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STRONG CONVERGENCE OF PRAMARTS 
IN BANACH SPACES 

LEO EGGHE 

1. Introduction. Let E be a Banach space and (Xn, 5») be an adapted 
sequence on the probability space (12, 5> P)- We denote by T the set of all 
bounded stopping times with respect to ($w). (Xn, %n) is called a pramart 
if 

(||JE °XT — -XffiD r̂ 
<T,T£T 

converges to zero in probability, uniformly in r §; a. The notion of 
pramart was introduced in [6]. A good property is the optional sampling 
property (see Theorem 2.4 in [6]). Furthermore the class of pramarts 
intersects the class of amarts, and every amart is a pramart if and only 
if dim E < oo ([2], see also [4]). Pramarts behave indeed quite differently 
than amarts. Although the class of pramarts is large, they have good 
convergence properties as is seen in the next two results of Millet-
Sucheston, [6], [7]. 

THEOREM 1.1. Let (Xn, %n) be a real-valued pramart of class (d), i.e., 

lim inf E(Xn
+) + lim inf E(Xn~) < oo. 

Then (Xn) converges a.s. 

THEOREM 1.2. Let E have (RNP) and let (Xn, gw) be an LE
l-bounded 

pramart. Suppose (a) or (b) is satisfied, where 

(a) (Xn) is uniformly integrable. 
(b) (Xn) is of class (B) (i.e., supT€rJa||XT | | < co). 

Then (Xn) converges strongly a.s. 

(Uniform integrability is meant in the sense defined in [5].) This leaves 
the general problem (L. Sucheston) : 

Problem. Do ZV-bounded pramarts in a (RNP) Banach space converge 
strongly a.s.? 
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In this paper we show that, even if the problem is solved affirmatively, 
it is not the most general class of pramarts that do converge a.s. in a 
(RNP) space. Indeed here we will show that a different class fulfills the 
convergence requirement: 

THEOREM 1.3. Let E have (RNP). Let (Xn, gn) be a general pramart 
(not necessarily LE

1-bounded). Assume that there exists a subsequence 
(Xnk) which is uniformly integrable. Then (Xn) converges strongly a.s. 

2. Proof of theorem 1.3. 

LEMMA 2.1. (Theorem 4.1 in[ 6]). Let ($n)n=i be an increasing sequence 
of sub-a-algebras of the a-algebra g. Letf(a, r) be a family of % ^measurable, 
E-valued random variables, defined for a, T G T, a ^ r (E: Banach space). 
Assume for every n G N, 

1 {*=*}/(<r, T) = 1 {<r=n}/(**, T ) . 

If f(a, r) converges in probability to fœ, then f (a, r) converges strongly a.s. 
tofa. 

LEMMA 2.2. Let E be an arbitrary Banach space, and (Xn, %n) an adapted 
sequence. (Xn, %n) is a pramart if and only if 

lim sup \\Xa — E aXT\\ = 0 in probability. 

Proof. Using the definition of a pramart and Lemma 2.1 with 

f(a, r) = X„ - E*'XT, 

and fœ = 0, we see that if (Xn, %n) is a pramart, we have that 

(Xc — El aXr)a(zT converges a.s. to 0, 

uniformly in r ^ a-. So: 

lim sup \\X9 - E%°Xr\\ = 0, a.s. 
<r£T T^<7 

and hence in probability. 

We need another lemma: 

LEMMA 2.3. Let E be any Banach space and (Xn, %n) be any pramart. If 
there is a subsequence (Xnk)t=\ which is Cesaro-mean convergent, then (Xn) 
itself converges strongly a.s. 

Proof. Fix any increasing sequence (rn)n=\ in T. Let us call Y £ LE
l 

the Cesaro-mean limit of Xnjc, and write 

1 k 

Uk — T AjXni. 
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We have, for every œ G 12 and m, n, k £ N: 

\\XTm(o>) - * r „ ( « ) | | 

^ ||XTm(o>) - £5^C/,(a,)|| + \\E*«*Ut(u) - £8*-F(«) | | 

+ ||£3^F(co) - E*"Y(a)\\ + | | £ S ' »F (» - E%'-Uk(u)\\ 

+ ||£8~E/ t(«) - X r » | | . 

Now: 

||ZT„ - £5-C/,[| £ | g ||Xrm - £5l"XBt.|| = \ £ i m ) + i £ 

where 22im) is summation over these indices i such that w?: £ rm. Since 
(Wi)T=i is cofinal, we have only a fixed finite number of ni such that 
Wj ^ rm. 2^2m is summation over the rest. So: 

(m) 
2 

Ï E ? ° ^ sup ||ZTm - Edr-Xni\\ 

Fix e > 0. (E TmY, %rm)m=\ is trivially a mean-convergent martingale 
(to F). So it converges in probability. Choose ra0 such that m, n ^ w0 

implies 

•({ 
JjVTmy _ -^rny 

> 5 j / - 5 

By Lemma 2.2, choose « i such that m 2: Wi implies 

P([m l l^-£5^« l l>^})^ ÏÔ 

For every fixed m in N we have that (E TmUk)%=i converges to E TmY 
in the mean (since E Tm{ • ) is an L^-contraction), and hence in prob
ability. Fix m, n ^ max (ra0, Wi). Choose one k such that 

iii)p({||£S'-t/«(«) - £S*-F(»)|| > | } ) S I. 

( i v j P H H E ^ C o , ) - ^ - ^ ) ! ! > 

We now easily see that if m, n ^ max (w0, mi): 

P({||Zr„,(«) - X T » | | > «}) < «. 

Since convergence in probability is determined by a complete metric, we 
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see that (XT)T^T converges in probability. By Lemma 2.1 (applied to 
/(o-, r) = XT) (Xn)n=i converges strongly a.s., which finishes the proof. 

THEOREM 2.4. Let the Banach space E have (RNP). Let (Xn, gn) be a 
pramart for which there is a subsequence (Xnic)%=i which is uniformly 
integrable. Then (Xn)n=\ itself converges strongly a.s. 

Proof. Let (Xnk)t=i be the uniformly integrable subsequence. Since 
(Xnv %nk) is obviously a pramart, it follows from Theorem 1.2 that 
(Xnjc)t=i converges strongly a.s. Since (Xnk) is uniformly integrable, it 
converges in L^-sense. Hence Lemma 2.3 finishes the proof. 

Remark 2.5. In Lemma 2.3 as well as in Theorem 2.4, we may change 
(Xnk)f=i into (X<rk)%=i, where (o^aLi is an arbitrary cofinal increasing 
sequence of stopping times. This follows from the proof of Lemma 2.3, 
and, for Theorem 2.4, from the optional sampling property of parmarts, 
only applied cofinally [6]. 

We wish to indicate that Theorem 2.4 is a typical pramart result, in 
the following sense: Take E = R, and let (Xn, %n) be an amart, which 
has a subsequence which is Z^-bounded. As remarked to me by G. A. 
Edgar, it follows from the Riesz-decomposition [3], that (X„) itself is 
Z^-bounded. So the refinement of supposing only some boundedness of a 
subsequence instead of the whole sequence does not make much sense 
for amarts. That it does for pramarts is seen in the next two examples. 

Example 2.6. With respect to constant (7-algebras, a pramart is just 
an a.s. convergent sequence. It is now easily seen that a sequence which 
is not L^-bounded may admit a uniformly integrable subsequence. 

Example 2.7. (Lemma 9.1 in [6]). Let 12 = [0, 1), (yn) be a strictly 
decreasing sequence in [0, 1), with lim yn = 0. No matter what vectors 
xn G E we take, (Xn, %n) is a pramart, with 

J\n Xn [7n + 1 tyn) 

8n = v{X\i..., xn). 

Now it is trivial to choose ixn) in such a way that (Xn) has a uniformly 
integrable subsequence, without (Xn) being L^-bounded. 

3. A result in Banach-Saks spaces. 

Definition 3.1. A Banach space E is said to have the Banach-Saks-
Property (BSP), if every bounded sequence (xn) in E has a Cesaro 
convergent subsequence. 

A non-trivial equivalent formulation is found in [1]: 



PRAMARTS 361 

T H E O R E M 3.2. E has (BSP) if and only if every bounded sequence (Xn) 

in E has a subsequence, such that every subsequence of it converges Cesaro. 

Now using a diagonalisation procedure, together with Theorem 3.2, 
the same technique of proof as in Lemma 2.3 shows: 

PROPOSITION 3.3. Let E have (BSP) . Then every LE
l-bounded finitely 

generated {i.e.,: every %n is finite) pramart converges a.s. 

This proposition may have some relevance, wThen trying to construct 
a counterexample to the general problem, posed in the first section. 

Note added in proof. In a forthcoming paper of A. Bellow and L. Egghe 
it is noted tha t in Lemma 2.1 (Theorem 4.1 in [6]) we need an additional 
requirement on f(<j, r) : a localization in the second variable too : If 
A e ^o and r ' , r " Ç T, r ' , r " ^ a, such tha t r'(co) = r"(co) on A, then 

XAK^T') =XAf(a,r"). 

Since we only apply Lemma 2.1 for f(a, r) = Xa — EF<rX T and for 
f(a, T) = XT(a, T G T, a ^ r ) , we see tha t the additional requirement is 
also satisfied. 
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