept name is a concept;

• if C and D are concepts, R is a role name, then the following ex-
pressions are also concepts: ¬C (full negation), CuD (concept con-
junction), CtD (concept disjunction), ∀R.C (value restriction on role
names) and ∃R.C (existential restriction on role names).

For example, the concept descriptionPersonuFemale is anALC-concept
describing those people that are female. Suppose hasChild is a role name,
the concept description Person u ∀hasChild.Female expresses those peo-
ple whose children are all female. The concept ∀hasChild.⊥ u Person
describes those people who have no children.

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and a
mapping ·I which maps every concept to a subset of ∆I and every role to a
subset of ∆I ×∆I such that the following conditions are satisfied:

>I = ∆I

⊥I = ∅I
(¬C)I = ∆I \ CI

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(∃R.C)I = {x | ∃y, (x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x | ∀y, (x, y) ∈ RI implies y ∈ CI}
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where C,C1, C2 are all concepts and R a role.
A general concept inclusion axiom (GCI) or a terminological axiom is an

inclusion statement of the form CvD, where C and D are two (possibly
complex) ALC concepts (concepts for short). It is the statement about how
concepts are related to each other. We use C ≡ D as an abbreviation for
the symmetrical pair of GCIs C v D and D v C, called an equality. An
interpretation I satisfies a GCI CvD if and only if CI⊆DI , and it satisfies
a GCI C ≡ D if and only if CI = DI . A finite set of GCIs is called a TBox.

An equality whose left-hand side is an atomic concept is a definition. That
is, a definition has the form of A ≡ C where A is an atomic concept and
C a concept. Let A,B be atomic concepts occurring in T . We say that A
directly uses B in T if B appears on the right-hand side of the definition
of A, and we define uses to be the transitive closure of the relation directly
uses. Then T contains cycle if and only if there exists an atomic concept in
T that uses itself. Otherwise, T is called acyclic. For instance, {Human ≡
Animal u ∀hasParent.Human} contains cycle.

We can also formulate statements about individuals. A concept (role) (as-
sertion) axiom has the form C(a) (R(a, b)), where C is a concept, R a role
name, and a, b individual names. An ABox consists of a finite set of concept
axioms and role axioms. Concept assertion axioms, role assertion axioms and
GCIs are axioms. In an ABox, one describes a specific fact of an application
domain in terms of concept and roles. To give a semantics to ABoxes, we
need to extend interpretations to individual names. For each individual name
a, ·I maps it to an element aI ∈ ∆I . An interpretation I satisfies a concept
axiom C(a) if and only if aI∈CI . I satisfies a role axiom R(a, b) if and
only if (aI , bI)∈RI . An ontology O consists of a TBox and an ABox, i.e.,
it is a set of GCIs and assertion axioms. An interpretation I is a model of
a DL (TBox or ABox) axiom if and only if it satisfies this axiom, and it is a
model of an ontologyO if and only if it satisfies every axiom inO. A concept
D subsumes a concept C with respect to a TBox T iff each model of T is a
model of axiom C v D. An ABox A is consistent iff there exists a model
of A. An ABox A is consistent with respect to a TBox T iff there exists a
common model of T andA. Given an ontologyO and a DL axiom φ, we say
O entails φ, denoted as O |= φ, if and only if every model of O is a model
of φ. A concept C is satisfiable with respect to a TBox T if and only if there
exists a model I of T such that CI 6= ∅; and unsatisfiable otherwise.

Two basic reasoning problems, namely, instance checking ( checking
whether an individual is an instance of a given concept) and subsumption
checking ( checking whether a concept subsumes a given concept) can be
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reduced to the problem of consistency by the following lemma.

Lemma 2.1 ([1]) Let O be an ontology, C,D concepts and a an individual
in ALC. Then
(1) O |= C(a) if and only if O ∪ {¬C(a)} is inconsistent;
(2) O |= C v D if and only if O ∪ {C u ¬D(ι)} is inconsistent where ι is a
new individual not occurring in O.

The problem of checking consistency of an ALC ABox is PSPACE-
Complete [31]. The problem of checking consistency of an ALC ABox with
respect to an acyclic ALC TBox is also PSPACE-Complete [14]. However,
the problem of checking consistency of an ALC ABox with respect to a gen-
eral ALC TBox is EXPTIME-Complete [29, 8].

The following lemma presented by Horrocks et al [15] shows that satisfia-
bility, unsatisfiability and consistency of a concept with respect to any general
TBox can be reduced to the corresponding reasoning task with respect to the
empty TBox. This result is obtained by introducing a “universal” role U , that
is, if y is reachable from x via a role path, then 〈x, y〉 ∈ UI . Technically,
the universal role U is used to add new assertion ¬C tD(x), where x is an
individual occurring in A, into A corresponding to each GCI C v D of a
TBox so that the problem about reasoning with ABoxes and TBoxes could be
reduced to the problem about reasoning with only ABoxes.

Lemma 2.2 ([15]) Let C,D be concepts, A an ABox and T a TBox in ALC.
Define

CT :=
l

CivDi∈T

¬Ci tDi.

Then the following properties hold:
(1) C is satisfiable with respect to T if and only if C u CT u ∀U.CT is
satisfiable;
(2) D subsumes C with respect to T if and only if C u¬D uCT u ∀U.CT is
unsatisfiable;
(3) A is consistent with respect to T if and only if A ∪ {CT u ∀U.CT (a) |
a ∈ NA(A)} is consistent, where NA(A) is a set of all individuals occurring
in A.

Because a reasoning problem with respect to ABoxes and general TBoxes
can be reduced to the same reasoning problem with respect to only ABoxes,
this paper mainly considers reasoning problems with respect to ABoxes with-
out any TBox.
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3 QUASI-CLASSICAL SEMANTICS FOR DESCRIPTION LOGIC

In this section, we define quasi-classical ALC as an extension of ALC with
QC semantics given in [6].

The syntax of QC ALC follows that of ALC with a new kind of axiom
called complement of an axiom. Let φ be an axiom inALC. The complement
of φ is denoted by ∼ φ. The complement of an axiom is similar to a signed
proposition NTα (presented in [32]) which means that α is not true. The
intuition behind complement of an axiom is to reverse both the information
of being true and of being false. Note that the notion of complement of an
axiom will provide a resolution-based decision procedure for QC ALC.

We denote the language of QC ALC as L∗ = L ∪ {∼ φ | φ ∈ L}, where
L is the language of ALC.

For example, let A = {Penguin(tweety),∼ (¬Bird(tweety)),
¬Fly(tweety),∃HasChild.Penguin(tweety)} and T = {∼ (Bird v
Fly)}. Thus A and T are an ABox and a TBox of the language L∗ re-
spectively. In the following, we mainly consider the language L∗.

In QC ALC, let A be a concept name and R a role. A and ¬A are concept
literals. A concept C is in negation normal form (or NNF) if negation (¬)
only occurs in front of concept names in C. A role-involved literal has the
form ∀R.C or ∃R.C where C is a concept in NNF. A literal, denoted by a
letter like L, is either a concept literal or a role-involved literal. A clause is
the disjunction of a finite number of literals. Let L1 t · · · t Ln be a clause,
then Lit(L1 t · · · t Ln) is the set of literals {L1, . . . , Ln} that are in the
clause. A clause is an empty clause if it has no literals. To simplify notations,
we use ¬̈ to denote a complementation operation such that ¬̈A is ¬A and
¬̈(¬A) is A.

A QC ABox is a finite set of concept and role assertion axioms, comple-
ments of concept assertion axioms or complements of role assertion axioms;
and a QC TBox is a set of inclusions or complements of inclusions. A QC
ontology consists of a QC ABox and a QC TBox.

Definition 3.1 Let L1 t · · · t Ln be a clause that includes a literal disjunct
Li. The focus of L1 t · · · t Ln by Li, denoted by ⊗(L1 t · · · t Ln, Li), is
defined as the clause obtained by removing Li from Lit(L1 t · · · t Ln). In
the case of a clause with just one disjunct, we assume ⊗(L,L) = ⊥.

Example 3.1 Given a clause L1tL2tL3,⊗(L1tL2tL3, L2) = L1tL3.

In the following, we define a weak interpretation and a strong interpre-
tation over domain ∆I by assigning to each concept C a pair 〈+C,−C〉 of
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subsets of CI . Intuitively, +C is the set of elements known to belong to the
extension of C, while −C is the set of elements known not to be contained
in the extension of C. +C and −C are not necessarily disjoint and mutually
complemental with respect to the domain. +C and−C are positive extension
and negative extension of C respectively.

We define the complemental set of a set S with respect to an interpretation
I to be S = ∆I \ S.

In QC ALC, a weak interpretation is a reformulation of a four-valued in-
terpretation in four-valued ALC (or ALC4) presented in [20].

Definition 3.2 Let I be a pair I = (∆I , ·I), where ∆I is a domain and ·I is
a function assigning an element of ∆I to an individual, a pair 〈+C,−C〉 of
subsets of ∆I to a concept C, and a pair 〈+R,−R〉 of subsets of ∆I ×∆I

to a role R. In particular, UI = 〈+U,−U〉 where +U = ∆I × ∆I and
−U = ∅. I is a weak interpretation in QC ALC if the following conditions
are satisfied:

>I = 〈∆I , ∅〉
⊥I = 〈∅,∆I〉

(¬C)I = 〈−C,+C〉 where CI = 〈+C,−C〉
(C1 u C2)I = 〈+C1 ∩+C2,−C1 ∪ −C2〉
(C1 t C2)I = 〈+C1 ∪+C2,−C1 ∩ −C2〉

(∃R.C)I = 〈{x | ∃y, (x, y) ∈ +R and y ∈ +C},
{x | ∀y, (x, y) ∈ +R implies y ∈ −C}〉

(∀R.C)I = 〈{x | ∀y, (x, y) ∈ +R implies y ∈ +C},
{x | ∃y, (x, y) ∈ +R and y ∈ −C}〉

where CIi = 〈+Ci,−Ci〉 for i = 1, 2 and RI = 〈+R,−R〉.

From Definition 3.2, for any weak interpretation I and any concept C, the
negation of a concept (¬C)I is a pair obtained by exchanging two parts of
CI . Intuitively, ¬C could be taken as a “new” concept which is symmetric
to C. In the following, we show some properties of the negation of concepts
based on weak interpretations.

Theorem 3.1 Let C be a concept and I a weak interpretation. If CI =

〈+C,−C〉, then we have
(1) +(¬C) = −C;
(2) −(¬C) = +C;
(3) +(¬¬C) = +C;
(4) −(¬¬C) = −C.
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Theorem 3.1 shows that the law of double negation is valid by weak inter-
pretations.

In the following, we define the notion of weak satisfaction.

Definition 3.3 Let |=w be a satisfiability relation between a set of QC weak
interpretations and a set of axioms, called weak satisfaction. For a weak
interpretation I, we define |=w as follows:
(1) I |=w C(a) if and only if aI ∈ +C, where CI = 〈+C,−C〉;
(2) I |=w R(a, b) if and only if (aI , bI) ∈ +R, where RI = 〈+R,−R〉;
(3) I |=w C v D if and only if +C ⊆ +D, where CI = 〈+C,−C〉 and
DI = 〈+D,−D〉.
Here C,D are concepts, R a role and a an individual in L∗.

In Definition 3.3, an inclusion is interpreted as an internal inclusion as de-
fined in ALC4. That is, a weak interpretation satisfies an inclusion C v D

if and only if every element that is known to belong to the positive exten-
sion of C is known to belong to the positive extension of D under the weak
satisfaction.

In the following, we give the interpretation of a complement of an axiom
based on weak interpretations.

Definition 3.4 The interpretation of a complement of an axiom under weak
interpretation is defined as follows: for any weak interpretation I, concepts
C,C1, C2, role R and individual a in L∗,
(1) I |=w∼ C(a) if and only if aI 6∈ +C where CI = 〈+C,−C〉.
(2) I |=w∼ R(a, b) if and only if (aI , bI) 6∈ +R where RI = 〈+R,−R〉.
(3) I |=w∼ C v D if and only if there exists an individual a such that
aI ∈ +C and aI 6∈ +D where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.

The following theorem provides some basic properties of the weak satis-
faction.

Theorem 3.2 Let C,D,E be concepts, R a role, a, b individuals and I a
weak interpretation in QC ALC. The following properties hold.
(1) I |=w ¬C(a) if and only if aI ∈ −C, where CI = 〈+C,−C〉.
(2) I |=w ¬¬C(a) if and only if I |=w C(a).
(3) I |=w C tD(a) if and only if I |=w C(a) or I |=w D(a).
(4) I |=w C uD(a) if and only if I |=w C(a) and I |=w D(a).
(5) I |=w ¬(C uD)(a) if and only if I |=w ¬C t ¬D(a).
(6) I |=w ¬(C tD)(a) if and only if I |=w ¬C u ¬D(a).
(7) I |=w C t (D u E)(a) if and only if I |=w (C tD) u (C t E)(a).
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(8) I |=w C u (D t E)(a) if and only if I |=w (C uD) t (C u E)(a).
(9) I |=w ¬∃R.C(a) if and only if I |=w ∀R.¬C(a).
(10) I |=w ¬∀R.C(a) if and only if I |=w ∃R.¬C(a).

The properties (3) and (4) say that, under the weak satisfaction, an individ-
ual belongs to a disjunction (resp. conjunction) of two concepts if and only if
it belongs to either (both) of the concepts. The properties (9) and (10) show
that under weak satisfaction, the duality between existential restriction and
value restriction holds; and the properties (2), (5) and (6), (7) and (8) respec-
tively show that the weak satisfaction validates double the negation law, De
Morgan’s law and distributive law.

The following theorem shows that the intuitive equivalence between inclu-
sion and disjunction of concepts with respect to complement of an axiom is
satisfied under the weak semantics.

Theorem 3.3 Let I be a weak interpretation and C,D concepts in L∗.

I |=w C v D iff for any individual a, I |=w∼ C(a) or I |=w D(a).

Theorem 3.3 provides for a theoretical foundation to transform the prob-
lems of subsumption checking into the problems of QC consistency checking
(defined in Section 4 later).

The following theorem provides some important properties about the com-
plement of an axiom under the weak satisfaction.

Theorem 3.4 Given concepts C,D, individuals a, b, a role R and a weak
interpretation I in L∗, the following properties hold.
(1) I |=w∼ (C uD)(a) if and only if I |=w∼ C(a) or I |=w∼ D(a).
(2) I |=w∼ (C tD)(a) if and only if I |=w∼ C(a) and I |=w∼ D(a).
(3) I |=w∼ (∀R.C)(a) if and only if there is an individual name b such that
I |=w R(a, b) and I |=w∼ C(b).
(4) I |=w∼ (∃R.C)(a) if and only if for any individual b if I |=w R(a, b)

then I |=w∼ C(b) .

In Theorem 3.4, the properties (1) and (2) show that the QC weak satis-
faction satisfies the DeMorgan’s law, when complement of an axiom is con-
sidered. The properties (3) and (4) show the complements of existential re-
striction assertions and value restriction assertions could be transformed into
complements of assertions.

In QC ALC, a weak interpretation I is a weak model of an axiom φ if and
only if I |=w φ. I is a weak model of a QC ontologyO, denoted by I |=w O
if and only if I is a weak model of every axiom in O.
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Note that the weak semantics does not assure that everyALC ontology has
weak QC models. This fact also holds for the four-valued DL defined in [33]
if > and ⊥ are used arbitrarily. The following example illustrates this.

Example 3.2 Consider T = {> v ⊥}. Since for any weak interpretation I,
>I = 〈∆I , ∅〉 and ⊥I = 〈∅,∆I〉 where ∆I 6= ∅ for weak interpretations, T
has no weak model according to Definition 3.3.

To preserve the weak satisfaction, we employ the satisfiable substitution
in [21] which is presented to maintain the four-valued satisfaction in ALC4.
Given an ontology O, the satisfiable form of O (denoted by SF (O)) is the
ontology obtained by replacing each occurrence of > inO with NAt¬NA,
and replacing each occurrence of ⊥ in O with NA u ¬NA, where NA is a
new concept name.

In Example 3.2, > v ⊥ can be replaced by NA t ¬NA v NA u ¬NA.
We take advantage of the substitution which preserves the weak satisfac-

tion. That is, for any ontologyO, SF (O) always has at least one weak model.
Because of the above discussion, we assume that all ontologies discussed

in the rest of this paper have weak models.
Moreover, the weak satisfaction like the four-valued satisfaction does not

satisfy some basic inference rules, such as MP, MT and DS. Therefore, we
define a strong interpretation by redefining the interpretations of disjunction
of concepts and conjunction of concepts.

Definition 3.5 Let I be a pair I = (∆I , ·I) where ∆I is a domain and ·I is
a function assigning an element of ∆I to an individual, a pair 〈+C,−C〉 of
subsets of ∆I to a concept C, and a pair 〈+R,−R〉 of subsets of ∆I×∆I to
a roleR. I is a strong interpretation in QCALC if the conditions in Definition
3.2, except those for conjunction of concepts and disjunction of concepts, are
satisfied and the following two conditions are also satisfied:

conjunction of concepts: (C1 u C2)I

= 〈+C1 ∩+C2, (−C1 ∪ −C2) ∩ (−C1 ∪+C2) ∩ (+C1 ∪ −C2)〉;
disjunction of concepts: (C1 t C2)I

= 〈(+C1 ∪+C2) ∩ (−C1 ∪+C2) ∩ (+C1 ∪ −C2),−C1 ∩ −C2〉;

where CI = 〈+C,−C〉 and CIi = 〈+Ci,−Ci〉 for i = 1, 2.

Compared with the weak interpretation, the strong interpretation of dis-
junction of concepts tightens the condition that an individual is known to be-
long to a concept. For instance, based on strong interpretations, an individual
a is known to be an instance of C1 t C2 if and only if
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• a is an instance of C1 or a is an instance of C2;

• if a is also an instance of ¬C1 then a must be an instance of C2; and

• if a is also an instance of ¬C2 then a must be an instance of C1.

The strong interpretation of conjunction of concepts is defined by relaxing
the condition that an individual is known not to be contained in the positive
extension of a concept. For instance, based on strong interpretations, an indi-
vidual a is known not to be contained in the positive extension of C1 u C2 if
and only if

• a is an instance of ¬C1 or a is an instance of ¬C2;

• if a is known to be an instance of C1 then a must be an instance of
¬C2; and

• if a is an instance of C2 then a must be an instance of ¬C1.

The strong interpretation for disjunction and conjunction are introduced to
ensure that the three basic inference rules (i.e., MP, MT, DS) are satisfied in
QC ALC.

Corresponding to Theorem 3.1, we show that the law of double negation
is also valid based on strong interpretations.

Theorem 3.5 Let C be a concept and I a strong interpretation. If CI =

〈+C,−C〉, then we have
(1) +(¬C) = −C;
(2) −(¬C) = +C;
(3) +(¬¬C) = +C;
(4) −(¬¬C) = −C.

Similar to the weak satisfaction, we introduce the notion of strong satis-
faction.

Definition 3.6 Let |=s be a satisfiability relation between a set of strong in-
terpretations and a set of axioms, called strong satisfaction. For any strong
interpretation I, we define |=s as follows:
(1) I |=s C(a) if and only if aI ∈ +C, where CI = 〈+C,−C〉;
(2) I |=s R(a, b) if and only if (aI , bI) ∈ +R, where RI = 〈+R,−R〉;
(3) I |=s C v D if and only if −C ⊆ +D, +C ⊆ +D and −D ⊆ −C,
where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.
Here C,D are concepts, R a role and a an individual in QC ALC.
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In Definition 3.6, when defining the strong satisfaction of an inclusion
based on strong interpretations, we use conditions for interpreting an inclu-
sion by combing the interpretations of three inclusions, so-called internal in-
clusion, material inclusion and strong inclusion as defined in four-valued DL.
By doing so, our strong satisfaction satisfies the intuitive equivalence that is
falsified by the four-valued satisfaction.

Theorem 3.6 Let I be a strong interpretation and C,D concepts in L∗.

I |=s C v D if and only if I |=s ¬C tD(a), for any individual a.

Theorem 3.6 provides a theoretical base of transforming the problem of
reasoning with ABoxes and terminologies into the problem of reasoning with
ABoxes.

The following theorem provides a slightly different view on the strong
satisfaction of disjunction of concepts.

Theorem 3.7 Let Li (i = 1, . . . , n) be a literal and a an individual in L∗.
I |=s L1 t · · · t Ln(a) if and only if I |=s L1(a) or . . . or I |=s Ln(a) or
∀i(1 ≤ i ≤ n), I |=s ¬̈Li(a) implies I |=s ⊗(L1 t · · · t Ln, Li)(a)

The following theorem provides some basic properties of the strong satis-
faction. These properties are important because they will ensure the sound-
ness and completeness of our QC tableau algorithm (presented in Section 5
later).

Theorem 3.8 Let C,D,E be concepts, R a role, a, b individuals and I a
strong interpretation in L∗. The following properties hold.
(1) I |=s ¬C(a) if and only if aI ∈ −C, where CI = 〈+C,−C〉.
(2) I |=s ¬¬C(a) if and only if I |=s C(a).
(3) I |=s C uD(a) if and only if I |=s C(a) and I |=s D(a).
(4) I |=s ¬(C uD)(a) if and only if I |=s ¬C t ¬D(a).
(5) I |=s ¬(C tD)(a) if and only if I |=s ¬C u ¬D(a).
(6) I |=s ¬∃R.C(a) if and only if I |=s ∀R.¬C(a).
(7) I |=s ¬∀R.C(a) if and only if I |=s ∃R.¬C(a).

Property (3) says that, under the strong satisfaction, an individual belongs
to a conjunction of two concepts if and only if it belongs to both concepts.
Properties (6) and (7) show that under the strong satisfaction, the duality be-
tween existential restriction and value restriction holds; property (2) shows
that the strong satisfaction satisfies the double complement law; and prop-
erties (4) and (5) show that the strong satisfaction satisfies the De Morgan’s
law.
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Definition 3.7 The interpretation of a complement of an axiom under strong
interpretation is defined as follows: for any strong interpretation I, concepts
C,D, role R and individual a in L∗,
(1) I |=s∼ C(a) if and only if aI 6∈ +C where CI = 〈+C,−C〉.
(2) I |=s∼ R(a, b) if and only if (aI , bI) 6∈ +R where RI = 〈+R,−R〉.
(3) I |=s∼ C v D if and only if there exists an individual a such that
aI ∈ −C and aI 6∈ +D, or aI ∈ +C and aI 6∈ +D, or aI ∈ −D and
aI 6∈ −C, where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.

The following theorem provides some important properties about the com-
plement of an axiom under the strong satisfaction.

Theorem 3.9 Given concepts C,D, individuals a, b and a role R in L∗, the
following properties hold.
(1) I |=s∼ (C uD)(a) if and only if I |=s∼ C(a) or I |=s∼ D(a).
(2) I |=s∼ (C t D)(a) if and only if I |=s∼ C(a) and I |=s∼ D(a), or
I |=s ¬C(a) and I |=s∼ D(a), or I |=s ¬D(a) and I |=s∼ C(a).
(3) I |=s∼ (∀R.C)(a) if and only if there is an individual name b such that
I |=s R(a, b) and I |=s∼ C(b).
(4) I |=s∼ (∃R.C)(a) if and only if for any individual b if I |=s R(a, b) then
I |=s∼ C(b).

In Theorem 3.9, properties (1) and (2) show that weak satisfaction satisfies
double complement law and DeMorgan’s law, when complement of an axiom
is considered. Properties (3) and (4) show the conditions of satisfiability of
existential restriction assertion axioms and complement of value restriction
assertion axioms respectively.

In QC ALC, a strong interpretation I is a strong model of an axiom φ if
and only if I |=s φ. I is a strong model of a QC ontology O, denoted by
I |=s O if and only if I is a strong model of every axiom in O.

The following theorem shows the relationship between weak models and
strong models.

Theorem 3.10 Let I be a weak interpretation and φ an axiom in ALC.

If I |=s φ then I |=w φ.

This theorem shows that a strong model is also a weak model. As a result,
the reasoning power of strong satisfaction is no stronger than weak satisfac-
tion. In fact, strong satisfaction is weaker than weak satisfaction. To see this,
consider the following example.
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Example 3.3 LetA = {C(a),¬C(a)} be an ABox inL∗. Let I be a weak in-
terpretation such that ∆I = {aI}, CI = 〈{aI}, {aI}〉 andDI = 〈∅, {aI}〉.
Clearly, I |=w C tD(a) while I 6|=s C tD(a) since I 6|=s D(a). This ex-
ample illustrates that Theorem 3.10 does not hold vice versa.

The above discussion shows that while the paraconsistent entailment |=s

satisfies some useful reasoning rules, it is too weak. It implies none of |=s

and |=w is a suitable paraconsistent semantics for quasi-classical description
logic (QCDL).

For this reason, we introduce a novel consequence relation in terms of both
the weak and the strong satisfaction relations. We define a QC entailment
which is of the same form as classical entailment except that we use the strong
satisfaction for the assumptions and weak satisfaction for the inferences. It
is well known that the less assumptions are contained in the premise of an
entailment, the more conclusions can be drawn. Based on this fact, the strong
satisfaction is employed to make less assumptions in the premise in order
to make QC semantics stronger. On the other hand, the weak satisfaction is
employed to ensure the conclusion tolerating inconsistencies.

Definition 3.8 Given a QC ontology O and an axiom φ in QC ALC, we say
O quasi-classically entails φ, denoted by O |=Q φ, if and only if for every
interpretation I, if for any axiom ψ of O, we have I |=s ψ, then I |=w φ.

The following theorem shows that |=Q satisfies the resolution rule which
is a general form of MP, MT and DS.

Theorem 3.11 Let B,C,E be concepts and a an individual in ALC. Then

{B t C(a),¬B t E(a)} |=Q C t E(a).

By Theorem 3.11, it is easy to check that |=Q satisfies three basic infer-
ence rules (MP, MT and DS). For instance, let A = {Penguin(tweety),
¬Fly(tweety), ¬Penguin t Fly(tweety), ¬Fly t Haswings(tweety)}
be an ABox in L∗. It easily shows that A |=Q Haswings(tweety).

Let’s go back to Definition 3.8. According to Theorem 3.11, the strong sat-
isfaction is employed to capture the decomposition of the set of assumptions
because it satisfies the resolution rule. On the contrary, the weak satisfac-
tion is employed to capture the composition of axioms from resolvent after
applying the disjunct rule, i.e., {C(a)} |=w C t D(a). Based on the weak
satisfaction and the strong satisfaction, QC entailment assures stronger ability
of paraconsistent reasoning in QC ALC.

The following example shows that QC entailment is nontrivial.
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Example 3.4 Given a QC ontology O = {B(a),¬B(a)} and a concept
name A in QCALC. So {B(a), ¬B(a)} is classically inconsistent. However
it is not the case that O |=Q A(a) holds, since there exists an interpreta-
tion I such that BI = 〈+B,−B〉, AI = 〈+A,−A〉 where +B = {aI},
−B = {aI} and +A = −A = ∅. So I |=s B u ¬B(a), but I 6|=w A(a)

since A(a) does not occur in O.

Example 3.5 Now consider the universal concept> = At¬A where A is a
concept name. Here 6|=Q At¬A(a) for any individual a since there exists an
interpretation I such that I 6|=w At¬A(a). However, we have |= At¬A(a)

since |= >(a).

Example 3.5 shows that the excluded middle law fails in QC ALC which
does not hold in four-valued DLs. The failure of the excluded middle law still
occurs in QC logic (see [6, 17]). In general, tautologies in classical ALC, is
not a problem in practice because software engineers use DLs for reasoning
about some specification. So tautologies tell them nothing useful for their
tasks. Contradictions could not be analogously entailed. Because of this, in
this paper, we mainly consider ontologies with neither tautologies nor contra-
dictions.

4 REASONING IN QUASI-CLASSICAL DESCRIPTION LOGIC

In this section, we mainly discuss the QC consistency problem and two ba-
sic inference problems in QC ALC, namely, QC instance checking and QC
subsumption checking.

Firstly, we consider the problem of QC consistency of QC ALC ABoxes.
In classical DLs, the problems of instance checking and subsumption check-
ing can be reduced to the problem of satisfiability checking based on Lemma
2.1. In the following, analogously, we want to reduce the problems of QC
instance checking and QC subsumption checking into the problem of consis-
tency checking in QC ALC. Thus, firstly, we introduce a kind of consistency
under QC semantics, called QC consistency, in QC ALC. In the following,
we employ strong models to characterize our QC consistency for QC ALC
which is suggested in quasi-classical propositional logic (see [12]).

In QC ALC, a concept C is QC satisfiable with respect to a QC TBox
T if there exists a strong model I of T such that +C 6= ∅ where CI =

〈+C,−C〉; and QC unsatisfiable with respect to T otherwise. A QC ABox
A is QC consistent if there exists a strong model I ofA, and QC inconsistent
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otherwise. A QC ontology O is QC consistent if there exists a strong model
I of its ABox and its TBox, and QC inconsistent otherwise.

Next, we mainly discuss the two basic inference problems (quasi-classical
instance checking (QC instance checking) and quasi-classical subsumption
checking (QC subsumption checking)) in QC ALC.

• QC instance checking: an individual a is a quasi-classical instance
(QC instance for short) of a concept C with respect to an ABox A if
A |=Q C(a);

• QC subsumption checking: a concept C is quasi-classically subsumed
(QC subsumed) by a concept D with respect to a TBox T if T |=Q

C v D.

In the following theorem, we show that there exists a close relation be-
tween two basic inference problems and QC consistency problem.

Theorem 4.1 Let O be an ontology and C,D concepts in ALC.
(1) O |=Q C(a) if and only if O ∪ {∼ C(a)} is QC inconsistent.
(2) O |=Q C v D if and only if O ∪ {C(ι),∼ D(ι)} is QC inconsistent
where ι is a new individual not occurring in O.

By Theorem 4.1, two basic inference problems can be reduced to the QC
consistency problem in QC ALC.

Corresponding to classical ALC, in QC ALC, we use C ≡Q D as an
abbreviation for the symmetrical pair of GCIs C v D and D v C, we call
it a quasi-classical equality (QC equality for short). A weak interpretation
I satisfies a QC equality C ≡Q D if and only if +C = +D where CI =

〈+C,−C〉 and DI = 〈+D,−D〉. A strong interpretation I satisfies a QC
equality C ≡Q D if and only if (1) +C = +D and −C = −D; and (2)
+C ∪ −C = ∆I and +D ∪ −D = ∆I where CI = 〈+C,−C〉 and DI =

〈+D,−D〉. Analogously, we define QC definitions and acyclic QC TBoxes.
Note that to check two basic problems (instance checking and subsumption

checking) for ontologies contains both ABoxes and TBoxes and queries in
ALC, the complement of concept axioms will be added into ABoxes during
the process of reducing two basic problems to QC consistency problem. That
is to say, TBoxes are not changed in the process of reduction. Therefore, we
only need to consider a classical TBox and a QC ABox to get the following
corollary which shows a similar result as Lemma 2.2 for QC semantics with
respect to acyclic TBoxes.
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Corollary 4.1 Let C,D be concepts, A a QC ABox and T a TBox in ALC.
Then the following properties hold:
(1) C is QC satisfiable with respect to T if and only if C u CT u ∀U.CT is
QC satisfiable;
(2)D QC subsumes C with respect to T if and only if Cu¬DuCT u∀U.CT
is QC unsatisfiable;
(3)A is QC consistent with respect to T if and only ifA∪{CT u∀U.CT (a) |
a ∈ NA(A)} is QC consistent, where CT and NA(A) are defined in Lemma
2.2.

By Theorem 4.1, the proof of Corollary 4.1 is similar to that of Lemma 2.2
that can be found in [29].

Corollary 4.1 provides an approach to checking consistency of QC ABoxes
with respect to general QC TBoxes. Because of this, the problems about
reasoning with respect to QC ABoxes and general QC TBoxes can be reduced
to those of reasoning with respect to QC ABoxes.

In a word, the two basic inference problems can be reduced to the problem
of QC consistency checking of a QC ABox by Theorem 4.1 and Corollary
4.1 in QC ALC. So we mainly discuss the QC consistency problem in the
following.

5 QC TABLEAU ALGORITHM

InALC, tableau-based algorithms have been proposed to decide consistency
of ontologies. Schmidt-Schauß and Smolka in [31] presented a tableau al-
gorithm for checking consistency of an ALC ABox. In Section 2, we have
shown that the basic problems of reasoning in DLs can be reduced to the con-
sistency problem for ABoxes by Lemma 2.1 and Lemma 2.2. The main idea
of tableau-based algorithms for deciding consistency of an ABox A is given
as follows: the algorithm starts with the ABox A (all concepts occurring in
A is in NNF) and applies consistency preserving expansion rules (see Figure
2.6 in the Description Logic Handbook [1]) to the ABox until no more rules
to be applied. If the “complete” ABox obtained in this way does not contain
an obvious contradiction (called clash) thenA is consistent, otherwise it is in-
consistent. In this section, we develop a tableau algorithm called QC tableau
algorithm for deciding QC inconsistency of ALC QC ABoxes.

By Theorem 3.8 and Theorem 3.4, it suffices to put axioms φ ∈ L∗ into
NNF by pushing negation inwards in polynomial time. For instance, the NNF
of ¬(¬B1t∀R.B2)(a) isB1u∃R.¬B2(a) whereB1, B2 are concept names,
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u-rule: If C1 u C2(x) ∈ A, but {C1(x), C2(x)} 6⊆ A,
then A′ := A ∪ {C1(x), C2(x)}.

t-rule: If C1 t C2(x) ∈ A,
but {C1(x), C2(x), ¬̈C1(x), ¬̈C2(x)} ∩ A = ∅,
then A′ := A ∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

∃-rule: If ∃R.C(x) ∈ A, but there is no individual name z
such that {C(z), R(x, z)} ⊆ A,
then A′ := A ∪ {C(y), R(x, y)}
∪{U(a, y), U(y, a) | a ∈ NA(A)}
where y is an individual name not occurring in A.

∀-rule: If {∀R.C(x), R(x, y)} ⊆ A, but C(y) 6∈ A,
then A′ := A ∪ {C(y)}.

QC-rule: If C1 t C2(x) ∈ A and ¬̈Ci(x) ∈ A, i ∈ {1, 2},
then A′ := A ∪ {⊗(C1 t C2, Ci)(x)}.

∼u-rule: If ∼ (C1 u C2)(x) ∈ A, but {∼ C1(x),∼ C2(x)} ∩ A = ∅,
then A′ := A ∪ {∼ C1(x)},A′′ := A ∪ {∼ C2(x)}.

∼t-rule: If ∼ (C1 t C2)(x) ∈ A, but {∼ C1(x),∼ C2(x)} 6⊆ A,
then A′ := A ∪ {∼ C1(x),∼ C2(x)}.

∼∃-rule If {∼ (∃R.C)(x), R(x, y)} ⊆ A, but ∼ C(y) 6∈ A,
then A′ := A ∪ {∼ C(y)}.

∼∀-rule: If ∼ (∀R.C)(x) ∈ A, but there is no individual name z
such that {∼ C(z), R(x, z)} ⊆ A,
then A′ := A ∪ {∼ C(y), R(x, y)}
∪{U(a, y), U(y, a) | a ∈ NA(A)}
where y is an individual name not occurring in A.

TABLE 1: Quasi-Classical Expansion Rules

R a role name and a an individual. Without loss of generality, we assume
that all concepts C occurring in A are in NNF. Secondly, we introduce QC
expansion rules which contain nine rules in the following definition.

Definition 5.1 LetA be a QC ABox, C1, C2, C concepts,R a role and x, y, z
individuals, respectively. The QC expansion rules in QC ALC are defined in
Table 1.

In Definition 5.1, four of the nine QC expansion rules, namely, u-rule, t-
rule, ∃-rule and ∀-rule, are directly borrowed from classical expansion rules
for decomposition of axioms. The QC-rule is introduced to make the resolu-
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tion rule CtD(a),¬CtE(a)
DtE(a) be satisfied in the reasoning system of QC ALC.

Other four rules, namely, ∼u-rule, ∼t-rule, ∼∃-rule and ∼∀-rule are intro-
duced to the decompose complement of axioms.

In the following, we introduce the concepts of clash and complete in QC
ALC. A QC ABox A is called complete if and only if none of the QC ex-
pansion rules of Table 1 applies to it. A QC ABox A contains a clash if for
some concept nameA, some role nameR and some individuals a, b, {A(a),∼
A(a)} ⊆ A or {¬A(a),∼ (¬A(a))} ⊆ A or {R(a, b),∼ (R(a, b))} ⊆ A. A
QC ABox A is closed if it contains a clash; and clash-free otherwise. A set
of QC ABoxes S is closed if each QC ABox of S is closed; and clash-free
otherwise.

We present our QC tableau algorithm for deciding the QC consistency of
QC ABoxes. The QC tableau algorithm starts with a QC ABox A (all con-
cepts occurring in A are in NNF). If a universal role U occurs in A, then we
initialize A by adding all role assertions U(a, b) where a, b ∈ NA(A). Then
the algorithm applies consistency preserving QC expansion rules in Table 1
to the QC ABox until no more rules to be applied. If the set of QC “com-
plete” ABoxes S obtained in this way does not contain a clash then A is QC
consistent; otherwise, A is QC inconsistent. The transformation rules that
handle disjunction and at-most restrictions are non-deterministic in the sense
that a given QC ABox is transformed into finitely many new QC ABoxes
such that the original QC ABox is QC consistent if and only if one of the new
QC ABoxes is so. For this reason, we will consider finite sets of QC ABoxes
S = {A1, . . . ,Ak} instead of single QC ABoxes. Such a set is QC consistent
iff there is some i(1 ≤ i ≤ k) such that Ai is QC consistent. A rule of Table
1 is applied to a given finite set of ABoxes S as follows: it takes an element
A of S, and replaces it by one QC ABox A′, by two QC ABoxes A′ and A′′,
or by finitely many ABoxes Ai,j .

As a result, we show that the QC tableau algorithm for any finite QC ABox
can terminate in finite steps.

Theorem 5.1 The QC tableau algorithm terminates.

In the following, we show that the QC tableau algorithm for deciding the
QC consistency of QC ABoxes is sound and complete. Firstly, we present a
lemma as the basis of completeness.

Lemma 5.1 Let A be a QC ABox. If S is a set of QC ABoxes obtained by
applying a QC expansion rule in Table 1, then we have A is QC consistent if
and only if S is QC consistent.
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From Lemma 5.1, we can show that the QC tableau algorithm for deciding
the consistency of QC ABoxes is sound.

Theorem 5.2 (Soundness) Let A be a QC ABox in QC ALC. If S is a set of
QC ABoxes obtained by applying QC expansion rules, then we have A is QC
consistent if and only if S is QC consistent.

Next, we show that the QC tableau algorithm for deciding the consistency
of QC ABoxes is complete.

Theorem 5.3 (Completeness) Any complete and clash-free QC ABox A has
a strong model.

In the following examples, we use the QC tableau algorithm for QC in-
stance checking with respect to classically inconsistent ABoxes.

Example 5.1 Given an ABox A = {Bird(tweety),¬Bird t Fly(tweety),
¬Fly u Penguin(tweety)} and a query Fly(tweety). A sequence of new
ABoxes can be obtained from A ∪ {∼ Fly(tweety)} by using the tableau
algorithm as follows:
A1 = A ∪ {∼ Fly(tweety)}.
A2 = A1∪{Fly(tweety)} forBird(tweety) and ¬BirdtFly(tweety) by
using the QC-rule.
A3 = A2 ∪ {¬Fly(tweety), P enguin(tweety)} for ¬Flyu
Penguin(tweety) by using the u-rule.

So S = (A1,A2,A3) and A3 is the last ABox of the sequence since the
QC tableau algorithm terminates. It is easy to show that A2 is closed be-
cause Fly(tweety) and ∼ Fly(tweety) are in A2. So A |=Q Fly(tweety)

by Theorem 5.2 and Theorem 5.3. Though A is classical inconsistent, sup-
posed that Wounded(tweety) is a new query then Wounded(tweety) can-
not be QC entailed by A, i.e., A |=Q Wounded(tweety), because the last
ABox in the sequence which is obtained after the QC tableau algorithm is
{Bird(tweety),¬Bird t Fly(tweety), ¬Fly u Penguin(tweety),
∼ Wounded(tweety), Fly(tweety), ¬Fly(tweety), Penguin (tweety)}
which is not closed.

Example 5.2 Let A = {¬Boy(June), HasFriend(Mike, June),
∀HasFriend.Boy t Girl(Mike), ¬Girl(Mike)} be an ALC ABox and
∃HasFriend.Girl(Mike) a query. A sequence S of new ABoxs can be ob-
tained from A ∪ {∼ (∃HasFriend.Girl)(Mike)} by using the QC tableau
algorithm as follows:
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A1 = A ∪ {∼ (∃HasFriend.Girl)(June)}.
A2 = A1 ∪ {Boy tGirl(June)} for HasFriend(Mike, June) and
∀HasFriend.Boy tGirl(Mike) by using ∀-rule.
A3 = A2 ∪ {Girl(June)} for ¬Boy(June) and Boy tGirl(June) by us-
ing QC-rule.
A4 = A3 ∪ {∼ Girl(June)} for HasFriend(Mike, June) and
∼ (∃HasFriend.Girl)(Mike) by using ∼∃-rule.

So S = (A1,A2,A3,A4) and A4 is the last ABox of the sequence since
the QC tableau algorithm terminates and A4 is closed because it has a clash
Girl(June) and ∼ Girl(June). So A |=Q ∃HasFriend.Girl(Mike) by
Theorem 5.2 and Theorem 5.3.

Example 5.3 Given an ABox A = {C tD(a)} and a query φ = C(a).
A1 = {C tD(a)} ∪ {∼ C(a)};
A21 = {C tD(a),∼ C(a), C(a)} orA22 = {C tD(a),∼ C(a), D(a)} by
using→t-rule.

We denote Ŝ = {A21,A22}. Ŝ is not closed since A22 is open. So A 6|=Q

C(a) by Theorem 5.2 and Theorem 5.3.

The above examples exemplifies that the QC tableau algorithm can be
employed to implement the problem about instance checking in inconsistent
ABoxes by Theorem 5.2 and Theorem 5.3.

Theorem 5.4 Complexity of QC consistency of QC ABoxes without a univer-
sal role U is PSPACE-Complete.

Theorem 5.5 Complexity of QC consistency of QC ABoxes with respect to a
general TBox is EXPTIME-Complete.

Theorem 5.4 and Theorem 5.5 show that the complexity of checking QC
consistency of ontologies in QC ALC is no higher than that of checking con-
sistency of ontologies in ALC.

6 RELATED WORK

In this paper, following from our previous work [35, 36], we present a para-
consistent version of description logic by introducing and revising the classi-
cal QC semantics presented in [6, 17]. Compared with QC propositional logic
[6] and QC first-order logic [17], the new constructor called complement of
an axiom, which is helpful for implementing paraconsistent reasoning via
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tableau algorithm, is introduced in the syntax of our quasi-classical DL. In
this sense, we generalize classical QC logics and discuss some interesting
reasoning tasks such as QC satisfiable problem and QC inconsistent problem.

There are many existing paraconsistent approaches to dealing with incon-
sistencies in DLs [24, 33, 16, 20, 21, 22, 23, 11, 37, 38]. In [16], inconsistency-
tolerant reasoning is based on selecting maximal consistent subsets from
inconsistent ontologies. Different from argumentation-based proposals in
[37, 38] for inconsistency-tolerant reasoning with DL-based ontologies, our
scenario is based on multi-valued semantics. Note that current paraconsis-
tent approaches to handling inconsistency in DL-based ontologies mainly
follow from multi-valued semantics such as [24, 33, 20, 21, 22, 23, 11]. The
main idea of them is applying Belanp’s four-valued semantics [5] to imple-
ment inconsistency-tolerant reasoning with DL-based ontologies. Compared
with single four-valued interpretations to capture four-valued models in four-
valued DL, two interpretations (weak interpretations and strong interpreta-
tions) are introduced to ensure the inference power of QC entailment stronger
with holding paraconsistency. Weak models based on weak interpretations
are similar to four-valued models while strong models based on strong inter-
pretations are obtained by refining four-valued models. In our quasi-classical
DL, three CGIs of four-valued DL, namely, material inclusion (7→), internal
inclusion (@) and strong inclusion (→), are integrated into an inclusion. The
relationship between quasi-classical DL and four-valued DL can be shown in
the following theorems.

Theorem 6.1 Let C,D be concepts, a an individual, R a role and I a weak
interpretation in ALC. We have
(1) I |=w C(a) if and only if I |=4 C(a);
(2) I |=w R(a, b) if and only if I |=4 R(a, b);
(3) I |=w C v D if and only if I |=4 C @ D.

Proof 1 These properties follow directly from Definition 3.2, Definition 3.3
and the definition of four-valued interpretations in four-valued DL.

Theorem 6.1 shows that each four-valued model of an ontology is a weak
model of the ontology where inclusions are interpreted as the internal inclu-
sions in four-valued DL.

Theorem 6.2 Let C,D be concepts and a an individual in L∗.
(1) if I |=s C(a) then I |=4 C(a);
(2) if I |=s C v D then I |=4 C ∝ D, where ∝ is a place-holder of 7→, @
and→ and |=4 is the four-valued entailment in four-valued DL.
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Proof 2 This theorem follows directly from Definition 3.5, Theorem 6.1 and
Theorem 3.10.

Theorem 6.2 states that each strong model of an ontology is a four-valued
model of the ontology. As a result, our QC entailment based on weak models
and strong models ensures three basic inference rules, namely, MP, MT and
DS, valid in QCDL while they are not so in four-valued DL.

Moreover, compared with existing reasoning algorithm for DL-based on-
tologies, we modify standard tableau algorithm to implement paraconsistent
reasoning with taking the advantage of quasi-classical DL.

7 CONCLUSIONS

In this paper, we have introduced QC semantics into ALC to handle incon-
sistency. QC semantics was defined by weak semantics and strong semantics.
Weak semantics is a reformulation of a four-valued semantics for ALC. In
order to make the QC semantics satisfy the resolution rules, strong semantics
was introduced by restricting disjunction of concepts in ALC. Because none
of weak semantics and strong semantics is a suitable paraconsistent seman-
tics for QC DLs, we have proposed the QC semantics for DLs by combining
two semantics in order to take their respective advantages. Intuitively, weak
interpretations are used to retain paraconsistency while strong interpretations
help in obtaining stronger reasoning power.

Compared with four-valued DL, we have redefined concept inclusion (or
subsumption) in quasi-classical DL so that intuitive equivalence is valid under
the QC semantics. For this purpose, concept inclusion under weak semantics
is defined by internal inclusion of four-valued description logic and concept
inclusion under strong semantics is defined by hybrid of three inclusions (ma-
terial inclusion, internal inclusion and strong inclusion) of four-valued DL. A
QC tableau algorithm for instance checking in a QC ABox has been proposed
in this paper. We have proved that our algorithm is terminable, sound and
complete. Moreover, we have also showed that the complexity of checking
QC consistency for QC ALC ABoxes is PSPACE-Complete; and the com-
plexity of checking QC consistency for QC ALC ABoxes with respect to a
general TBox is EXPTIME-Complete. As a future work, based on this algo-
rithm, we will develop a paraconsistent reasoner to implement QC reasoning
tasks.
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APPENDIX

Proof of Theorem 3.1
(1) and (2) follow directly from Definition 3.2. (3) and (4) follow directly
from (1) and (2).
Proof of Theorem 3.2
In all proofs of this paper, the non-logical notation⇔ is used to link the two
logical expressions which are equivalent. We use the definitions of a weak
interpretation (Definition 3.2) and the weak satisfaction (Definition 3.3) and
Theorem 3.1 to prove these properties.

(1)

I |=w ¬C(a) ⇔ aI ∈ +(¬C), where (¬C)I = 〈−C,+C)〉
⇔ aI ∈ −C where CI = 〈+C,−C〉.

(2)
I |=w ¬¬C(a) ⇔ aI ∈ +(¬¬C)

⇔ aI ∈ +C

⇔ I |=w C(a)

(3)

I |=w C tD(a) ⇔ aI ∈ +C ∪+D

⇔ aI ∈ +C or aI ∈ +D

⇔ I |=w C(a) or I |=w D(a),

where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.
(4)

I |=w C uD(a) ⇔ aI ∈ +C ∩+D

⇔ I |=w C(a) and I |=w D(a),

where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.
(5)

I |=w ¬(C uD)(a) ⇔ aI ∈ +¬(C uD)

⇔ aI ∈ +(¬(C uD))

⇔ aI ∈ +(¬C) ∪+(¬D)

⇔ I |=w ¬C t ¬D(a)

where (¬(C u D))I = 〈+(¬(C u D)), −(¬(C u D))〉, (¬C)I = 〈+(¬C),
−(¬C)〉 and (¬D)I = 〈+(¬D), −(¬D)〉.

(6) The proof of this property is similar to that of (5).
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(7)

I |=w C t (D u E)(a) ⇔ aI ∈ +C ∪+(D u E)

⇔ aI ∈ +C ∪ (+D ∩+E)

⇔ aI ∈ (+C ∩+D) ∪ (+C ∩+E)

⇔ I |=w (C tD) u (C t E)(a)

where (D u E)I = 〈+(D u E),−(D u E)〉, CI = 〈+C,−C〉,
DI = 〈+D,−D〉 and EI = 〈+E,−E〉.

(8) The proof of this property is similar to that of (7).
(9) and (10) follow directly from Definition 3.2.

Proof of Theorem 3.3

I |=w C v D ⇔ for any individual a, if aI ∈ +C then aI ∈ +D

⇔ aI 6∈ +C or aI ∈ +D

⇔ I |=w∼ C(a) or I |=w D(a)

where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.
Proof of Theorem 3.4
We apply Definition 3.3, Definition 3.4 and Theorem 3.2 to prove this theo-
rem.

(1)

I |=w∼ (C uD)(a) ⇔ aI 6∈ +(C uD)

⇔ aI 6∈ +C or aI 6∈ D
⇔ I |=w∼ C(a) or I |=s∼ D(a).

(2)

I |=w∼ (C tD)(a) ⇔ aI 6∈ +(C tD)

⇔ aI 6∈ +C and aI 6∈ D
⇔ I |=w∼ C(a) and I |=w∼ D(a).

(3)

I |=w∼ (∀R.C)(a) ⇔ aI 6∈ +(∀R.C)

⇔ there is an individual name b such that
(aI , bI) ∈ RI and aI 6∈ +C

⇔ I |=w R(a, b) and I |=w∼ C(b).

(4)

I |=w∼ (∃R.C)(a) ⇔ aI 6∈ +(∃R.C)

⇔ (aI , bI) ∈ RI ⇒ bI 6∈ +C

⇔ I |=w∼ C(b).
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Here SI = 〈+S,−S〉 and S is a place-holder of C,D,R,C u D,C t
D,∀R.C and ∃R.C.
Proof of Theorem 3.5
(1) and (2) follow directly from Definition 3.5. (3) and (4) follow directly
from (1) and (2) respectively.
Proof of Theorem 3.6

I |=s ¬C tD(a) for any individual a ∈ NI

⇔ for any individual a ∈ NI , (a
I ∈ +(¬C) or aI ∈ +D) and

(aI ∈ +C implies aI ∈ +D) and (aI ∈ −D implies aI ∈ +(¬C));

⇔ −C ⊆ +D,+C ⊆ +D and −D ⊆ −C

where CI = 〈+C,−C〉 and CI = 〈+D,−D〉.
Proof of Theorem 3.7
We prove this property by induction over n.

Base step: n = 1, it easy to check that the theorem holds. Suppose n = 2,
i.e., I |=s L1 t L2(a). By Definition 3.5, (L1 t L2)I = 〈(+L1 ∪ +L2) ∩
(−L1 ∪ +L2) ∩ (+L1 ∪ −L2),−L1 ∩ −L2〉, where LIi = 〈+Li,−Li〉 for
i = 1, 2.

I |=s L1 t L2(a)

⇔ aI ∈ (+L1 ∪+L2) ∩ (−L1 ∪+L2) ∩ (+L1 ∪ −L2)

⇔ aI ∈ (+L1 ∪+L2), aI ∈ (−L1 ∪+L2) and aI ∈ (+L1 ∪ −L2)

⇔ aI ∈ +L1 or aI ∈ +L2, if aI ∈ −L1 then aI ∈ +L2 and
if aI ∈ −L2 then aI ∈ +L1

⇔ I |=s L1(a) or I |=s L2(a) and I |=s ¬̈L1(a) implies I |=s L2(a)

and I |=s ¬̈L2(a) implies I |=s L1(a).

Induction step: suppose that n > 2, I |=s L1 t · · · t Ln(a) ⇔ I |=s

L1(a) or . . . or I |=s Ln(a) and ∀i (1 ≤ i ≤ n), I |=s ¬̈Li(a) implies
I |=s ⊗(L1 t · · · t Ln, Li)(a). Now we consider n+ 1, i.e.,

I |=s L1 t · · · t Ln+1(a)

⇔ I |=s L1 t · · · t Ln(a) or I |=s Ln+1(a) and
I |=s ¬̈Ln+1(a) implies I |=s L1 t · · · t Ln(a)

⇔ I |=s L1(a) or . . . or I |=s Ln+1(a) and
∀i(1 ≤ i ≤ n+ 1), I |=s ¬̈Li(a)

implies I |=s ⊗(L1 t · · · t Ln+1, Li)(a)

Proof of Theorem 3.8
We apply Definition 3.5, Definition 3.6 and Theorem 3.5 to prove this theo-
rem.
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(1)

I |=s ¬C(a) ⇔ aI ∈ −(¬C) where (¬C)I = 〈−C,+C〉;
⇔ aI ∈ −C, where CI = 〈+C,−C〉.

(2)
I |=s ¬¬C(a) ⇔ aI ∈ +(¬¬C)

⇔ aI ∈ +C

⇔ I |=s C(a).

(3)

I |=s C uD(a) ⇔ aI ∈ (+C ∩+D)

⇔ aI ∈ +C and aI ∈ +D

⇔ I |=s C(a) and I |=s D(a).

(4)

I |=s ¬(C uD)(a)

⇔ aI ∈ −(C uD)

⇔ aI ∈ (−C ∩ −D) ∩ (−C ∪+D) ∩ (+C ∪ −D))

⇔ aI ∈ (+(¬C) ∩+(¬D)) ∩ (+(¬C) ∪ −(¬D)) ∩ (−(¬C) ∪+(¬D))

⇔ aI ∈ +(¬C t ¬D)

⇔ I |=s ¬C t ¬D(a).

(5) The proof of this property is similar to that of (4).
(6) and (7) follow directly from Definition 3.5 and Definition 3.6.

Proof of Theorem 3.9
We apply Definition 3.5, Definition 3.7, Theorem 3.7 and Theorem 3.8 to
prove this theorem.

(1)

I |=s∼ (C uD)(a) ⇔ aI 6∈ +(C uD)

⇔ aI 6∈ +C or aI 6∈ +D

⇔ I |=s∼ C(a) or I |=s∼ D(a).

(2)

I |=s∼ (C tD)(a) ⇔ aI 6∈ +(C tD)

⇔ aI 6∈ +C and aI 6∈ +D, or
aI ∈ −C and aI 6∈ +D, or
aI ∈D and aI 6∈ +C

⇔ I |=s∼ C(a) and I |=s∼ D(a), or
I |=s ¬C(a) and I |=s∼ D(a), or
I |=s ¬D(a) and I |=s∼ C(a).
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(3)

I |=s∼ (∀R.C)(a) ⇔ aI 6∈ +(∀R.C)

⇔ there is an individual name b such that
(aI , bI) ∈ +R and aI 6∈ +C

⇔ I |=s R(a, b) and I |=s∼ C(b).

(4)

I |=s∼ (∃R.C)(a) ⇔ aI 6∈ +(∃R.C)

⇔ (aI , bI) ∈ +R⇒ aI 6∈ +C

⇔ I |=s∼ C(b).

Here SI = 〈+S,−S〉 and S is a place-holder ofC,D,R,CuD,CtD,∀R.C
and ∃R.C.
Proof of Theorem 3.10
An axiom φ can only have three forms, namely, R(a, b), C v D and C(a)

where C,D are concepts, R is a role name and a, b are individuals.

(1) When φ is R(a, b) or C v D, it is easy to prove the theorem by Defi-
nition 3.3 and Definition 3.6.

(2) When φ isC(a), there are two cases, namely,C is a concept name and a
complex concept. This theorem clearly holds whenC is an atomic con-
cept. In the following, we mainly discuss the case that C is a complex
concept by induction over the number n of connectives and quantifiers
in C.

Base step: when n = 1, C is in one of the following five forms, namely,
¬A(a), DuE, DtE, ∀R.D and ∃R.D whereA is an atomic concept,
D,E are concepts, R is a role name and a, b are individuals.

(a) When φ has one of the following forms, namely, ¬A(a), ∀R.D(a)

and ∃R.D(a), the strong interpretation of φ is equivalent to the
weak interpretation of φ by Definition 3.2 and Definition 3.5.
Therefore, this theorem clearly holds.

(b) Suppose φ = C uD(a). If I |=s C uD(a) then aI ∈ +C ∩+D

by Definition 3.5 where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.
Therefore, I |=w C uD(a) by Definition 3.2.

(c) Suppose φ = C t D(a). If I |=s C t D(a) then aI ∈ (+C ∪
+D)∩(−C∪+D)∩(+C∪−D) by Definition 3.5. So aI ∈ +C∩
+D where CI = 〈+C,−C〉 and DI = 〈+D,−D〉. Therefore,
I |=w C uD(a) by Definition 3.2.
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Induction step: assume when the number of connectives and quantifiers
in C is n, the theorem holds. We reduce axioms with the number n+ 1

of connectives and quantifiers into axioms with the number n of con-
nectives or quantifiers by equivalently eliminating one connective or
quantifier. For instance, suppose φ = C u (D t E)(a) where C,D,E
are concepts and a is an individual. If I |=s C u (D t E)(a) then
aI ∈ +C and aI ∈ +(DtE) whereCI = 〈+C,−C〉 and (DtE)I =

〈+(DtE),−(DtE)〉, that is, I |=s C(a) and I |=s DtE(a). Thus,
I |=w C(a) and I |=w D t E(a). Then I |=w C u (D t E)(a).

In a word, we have proved that if I |=s C(a) then I |=w C(a) by
Theorem 3.2 and Theorem 3.8.

Proof of Theorem 3.11
LetA = {BtC(a),¬BtE(a)}. We assume that I is a strong interpretation
of {BtC(a),¬BtE(a)}, i.e., I |=s BtC(a) and I |=s ¬BtE(a). Thus,
aI ∈ (+B∪+C)∩(−B∪+C)∩(+B∪−C) and aI ∈ (−B∪+E)∩(+B∪
+E)∩ (−B∪−E) by Definition 3.5. Then aI ∈ (+B∪+C)∩ (−B∪+E).
Observe that
(1) If aI ∈ +B then aI ∈ +E.
(2) If aI 6∈ +B then aI ∈ +C. Therefore, aI ∈ +C or aI ∈ +E.

Thus, I |=w C t E(a) by Definition 3.2. So if I |=s B t C(a) and
I |=s ¬B t E(a) then I |=w C t E(a). Hence, A |=Q C t E(a).
Proof of Theorem 4.1

(1) (⇐) Suppose that O 6|=Q C(a), by Definition 3.8 there exists an in-
terpretation I such that I |=s O but I 6|=w C(a), i.e., I 6|=s C(a)

by Theorem 3.10. Since I |=s O, I |=s O ∪ {∼ C(a)}, that is, I is
a strong model of O ∪ {∼ C(a)} which contradicts the premise that
O ∪ {∼ C(a)} is QC inconsistent by the definition of QC inconsis-
tency.
(⇒) Suppose thatO∪{∼ C(a)} is QC consistent. Thus, there exists an
interpretation J such that J |=s O∪{∼ C(b)} by the definition of QC
inconsistency. Then J |=s O and J |=s∼ C(b). That is, aJ 6∈ +C

where CJ = 〈+C,−C〉. Then J 6|=w C(a), i.e., J |=w∼ C(a) by
Definition 3.4. Therefore, O 6|=Q C(a) which contradicts the premise
that O |=Q C(a).

(2) (⇐) Suppose that O 6|=Q C v D, by Definition 3.8 there exists an
interpretation I such that I |=s O but I 6|=w C v D, i.e., I 6|=s

33



C v D by Theorem 3.10. Thus, there exists an individual a such that
if I |=s C(a) then I |=s∼ D(a) by Definition 3.7 and Theorem 3.3.
Then I |=s {C(a),∼ D(a)}. Since I |=s O, I |=s O ∪ {C(a),∼
D(a)}, that is, I is a QC strong model of O ∪ {C(a),∼ D(a)} which
contradicts the premise that for any individual ι, O ∪ {C(ι),∼ D(ι)}
is QC inconsistent by the definition of QC inconsistency.
(⇒) Suppose that there exists an individual b such that O ∪ {C(b),∼
D(b)} is QC consistent. Thus, there exists an interpretation J such
that J |=s O∪ {C(b),∼ D(b)} by the definition of QC inconsistency.
Then J |=s O, J |=s C(b) and J |=s∼ D(b). That is, bJ ∈ +C

and bJ 6∈ +D where CJ = 〈+C,−C〉 and DJ = 〈+D,−D〉. Then
J 6|=w C v D, i.e., J |=w∼ C v D by Definition 3.4. Therefore,
O 6|=Q C v D which contradicts the premise that O |=Q C v D.

Proof of Theorem 5.1
We only prove that there cannot be an infinite sequence of rule application,
i.e., A → S1 → S2 → · · · where Si (i = 0, 1, . . .) is a set of QC ABoxes
which is obtained from A by using QC expansion rules after the ith step.
Given a finite ABoxA built from NC , NR and NI whose cardinalities are all
finite, we can obtain two facts:
(1) all concept axioms occurring in a QC ABox in one of the sets Si are of
the form C(x) where C ∈ NC ; and
(2) if a QC ABox in Si contains the role assertion axioms R(x, y), then the
maximal role depth of concepts occurring in concept assertion axioms for
y is strictly smaller than the maximal role depth of concepts occurring in
concept assertion axioms for x. Assume to the contrary that there is an infinite
sequence A → S1 → S2 → · · · . We shall map each QC ABox Aj in Si to
a set of elements Ψ(Aj) of a set Q which is equipped with a well-founded
strict partial ordering � defined by Baader and Hanschke in [2] as follows:
Ψ(A)� Ψ(A′) if A′ is obtained from A by applying a QC transform rule at
a time. Since the ordering is well-founded, i.e., has no infinitely decreasing
chains, we get a contradiction with the ordering based on the above two facts.
Proof of Lemma 5.1
We consider nine QC expansion rules to prove this property. We assume that
S is obtained by applying QC expansion rule as follows.

(1) u-rule, that is, A contains C1 u C2(a) and but not both C1(a) and
C2(a). Thus the only member of S is A ∪ {C1(a), C2(a)}. Since
the strong model of {C1 u C2(a)} is the same as the strong model of
{C1(a), C2(a)} by Theorem 3.8 (3). Therefore, this property is satis-
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fied.

(2) t-rule, that is,A containsC1tC2(a) and but neitherCi(a) nor ¬̈Ci(a)

for i = 1, 2. Thus two members of S areA∪{C1(a)} andA∪{C2(a)}.
Since the strong model of {C1tC2(a)} is the same as the strong model
of {C1(a)} or {C2(a)} by Theorem 3.7. Therefore, this property is
satisfied.

(3) ∃-rule, that is, A contains ∃R.C(a), but there is no individual name c
such that C(c) andR(a, c) are inA. Thus the only member of S isA∪
{C(b), R(a, b)}{U(x, b), U(b, x) | x ∈ NA(A)} where b is an indi-
vidual name not occurring inA. Since the strong model of {∃R.C(a)}
is the same as the strong model of {C1(b), R(a, b)}{U(x, b), U(b, x) |
x ∈ NA(A)} by Definition 3.5. Therefore, this property is satisfied.

(4) ∀-rule, that is, A contains ∀R.C(a) and R(a, b), but it does not con-
tain C(b). Thus the only member of S is A ∪ {C(b)}. Since the
strong model of {∀R.C(a), R(a, b)} is the same as the strong model
of {C(b)} by Definition 3.5. Therefore, this property is satisfied.

(5) QC-rule, that is, A contains C1 t C2(a) and ¬̈Ci(a), i ∈ {1, 2}. Thus
the only member of S is A ∪ {⊗(C1 t C2, Ci)(a)}. Since the strong
model of {C1 t C2(a)} is the same as the strong model of {⊗(C1 t
C2, Ci)(a)} by Theorem 3.7. Therefore, this property is satisfied.

(6) ∼u-rule, that is, A contains ∼ (C1 u C2)(a), but neither ∼ C1(a)

nor ∼ C2(a). Thus the two members of S are A ∪ {∼ C1(a)} or
A ∪ {∼ C2(a)}. Since the strong model of {∼ (C1 u C2)(a)} is the
same as the strong model of {∼ C1(a)} or {∼ C2(a)} by Theorem 3.9
(1). Therefore, this property is satisfied.

(7) ∼t-rule, that is,A contains∼ (C1tC2)(a), but not both∼ C1(a) and
∼ C2(a). Thus the only member of S is A ∪ {∼ C1(x),∼ C2(x)}.
Since the strong model of {∼ (C1 t C2)(a)} is the same as the strong
model of {∼ C1(a),∼ C2(a)} by Theorem 3.9 (2). Therefore, this
property is satisfied.

(8) ∼∃-rule, that is, A contains ∼ (∃R.C)(a) and R(a, b), but it does not
contain ∼ C(b). Thus the only member of S is A ∪ {∼ C(y)}. Since
the strong model of {∼ (∃R.C)(a), R(a, b)} is the same of {∼ C(b)}
by Theorem 3.9 (4). Therefore, this property is satisfied.
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(9) ∼∀-rule, that is, A contains ∼ (∀R.C)(a), but there is no individual
name c such that ∼ C(c) and R(a, c) are in A. Thus the only member
of S is A ∪ {∼ C(b), R(a, b)} ∪ {U(x, b), U(b, x) | x ∈ NA(A)}
where b is an individual name not occurring in A. Since the strong
model of {∼ (∀R.C)(a)}{U(x, b), U(b, x) | x ∈ NA(A)} is the same
of {∼ C(b), R(a, b)} by Theorem 3.9 (3). Therefore, this property is
satisfied.

(10) ∀-rule for the universal role U , that is,A contains ∀U.C(a), for any in-
dividual y ∈ NA(A),A contains U(a, y), but it does not contain C(y).
Thus the only member of S is A ∪ {C(y)}. Since the strong model
of {∀U.C(a), R(a, y)} is the same as the strong model of {C(y)} by
Definition 3.5. Therefore, this property is satisfied. We analogously
prove the ∼ ∃-rule for the universal role U .

In short, this property holds for any QC expansion rule in Table 1.
Proof of Theorem 5.2
It easily shows that this property holds because QC inconsistency can be
maintained by applying any QC expansion rule at a time based on Lemma
5.1.
Proof of Theorem 5.3
Let IA be a canonical strong interpretation induced by A such that:

(1) the domain ∆IA of IA consists of all the individual names occurring
in A;

(2) for all concept names A we define AIA = 〈+A,−A〉;

(3) for all role names R we define RIA = 〈+R,−R〉

where

+A = {aIA | A(a) ∈ A} \ {bIA |∼ A(b) ∈ A};
−A = {aIA | ¬A(a) ∈ A} \ {bIA |∼ (¬A(b)) ∈ A};
+R = {(aIA , bIA) | R(a, b) ∈ A} \ {(cIA , dIA) |∼ R(a, b) ∈ A};
−R = (∆IA ×∆IA)\+R.

+U = {(aIA , bIA) | a, b ∈ NA(A)}
−U = ∅

Therefore, we need to show that IA is a strong model of A. Firstly, by
definition, IA satisfies all the role assertions in A. Next, we will show that
for any concept assertion φ ∈ A, it satisfies φ as well by induction on the
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structure of concept descriptions.
(Basic step): φ = A(a) where A is a concept name and a is an individual in
ALC. SinceA is clash-free, i.e.,A does not contain any clash, andA(a) ∈ A,
∼ A(a) 6∈ A. Thus aIA ∈ +A by the definition of IA. Then IA |=s A(a)

by Definition 3.6.
(Induction step): every expressive concept assertion φ has six basic forms
as follows: ¬C(a), ∼ C(a), C u D(a), C t D(a), ∀R.C(a) and ∃R.C(a)

where C,D are concepts, R is a role name and a is an individual in ALC.
We inductively assume that IA satisfies all concept assertions of A the num-
ber of whose connectives is less than that of φ and CIA = 〈+C,−C〉,
DIA = 〈+D,−D〉 and RIA = 〈+R,−R〉. We will consider six cases in
the following proof.

• Case 1: φ = ¬C(a). Since A is clash-free, and ¬C(a) ∈ A then
∼ (¬C(a)) 6∈ A. Thus aIA ∈ −C by the definition of IA. Then
IA |=s ¬C(a) by Definition 3.6.

• Case 2: φ =∼ C(a). Since A is clash-free, and ∼ C(a) ∈ A then
C(a) 6∈ A. Thus aIA ∈ ∆IA \ +C by the definition of IA. Then
IA |=s∼ C(a) by Definition 3.6.

• Case 3: φ = C u D(a). Since A is clash-free, and C u D(a) ∈ A,
∼ (C uD)(a) 6∈ A. Thus {C(a), D(a)} ⊆ A because A is complete.
Based on the inductive hypothesis, IA |=s C(a) and IA |=s D(a), i.e.,
aIA ∈ +C and aIA ∈ +D. By Definition 3.5, aIA ∈ +C ∩ +D. By
Theorem 3.9 Item 1, aIA 6∈ ∆IA \ +C or aIA 6∈ ∆IA \ +D. Thus
aIA ∈ +(C uD) by the definition of IA. Then IA |=s C uD(a) by
Definition 3.6.

• Case 4: φ = C t D(a). Since A is clash-free, and C u D(a) ∈ A,
∼ (C tD)(a) 6∈ A. We consider two cases:

(a) if {¬C(a),¬D(a)} ∩ A = ∅, then C(a) ∈ A or D(a) ∈ A be-
cause A is complete. Based on the inductive hypothesis, IA |=s

C(a) or IA |=s D(a), i.e., aIA ∈ +C or aIA ∈ +D. Thus
aIA ∈ +C ∪ +D by Definition 3.5. By Theorem 3.9 Item 2,
aIA 6∈ ∆IA \+C or aIA 6∈ ∆IA \+D. Thus aIA ∈ +(C tD)

by the definition of IA. Then IA |=s CtD(a) by Definition 3.6.

(b) if {¬C(a),¬D(a)}∩A 6= ∅ and we assume ¬C(a) ∈ A without
loss of generality, then D(a) ∈ A because A is complete. Based
on the inductive hypothesis, IA |=s D(a), aIA ∈ +D. Then
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aIA ∈ (+C ∪+D)∩ ((∆IA \−C)∪+D) by Definition 3.5. By
Theorem 3.9 Item 2, aIA 6∈ ∆IA \+C or aIA 6∈ ∆IA \+D; and
aIA 6∈ −C or aIA 6∈ ∆IA \+D. Thus aIA ∈ +(C tD) by the
definition of IA. Then IA |=s C tD(a) by Definition 3.6.

• Case 5: φ = ∀R.C(a). Since A is clash-free, and ∀R.C(a) ∈ A then
∼ ∀R.C(a) 6∈ A. If there exists a role assertion R(a, b) ∈ A, then
C(b) ∈ A because A is complete. Based on the inductive hypothe-
sis, IA |=s C(b), i.e., bIA ∈ +C. By Definition 3.5, aIA ∈ {x |
∀y, (x, y) ∈ +R implies y ∈ +C}. By Theorem 3.9 Item 3, there is
not any individual b such that (aIA , bIA) ∈ +R and bIA ∈ ∆IA \+C.
Thus aIA ∈ +∀R.C by the definition of IA. Then IA |=s ∀R.C(a)

by Definition 3.6.

• Case 6: φ = ∃R.C(a). Since A is clash-free, if ∃R.C(a) ∈ A then
∼ ∃R.C(a) 6∈ A. Thus there exists an individual t occurring in A
such that C(t) ∈ A because A is complete. Based on the inductive
hypothesis, IA |=s C(t), i.e., tIA ∈ +C. By Definition 3.5, aIA ∈
{x | ∃y, (x, y) ∈ +R and y ∈ +C}. By Theorem 3.9 Item 4, there
is an individual b such that (aIA , bIA) ∈ +R and bIA 6∈ ∆IA \ +C.
Thus aIA ∈ +∃R.C by the definition of IA. Then IA |=s ∃R.C(a)

by Definition 3.6.

In short, IA is a strong model of A. By induction, we could show that it
satisfies all concept assertions of A as well.
Proof of Theorem 5.4
Firstly, we need to show that the problem of checking QC consistency of QC
ABoxes is PSPACE by employing the analogical proof of the problem that
decides the consistency of ALC ABoxes in [4]. Let A be a QC ABox. We
denote | A | as the size of A. Intuitively | A | is the length required to write
A down, where we assume that the length required to write atomic concept,
the negation of concept name and atomic role is “1”. Formally, we define the
size of QC ABoxes as follows:

| A | =
∑

C(a)∈A(| C | +1) +
∑

R(a,b)∈A 3

| A |=| ¬A | = 1 for a concept name A(including >,⊥)

|∼ D | = | D | +1

| D1 uD2 |=| D1 tD2 | = | D1 | + | D2 | +1

| ∃R.D |=| ∀R.D | = | D | +2

We observe that the QC tableau algorithm builds a completion forest in a
monotonic way; that is, all QC expansion rules in Table 1 either add new
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concept assertions and role assertions to a QC ABox or new QC ABoxs to
the set of QC ABoxes S, but never remove anything. We call an individual
occurring in A an old individual. Other individuals no occurring in A before
are generated by the ∃-rule or ∼ ∀-rule, and we call them new individuals;
we call the other rules augmenting rules, because they only augment existing
individuals. Note that no new role assertion U(a, y), where a ∈ NA(A) and
y is a new individuals, will be added since without the universal role U . In
contrast to role assertions on between old individuals, role assertions between
new individuals are of a particular shape: each new individual is found in
a QC ABox of S with an old individual in A. Other new assertions over
old individuals are added by the expansion rules, and these expansion rules
only add subconcept assertions over old individuals or role assertions over
old individuals where subconcepts and roles are inA. However, new concept
assertion over new individuals or role assertion over new individuals being
added by the expansion rules is limited by the number of ∃ or ∼ ∀ occurring
in A and a new ABox added by the expansion rules is limited by the number
of t and ∼ u occurring inA. Since there are at most | A | such subconcepts,
each QC ABox can be stored in space polynomial in | A |. Moreover, for
each concept D in each QC ABox Ai, any QC ABox Aj which is in front
of Ai in the queue of QC ABoxes contains a larger concept of D. Hence the
maximum size of concepts in QC ABoxes strictly decreases along the queue
of QC ABoxes by applying the QC expansion rules step by step, and thus the
length of the queue of QC ABoxes is bounded by max{C | C(a) ∈ A}.

Initially, we start A. Then we apply the QC expansion rules in Table 1
exhaustively. Finally, we note that the QC expansion rules can be applied in
an arbitrary order, that is, the correctness proof for the QC tableau algorithm
does not rely on a specific application order. Therefore, we can use the fol-
lowing order: firstly, all augmenting rules are exhaustively applied assertions
over old individuals and a set of QC ABoxes is obtained.

Secondly, we apply the ∃-rule on the form ∃R.C(a) and the ∼ ∀-rule on
the form∼ ∀R.C(a) to a set of QC ABoxes and a new concept assertion over
a new individual and a new role assertion over a new individual are added by
applying the ∃-rule and the ∼ ∀-rule in a time. Then we apply the ∀-rule or
∼ ∃-rule exhaustively to assertions over new individuals. Then we recursively
apply the same procedure to new assertions over both old individuals and
new individuals, i.e., exhaustively apply the augmenting rules, and then deal
with the existential restrictions one at a time. As usual, the QC algorithm
stops if a clash occurs; otherwise, when all existential restrictions of a new
assertion over a new individual t or value restrictions of complement of a
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concept assertion over a new individual t have been dealt with, we can delete
all assertions over t, i.e., delete all assertions with the form C(t) and reuse
the space. Thus, we can investigate the whole of a QC ABox which generates
from A with only keeping a single block in memory at any time. This block
is of length linear in | A |, and can thus be stored with a QC ABox in size
polynomial in | A |. We can continue the investigation of all QC ABoxes of S
in the same manner, the QC tableau algorithm only requires space polynomial
in | A |. Therefore, the problem of checking QC consistency of QC ABoxes
is PSPACE.

In the following, we need to show that there exists a problem with the
complexity in PSPACE-Complete which is no more complex than the prob-
lem of checking QC consistency of QC ABoxes. Manfred Schmidt-Schauß et
al [31] had proved that the complexity of checking consistency of DL ALC
ABoxes is PSPACE-Complete. We need only to prove that the problem of
checking consistency of DL ALC ABoxes can be reduced to the problem of
instance checking in QC ALC. Now we consider the problem of deciding
the satisfiability of a concept C with respect to an empty ABox. Let Cnew

be a new concept name not occurring in C. C is unsatisfiable if and only
if {C t Cnew(a)} |= Cnew(a). If {C t Cnew(a)} |= Cnew(a), then we
have a classical DL tableau proof. Let A be {{C t Cnew(a),¬Cnew(a)}.
If A is classical inconsistent, then {C t Cnew(a)} |= Cnew(a). That is to
say, the satisfiability of a concept C with respect to an empty ABox is re-
duced to checking the consistency of A. If ¬ is transformed into ∼ in A, i.e.,
{C t Cnew(a),∼ Cnew(a)} (denoted by AQ), then the problem of check-
ing the consistency of A can be reduced to the problem of checking the QC
consistency of AQ. Now, we only need to show that there exists a QC DL
tableau proof. Firstly, we use the t-rule in Table 1 for AQ and we obtain
two ABoxes A′ = {C(a),∼ Cnew(a)} and A′′ = {Cnew(a),∼ Cnew(a)}.
We mainly consider A′ because A′′ contains a clash. Five expansion rules
(namely, t-rule, u-rule, ∀-rule, ∃-rule and QC-rule) in Table 1 are enough
to decide whether {C(a),∼ Cnew(a)} is closed or not because C(a) is a
classical axiom and Cnew is a new concept name different from C. More-
over, such five rules can be captured by standard rules in ALC (see Figure
2.6 [1]). (Note that (1) the t-rule and the QC-rule in Table 1 can be captured
by the standard t-rule in ALC; and (2) the u-rule, the ∀-rule and the ∃-rule
directly inherit the corresponding standard rules in ALC). Thus, we employ
the QC tableau algorithm to decide whether {C t Cnew(a),∼ Cnew(a)} is
QC consistent by applying standard tableau algorithm. It is easy to see that
in such case, the classical DL tableau proof is transformed into a QC DL
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tableau proof. That is, following from the symbol transformation, the prob-
lem of whether {C t Cnew(a)} |= Cnew(a) can be reduced to the problem
of whether {C t Cnew(a),∼ Cnew(a)} is QC consistent. By Theorem 5.2
and Theorem 5.3, it is equivalent to C t Cnew(a) |=Q Cnew(a). Now, we
have reduced the problem of deciding whether C is unsatisfiable to deciding
whether C t Cnew(a) |=Q Cnew(a). The reduction is in polynomial time.

So the complexity of checking QC consistency of QC ABoxes is PSPACE-
Complete.
Proof of Theorem 5.5
Firstly, we need to show that the problem of checking QC consistency of a QC
ALC ABox with respect to a general TBox is in EXPTIME by employing the
analogical proof of the complexity of the problem deciding the consistency
of an ALC ABox with respect to a general TBox in [29, 8]

Two reasoning problems, namely, instance checking and subsumption
checking inALC, is PSPACE-Complete if ABoxes involv only a single atomic
role (see [19, 8]). However, two reasoning problems in ALC is EXPTIME
if involving a universal role U which is taken as a transitive-reflexive closure
of roles (see [9, 8, 15]). By Lemma 2.1 and Theorem 4.1, two reasoning
problems could be equivalently reduced into the problem of deciding consis-
tency of ABox with a universal role U . Lemma 2.2 states that the problem
about deciding consistency of an ALC ABox with respect to a general TBox
is equivalent to the problem of deciding consistency of an ALC ABox with
a universal role U . That is to say, the problem of deciding consistency of an
ALC ABox with respect to a general TBox is also in EXPTIME. Based on the
proof of Theorem 5.4, we analogously show that the problem of consistency
of an ALC ABox with a universal role U can be reduced to the problem of
instance checking in a QC ALC ABox with a universal role U . In addition,
Corollary 4.1 tells that the problem about deciding QC consistency of a QC
ALC ABox with respect to a general TBox is equivalent to the problem about
deciding QC consistency of a QC ALC ABox with a universal role U . Thus
the problem about deciding QC consistency of a QCALC ABox with respect
to a general TBox is also EXPTIME.

In the following, we need to show that there exists a problem with the
complexity EXPTIME-Complete which is no more complex than the problem
of checking QC consistency of a QC ABox with respect to a general TBox.
In [29, 8], we know that the complexity of checking consistency of an ALC
ABox with respect to a general TBox is EXPTIME-Complete. We only prove
that the problem of checking consistency of an ABox with respect to a general
TBox can be reduced to the problem of checking QC consistency of a QC
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ABox with respect to a general TBox. Let O = (T ,A) be a new consistent
ALC ontology and C(a) an ALC concept assertion where T is a general
ALC TBox, A an ABox and C 6≡ >. By Lemma 2.1, O |= C(a) if and
only if (T ,A ∪ {¬C(a)}) is inconsistent. Moreover, by Theorem 4.1, O |=
C(a) if and only if (T ,A ∪ {∼ C(a)}) is QC inconsistent. In addition,
O |=Q C(a) if and only if O |= C(a) since O is consistent and C 6≡ >.
Then (T ,A ∪ {¬C(a)}) is inconsistent if and only if (T ,A ∪ {∼ C(a)}) is
QC inconsistent. Therefore, we could show that the problem about checking
consistency of an ABox with respect to a general TBox can be reduced to
the problem about checking QC consistency of a QC ABox with respect to a
general TBox.

So the complexity of checking QC consistency of a QC ALC ABox with
respect to a general TBox is EXPTIME-Complete.
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