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We extend the result of A. Bellow (Proc. Nat. Acad. Sci. USA 73, No. 6 

( 1976), 1798-l 799) on the characterization of finite-dimensional Banach spaces, 
to a characterization of nuclearity for FrCchet spaces. Those spaces are nuclear 
iff every Pettis-bounded and Pettis-uniformly integrable amart is mean con- 

vergent. Several other characterizations are given. 

INTRODUCTION, TERMINOLOGY, AND NOTATIONS 

Let (~2, 2, cl) be a probability space, and X a Frechet space. A function 
f: Q --z X is called p-integrable if there is a sequence (f,& of step functions 
from Q into X such that 

(i) limn3mfn(w) = f(w) = p-a.e.; 

(ii) limn-,m Jap( fn - f) 4 = 0, f  or every continuous seminorm p on X. 

It makes sense to define SAf dp = limn+m jA f,, dp. We define Lx+) as the 
space of classes [f], where f is p-integrable and g E [f ] i f f  g = f, p-a.e. We put 
a “mean” topology on Lx+) by means of 

where p is an arbitrary continuous seminorm on X. So Lxl(p) becomes a FrCchet 
space. Another topology on L,l(p) is used, the Pettis topology: Let U be an 
arbitrary zero neighborhood, and f in L&J). Put 

where U” denotes the polar of U, w.r.t. the duality (X, X’). We call a sequence 
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(f&‘& in L..&), Pettis uniformly integrable if for every zero neighborhood C’ 

we have 

lim sup / x’(fn)j dp = 0 
L&m4 Z’EUO s E 

uniformly in n. 

Let (Zn)EZ1 be an increasing sequence of sub-u-algebras of ,Z. A sequence 
(f% , &)z=r is called adapted to (ZJ in each fn is &-measurable. A stopping 

time 7 is a function of Q into N u {a} such that {T = n} E Z, for every n. We 
denote T the set of all bounded stopping times on Q, directed in the natural way. 
Let ( fn , &Jz=r be an adapted sequence. We write fT for the function frco,,(w). 
(f n , ZJz=r is called an X-valued amart if each fn is p-integrable and 

converges in X. Further information on amarts in Banach spaces is found in 

[I, 51. 
In [2], Bellow proved the following. 

THEOREM A. For a Banach space X the following assertions are equivalent: 

(1) X is of finite dimension. 

(2) Every X-valued amart (f la , &)~=I , such that su~,~r s 11 fT Ij dp < co, 
converges to a limit strongly a.e. 

(3) Every X-valued amart (f ,, , && , such that /f,(w)il < 1 for every 

n in N and w in Q, converges to a limit strongly a.e.. 

We may also replace “strongly a.e.” by “in the mean,” in (3). The key tool 
in Bellow’s proof is the lemma of Dvoretzky and Rogers. This is not very useful 
in more general spaces because of the norm-inequality in this lemma. A good 
theorem to use in the general setting is the theorem of Dvoretzky and Rogers 
on unconditional convergent and absolutely convergent series. This theorem has 
an extension, to characterize nuclearity in FrCchet spaces (see [IO, 4.2.51). It 
is this theorem we will use for extending Theorem A to FrCchet spaces. 

1. THE THEOREM 

THEOREM B. Let X be a Frechet space. The following assertions are equivalent. 

(i) X is nucZear. 

(ii) Every Pettis-bounded and Pettis-uniformly integrable amart 

( fn , GJZ’=, , in Lx1 is L,l-convergent (i.e.: mean convergent). 
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(iii) For every Pettis-bounded and Pettis-uniformly integrable amart 
( fn , Z&I in Lxl, there is a martingale (g, , Z,& which is L&convergent, 
such that fn = g, + h, , with h, + 0 in L&sense. 

(iv) On Lx1 the Pettis topology is the same as the mean topology. 

(v) Every Pettis-convergent amart is L,konvergent. 

Proof. (ii) * (i). Suppose that X is not nuclear. By [lo, 4.2.51, there is a 
sequence (~&r in X which is summable and not absolutely summable. Hence, 
there is a continuous seminorm p on X such that for every n in N, there is an 

m > n such that Ckm=,,+r p(xB) > 1. 
We build inductively a new sequence ( yn)z-r . 

(1) Let nr E N be the smallest natural number such that 

Hence Cii;,p( yk) = 1, with yk = x,/or, (R = l,..., nr). Call J(l) = {l,..., nr}. 
Let Jr be the smallest set of consecutive natural numbers, starting with n, + 1 = 

max J(l) + 1 such that 

% = 

Hence Cks~, P( Yk) = P( rA with yk = ( P( rl)/4 . xk @ E .A). 

(2) Let Jn, be a set consisting of consecutive natural numbers, starting 
with max JnIel + 1, such that 

Hence &e~n, P( Yk) = P( Yn,), with yk = ( P( Yn,)/%,) . xk (k E Jn,). Call 

J’“’ = icl Ji, = iJ Ji, * 
1 i,eJ(l) 

We can do the same with J@) that we did with J(l): first with J1 , then with Jz , 
and so on until Jn, . This gives respectively: 

{Jl.i2 II 4 E Jd, IJz.i, II 4 E J2L lJnl.ia II 4 E Jnn,>. 

We denote 
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and so on. The inductive step is clear. To write it down explicitly would be con- 
fusing, because of the intricate indices appearing! It is now trivial that 
(J(“) (/ 72 6 N} is a partition of FU. Since 

for every n E N, we have that 

@J(Y.) = Co. 

Furthermore, since p( yn) < p(~,), for every-n E N, and by [ 10, pp. 23-26]: 
(y&i is summable. We again call this sequence (~,Jz=i . So our sequence 
(zcn)E1 satisfies 

c P(%,) = P(%) (Bl) 
iId, 

and so on. 

The formulas (011); (A),..., (&.>; (n),... indicate the way to divide [0, 1) into 
intervals of the same form. As a matter of fact, 

~1 = (4 ,..., A, >, 1 

where 4 = PA P(G)), 4 = [p(.G ~(4 + I),..., n2 = (-4 II k E JY 3 rl , 
where&,+l = F2 P(G,+I)), An1+2 = [ P(G,+A ~(x,,+d + ~(~~,+~)h... In general, 

7rn = {A, 11 k eJ(n)). 

We have of course: nr, > rrn i f f  n 3 m. Define 
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for every n in L!. Denote Z,, = a(~~) for every rz in iY. So we have constructed 
the sequence ( fn , L’,,)& . It is an amart, which converges in the Pettis topology 

to zero. We even can prove that it converges to zero in Pettis-sense, for stopping 
times : 

So, if T denotes the directed set of stopping times, corresponding to (&)zi , 
then 

s 1 

lim sup I WJ 4 = 0 
TE7 2’EU0 0 

for every zero neighborhood U. Indeed, for 7 E T, with 71, = min{T(w) // w E 

[0, l)} and n: = max{T(w) Ij w E [0, l)), we have 

where D, is the set of indices k for which 

(T = k} = u Aj 
jeDk 

(note that {Ai II j E Z&} C rrk since (7 = k) E &}. 
Now ,M(&) = p(~~), by construction. Furthermore it is trivial by construction 

that k # k’ => D, n D,, = m. So C”,;,, CjeD is a sum where every index j 
appears just once. Furthermore the lowestf in th!s sum can be as high as we wish, 
by taking 7 high enough (in T, <,). So by [lo, p. 251, and since N C T, we have 
that (*) goes to 0 for T going through T. So ( fn) is a Pettis-convergent amart. 
Note that in the Banach space case, the sequence (f ,) is uniformly bounded. 

Now ( fn) is not Lxl- convergent. I f  it were convergent, its limit would cer- 
tainly be zero, by the above convergencies. But 

I l P(fn) = 
0 

,z n ) PC%) = 1 

for every n in N. This ends the main part of the proof. 
The proof also shows the implications (iv) * (i) and (v) * (i) (although this 

long proof is not needed for the implication (iv) 2 (i) as we see a bit further on). 

Remark. Since ( fn , .Z~)~=r is also p-bounded we have given a new proof 
of Theorem A. 
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(i) + (iv) Let f be a step function 

.f = i %X4, 
i=l 

and let (Q, Z, CL) be a measure space. We can suppose the A, disjoint. From 
[lo, 4.1.51, we have for every continuous seminormp on X a zero neighborhood 
V and a Radon measure v on the (weak*-compact) polar V”, such that, for every 
winQ: 

P(.f(wN G Jvo I( i aixA,(ti), x’) 1 dv(w’) 
is1 

so 

l(ai , x’>l ~(4 1 4v”) 

Since V( V’) < co, we have proved the assertion for step functions. IffEL&), 
then there is a sequence of step functions (f&& , mean convergent to f. 

Then, with q(.) = sop(.) dt.~ and P = SU~~~~V~ so 1(x’, .)I dp: 

s(f) = @4(h) 

(i) =+ (ii) Since Xis nuclear and Frtchet, it is (RNP) (see [7]). Hence every 
L&bounded and uniformly integrable martingale is L,l-convergent (this is 
well known in Banach spaces [3, 41, and the extension to FrCchet spaces is 
immediately seen). 
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So (by (i) * (iv)), every Pettis-bounded and Pettis-uniformly integrable 
martingale is L,r-convergent. Let (fn , Z,Jg=r b e an arbitrary Pettis-bounded 
and Pettis-uniformly integrable amart. Hence. ((i) * (iv)) it is L,l-bounded 
and uniformly integrable. The Riesz decomposition theorem [6j also applies in 
case X is FrCchet and (RNP). So fn = g, + h, , where ( g, , ZJ is a martingale, 
and where h, is Pettis-convergent to 0; so also L,i-convergent to 0, and hence 
uniformly integrable. Thus (g,J is L,l-bounded and uniformly integrable, and 
consequentlylrl-convergent. Thus also ( fn). 

We proved at the same time (i) =‘ (iii). Since (iii) => (ii) and (iv) + (v) are 
obvious, the theorem is completely proved. a 

Remark. Our theorem seems to be new even if X is a Banach space. It 
thus gives further equivalent formulations of finite dimensionality. 

Further remarks. (1) We can prove in a simple way: Let X be a Frechet 
space. Then (i) is equivalent to (vi) The Pettis-bounded subsets of Lxl(p) are 
mean bounded. 

Proof: (i) 3 (iv) See the theorem. (iv) * (vi) Trivial. (vi) 3 (i) Suppose 
X not nuclear; we have by [IO] a summable, not absolutely summable. sequence 
(x,& in X. Take the dyadic division of order n of [0, I), for every n in N, and 
call 

Ain = i;nl . 
[ -->+ 3 1 1 < i < 2”. 

Put f,, == zf:, 2” . xi . xAin . Then it is trivial that ( fn)z=i is a Pettis-bounded 

and not meanbounded amart (( f,Jz=i cannot serve to prove theorem B because 
the sequence is not Pettis uniformly integrable). 

(2) When working not in Frechet spaces, but in sequentially complete 
dual metric spaces, we can (by [lo, 4.2.51) prove: (iii) 3 (ii) => (i) o (iv) 0 
(v) -+ (vi). Furthermore (i) + (ii) here, since in [8] we have given an example 
of a nuclear sequentially complete dual metric space without (RNP). 

Note added in proof. More recently, we proved the following theorem (again using 
the Dvoretzky-Rogers theorem and the fundamental result in [I, p. 2791): 

THEOREM. Let X be a Frkhet space. The following assertions are equivalent: 

(i) X is nuclear. 

(ii) Every mean bounded amart (f,, , X,) is of class (B): i.e., 

SUP 
s 

P(f,) 4 < + m 
eT R 

for e-very continuous seminorm p on X. 
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(iii) For emery meati bounded and uniformly integrable amnrt (f* , C,,) (and uniformly 

bounded in case X is a Banach space), and for every continuous seminorm p on X: ( p( f,,), C,) 
is an amart. 

This generalizes the result in [2], and gives a new proof for it. 

ACKNOWLEDGMENT 

I thank Dr. J. Van Casteren for his help and remarks during the preparation of this 
paper. 

REFERENCES 

1. A. BELLOW, Several stability properties of the class of asymptotic martingales. Z. 

Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1977), 275-290. 
2. A. BELLOW, On vector-valued asymptotic martingales. Proc. Nat. Acad. Sci. USA 

73, No. 6 (1976), 17981799. 
3. S. D. CHATTERJI, Martingale convergence and the Radon-Nikodym theorem in 

Banach spaces. Math. &and. 22 (1968), 21-41. 
4. J. DIESTEL, “Geometry of Banach Spaces-Selected topics,” Lecture Notes in 

Mathematics No. 485, Springer-Verlag, Berlin/New York, 1975. 

5. G. A. EDGAR AND L. SUCHESTON, Amarts: A class of asymptotic martingales, Part A. 
Discrete parameter. J. Multivariate Analysis 6 (1976), 193-221. 

6. G. A. EDGAR AND L. SUCHESTON, The Riesz decomposition for vector-valued amarts. 
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 85-92. 

7. L. EGGHE, On the Radon-Nikodym-property and related topics in locally convex 
spaces, in “Proceedings, Conference on Vectorspace Measures and Applications, 

Dublin, 1977,” pp. 77-90, Lecture Notes in Mathematics No. 645, Springer-Verlag, 
Berlin/New York, 1978. 

8. L. EGGHE, On the Radon-Nikodym-property, rr-dentability, and martingales in 

locally convex spaces, Pac. 1. Math. (1980). 
9. L. EGGHE, On Pettis-convergence of amarts, preprint, University of Antwerp, 77-57, 

1977. 

10. A. PIETSCH, “Nuclear Locally Convex Spaces,” Ergebnisse der Mathematik und 

ihrer Grenzgebiete, Band 66, Springer-Verlag, Berlin/New York, 1972. 


