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CONVERGENCE OF ADAPTED SEQUENCES

OF PETTIS-INTEGRABLE FUNCTIONS

L. EGGHE

When considering adapted sequences of Pettis-integrable functions
with values in a Banach space we are dealing with the following problem:
when do we have a strongly measurable Pettis-integrable limit? Here the
limit can be taken in the strong or weak sense a.e. or in the sense of the
Pettis-topology.

Not many results in this area are known so far.
In this paper we give some pointwise convergence results of

martingales, amarts, weak sequential amarts and pramarts consisting of
strongly measurable Pettis-integrable functions. Also the Pettis conver-
gence result of Musial for amarts is extended.

The results are preceded by a preliminary study of some vector
measure notions such as Pettis uniform integrability and σ-bounded
variation. We give a new proof of the result of Thomas stating that in
every infinite dimensional Banach space one can find a vector measure
which is not of σ-bounded variation.

1. Introduction, terminology and notation. In the sequel, E will be a
Banach space and (Ω, J^, P) a fixed complete probability space. A
function X: Ω -> E is called scalarly measurable if (x\ X) is measurable
for each x' e E\

A function X is called Pettis-integrable if it is scalarly integrable and
if for each A ^ F, there exists xA e E such that, for each xf e Ef

(x\xA)= f (x\X)dP.

xA is denoted by fA XdP, the Pettis-integral of X over A. Let X and Y be
two Pettis-integrable functions. We say that X is weakly equivalent with
Y9 denoted by X ~ 7, if for each x' e £ '

(x\ X) = (x\ 7>,a.e.

Denote by PE the space of all Pettis-integrable functions up to weak
equivalence. Put on PE the following norm, called Pettis-norm,

l\\P:PE^R\ X-\\X\\P= sup ί\(x',X)\dP.
\\x'\\<l J®

345
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The notions of strong measurability and Bochner-integrability we suppose
to be familiar to the reader (see [D-U]).

It is trivial that every Bochner-integrable function is Pettis-integrable
and that mean convergence (i.e. for the norm || Id on UE, the space of
Bochner-integrable functions) implies || | | p convergence. The converse of
these two implications is never true except in finite dimensional spaces as
is well known. Even if we suppose that every strongly measurable
Pettis-integrable function is Bochner-integrable we can prove that E must
be finite dimensional. Indeed, suppose E is infinite dimensional. Using the
theorem of Dvoretzky-Rogers (see [D-R]) there exists an unconditionally
convergent series Σxn such that Σ| |xJ | = oo. Let (An)nEίN be a countable
measurable partition of Ω such that P(An) > 0 for each n e N. Put

χ== Σ

Then X is Pettis-integrable strongly measurable and not Bochner-integra-
ble. Of course here one has \\X\\λ = oo and \\X\\P < oo.

Let (^n)n^N be a stochastic basis, i.e. an increasing sequence of
sub-σ-algebras of 3F. Let (Xn)neN be a sequence in PE. We say that
(Xn9 3^n)n^N is an adapted sequence if each Xn is J^7-scalarly measurable.
If in addition each Xn is strongly measurable then Xn is J^-strongly
measurable as follows easily from Pettis' measurability theorem (see
[D-S]). With respect to a stochastic basis (^n)nGN9 we say that a function
T: Ω -> N is a stopping time if {τ = n} e ^n for each n e N.

Let us denote by T the set of all bounded (i.e. finitely valued)
stopping times. We order T in the natural (pointwise) way. For τ e T and
(Xn, ^n)n^N an adapted sequence, define

Also define^ = {A ^&\A Π {r = k] Gi^eachA: G Λ }̂.
It is obvious that Xτ is scalarly i^-measurable. Adapted sequences of

Bochner-integrable functions have been studied intensively. We refer to
[Eg] which is a monograph on this subject which is about to appear at this
moment. On the contrary, on adapted sequences of Pettis-integrable
functions virtually nothing is known. This is of course due to the com-
pletely different nature of the Pettis-integral (see remark above). To
illustrate this see also [T3], [MuJ, [Mu2]. Before mentioning the results,
let us give some well-known definitions. Let (Xn9 ^n)n^N be an adapted
sequence in PE.
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It is called a martingale if for each n e N and each ̂  e ^ :

J A JA

(Here the integrals are in the Pettis sense of course.) In other words,
Xn = <§>^nXn + ι, where S^n denotes the Pettis conditional expectation w.r.t.
S?n. It must be emphasized that the Pettis conditional expectation of a
Pettis integrable function does not always exist, even if the function is
strongly measurable; see [MuJ and also §2.

Of course, as is well-known and easy to prove, the conditional
expectation of a Bochner integrable function always exists.

An adapted sequence ( J ζ , , ^ ) π e J V is called an amart if the net
(/Ω Xτ)τeτ converges in E. It is obvious that every martingale is an amart.
Finally a Banach space E is said to have the weak Radon-Nikodym-prop-
erty (abbreviated (WRNP)) if for every complete probability space
(Ω, J*", P) and for every vector measure F: &-» E of σ-bounded variation
which is P-continuous, there exists X e PE such that for each A e 3^\

F(A)=fx.
J A

An equivalent statement of (WRNP) is obtained if one replaces "σ-
bounded variation" by " bounded variation".

However the first definition is more natural since a Pettis integral is
always of σ-bounded variation.

For a discussion of (WRNP) we refer the reader to [MuJ or [Mu2].
The first result we have to mention concerning convergence of adapted

sequences of strongly measurable Pettis integrable functions is one of
J.J. UhlJr.:

THEOREM ([U2], THEOREM 3.1): Let (Xn,<^n)n<=N be a martingale
consisting of strongly measurable Pettis-integrable functions.

Suppose
(i)supπ€ΛΓ | |Λπ | | i>< oo.

(ii) The set { fA Xn\A E j ^ , n e N] is weakly relatively compact.
(iii) For each ε > 0 there is a weakly compact set K c E such that for

each δ > 0, there exists n0 e TV and Ao e J^ for which P(Ω \A0) < ε such
that n > n0 implies fA Xn e P(A)K + 8BE °for all A c AQ9 A e ^ (here
BE={x<ΞE\\\x\\£l}).

Then (Xn)nGN converges strongly a.e. to a function in PE.
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Condition (iii) is a Rieffel-type condition (see e.g. [Die] Theorem 1,
pp. 204-205) and is satisfied if E has (RNP) and if (i) is strengthened to
supnewll^Jli < °°> m which case we have the Chatterji results on
martingales consisting of Bochner integrable functions (see [C]) (condition
(ii) can be dropped in this case; see Corollary 3.4 in [U2]). So this is an
interesting and nontrivial extension of the classical martingale conver-
gence theorem.

Concerning weak convergence we refer to [Me]; we are not dealing
with weak convergence of martingales in this paper.

Another result—one of Musiaί—can be stated as follows:

THEOREM ( [ M U 3 ] , THEOREM 5). The following assertions are equivalent:

(ii) For every complete probability space (Ω, J^, P) and every martingale

(Xn, ^Fn)n€EN in PE on (Ω, J^, P) which is Pettis uniformly integrable and

variationally bounded there is an X e PE such that \ιπιn_^O0\\Xn — X\\P = 0.

Here, Pettis uniform integrability means

lim sup
P(A)-+0 n€ΞN

/.
= 0.

See also §2. Variationally bounded means that

sup | P J ( Ω ) < oo

where \vn\ denotes the variation of

v \!F -» E, A -

The extension to amarts in the above theorem can easily be made in
Musiaί's proof.

However, Musiaίs' theorem, when stated for (RNP) spaces teaches
nothing new, even when it is stated for amarts. Indeed, in this case, as is
easily seen (see e.g. [J], p. 129), for each n e N, there exists Yn e PE9

strongly measurable such that Yn ~ Xn. From the definition of variation
and from Yn ~ Xn for each n G N it now follows that
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So we have here an L^-bounded amart satisfying also

lim sup / Yn = 0.

This is a known situation ([U3], Corollary 4, p. 294) yielding a Bochner
integrable function Y such that

lim | | r B - Y | | , - 0 .
n—* oo

But since Xn ~ Yn for each n e TV we also have

ΛKm \\Xn - Y\\P = 0.

So, Musiaί's theorem reduces—in case E has (RNP)—to UhΓs theorem
[U3], Corollary 4, p. 294, and is certainly only a convergence theorem for
amarts consisting of Bochner integrable functions.

However, it would be interesting to have convergence results in
(RNP) Banach spaces for strongly measurable Pettis-integrable amarts
and martingales which are not Bochner integrable. This is one of the
purposes of this article. The paper is divided as follows: In §2 we study
the notions σ-bounded variation and Pettis-uniform integrability. Con-
cerning the first notion a result of Thomas [T2] (later reproved by
Janicka-Kalton [J-K]) is reproved yielding a straightforward proof. In §3
we prove a martingale strong a.e. convergence theorem for strongly
measurable functions in PE where E has (RNP).

Section 4 reproves and generalizes the Pettis convergence theorems
for amarts of Musiaί and Uhl. A Riesz decomposition theorem is proved
for amarts in PE generalizing the one of Edgar-Sucheston.

Section 5 proves a weak a.e. convergence theorem for weak sequential
amarts.

Finally §6 proves a strong a.e. convergence result for pramarts con-
sisting of strongly measurable functions in PE where E has (RNP),
extending a theorem of Millet-Sucheston.

2. Study of some notions related to the Pettis integral.

2.1. Vector measures of σ-bounded variation.

DEFINITION 2.1.1. Let F: <F-> E be a vector measure. We say that F is
of σ-bounded variation if there is a disjoint sequence {An)n(EN in J^such
that the restriction F\A to An is a vector measure of bounded variation,
for each n e N.
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This is a notion which is very natural in connection with Pettis
integrals. Indeed we have that every Pettis integral (considered as a vector
measure) is of σ-bounded variation. This is a result of Musiaί, see [MuJ.
Compare this with the well known fact that every Bochner integral is a
vector measure of bounded variation. As is the case with the Pettis
integral, the notion of σ-bounded variation is not easy to study. For
instance, if F: J^-* E is of bounded variation and if ^ is a sub-σ-algebra
of ^then it is completely trivial that F\&is of bounded variation. This is
false for the σ-bounded variation notion. This is easy to prove and firstly
remarked by Musiaϊ [Mi^]. Indeed we have:

PROPOSITION 2.1.2. Suppose E has (WRNP). Let F: &-+ E be given by
a Pettis integral

X
A

for each A e J^, and let &be a sub-σ-algebra of3F. The F\&is of σ-bounded
variation iff E^X exists in PE.

Proof. The proof is very easy and included for the sake of complete-
ness. Indeed, suppose F\&is of σ-bounded variation.

Since F <: P|^we have also F\& <§c p\&.
So, using (WRNP), there exists a function Y e P£(Ω, &9 P\9) such

that for each A e ^

By the form of F9 Y must be E9X.
Conversely, suppose that E^X e P£(Ω, &9 P\&) exists. Then for each

A ΪΞ&

{F\9){A)=JE*X

and since this is a Pettis integral, it is of σ-bounded variation (see
[MuJ). •

Now it is clear that a vector measure F of σ-bounded variation (w.r.t.
a σ-algebra&) exists such that F |^is not of σ-bounded variation, where S?
is a sub-σ-algebra of &. It suffices to take a Pettis integrable function/:
J^-* E without a conditional expectation, see [MuJ, [H], [R].
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Although Proposition 2.1.2 is interesting it does not solve completely
the problem of when a vector measure is of σ-bounded variation w.r.t. a
sub-σ-algebra.

Another question one might ask is the following: Suppose a vector
measure F is absolutely continuous w.r.t. Lebesgue-measure on [0,1]. Is F
of σ-bounded variation?

The property is obviously true in any finite dimensional Banach
space. This was disproved in any infinite dimensional Banach space by G.
Thomas in [T2] and later by Janicka-Kalton [J-K]. Incidently I found a
new proof on this fact in a very straightforward way. It runs as follows:

THEOREM 2.1.3 {Thomas). Suppose E is an infinite dimensional Banach
space. Then there exists a probability space (Ω, #", P) and a vector measure
F: JF—> E such that F <^: P and such that F is not of σ-bounded variation.

Proof. The characterization of infinite dimensional Banach spaces of
Dvoretzky-Rogers [D-R] yields a sequence (xn)n(ΞN in E such that Σxn

converges unconditionally and such that Σ | |x j | = oo.

Put* 0 = ! £ . ! * „ .
Write

(1) *i =

(2) X2=

oo

n = Σ
n = l

°° Γ 1
n= Σ hvΓ

Then do the same with the first term of the series appearing in (1), then
with the second and so on. The same with (2) and so on. Every series
appearing above converges unconditionally but not absolutely since (we
take the series in (1)—an analogous proof for the other series)

1
n \ X l Xθ) + Xn

II II 11

\\Xn\\ + 2" " l °

* Σ lkll-lk-*oll= °°
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Let now Σ yn be any of the series introduced above. By assuming x0 Φ 0

and xn Φ 0 for each « G J V and by making additions and relabelings we

can assume that

yn Φ 0, \/n e N and > 2 | | Λ | | , Vk>2.

(Since Σ"k==ιyk-+ Σ ^ = 1 yn and since yn -> 0 and | | Σ ^ = 1 yn\\ > 0 there exists

n0 e TV such that | K L I Λ I I > 2 | | Λ | | , Vί > * 0 Relabel;;/ = Zn

k<Lxyk9yi =

yno+l9 and so on.)

Take now ]0,1] and divide it dyadically into

Each of these intervals are also divided dyadically in the same way

(homothetically). This constitutes the second level. The same for the third

level and so on.

We are now going to construct the vector measure F.

We put the following values for the first level intervals

i.e. xt on ] l/2 ' , 1/27"1] except for xx and x 2

 o r : We put first JCX on the

second place from the right and then put the vectors x 2 , x 3 , x 4 , . . .

consecutively from the right on the not yet used intervals. Let Σ yn be one

of the series of the second level adding up to, say xt. Here we put on the

interval where we have put the value xt\

2 5 2 4 2 3 2 2 2

(homothetic interval and divisions)

yx on the third place from the right (division 1/23 relatively to the

interval) and then put the vectors y29 y3, y4,... consecutively from the

right on the not yet used intervals.

Inductively, let Σyn be one of the series from the nth level. Here, we

put yλ on the (n + l)th place from the right (division 1/2"+ 1 relatively to

the interval in consideration) and then put the vectors y2, y39 y 4 , . . . ,

consecutively from the right on the not yet used intervals.
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Now we estimate from above the total length of the intervals on
which the first terms yλ are appearing.

For the first level: just one place: length 1/22.
For the second level:

I JL I.JL = y .1-1 = -L
2 * 2

3 4 " 23 " " n ^ 2" 23 23

For the fourth level: 1/24 and so on.
A majorization is obtained by adding these values: Σ%^2\/2n = 1/2

(considering all the intervals on which the yλ are appearing as disjoint
which is not the case). Call the complement of this set A. So λ(A) > \
(λ = Lebesgue measure).

Call F the constructed vector measure, restricted to A, Since on A9

every vector appearing in the nth level has norm smaller than \ times the
norm of the corresponding vector in the (n — l)th level, we have that F on
A is λ I ̂ -continuous.

Also since for every series Σ yn9 appearing in the construction we have
that Σ \\yn\\ = oo it follows that Fis not of σ-bounded variation. D

We end with a problem of Musial [MuJ which would (in case of an
affirmative solution) completely settle the problem concerning σ-bounded
variation w.r.t. a sub-σ-algebra as well as extend the result of Thomas
(Theorem 2.1.3.)

Problem 2.1.4. Is it true that in any infinite dimensional Banach space
E there exists a probability space (Ω, &9 P), a P-continuous measure F:
J^-* E of σ-bounded variation and a sub-σ-algebra ^of J^such that F\&is
not of σ-bounded variation?

2.2. Pettis uniform integrability. If (Xn)n€ΞN is a sequence in UE two
well-known equivalent definitions of uniform integrability are in use:

(i) supπe^||-Xπ||1 < oo andlimP ( i 4 )_osupn e i V/ i 4 | |JΓy i | | = 0.
(ii) H m λ ^ o o s u p , e ^ / ? | | ^ | | > λ } | | Z J | = 0. Obviously, Z^-norms are in-

volved here. When working with sequences (Xn)n<EN in PE the following
definition of Pettis uniform integrability is quite natural.

DEFINITION 2.2.1. The sequence (Xn)nGN is said to be Pettis uni-
formly integrable if

sup \\Xn\\p < oo and lim sup sup
P(A)->0 / χ

JAΓ\B

= 0.
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Indeed the Pettis norm is involved here since the norm
equivalent with 11 Xn \ \ P.

IA K\\ is

Definition 2.2.1 is not only natural because of the replacement of
II * Hi t>y || Up in the classical definition of uniform integrability. It is also
a " uniform" notion of Pettis integrability. Indeed, in [P] it is proved that
a Pettis integrable function satisfies

(1) lim sup
P(A)-*O / AΠB

= 0.

(and of course \\X\\P < oo).
One question is coming up immediately: What about the following

possible definition of Pettis uniform integrability:

lim sup sup
λ ύU. = 0.

Certainly this is only meaningful if the sequence (Xn)neN consists of

strongly measurable functions (only then {\\Xn\\ > λ} is surely i n ^ ) . In

this case, what is the relation with Definition 2.2.1? We only have the

following easy result:

THEOREM 2.2.2. Let (Xn)nςΞN be a sequence consisting of strongly

measurable Pettis integrable fuunctions. Suppose

lim supP(||ΛΓj>λ) =
λ^oo

(1)

Then the following two assertions are equivalent:

(i) (X n ) n f Ξ N is Pettis uniformly integrable.

(ii) H m ^ ^ supweiVsupB€jr||/Bn{,,A 'J,>λ } Xn\\ = 0.

Proof, (i) => (ii). Is done much in the same way as in the case of
(Bochner) uniform integrability and hence the proof is omitted. We do not
use condition (1) here.

(ii) =» (i). Is obvious, using condition (1). D

Theorem 2.2.2 is an extension of a remark in Bru-Heinich [B-H]
proving that a strongly measurable function X is Pettis integrable if

lim sup
λ-»00

/ λ
•'βn{||Λ-||>λ} I

= 0.
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Indeed, since \\X\\ is measurable we always have here lim λ^ 0 0P(| |X| | > λ)
= 0. To indicate some cases in which (1) is satisfied we prove the
following

THEOREM 2.2.3. Consider the following assertions for an adapted se-
quence (Xn, ^n)n^N consisting of strongly measurable Pettis integrable
functions:

(a) (Xn, ^n)n&N is an Unbounded martingale,
(a') (Xn9 ^n)n&N is of class (B); i.e. supτGTJQ\\Xτ\\ < oo,
(b) l i m λ ^ P ( s u p ^ J * J | > λ) = 0,
(c) l i m ^ sup τ ( Ξ Γ P(| |* τ | | > λ) = 0,

( d ) l i m τ e Γ P ( p ; | | > τ ) = 0,
(d')lim l ιe

Then we have

( b ) — . ( c ) (d')

Proof, (a) => (b) and (a') => (b) follow from the classical maximal
inequality for adapted sequences of Bochner integrable functions.

(b) => (c) => (cr) is trivial.

(c) => (d). For each ε > 0, choose λ0 e TV such that if λ > λ0,

er^(ll^ll > λ) < ε.
For each T > λ0, r e T we so have

P{\\Xτ\\ > T) < P(||A T|| > λ0) < supP(||Xτ|| > λ0) < ε .

(cr) => (dr) is similar
(d) ==> (d') is true since N is cofinal in T. Π

EXAMPLES 2.2.4.
1. For any function I G P £ which is strongly measurable we have

λ — • oo

2. Let £ be a σ-Dedekind complete Banach lattice and suppose
(Xn9&n) is an adapted sequence of strongly measurable Pettis integrable
functions.
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Suppose also that, for each n e N, 0 < Xn < Y, a.e. where Y e PE.
Then

lim p( sup \\Xn

Proof. Since E is σ-Dedekind complete, supn^NXn(ω) ^ E exists, a.e.
Hence

0 < Xn < sup Xn < 7, a.e.

Now swpn^NXn is strongly measurable and Y e P £ . Hence by [J] pp.
19-20, Theorem 2.10, s u p w e 7 V ^ e PE. In other words we may and do
suppose that Y itself is strongly measurable. So ||Γ|| is measurable.
Furthermore

sup | | A J ^ || r||, a.e.

So (the inclusion is valid a.e.), for each λ > 0

sup W > λ } c { | | y | | > λ } .

Since | |7 | | is measurable it follows that limx^PfllYΊI > λ) = 0. Hence
also

Urn P{ sup | |X j>λ) = 0. D

3. Pointwise convergence of martingales. In this section it is our
purpose to extend Chatterji's martingale convergence theorem ([C]) stating
that in every Banach space E with (RNP), each L^-bounded martingale
converges strongly a.e. to an integrable function. As was done already in
[U2], the L^-boundedness condition was weakened as to be usable in the
case of Pettis integrable functions (i.e. his condition (ii) in Theorem 3.1, p.
375 in [Uj], or see §1).

Of the same nature is our extension: instead of L^-boundedness, a
notion of "σ-L^-boundedness" is required (see condition (ii) in the theo-
rem below) which is natural since Pettis integrals are of σ-bounded
variation ([MuJ).

THEOREM 3.1. Let E be a Banach space such that c0 is not isomorphic to
a subspace of E (denoted cQfcE). Let (Xn,^n)n^N be a martingale



SEQUENCES OF PETTIS-INTEGRABLE FUNCTIONS 357

consisting of strongly measurable Pettis integrable functions such that

(i) sup^^ll-YJIj, < oo (i.e. condition (i) in Theorem 3.1 in [U2])

(ii) There is a disjoint sequence (An)n<EN in UnGN^n such that for each

m e N

S*P ί \\Xn\\< °°
ntΞN JΛm

(iii) For each ε > 0 there is a weakly compact set K c E such that for

each ε > 0 there exists n0 ^ N and a set Ao e JVUQ with P(Ω \A0) < ε such

that n >n0 implies fA Xn e P(A)K + δ ^ £ for all A a Ao, A (Ξ ^n, (i.e.

condition (iii) in Theorem 3.1 m [U2]). (This condition may in fact be

localized on each Am.)

Then there exists X^ e PE (of course strongly measurable) such that

converges strongly a.e. to X^.

Proof. For each m e N9 let n(m) <Ξ N be such that Am e J ^ ( m ) . Then

is a martingale in L ^ ^ ^ ) satisfying the conditions of [UJ, Theorem 4. So
there exists X£ e L^(^ίm) such that (^ i l^Jπe^ converges a.e. to ^ for
each m e iV. Put

m = l

Obviously (AΓΛ)πeΛr converges strongly a.e. to X^.

Furthermore X^ e P £ . Indeed, from (i) it follows that for every

x' e J?', ((x", -S r

Λ)) n e^ ^s a n ^-bounded martingale so a.e. convergent to

a function in Zλ So X^ is scalarly integrable. Since c0 Φ> E it now follows

from [TJ (see also [B-H], [J]), since X^ is strongly measurable, that

*oc e P £ . D

COROLLARY 3.2. Let Ehave (RNP). Then every martingale (Xn,^n)
consisting of strongly measurable Pettis integrable functions such that

(ii) There is a disjoint sequence (An)n&N in{jn&N^r

n such that for each

m<ΞN

sup/ ||Aj<oo

is strongly converging a.e. to a Pettis integrable function.
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Proof. Indeed, for each m e TV, the martingale (Xn\Am> m ( )

(n(m) was defined in the previous theorem) is L^(v4m)-bounded, with E

(RNP). An appeal to Chatterji's theorem [C] now delivers X™ as in the

previous proof. The rest is now the same as in this proof since c 0 & E. D

This corollary is a meaningful extension of Chatterji's theorem (even

in case Xn e Lι

E for each n e N9 it does not reduce to Chatterji's theorem).

We shall use the corollary later in this paper.

4. Pettis convergence of amarts. It is our purpose in this section to

generalize and reprove Musiat's result on Pettis convergence of martingales

(or amarts). This is done by first proving a Riesz decomposition theorem

in this setting, generalizing the Riesz decomposition of Edgar-Sucheston

[E-S].

THEOREM 4.1. Let Ebea Banach space with (WRNP) and(Xn,^n)

be an amart in PE (not necessarily consisting of strongly measurable func-

tions).

Suppose there is a disjoint sequence (Ak)kiEN in ίFx and a strictly

increasing sequence (mn)n(ΞN in N such that

sup f \\Xm || < oc
n<=N JAk'

for each k e N. Then there is a unique decomposition

where (Yn^n)n(ΞNis a martingale in PE such that

sup ( | |y j< oo
JA

for each k e N and (Zn, &n)neNis an adapted sequence such that

lim | |Z T | | P = 0.

Proof. From the definition of an amart we can see (in the same way as

in the case of Bochner integrable functions—[B], Theorem 1, p. 279) that,

for each / e N

μt{A) = : lim
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exists for each A G JF. It is easy to check that μt is of σ-bounded variation
w.r.t. (the sets (Ak)k€ΞN suffice) and that μι <^ P. Using (WRNP) this
yields Yi G PE such that

for each ̂  e J Γ and each / G N.

Now (Yn9 &"n)neN is easily seen to be a martingale and furthermore
since supn^N\μn\Ak\(Ak) < oo, for each k G N9 we see that

sup ί | | y j < o o

for each k ^ N. Furthermore, for each σ G Γ and each

lim

So

sup ί(Ya-Xσ) = sup lim fxmιι-fx(

< sup sup
m Λ >σ ^

[χmm-f
J A JA

χ.

The term on the right-hand side goes to zero for σ going through Γ, again
using [B] Theorem 1, p. 279, extended to our case. Hence

Zσ\\P= l i i r Λ Y a -
σ E i σ\\P

The uniqueness of the decomposition is proved in exactly the same way as
in the Bochner integrable case: suppose

Xn = Yn + Zn = Tn + Z'n

where (Fn, J^)^^^ and (Γ^, ̂ n)n^N are martingales and where

Then, for each A G Un ^

JBm /(ZB-Z;)-0.



360 L. EGGHE

But Ύ'n - Yn = Z'n- Zn forms also a martingale. So, for each m ̂  N and

lim /(zn-z;)=/(zm-z;) = o.

So Zm = Z'm, a.e. and also Ym = 7^, a.e. for each m ^ N. D

COROLLARY 4.2. Letf £ W e (WRNP) and(Xn, ^n)n^Nbe an amart in
PE such that there is a disjoint sequence (Ak)k<EN in &λ and a strictly
increasing sequence {rnn)n<ENinN such that

for each k e N. Suppose that (Xn)niΞN is Pettis uniformly integrable. Then
there exists a function X^ e PE such that limπ_^00||AΛ - X^Wp = 0.

Proof. Using Theorem 4.1 above it suffices to prove the result for the
martingale (Yn9 ̂ n)n^N constructed in the above proof. Obviously, since
lim σ G Γ | |Z σ | |p = 0, (Yn)n<=N ^s Pettis uniformly integrable too.

The limit measure μ(A) = limn_^O0fA Yn exists o n U ^ and, due to
the Pettis uniform integrability, on J ^ = σ(Uw ̂ ) . It now follows that μ
is of σ-bounded variation on J ^ and that μ <c P.

So, the (WRNP) of E implies that Y^ e PE exists such that

for e a c h ^ e ^ . W e have l i m ^ J I ^ - 1^^ = 0 since Yn = E^Y^ for
each n G N. This is seen in the next lemma.

LEMMA 4.2.1. Let E have (WRNP). Let Y e PE be such that w.r.t.
(<^n)neN> E^nY e PE exists Jor each n^N. Then limπ^ J | 7 - E*»Y\\P =
0.

Proof. If 7 is a simple function, the result is certainly true (and even
lim^JIY" - E^Y\\λ = 0 in this case!).

The general case follows, using a || | |P density argument. Simple
functions are indeed dense in PE since E has (WRNP), see [Mu3], p. 330,
Theorem 1. D
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REMARKS 4.2.2. (1) In the above lemma we in fact only used that E

has the so-called "Pettis Compactness Property" i.e. In E has every Pettis
integral norm relatively compact range.

(2) Corollary 4.2 extends the main result in [Mu3] (Theorem 5, p. 334)
and gives a simpler proof for it. Indeed we did not use Proposition 2 in
[Mu 3].

The next corollary belongs to this section but is in fact only a
corollary of Corollary 3.2.

COROLLARY 4.3. Let E have (RNP) and (Xn9 ^n)n^N be a martingale

in PE such that there is a disjoint sequence (Ak)kςΞN in Un^fl such that for

each k e TV

sup / | | *J < oo
n<EN

and such that (Xn)n^N is Pettis uniformly integrable. Then there is a

function X^ e PEsuch that limn_J\\Xn - XJ\\P = 0.

Proof. Since E has (RNP) and since we are dealing with || \\P-

convergence we may suppose (see [J], p. 129) that every Xn is strongly
measurable (cf. the discussion in §1 concerning MusiaΓs theorem). From
Corollary 3.2 we have X^ e PE such that l i m ^ ^ X ^ X^ a.e. So, the
Pettis uniform integrability of(Xn)n€ΞN finishes the proof. D

5. Weak convergence of weak sequential amarts. It is our purpose

to extend the theorem of Brunel-Sucheston [B — S] on weak convergence

a.e. of weak sequential amarts to the case of strongly measurble Pettis

integrable functions. First a definition.

DEFINITION 5.1. Let (Xn, &„)„<=„ be an adapted sequence in PE. We
say that ( ^ , J ^ ) π e i V i s a weak sequential amart (abbreviated (WS) amart)
if for every increasing sequence (τn)nGN in T the sequence (fςtXτ)nE:N

converges weakly in E.

The same proof as in the case of Bochner integrable functions shows

that every amart is a (WS) amart.

In [B — S], Brunel-Sucheston proved the following extension of a

result on amarts of Chacon-Sucheston [C-S] to (WS) amarts.

THEOREM 5.2 (Brunel-Sucheston). Let E be a Banach space with

(RNP) and with separable dual. Let (Xn, Fn)n(ΞN be a (WS) amart of class
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< 00.

Then there exists

sup I \\XT\\

l}E such that Xn converges to X^, weakly a.e.

For (WS) amarts consisting of strongly measurable Pettis integrable

functions we can prove

THEOREM 5.3. Let E and E' have (RNP). Let (Xn9 &n)n^N be a (WS)

amart in PE, consisting of strongly measurable functions. Suppose that:

(ϊ)limλ^ooP(supn€ΞN\\Xn\\>λ) = 0

(n)supτ(ΞTj{ιιXτlι<τ}\\Xτ\\< oc
(iii) (Xτ)τGT is Pettis uniformly integrable.
Then there is a X^ e J}E such that (Xn)n<EN converges weakly a.e. to

Proof. For each n e N9 define

Yn = XnX{\\Xn\\<n}

Then (Yn, ^n)n^N is an adapted sequence in Lι

E, due to the fact that every

||Xn\\ is measurable. (7 n , ^n)n^N is furthermore a (WS) amart. Indeed, let

( T ^ ) ^ ^ ^ be any increasing sequence in T. We may assume that l i m ^ ^ τn

= oo. Now

Since l im λ ^ 0 0 P(sup λ 7 e Λ r | | ^ / 7 | | > λ) = 0 it follows that

(even if (τn)n(ΞN is not cofinal in T). Hence, using (iii) one sees easily that

lim sup = 0.

So

lim
n—> oo / *

= 0.
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Since (Xn9 <^n)n(ΞN is a (WS) amart, there is an x0 e E such that

weak-lim ί Xτ = xQ.

So, also weak-lim^^/β Y7n = χ0.
Using (ii), (Yn9 ^n)n^N is of class (B).
Hence by Theorem 5.2, there is Y^ e L]g. such that weak-lim^

, a.e. Now

Since {(|A"Π|| > n) c {supπ||Λ
r

Λ|| > λ} if π > λ and by (i) we have
now that limsupJ|Zw - Yn\\ = 0. Consequently (Xn)n€ΞN converges weakly
a.e. to Y^. •Y^.

REMARK 5.4. From (ii) we knew already in advance that whenever
n<ΞN converges weakly a.e., the limit must be Bochner integrable.

Indeed:

sup f \\Xτ\\ > limsup ( ||Xr|| = / limsup ||^J|χ{,,^,,^π

(see [B-E], [Ed]).
Now, if we suppose weak convergence a.e. of (Xn)neN, we have that

(Xn(ω))neNis weakly, hence strongly bounded a.e. So

/ limsup\\Xn\\χuιxJ<n]=( l imsupM.

So (ii) implies

ί || weaklimZj < f liminf \\Xn\\ < f limsup||JTj < oo.

6. Strong convergence of pramarts.

DEFINITION 6.1. Let {Xn,^n)n^N be an adapted sequence in PE.
Suppose that for every σ, T e T with σ < T the conditional expectations
E^°X€ e PE exist.
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(Xn, ^n)n^N is called a pramart if for every ε > 0 there exists σ0 e Γ
such that T > σ > σ0, T, σ e Γ imply

In [M-S], Millet-Sucheston prove

THEOREM 6.2 (Millet-Sucheston). Let E be a Banach space with (RNP).

Then every pramart (Xn, tFn)nζΞN in LE such that supτGΓ/Ω||Xτ\\ < oo is

convergent strongly, a.e. (to a Bochner integrable function).

We can show now the following extension of Theorem 6.2

THEOREM 6.3. Let E be a Banach space with (RNP). Let (Xn,^n)n^N

be a pramart consisting of strongly measurable Pettis integrable functions.
Suppose that

( i ) l im π _ > o 0 P(sup π e Λ r | |Λ π | |>λ) = 0
(ii) s u p τ e Γ / { | | Λ ; | | < τ } | | Z τ | | < oo.

Then there is a X^ G L E such that (Xn)nςΞN converges strongly a.e. to X^.

Proof. We start in the same way as in the proof of Theorem 5.3.
Indeed we also apply Theorem 6.2 on(Yn, ^n)n€ΞN where Yn = Xnχ{]]Xfj]lsn]

for every n G N. (Yn, S^n)n^N is indeed a pramart due to (i).

Since, as in Theorem 5.3 we also have

limsup ||Xn - Yj = 0
n

it follows that (Xn)nGN converges strongly a.e. to l i m ^ ^ Yn G Lι

E. D

REMARKS 6.4.

(1) We have not used condition (iii) of Theorem 5.3 in the proof of
the above theorem.

(2) In Theorem 6.2, (i) does not appear but is of course implied by the
condition

< oosup / \\XT

which appears there. So even if Xn G L E for each n <Ξ N, Theorem 6.3 is
an extension of Theorem 6.2.
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