
Made available by Hasselt University Library in https://documentserver.uhasselt.be

The estimation of the number of lost multi-copy documents: a new type

of informetrics theory

Peer-reviewed author version

EGGHE, Leo & Proot, G. (2007) The estimation of the number of lost multi-copy

documents: a new type of informetrics theory. In: JOURNAL OF INFORMETRICS,

1(4). p. 257-268.

DOI: 10.1016/j.joi.2007.02.003

Handle: http://hdl.handle.net/1942/1784



 1 

The estimation of the number of 

lost multi-copy documents: 

a new type of informetrics theory 

 

by 

 

L. Egghe.  Universiteit Hasselt (UHasselt), Campus Diepenbeek, Agoralaan, B-3590 

Diepenbeek, Belgium
1
 

 and 

 Universiteit Antwerpen (UA), Campus Drie Eiken, Universiteitsplein 1, B-2610 

Wilrijk, Belgium 

and 

G. Proot. Universiteit Antwerpen (UA), Stadscampus, Prinsstraat 13, B-2000 Antwerpen, 

Belgium 

 

ABSTRACT 

 

A probabilistic model is presented to estimate the number of lost multi-copy documents, 

based on retrieved ones. For this we only need the number of retrieved documents of which 

we have one copy and the number of retrieved documents of which we have two copies. If we 

also have the number of retrieved documents of which we have three copies then we are also 

able to estimate the number of copies of the documents that ever existed (assumed that this 

number is fixed over all documents). Simulations prove the stability of the model. 

 

The model is applied to the estimation of the number of lost printed programmes of Jesuit 

theatre plays in the Provincia Flandro-Belgica before 1773. This Jesuit province was an 
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administrative entity of the order, which was territorially slightly larger in extent than present 

day Flanders, the northern, Dutch-speaking part of Belgium. 

 

It is noted that the functional model jP  for the fraction of retrieved documents with j copies is 

a size-frequency function satisfying ( ) ( )j 1 j j j 1P / P / P / P 1+ - <  for all j. It is further noted that the 

“classical” size-frequency functions are different: Lotka’s function satisfies the opposite 

inequality and the decreasing exponential one gives always 1 for the above ratio, hence 

showing that we are in a new type of informetrics theory. 

 

We also provide a mathematical rationale for the “book historical law” stating that the 

probability to lose a copy of a multi-copy document (i.e. an edition) is an increasing function 

of the size of the edition. 

 

The paper closes with some open problems and a  description of other potential applications 

of this probabilistic model. 

 

I.  Introduction 

 

Most printed documents appear in several copies. The number of these copies is usually high. 

Indeed: books usually appear in hundreds or thousands of copies and the same is true for 

printed journals. They are spread out over the world (for international literature) or over one 

country or region (for literature with local interest). Other examples of multi-copy documents 

are (non-exhaustively!): newspapers, music scores, “In Memoriam”-cards, theatre plays, … . 

Even non-documentary objects fall in the category of having multiple copies: engravings, 

etches, pieces of art produced by a factory, furniture, tools, cars, stamps and many other 

collector’s items. To fix the idea we will, however, continue to use the terminology “multi-

copy documents”. 

 

Typical for these multi-copy documents is that, at the time of production, we have a 

“complete” set of copies (whatever their amount is) and that from that time on copies can be 

lost: the further we are away from the production time (i.e. t 0= ) the higher the probability 

that a copy of a document is lost. Here we look at a cumulative time-period [ ]0, t  and we do 
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not claim anything about the probability, in a time-period [ ]t, t t+ , that a copy will be lost: 

this can increase in t, say in the case of old material which has not much value (e.g. 

newspapers, commercial printings, …) but this probability can also decrease in t at a certain 

moment as is e.g. the case for precious materials as old printings kept in a museum or a 

library. 

 

Lost copies do not always imply that the document as such is lost: the latter means that all 

copies of the document are lost. Dependent on the application we can have that the majority 

of documents are lost or that lost documents are very rare. Of very precious old printings (e.g. 

of books) it will occur only very rarely that all copies are lost (or destroyed, e.g. by fire). The 

topic that lead us to this article is an example where the majority of multi-copy documents are 

lost, namely in the case of printed programmes of Jesuit theatre plays edited before 1773 in 

the Provincia Flandro-Belgica. This Jesuit province encompassed secondary schools in 18 

cities, which nowadays belong to the Nord de France (Dunkerque, Cassel, Bergues and 

Bailleul), the southern part of the Netherlands (Breda, Maastricht, 's-Hertogenbosch and 

Roermond) and present-day Flanders (Aalst, Antwerpen, Bruges, Brussels, Gent, Halle, Ieper, 

Kortrijk, Mechelen and Oudenaarde). 

 

These printed programmes of theatre plays were not considered as precious (certainly at the 

time of their performance) and many copies are lost. For a certain number of theatre 

programmes, all copies are lost or destroyed, which in most cases means that all information 

about the play itself is lost too. One reason for this can be that, in those times, paper was very 

scarce and one re-used the paper of many of these printed copies of theatre plays. For more on 

this historical problem we refer the reader to Proot and Egghe (2007). 

 

This intriguing historical case was the origin for this paper which will treat this problem in a 

general way: based on “what we have”, i.e. some found copies of multi-copy documents, is it 

possible to predict the number of lost documents, i.e. of which we do not have a single printed 

copy anymore ? It will turn out that only the knowledge of the number of documents of which 

we have one copy and the knowledge of the number of documents of which we have two 

copies, is already enough to estimate the number of lost documents. This will be done in the 

next section where we will also show that the method is very stable: this will be done by 

performing simulations of lost copies on a corpus of which we know the size. In the same 



 4 

section, the model will be applied to the data that we have on found Jesuit theatre plays. Since 

these plays originally were printed in at least 150 copies (going up to 850 copies – see further) 

this application shows that in this case the results are almost independent of this (unknown) 

number a of copies. 

 

The third section is then devoted to establishing a model to estimate this unknown number a 

of copies (especially for low values of a this is needed in order to apply the model in the 

second section). It turns out that we now also need the number of documents of which we 

found three copies: this number is of course known but needs to be large enough in order to 

yield reliable estimates for the number a. 

 

The fourth section considers the in the second section proved formulae for the fraction jP  of 

documents of which we have j copies ( )j 1,2,3,...= . Here we show that this size-frequency 

function satisfies 

 

 

j

j
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j
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P

P 1

+
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for all j 2³ . This proves that the informetrics theory based on the function jj P®  cannot be 

Lotkaian since for these functions we always have jQ 1> . The decreasing exponential 

function is between these two types of informetrics theories since here we have jQ 1=  for all 

j. This section concludes that we encountered a new type of informetrics theory. 

 

The fifth section gives a (partial) explanation of the so-called book historical law (see Proot 

and Egghe (2007) for some historical references) stating that the probability to lose a copy of 

a document is an increasing function of the size of the edition. 

 

The sixth section formulates some open problems concerning this model and discusses some 

possible applications to examples of multi-copy documents (or even not-printed objects), 

which were briefly mentioned in the beginning of this introductory section. 
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II.  The model 

 

The model is not time-dependent. We suppose that we have a situation of documents of which 

a copies were produced (printed) some time ago (the precise timing of this is not needed in the 

model). We do not need to know the exact value of the variable a: we will treat a as a 

parameter and we will evaluate the results (and the possible need to know the value of a) later. 

Now we look at the present time and count the number of found documents of which we have 

i copies ( )i 1,2,3,...= . Can (some of) these numbers predict the number of lost documents, i.e. 

documents of which all a copies are lost ? 

 

The used probabilistic methods are elementary and can e.g. be found in Canavos (1984) or 

Grimmett and Stirzaker (1985). 

 

The basic (unknown) number is p which we define as the probability for a copy to be lost 

( )0 p 1< < . It is the unknown number being the division of the  number of lost copies (in total) 

by the total number of copies that ever existed. 

 

Since p is the probability for a copy to be lost we can, using this unknown number, determine 

the fraction of the documents of which we still have { }j 0,1,2,...,aÎ  copies left. This is 

denoted by jP  and equals 

 

 ( )
ja j

j

a
P p 1 p

j

-
æ ö
÷ç ÷= -ç ÷ç ÷çè ø

 (1) 

 

Note that this formula also comprises the cases where no copies are left, i.e. the fraction 0P  of 

lost documents: 

 

 a

0P p=  (2) 

 

and also comprises the case where no copies are lost, i.e. the fraction aP  of documents of 

which we have all copies: 

 

 ( )
a

aP 1 p= -  (3) 

 

Note that (1) treats all document probabilities since 
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P 1
=

=å  (4) 

 

as is readily seen. 

 

Note that 
0P  is the fraction of lost documents (unknown but this is the fraction we are looking 

for) and that 
1P  and 

2P  are also unknown but that 2

1

P

P
 is known: indeed, denote by N the 

unknown total number of documents that ever existed, then 

 

 2 2

1 1

P NP

P NP
=  (5) 

 

which is the division of two known numbers: the number of documents of which we have two 

copies found and the number of documents of which we have found one copy. Note that the 

unknown N cancels in (5). But, using (1) for j 1=  and j 2=  we find 

 

 ( )a 1

1P ap 1 p-= -  (6) 

 

 
( )

( )
2a 2

2

a a 1
P p 1 p

2

-
-

= -  (7) 

 

, hence (5) reduces to 

 

 2

1

P a 11 p

P 2 p

- -
=  (8) 

 

Solving equation (8) for p gives 
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2
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p
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1
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Formula (9) in the formula (2) for 
0P  yields 

 

 

( )

a

0
2

1

1
P

2P
1

a 1 P
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ê ú

+ê ú
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 (10) 

 

In this formula, as said above, 2

1

P

P
 is known but the parameter a is unknown. How to 

determine the value of a will be the topic of Section III. Now we will apply this model to the 

case of Jesuit theatre programmes and it will turn out (lucky as we are!) that, with these 

practical data (and probably in much more occasions), 
0P  is almost constant in a. The data are 

as follows: 

 

• We have 714 documents (editons of theatre programmes) with 1 copy, 

• We have 82 documents with 2 copies, 

• We have 4 documents with 3 copies, 

• We have 3 documents with 4 copies and 

• We have 1 document with 5 copies 

• We have no documents with 6 or more copies, 

 

totalling to 804 found documents (theatre plays). Hence, based on (5) we have 

 

 2

1

P 82

P 714
=  (11) 

 

It is historically known that small Jesuit colleges printed between 150 and 200 copies of each 

theatre programme while large Jesuit colleges printed between 680 and 850 copies of the 

programmes for their theatrical performances. Though these are large differences in the value 

of a it will turn out that, due to the fact that a, in any case, is large, it has almost no influence 

on the value of 0P . Indeed, using (11) we find for 0P  (formula (10)): for a 150= : 
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150

0

1
P 0.7936955

2 82
1

149 714

æ ö÷ç ÷ç ÷ç ÷ç= =÷ç ÷ç ÷÷ç + ÷ç ÷çè ø

 

 

hence 79.4% of all plays is lost. For a 200=  this gives 

 

 

200

0

1
P 0.7939673

2 82
1

199 714

æ ö÷ç ÷ç ÷ç ÷ç= =÷ç ÷ç ÷÷ç + ÷ç ÷çè ø

 

 

hence still 79.4%. Even for a 750=  we have 

 

 

750

0

1
P 0.7945627

2 82
1

749 714

æ ö÷ç ÷ç ÷ç ÷ç= =÷ç ÷ç ÷÷ç + ÷ç ÷çè ø

 

 

being 79.5% and the same for a 850= . 

 

So 0P  is very stable in a and we can conclude that we lost about 79.4% (or 79.5%) of all 

editions of theatre programmes. Even for a® ¥  we can calculate 0P  based on the general 

formula (10). 

 

Proposition: 

 

 
2

1

2P

P

0
a
lim P e

-

® ¥
=  (12) 

 

Proof: By (10): 
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2

1

1
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, denoting b a 1= -  and remarking that 

 

 
a
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Denoting 2

1

2P
B

P
=  it follows that 

 

 

b
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2

1

1
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B
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1
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 (14) 

 

by the l’Hôspital’s rule. By (13) and (14) we now have 

 

 
2

1

2P
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0
a
lim P e e

-
-

® ¥
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For the value (11) of 2

1

P

P
 this gives 

 

 
82

2
714

0
a
lim P e 0.7947785

-

® ¥
= =  

 

hence still under 79.5%, so very stable! 
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These calculations show that only low values of a have an influence on 
0P , e.g. for a 5=  we 

have, with (11): 
0P 0.7564083= , hence about 75.6%. In this case it might be necessary to 

calculate a from the data. This will be executed in Section III. 

 

Note:  

The here established method works for all a Î ¥  from a 2=  onwards, i.e. for real multi-copy 

documents. Indeed, if a 1=  we only have 
0P p=  and 

1P 1 p= -  which is not enough to 

determine 
0P . Already from a 2=  onwards is the method working: for a 2=  we have 2

0P p= , 

( )1P 2p 1 p= - , ( )
2

2P 1 p= - , hence the model, using 2

1

P

P
, can be executed (deriving p from 2

1

P

P
 

and then putting p in 2

0P p= ). 

 

Finally, we have to estimate the number of lost documents. Let us denote by N l  this number 

and by 
fN  the number of found documents. Since we denoted by N the total number of 

documents that ever existed, we clearly have 

 

 fN N N= + l  (15) 

 

We have 

 

 0NP N= l  (16) 

 

 ( )0 fN 1 P N- =  (17) 

 

by definition, hence 

 

 0
f

0

P
N N

1 P
=

-
l  (18) 

 

This general formula can be applied to our case of Jesuit theatre plays where we found 

0P 0.794» . Recall that fN 804= . Hence 
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0.794

N 804
0.206

»l
 pieces (i.e. editions of theatre programmes) 

 

or 

 

 N 3,099»l
 pieces (19) 

 

The total number of pieces that ever existed is, hence, estimated by (15): 

 

 N 804 3,099» +  pieces  

 

 N 3,903»  pieces (20) 

 

We leave open a mathematical theory to calculate the confidence intervals for 
0P  (or N l

 or N) 

but we have executed several simulations of random samples in abstracts “copies” of “pieces” 

(i.e. editions of theatre programmes). The experiments show that we can have a high 

confidence in the numbers above. The results are as follows. We explored the reliability of the 

mathematical model as follows. In a database, we created 10 different fictitious corpora, each 

corpus containing a different number of editions (from 1,000 until 10,000). Every edition is 

present in 150 copies ( a 150= ). Every copy of each edition is represented by one record in the 

database. The largest corpus of 10,000 edition counts therefore 1,500,000 unique records, the 

smallest one 150,000 records or “copies of editions”. Firstly, we had the computer pick out 

1,000 records (or copies) at random from every corpus. Then the sample was analysed: how 

many editions were presented by one copy, how many by two copies and so on (see Table 1). 

This exercise provided us with the values for 1P  and 2P , needed in formula (12). 

 

Table 1. Distribution of editions and copies (corpus = 10,000 editions, a = 150, n = 1,000) 

  Number of editions Number of copies 

P1 

P2 

P3 

P4…Pa 

906 

44 

2 

no 

pieces are found with 

pieces are found with 

pieces are found with 

pieces are found with 

1 copy 

2 copies 

3 copies 

4 or more copies 

 

The total number of found editions is 952. These numbers result for 0P  in 
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150

0

1
P 0.90867535

2 44
1 .

149 906

æ ö÷ç ÷ç ÷ç ÷ç= =÷ç ÷ç ÷÷ç + ÷ç ÷çè ø

 

 

Using this result in formula (15) and in formula (18) results in an estimated total number (N) 

of 10,223 editions. As the corpus from which the sample is taken counts 10,000 editions, this 

sample gives a very precise idea of its size. 

 

For each of these 10 corpora, we repeated this exercise 30 times and took 30 samples of 1,000 

records (copies) in order to get an estimation of the precision of the estimations in practise. 

The results of the tests are presented in Table 2. 

 

Table 2. Estimation of N based on 30 random samples with n = 1,000 (a = 150) 

Size corpus Average result for N Min. value for N Max. value for N Standard deviation 

10,000 

9,000 

8,000 

7,000 

6,000 

5,000 

4,000 

3,000 

2,000 

1,000 

10,073 

9,007 (8,801) 

7,890 

6,947 

6,126 

5,102 

4,059 

3,010 

2,011 

998 

8,074 

6,437 (6,437) 

6,520 

5,070 

5,238 

4,165 

3,183 

2,449 

1,796 

873 

12,178 

14,978 (11,096) 

11,278 

9,099 

8,117 

6,485 

5,456 

3,389 

2,425 

1,106 

1,278 

1,563 (1,101)
*
 

971 

753 

644 

530 

469 

215 

143 

56 

* These values are due to one sample. The numbers between brackets give the results when this sample is 

omitted. 

 

The size of the samples being constant ( n 1,000= ), it is obvious that they are more exact, the 

more the size of the corpus decreases. For corpora between 1,000 and 3,000 editions, the 

standard deviation is very low and even the found minimum and maximum values for N give 

a reasonable indication of the real size of the corpus.
2
 Of course, these results are average 

results of each time 30 samples. Figs. 1 and 2 show the individual results of each sample for a 

corpus of 3,000 editions (left) and 10,000 editions. 

 

             

      Fig. 1. Corpus of 3,000 editions   Fig. 2. Corpus of 10,000 editions 

 

Overall, the results of the individual estimations are very satisfactory. 

                                                 
2
  Only one sample out of 300 gave a totally wrong image of the estimated size, see Table 2. When we leave that 

sample out, we get a normal series for the corpus containing 9,000 editions. 
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In practice, it is most of the time impossible to control the size of the sample. In general, 

scholars try to take the sample as large as possible. It is useful to know when the size of a 

sample is sufficient. We tested the variation of the size of the sample in relation to a constant 

corpus of 4,000 editions each consisting of 150 copies. 

 

Table 3. Estimation of N based on samples with a decreasing size (corpus of 4,000 editions, a = 150) 

Size sample Average result for N Min. value for N Max. value for N Standard deviation 

1,000 

900 

800 

700 

600 

500 

400 

300 

200 

100* 

4,059 

4,022 

3,915 

3,902 

4,059 

4,254 

3,829 

4,470 

4,842 

- 

3,183 

3,286 

3,176 

3,186 

2,895 

2,856 

2,933 

2,345 

1,616 

- 

5,456 

5,034 

6,000 

4,833 

5,943 

6,284 

5,727 

8,647 

19,670 

- 

469 

392 

582 

428 

652 

848 

770 

1,342 

3,417 

- 

*Samples with n = 100 result sometimes in P2 = 0, where the model requires a value P2> 0. 

 

The greater the sample sizes, the more exact the estimations. Table 3 shows that the exactness 

of random samples between 700 and 1,000 is quite high: the standard deviation is between 9.7 

and 14.9% of the found average result for N. Decreasing the sample to 600, 500 or 400 has 

already tangible consequences: the estimated size of the corpus shows an average mistake of 

ca. 20% of the found average result for N, which is, - under circumstances – acceptable. 

Smaller samples result in unreliable ( )200 n 300< <  or even unworkable ( )n 100=  

estimations. 

Table 4 and 5 can serve as a guideline for scholars to evaluate the precision of a concrete 

sample. 

 

Table 4. Average result for N of each time 30 samples taken at random with a = 150 

  Size sample  

 Size corpus 1,000 900 800 700 600 500 400 300 200  

 1,000 998 990 1,001 1,030 1,013 1,006 1,024 1,026 1,060 

 2,000 2,011 2,023 2,016 2,028 2,048 1,962 2,031 2,095 2,308 

 3,000 3,010 3,017 3,045 3,187 2,969 3,087 3,251 3,421 4,021 

 4,000 4,059 4,022 3,915 3,902 4,059 4,254 3,829 4,470 4,842 

 5,000 5,102 5,013 5,253 5,151 4,977 5,106 5,517 5,093 * 

 6,000 6,126 6,171 5,983 6,304 6,221 6,476 6,218 7,023 7,261 

 7,000 6,947 7,190 7,661 6,962 7,208 7,754 7,745 8,978 * 

 8,000 7,890 8,226 8,716 8,792 8,099 8,036 9,165 9,571 * 

 9,000 9,007 9,379 9,230 9,503 9,426 10,357 9,681 12,058 * 

 10,000 10,073 10,242 10,162 10,516 11,749 10,937 12,136 12,705 * 

*Some samples have P2 = 0 
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Table 5. Standard deviation (in %) of N mentioned in table 4. 

  Size sample  

 Size corpus 1,000 900 800 700 600 500 400 300 200  

 1,000 56 65 76 72 102 97 134 179 245  

 2,000 143 187 213 245 200 265 417 432 835 

 3,000 215 234 384 440 292 509 648 1,022 2,308 

 4,000 469 392 582 428 652 848 770 1,342 3,417 

 5,000 530 645 887 939 967 1,399 1,434 1,763 * 

 6,000 644 830 913 1,318 1,029 1,763 1,246 2,946 4,103 

 7,000 753 775 1,684 1,197 1,331 1,636 3,478 7,703 * 

 8,000 971 1,229 1,659 1,447 1,720 2,127 3,823 4,933 * 

 9,000 1,563 1,468 1,777 2,845 2,538 3,022 4,381 4,223 * 

 10,000 1,278 1,704 1,723 2,137 3,421 3,750 4,743 9,763 * 

*Some samples result sometimes in P2 = 0, where the model requires a value P2> 0. 

 

Each number in these tables is the result of 30 samples. In the upper left edge of table 4, the 

average estimation of N is presented for the smallest corpus (i.e. 1,000 editions of each 150 

copies) and the largest sample (i.e. 1,000 copies taken at random): 998. The corresponding 

number in table 5 indicates the standard deviation of that estimation: 56, or 5.6% of the found 

average result for N. That means that a sample of 1,000 copies of a corpus of 1,000 editions 

gives a very good indication of N. 

On the other hand, the tables indicate that a sample of 300 copies for an estimated corpus of 

10,000 editions is very unreliable. The average result of 30 samples for N still gives 12,705 

editions, but the standard deviation of these estimations is 9,763! 

 

These simulations provide us with a guideline for the interpretation of the result based on our 

sample of Jesuit theatre programmes. The estimation of the total production of theatre 

programmes bearing the same characteristics as the programmes in the sample, led to the 

number of 3,903  editions (cf. (20)). Given the fact that the sample consisted of 907 single 

copies ( 714 2*82 3*4 4*3 5+ + + +  copies, see above), this estimation is probably quite exact 

(cf. table 5). From a methodological point of view, this information is of high importance. It 

means that, if we analyse the theatrical production of the Jesuits in Flanders before 1773 on 

the basis of retrieved programmes, we may extrapolate the results to a group of pieces five 

times larger than the retrieved number. 

 

The next section is devoted to a mathematical – probabilistic model to determine a, the 

number of copies per document. 
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III.  Determination of the number of copies per 

document 

 

In this section we assume that a, the number of copies per document, is small enough to have 

an influence on 
0P  (see formula (10)) and hence should be calculated. Clearly, besides 

formula (8) (to determine p) we need another equation. This is best done by calculating the 

value of 3

2

P

P
, from (1). We have (7) for 

2P  and (1) yields 

 

 
( )( )

( )
3a 3

3

a a 1 a 2
P p 1 p

6

-
- -

= -  (21) 

 

So 

 

 3

2

P a 2 1 p

P 3 p

- -
=  (22) 

 

Results (8) and (22) yield: 

 

 

3

2

2

1

P

P 2 a 2

P 3 a 1

P

-
=

-
 

 

from which a easily follows: 

 

 

1 3

2

2

1 3

2

2

3P P
4

P
a

3P P
2

P

-

=

-

 (23) 

 

Note that 1P , 2P , 3P  are not known but that 2

1

P

P
 (see formula (5)) and similarly, 3

2

P

P
 are known 

from the retrieved data: 
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 3 3

2 2

P NP

P NP
=  (24) 

 

is the division of the known number of documents of which we have three copies found by the 

known number of documents of which we have two copies found. The determination of p is 

as in the previous section (formula (9)) and hence 
0P  (formula (10)) is completely determined. 

 

Unfortunately, in our example of Jesuit theatre programmes, the number 
3NP 4=  is too low to 

be a stable value in these formulae. We have 

 

 3

2

P 4

P 82
=  (25) 

 

and this yields, together with (11): 

 

 a 3.7557376=  

 

an unrealistic number. Still, formula (10) gives 0P 0.7403156= , about 5% lower than in the 

previous section (based on higher values of a) which still can be considered as rather stable. 

 

We want to underline that the above model certainly is useable in case one has not lost many 

documents in which case the number 3NP  will be high and trustable. Note that in the case of 

Jesuit theatre programmes the number p is extremally high, being around p 0.999=  for 

whatever value of a 200³  and around p 0.998=  for a 150=  (use formula (9) and (11) to 

establish this). This is the reason why, although at least 150 copies of Jesuit theatre 

programmes existed (and in many cases even up to 850), we hardly found any plays with 3 or 

more copies: in short: “almost all copies have been destroyed”. 

 

IV.  Informetric properties of the function jPj 
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The function jj P®  as given by (1) is what we call in informetrics a size-frequency function 

(cf. Egghe (2005)): it expresses the number (or rather the fraction, the difference is only a 

factor N as expressed in (5)) of documents of which we still have (or found) { }j 1,2,3,...Î  

copies (here we do not consider the case j 0=  anymore). In general informetrics terminology, 

we could say that jP  expresses the fraction of sources with j items (cf. again Egghe (2005)). 

 

In classical informetrics one is then automatically thinking of a “classical” size-frequency 

model, e.g. the law of Lotka 

 

 
j

C
P

j
=  (26) 

 

( )C 0, 1> >  or of a decreasing power law 

 

 j

j 0P b b=  (27) 

 

( )0b 0, 0 b 1> < < . It is clear that relation (1) is not of these types (it is the binomial 

distribution)! But here, a more fundamental result can be derived. 

 

Let us look at the indicators ( )
j 1

j

P
j 1,2,3,...

P

+
= . For the model developed in this article we find 

readily 

 

 
j 1

j

P a j1 p

P j 1 p

+ - -
=

+
 (28) 

 

Let us define the relative indicators 

 

 

j 1

j j 1 j 1

j 2
j j

j 1

P

P P P
Q

P P

P

+

+ -

-

= =  (29) 
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for j 2,3,...=  . Hence we have, for our model here, by (28): 

 

 
j

j a j
Q

j 1 a j 1

-
=

+ - +
 (30) 

 

Since here the requirement j 1 a+ £ < ¥  is clear (since a is the maximum number of copies, 

available at the start), we see, by (30) that 

 

 
( )

j

j j
Q

2 j 1 j 1
£ <

+ +
 (31) 

 

for all j 2,3,...=  . We find, e.g. 2

1 2
Q ,

3 3

é é
ê êÎ
ê êë ë

 and so on, but for all j we have that 

 

 j

1
Q 1

3
£ <  (32) 

 

If we calculate jQ  for the law of Lotka (26) we have, as is readily seen 

 

 
( ) ( )

j 2

C C

j 1 j 1
Q

C

j

 



+ -
=

æ ö
÷ç ÷ç ÷ç ÷è ø

 

 

 
2

j 2

j
Q 1

j 1


æ ö÷ç ÷= >ç ÷ç ÷ç -è ø

 (33) 

 

for all j. Hence jQ  occupies a disjoint range when compared with (32)! 

 

For the decreasing exponential function (27), we readily see that 

 

 jQ 1=  (34) 

 

for all j, hence being (strictly) between the cases (32) and (33). 
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The above is a proof that the informetric data jP  on the number of documents with j copies is 

non-Lotkaian and not exponential. The inequality (32) expresses that the decline in 
j 1

j

P

P

+
 as a 

function of j is much faster for our present model than for the Lotkaian or exponential model. 

This is a remarkable conclusion: finding missing copies of documents, no matter what p (the 

probability for a copy to be lost) is, is an activity which leads to very fast declining values of 

jP , the fraction of documents with j copies recovered. This means that it is, relatively, very 

hard to find multiple copies of a single document. 

 

The above shows that our present model belongs to a new type of two-dimensional 

informetrics theory. While Lotkaian informetrics describes a two-dimensional informetrics 

theory of growth of sources and items (cf. Egghe (2005)), the present model describes a two-

dimensional informetrics theory of “what is left”, hence a two-dimensional informetrics 

theory of aging (or obsolescence) – here in the sense of recovering copies of documents, 

hence also describing the loss of copies and, consequently, when all copies of a document are 

lost, the loss of documents. Whether or not this two-dimensional model of aging can also be 

applied to the more “classical” topic of aging in terms of citation analysis, is left as an open 

problem. 

 

V.  A rationale for the book historical law 

 

The book historical law says (Willard (1943) but see also other references in Proot and Egghe 

(2007)): The probability to save a copy of an edition is reversely proportional to the size of 

the edition. We carefully checked the literature on this subject and noticed that this law has 

not been formulated in a more accurate way, let alone that it has been proved. We therefore 

formulate the above “law” as follows: The probability to save a copy of an edition is a 

decreasing function of the size of the edition. Equivalently, and using the parameters p and a 

in this article, we can state the book historical law as: 

Book historical law: The probability p to lose a copy is an increasing function of the size a of 

the edition. 

 



 20 

We will now give a partial explanation of this expected regularity, not taking into account 

other variables such as temporary interest of documents or, simple, the money value of 

documents. In the sequel we will show that p is an increasing relation (to be explained further) 

of a. 

 

Denoting 2

1

P
x

P
= , we have, by (9): 

 

 
1

p
2

1 x
a 1

=

+
-

 (35) 

 

In practise we can assume that x 1< ; in fact (11) shows that x 1= , a logical fact. So, if we let 

x vary in ] [0,1 , we have that 

 

 
1

p 1
2

1
a 1

£ £

+
-

 (36) 

 

showing that p has an (evident) upper bound in 1 and a lower bound 

 

 ( )
1

f a
2

1
a 1

=

+
-

 (37) 

 

which is a concavely increasing function since ( )f ' a 0> , ( )f '' a 0<  for all a 2³ , the absolute 

lower bound of a (since we deal with 2P ). Formulae (36) and (37) imply that the relation  

between p and a (describing the book historical law) is as in Fig. 3. 

 

 

Fig. 3.  The relation between p (the probability to lose a copy) and a 

(the size of the edition) is given by the shaded area. 
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Fig. 3 shows that, when a is low, we can have values of p in the range 
1

,1
3

é ù
ê ú
ê úë û

 (maximally) but 

for larger values of a we see that p can only be large (close to 1). So, the higher a, the more 

limited is the range in which p can vary and the higher this range is situated, giving a partial 

explanation of the book historical law. Note that this explanation could only be given based 

on the boundedness of 2

1

P

P
 (here by 1, but higher bounds could serve as well). Hence a high 

value of a (the size of the collection) forces p (the probability to lose a copy) to be high. The 

intuition for this is clear: a high value of a implies that it will be difficult to have pieces with a 

low number of copies, unless p is very high (close to 1). The fact that 2

1

P
1

P
=  expresses that 

we have relatively more pieces with 1 copy than with 2 copies which can only be understood 

when p is large. 

 

 

VI.  Conclusions and open problems: suggestions for 

further research 

 

By means of found copies of multi-copy documents we were able to estimate the number of 

lost documents and hence also to estimate the total number of multi-copy documents that ever 

existed. This probabilistic theory shows that the numbers are relatively independent of the 

number a of copies per document as long as a is not very small: in the other case the theory is 

complemented with a formula to estimate the value of a. 

 

Simulations show that the estimated number of lost documents is very stable. These 

simulations are executed by random sampling in the copies, where we know in advance the 

total number of documents. 

 

We applied the model to the case of Jesuit theatre programmes in which case a 150³  (and 

where a can even go up to 850). As mentioned above, these large values of a (number of 

printed copies of theatre plays) guarantee a stable percentage of lost plays, estimated in this 

case around 80%. 
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It is clear that this theory could be applied to other cases of multi-copy documents. One could 

study the problem of estimating the number of lost documents in case the documents are 

precious. Here a will be smaller in which case Section III can be used to estimate a (needed 

since, for smaller values of a, 
0P , being the fraction of lost documents, is more dependent of 

a). But in this case, p will also be smaller (being the probability to lose a copy) implying that, 

in this case, one has more documents (than in the case of Jesuit theatre programmes) of which 

more (i.e. 3, 4,…) copies are found (i.e. not lost), making the estimate of a more reliable (see 

Section III). 

 

We remarked that the size-frequency function jj P®  (fraction of documents for which we 

found j copies) that we encountered in this theory satisfies the inequality (for all j 2³ ) 

 

 

j 1

j

j
j

j 1

P

P
Q 1

P

P

+

-

= <  

 

while we have the opposite inequality for Lotkaian size-frequency functions and while we 

always have jQ 1=  for decreasing exponential size-frequency functions, hence noting that we 

are in a new type of informetrics theory, describing loss (or rather recovery) of items of 

sources. We leave it for further study whether this model can also be used for the description 

of two-dimensional aging in the “classical” sense: the decline of citations in time. 

 

We also gave a partial rationale for the book historical law: The probability to lose a copy of a 

document is an increasing function of the size of the edition. 

 

It is our hope that this model will be applied in many other (varying) examples of multi-copy 

documents (and even multi-copy objects as described in the introductory section), hereby 

further testing the stability of the probabilistic model. The further development of this non-

Lotkaian informetrics theory is also a challenge. 
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