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Abstract

Obtaining the standard error of the estimated heterogeneity in shared frailty models is in

general difficult. Klein and Moeschberger (1997) show that the use of the observed information

matrix is often not feasible because of its high dimension. Therneau and Grambsch (2000) use

a nonparametric bootstrap algorithm to obtain standard errors for the estimated parameters

in a shared frailty model. For parametric shared frailty models we define two model-based

resampling schemes and use them to obtain standard errors. Based on a simulation study, we

show that model-based resampling compares favourable to nonparametric resampling and that

for all resampling schemes robustness is an issue of concern.
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1 Introduction

The shared frailty model is used in order to model correlated survival times. The unobserved

risk factor that is common for all the observations in the same cluster is called the frailty. A

commonly used estimation procedure in frailty models is the EM algorithm (Klein, 1992). The

EM algorithm provides estimates for the fixed effects and for the variance of the frailty density,

but does not automatically provide estimates for the variances of these estimates. Klein and

Moeschberger (1997, p.413) show how the standard errors of the estimates for the gamma frailty

model can be obtained from the inverse of the observed information matrix. This information

matrix has rank equal to the number of distinct event times plus the number of covariates plus

one (for the heterogeneity parameter). For large data sets, this procedure is not appropriate

because of the high dimensionality.

For the gamma frailty model, Therneau and Grambsch (2000, p.254) proved that the estimates

obtained from the penalized partial likelihood maximization coincide with the estimates ob-

tained from the EM algorithm for any fixed value of the heterogeneity parameter. Hence we

can use the fast algorithm for the penalized partial likelihood procedure available in S-Plus.

However, the standard error estimates reported in S-Plus are computed under the assumption

of fixed θ. Since θ needs to be estimated, the given standard errors are too small (Therneau

and Grambsch, 2000, p.249).

Thus, the issue of estimating the standard errors of the parameter estimates requires further

investigation. A useful tool might be the bootstrap. The results developed for resampling in

linear mixed models show that resampling schemes need to be chosen in a careful way (Davison

and Hinkley, 1997, p.100-102; Morris, 2002). Therneau and Grambsch (2000, p.249) proposed a

nonparametric bootstrap algorithm to obtain standard error estimates. For parametric frailty
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models, model-based resampling schemes might be preferred above nonparametric resampling

plans. In this paper we propose two model-based resampling plans that can be used to find

standard errors of the estimated parameters (Section 4). We compare the two model-based

bootstrap algorithms to the nonparametric resampling algorithm of Therneau and Grambsch

(2000). The comparison is based on a simulation study (Section 5). The results indicate that

one of the proposed algorithms provides precise assessment of the empirical variability of the

parameter estimates, even if the model is misspecified. Another important finding is that the

empirical variability of the heterogeneity parameter can be much different for the correct and

the misspecified model. This provides evidence that robustness in terms of the heterogeneity

parameter is not guaranteed for the bootstrap algorithms (including the nonparametric boot-

strap); but robustness holds for the fixed effects. Prior to the discussion on resampling schemes

we give a short review on frailty models (Section 2) and on estimation methods for frailty

models (Section 3). In Section 6 we collect main conclusions and further research questions.

2 The shared frailty model

Assume we have a total of N individuals that come from K different groups, group i having

ni individuals (N =
∑K

i=1 ni). Each subject is observed from a time zero to a failure time T 0
ij

or to a potential right censoring time Cij . Let Tij = min(T 0
ij , Cij) be the observed time and δij

be the censoring indicator which is equal to 1 if Tij = T 0
ij and 0 otherwise. Hence the observed

data available for the jth individual in the ith group is yij = (Tij , δij), with j = 1, . . . , ni and

i = 1, . . . , K. The number of observed events in group i is Di =
∑ni

j=1 δij .

The frailty model is given by

hij(t) = h0(t) exp(xT
ijβ + wi), (1)
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where hij(t) is the hazard rate at time t for individual j from group i, h0(t) is the baseline

hazard at time t, xij is the vector of p covariates recorded for the individual and wi is the

random effect for group i. In this model h0(t) can be left unspecified or it may be assumed

to have some specific parametric form. The wi’s, i = 1, . . . ,K, are a sample (independent and

identically distributed) from a density fW (.).

Model (1) can be rewritten as:

hij(t) = h0(t)ui exp(xT
ijβ).

The factor ui = exp(wi) is termed the frailty for the ith group. The following choices for the

frailty density will be considered:

(a) The one-parameter gamma density of the form

fU (u) =
u(1/θ)−1 exp(−u/θ)

θ1/θΓ(1/θ)
, θ > 0.

The corresponding density for W is

fW (w) =
{exp(w)}1/θ exp {− exp(w)/θ}

θ1/θΓ(1/θ)
.

For the gamma density E (U) = 1. Typically Var(U) = θ is used to describe heterogeneity.

(b) The one-parameter normal density for W with E (W ) = −σ2/2 and Var(W ) = σ2.

The corresponding density of U is

fU (u) =
1

u
√

2πσ2
exp




−

(
log u + σ2

2

)2

2σ2





,

with E (U) = 1 and Var(U) = eσ2 − 1. In the further discussion, σ2 is chosen so that

Var(U) = θ, i.e., σ2 = log(θ + 1).

We will use Var(U) = θ to describe heterogeneity for both frailty distributions.
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3 Methods of estimation for the shared frailty model

For the gamma frailty model, Klein (1992) shows that the observable (marginal) likelihood is

given by

lobs(β, θ, h0(.)) =
K∑

i=1

[
Di log θ − log Γ(

1
θ
) + log Γ(

1
θ

+ Di)

−
(

1
θ

+ Di

)
log{1 + θ

ni∑

j=1

H0(tij) exp(xT
ijβ)}

+
ni∑

j=1

δij{xT
ijβ + log h0(tij)}


 , (2)

where H0(t) =
∫ t
0 h0(u)du is the cumulative baseline hazard.

As noted in the previous section, the baseline hazard h0(t) in the frailty model can be specified

explicitly or left unspecified. Under the parametric assumption, the parameters in the resulting

model can be estimated using maximum likelihood estimation procedures. For example, for

h0(t) ≡ h0 constant, the parameters β, θ and h0 can be estimated by maximizing the observable

log likelihood lobs(β, θ, h0). If h0(t) is left unspecified, the EM algorithm (Klein, 1992) and the

penalized partial likelihood approach (Therneau and Grambsch, 2000) can be used to estimate

the unknown parameters in (2). The latter can also be used to estimate the parameters of the

lognormal frailty model.

The EM algorithm for the gamma frailty

To estimate ζ = (θ, β), we would like to base the likelihood maximization on the observable

log likelihood (2). However, this likelihood is difficult to maximize as it contains, apart from ζ,

also the unspecified baseline hazard. We therefore rely on the EM algorithm to estimate ζ (for

details see, e.g., Duchateau et al., 2002).
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It is worth noting that Therneau and Grambsch (2000, p.254) have shown that for any fixed

θ, the EM algorithm and the penalized partial likelihood maximization have the same solution

for the gamma frailty case. Since S-Plus contains a fast algorithm for the penalized partial

likelihood approach, this property is very important from a practical point of view.

The penalized partial likelihood for shared frailty models

An alternative proposal for the likelihood to use for the estimation of ζ = (θ, β) is the penalized

partial likelihood

lppl(ζ, w) = lpart(ζ, w)− lpen(ζ, w),

where

lpart(ζ, w) =
r∑

l=1


 ∑

tij=t(l)

ηij −N(l) log





∑

tqs≥t(l)

exp(ηqs)






 ,

with ηij = xT
ijβ + wi, r denoting the number of different event times, t(1) ≤ . . . ≤ t(r) being the

ordered event times, N(l) denoting the number of events at time t(l), l = 1, . . . , r and

lpen(θ, w) = −
K∑

i=1

log fW (wi).

For random effects wi, i = 1, . . . ,K, with corresponding one-parameter gamma density for the

frailties, we have

lpen(θ, w) = −
K∑

i=1

{
wi − exp(wi)

θ

}
−K

{
log θ

θ
− log Γ

(
1
θ

)}
.

The maximization of the penalized log likelihood consists of an inner and an outer loop. In

the inner loop the Newton-Raphson procedure is used to maximize, for a provisional value of

θ, lppl(ζ, w) for β and w. In the outer loop, a likelihood similar to (2) is maximized for θ as in

the case of the EM algorithm. The process is iterated until convergence (for details see, e.g.,

Duchateau et al., 2002).

6



For random effects wi, i = 1, . . . ,K, having a normal density, we have

lpen(σ2, w) =
1
2

K∑

i=1

{
(wi − µ)2

σ2
+ log(2πσ2)

}
.

This term penalizes random effects that are far away from the mean value by reducing the

penalized partial likelihood. The maximization of the penalized log likelihood consists of an

inner and an outer loop. The inner loop is identical to the one described for gamma frailty

parameters. In the outer loop, the restricted maximum likelihood estimator for σ2 is obtained

using BLUPs. The process is iterated until convergence.

4 Bootstrap : Resampling schemes

The EM algorithm does not provide estimates for the variances of the estimates in the frailty

model. Klein and Moeschberger (1997) determine the standard errors of the estimates of β

and θ from the inverse of the observed information matrix of the observable likelihood. The

information matrix is a square matrix of size r + p + 1. For large data sets, this approach is

not appropriate because of the high dimensionality. On the other hand, the standard error

estimates of β̂ reported by S-Plus are computed under the assumption of θ known (Therneau

and Grambsch, 2000, p.249). In many situations, this assumption is not true and the estimated

standard errors are too small. An alternative approach for finding variance estimates might be

provided by the bootstrap.

Therneau and Grambsch (2000, p.249) proposed the following nonparametric bootstrap tech-

nique to obtain standard error estimates:

1. Choose K groups by sampling with replacement from the K groups in the study.

2. The bootstrap sample contains the subjects from the selected groups.
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3. Fit a gamma or lognormal frailty model with covariates to this bootstrap sample.

This procedure is repeated a number of times. The estimates of the coefficients β̂∗ and the

estimates of the heterogeneity parameter θ̂∗ are stored for each bootstrap sample. The standard

errors of the estimated parameters β̂ and θ̂ are calculated based on the variability of β̂∗ and θ̂∗.

If a parametric model is appropriate, we might prefer model-based resampling techniques above

the nonparametric resampling plan. We therefore propose two model-based resampling schemes.

We rely on a resampling plan for a simple random effects model with a balanced design, proposed

by Davison and Hinkley (1997, p.102). A random effects model can be written as

yij = xi + zij , j = 1, . . . , ni = n, i = 1, . . . , K,

where K is the number of groups, ni = n is the number of subjects per group, the xi’s are

randomly sampled from Fx and independent of the zij ’s, which are randomly sampled from Fz

with E(Z) = 0 to force uniqueness of the model.

In the “naive” version of their algorithm, Davison and Hinkley (1997, p.102) define

x̂i = ȳi and ẑij = yij − ȳi .

The resampled data set is then obtained in the following way

1. Choose x∗1, . . . , x
∗
K by randomly sampling with replacement from x̂1, . . . , x̂K ;

2. Choose z∗i1, . . . , z
∗
in randomly with replacement from one group of residuals ẑk1, . . . , ẑkn,

either from a randomly selected group or the group corresponding to x∗i ;

3. Set y∗ij = x∗i + z∗ij , j = 1, . . . , n, i = 1, . . . , K.

To construct a resampling plan for frailty models, we can argue that sampling from the means

of the groups in the case of the random effects model is like sampling from the frailty estimates
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in the case of the frailty model. However, in the situation of frailty models, we do not have

any residuals to resample from. We therefore propose a new resampling scheme that extends

a resampling algorithm for independent survival times, proposed by Hjort (1985) (see also

Davison and Hinkley, 1997, p.351).

Model-based bootstrap, algorithm 1:

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimate β̂ and the estimates of the frailties û1, . . . , ûK .

2. Choose u∗1, . . . , u
∗
K by sampling with replacement from û1, . . . , ûK .

3. Generate the true failure time T ∗ij from the estimated failure time survivor function

Ŝij(t) = {Ŝ0(t)}u∗i exp(xT∗
ij β̂), where xT∗

ij is the vector of covariates recorded for the j th

individual from the cluster that corresponds to u∗i .

4. Let δ̃∗ij and T̃ 0∗
ij be the censoring indicator and the observed time for the j th individual

from the cluster that corresponds to u∗i . If δ̃∗ij = 0, set C∗
ij = T̃ 0∗

ij , and if δ̃∗ij = 1, generate

C∗
ij from the conditional censoring distribution given that Cij > T̃ 0∗

ij , namely

Ĝ(t)− Ĝ(T̃ 0∗
ij )

1− Ĝ(T̃ 0∗
ij )

,

where Ĝ is an estimate (e.g., Kaplan-Meier) of the common censoring distribution G.

Assume that G is independent of the covariates.

5. Set T 0∗
ij = min(T ∗ij , C

∗
ij), with δ∗ij = 1 if T 0∗

ij = T ∗ij and zero otherwise.

Steps 3, 4 and 5 are the adaption of the algorithm proposed by Hjort (1985) (see also Davison

and Hinkley, 1997, p.351).
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For a semi-parametric model, the true failure times in step 3 are generated from the estimated

failure time survival function

Ŝij(t) = {Ŝ0(t)}u∗i exp(xT∗
ij β̂),

where Ŝ0(t) = exp(−Ĥ0(t)) is the estimated baseline survival function, with

Ĥ0(t) =
∑

t(l)≤t

ĥl0,

where Ĥ0(t) is the estimated baseline cumulative hazard at time t and

ĥl0 =
N(l)∑

tsq≥t(l)
u∗s exp(xT∗

sq β̂)
.

For a parametric model, the true failure times are generated under the parametric assumption.

For mixed models it has been demonstrated (Morris, 2002) that the variances of the BLUP’s are

biased downwards as estimators of the variance components. Due to this bias, bootstrapping

BLUP’s results in underestimation of the variation in the data, causing standard error estimates

biased downwards. The above-mentioned model-based resampling algorithm may suffer from

this problem. Therefore, we propose a second resampling scheme, where resampled frailty

parameters are obtained by sampling the appropriate frailty distribution with variance θ̂. We

again assume that censoring is independent of the covariates.

Model-based bootstrap, algorithm 2:

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimates β̂, θ̂.

2. Sample u∗1, . . . , u
∗
K from a gamma or lognormal distribution with mean 1 and variance θ̂.

3. Generate the true failure time T ∗ij from the estimated failure time survivor function

Ŝij(t) = {Ŝ0(t)}u∗i exp(xT
ij β̂).
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4. If δij = 0, set C∗
ij = T 0

ij , and if δij = 1, generate C∗
ij from the conditional censoring

distribution given that Cij > T 0
ij , namely

Ĝ(t)− Ĝ(T 0
ij)

1− Ĝ(T 0
ij)

.

5. Set T 0∗
ij = min(T ∗ij , C

∗
ij), with δ∗ij = 1 if T 0∗

ij = T ∗ij and zero otherwise.

5 Simulations

5.1 Motivation

Based on simulations we compare the two model-based resampling plans and the nonparametric

resampling plan. As simulation model we consider the setting of a multicenter clinical trial.

The following issues will be discussed:

(i) The comparison of the nonparametric and the model-based resampling schemes assuming

that the model is correct.

(ii) The effect of the size of the multicenter clinical trial on the precision of the variance

estimation. Note that the size of a trial is determined by K, the number of centers, and

by the number of patients per center (which we assume to be equal over the centers for

simplicity).

(iii) The effect of the size of θ, the heterogeneity parameter, and h0(t), the event rate (assumed

to be constant in time for simplicity) on the precision of the variance estimation.

(iv) The robustness of the resampling plans to misspecification of the model.
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5.2 The simulation setting

For each parameter setting (K, n, h0, θ, β), with β the treatment effect parameter, 100 data

sets are generated. Given a particular parameter setting, the observations for each data set

are generated in the following way. First, K frailties u1, . . . , uK are generated from a gamma

or lognormal frailty distribution with mean one and variance θ. The time to event for the j th

patient from center i is randomly generated from an exponential distribution with parameter

hij = h0ui exp(xT
ijβ), where xij is generated from a Bernoulli distribution with success parame-

ter 0.5. The censoring time for each patient is randomly generated from a uniform distribution

so that approximately 30% censoring is obtained.

For each simulated data set, two model assumptions are considered to investigate the perfor-

mance of the bootstrap algorithms under the correct and misspecified models. First, we assume

that the frailties are gamma distributed. For each simulated data set, R = 100 bootstrap sam-

ples are taken by using the nonparametric bootstrap and the two model-based resampling plans

under the assumption of gamma distributed frailties. Next, the same procedure is followed un-

der the assumption of lognormal distributed frailties.

Under both assumptions of the frailty distribution, a semi-parametric frailty model is consid-

ered to estimate the treatment effect and the heterogeneity parameter in the nonparametric

and the two model-based resampling plans. The penalized partial likelihood approach is used

to obtain the parameter estimates (Therneau and Grambsch, 2000). In the model-based re-

sampling plans, we also consider a parametric frailty model with a constant baseline hazard

if the frailty parameters are assumed to be gamma distributed. For the parametric gamma

frailty model, the model-based resampling schemes assume that the time to event follows an

exponential distribution with parameter hij . Under this assumption, the parameters β, θ and
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h0 can be estimated by maximizing the observable log likelihood lobs(β, θ, h0), given in (2),

using the Newton-Raphson method.

5.3 Choice of the parameters

For the concrete simulation, the number of centers is taken equal to 15 or 30 centers, with 20 or

40 patients per center. For ‘true’ frailties that are gamma distributed, we additionally consider

15 or 30 centers, with 5 patients per center. The parameter values h0, β and θ are chosen

in such a way that a different magnitude of spread in the median time to event from center

to center is induced. The median time to event TM0 (for xij = 0) and TM1 (for xij = 1) is

the solution of exp (−h0UTM0) = 0.5 and exp (−h0U exp (β) TM1) = 0.5, with U one-parameter

gamma distributed, i.e. TM0 = log 2
h0U and TM1 = log 2

h0U exp(β) . The magnitude of spread in the

median time to event from center to center was determined by computing the density functions

of TM0 and TM1 (Figure 1). It can be shown that, for xij = 1 and for a gamma frailty density,

the density function fTM1
(t) is given by

fTM1
(t) =

(
log 2

θh0 exp (β)

) 1
θ 1

Γ(1/θ)

(
1
t

)1+1/θ

exp
(
− log 2

θth0 exp (β)

)
.

For the treatment effect, we use β = 0.25. As true values for the event rate, we take h0 = 0.1

and h0 = 0.5. The heterogeneity parameter is set at θ = 0.1 and θ = 0.6.

For the settings (θ, h0) = (0.6, 0.5) and (0.1, 0.5), there is little spread in the median time to

event over the centers, with a bigger spread for θ = 0.6. For the settings (θ, h0) = (0.6, 0.1)

and (0.1, 0.1), there is much spread in the median time to event over the centers. Furthermore,

Figure 2 clearly explains our motivation for choosing θ = 0.1 and θ = 0.6. For θ = 0.1 we have

a situation where the gamma and the lognormal density functions are close, whereas for θ = 0.6

these densities are more apart.
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5.4 Results

By performing the bootstrap, we obtain for each simulated data set a bootstrap estimate of

the standard error of the treatment effect and the heterogeneity parameter. The mean of these

100 estimated standard errors is denoted by mean(SEB). The values of mean(SEB) for each

resampling scheme are compared to the empirical standard error of β̂ and θ̂, denoted by SEE .

In the following discussion we will focus on the standard error estimates of the heterogeneity.

For completeness, the results for the treatment effect are given in Table 2. In all settings

studied, the estimated standard error of the heterogeneity parameter obtained by the first

model-based resampling plan underestimates the standard error, as compared to SEE . Since

the estimates obtained by the second model-based resampling plan are in most cases more

precise than those obtained by the first model-based bootstrap algorithm, only the results of

the second model-based resampling plan are shown.

5.4.1 Nonparametric versus model-based resampling

Figures 3 and 4 are used to compare the nonparametric and the model-based resampling plan

assuming that the model is correct. In Figure 3 we consider ‘true’ frailties that are gamma and

for the resampling scheme we rely on penalized partial likelihood with gamma frailties (gam.,

s.-par. in Table 1). Figure 4 is the equivalent of Figure 3 for ‘true’ frailties that are lognormal

(logn., s.-par. in Table 1). The resampling schemes are compared in terms of the absolute rela-

tive bias. Take, e.g., Figure 3 for the setting (θ, h0) = (0.6, 0.5). In that picture we plot for the

settings (K,n) = (15, 5), (15, 20), (15, 40), (30, 5), (30, 20) and (30, 40) the points (RBN , RBMB)

where RBN , resp. RBMB, is the absolute relative bias |mean(SEB)− SEE |/SEE for the non-

parametric, resp. model-based, resampling scheme. The actual value for, e.g., (K,n) = (15, 40)
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and (30, 40) can be obtained from Table 1. In the picture we add the bisector. For ‘true’ frailties

that are lognormal (Figure 4), we do not consider the settings (K, n) = (15, 5) and (30, 5).

There is no single consistent pattern for all settings in the results. When (θ, h0) = (0.1, 0.1),

model-based resampling has a smaller relative bias compared to the nonparametric resampling

plan (i.e., most of the points (RBN , RBMB) are below the bisector), even if the cluster size is

small (n = 5). For (θ, h0) = (0.6, 0.5) and (0.1, 0.5) the general conclusion from Figures 3 and 4

is that, unless the cluster size is small (n = 5), the performance of model-based resampling

is often better than that of nonparametric resampling. In situations where the nonparametric

resampling is better (points above the bisector) the performance of the model-based plan is

almost as good as that of the nonparametric resampling plan. More deviation from this is seen

for (θ, h0) = (0.6, 0.1) where the nonparametric resampling scheme performs clearly better for

some settings (K, n).

Based on the bootstrap estimates θ̂∗, we can construct bootstrap confidence intervals. In Ta-

ble 3 we illustrate this idea. For a nominal coverage of 95%, we give the coverage proportions of

the percentile and bias-corrected and accelerated (BCa) intervals for θ when (θ, h0) = (0.6, 0.5).

To obtain the BCa interval for a bootstrap sample, the acceleration is computed in terms of

the jacknife values of θ̂. For clustered data, the jacknife is performed by leaving out one cluster

instead of deleting one observation. We see that the coverage proportion of the percentile inter-

vals is not satisfactory (see also Efron and Tibshirani, 1993, p.178) whereas the BCa intervals

have a smaller coverage error, especially for the model-based resampling plan. For illustrative

purposes, the results are shown for 100 bootstrap samples. A more extensive simulation study

of the confidence intervals is a topic for further research.
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5.4.2 Effect of the number of clusters and patients on the precision of the variance

estimation

To study the effect of the number of clusters and the number of patients per cluster on the

standard error we look at Figure 5 where, for the semi-parametric gamma model, we plot for

(K,n) = (15, 5), (15, 20), (15, 40), (30, 5), (30, 20) and (30, 40), SEE , mean(SEB) for nonpara-

metric resampling and mean(SEB) for model-based resampling. The empirical standand error

SEE is considered as the reference point. The general conclusion, also based on pictures simi-

lar to Figure 5 for the semi-parametric lognormal model and for the parametric gamma model

(pictures not shown), is that for both resampling plans the number of clusters is important to

obtain accurate standard errors. We also see that, if the number of clusters is large enough

(e.g., K=30) we can only improve the accuracy of the standard errors in a moderate way by

increasing the number of patients.

5.4.3 Effect of heterogeneity and event rate on the precision of the variance esti-

mation

To study the effect of the heterogeneity and the event rate on the estimated standard er-

ror we look at Figure 6 where, for the semi-parametric gamma model, we plot for (θ, h0) =

(0.6, 0.5), (0.6, 0.1), (0.1, 0.5) and (0.1, 0.1), SEE , mean(SEB) for nonparametric resampling

and mean(SEB) for model-based resampling. The empirical standard error SEE is considered

as the reference point. The general conclusion, also based on pictures similar to Figure 6 for the

semi-parametric lognormal model and for the parametric gamma model (pictures not shown),

is that the bootstrap standard error obtained by both resampling plans are more accurate for

small θ, i.e., θ = 0.1. When h0 increases, the accuracy of the standard errors is improved in a
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moderate way, keeping θ constant.

5.4.4 Robustness

In all settings studied, the point estimates of the fixed effect in the correct and the misspecified

model are close to each other (Table 2). Also the estimated standard errors of the fixed effect

obtained by the nonparametric and the second model-based resampling scheme are similar,

even if the model is misspecified. This means that there is robustness in terms of estimation of

the fixed effects. This is in agreement with results in, e.g., Pickles and Crouchley (1995).

When θ = 0.6, the point estimates of the heterogeneity parameter in the misspecified model

are biased (Table 1). The empirical variability is also quite different for the correct and the

misspecified model. For θ = 0.1, the bias of the point estimates is smaller and the difference

in variability is less pronounced. This can be explained since there is only little difference in

shape between the gamma distribution and the lognormal distribution when θ = 0.1, whereas

there is more difference when θ = 0.6 (Figure 2). The relative bias, compared to the empirical

standard error, indicates that the estimated standard error of the heterogeneity obtained by

the nonparametric and the model-based resampling schemes are close to the corresponding

empirical standard error, both for the correct and the misspecified model. So, bootstrap is useful

to estimate the standard error of the heterogeneity parameter. However, since the empirical

variability of the heterogeneity parameter is rather different for the correct and misspecified

model, lack of robustness is an issue when fitting frailty models.
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6 Conclusions

In this paper, the use of bootstrap for the estimation of the standard errors of the parameter

estimates in a frailty model is proposed. To complement the existing nonparametric resam-

pling plan, we propose two model-based bootstrap algorithms. The comparison between the

nonparametric and model-based resampling schemes and the robustness of the schemes to the

model assumptions was studied by simulation. The results indicate that the first model-based

resampling plan, based on resampling of the estimated frailties, underestimates the empiri-

cal variability of the parameter estimates for all settings studied. This corresponds to the

conclusion drawn by Morris (2002) for linear mixed models. On the other hand, the second

model-based algorithm, based on resampling from the estimated frailty distribution, provides

relatively precise estimates, compared to the corresponding empirical variability. In general,

unless the cluster size is small, the second model-based resampling plan gives estimates of the

standard error of the heterogeneity estimator that are better or almost a good as those obtained

by the nonparametric resampling plan. However, the empirical variability of the heterogeneity

parameter is rather different for the correct and misspecified models. So, the results indicate

that the proposed resampling schemes may offer a useful approach to obtain standard errors for

the estimates of the model parameters (the treatment effect and the heterogeneity parameter)

but one has to be careful with the variance estimation of the heterogeneity estimator if the

model is misspecified. Further investigation of the properties of the resampling plans will be

necessary. For instance, in the model-based resampling schemes we have made the assumption

that censoring is independent of the covariates. In principle, it should be possible to extend

the schemes to the more general situation where the censoring distribution depends on the co-

variates, using the approach developed by Davison and Hinkley (1997, p.351). Furthermore, it
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also would be of interest to consider frailty densities other than gamma and lognormal. These

are important topics for further research.
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Figure 1: Density function of the median time to event over centers (β = 0.25) .
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Figure 2: Density function for the lognormal and the gamma distribution .
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Figure 3: Absolute relative bias for the estimated standard error of the heterogeneity parameter

(gamma frailties); ◦ = (15, 5), ◦ = (15, 20), © = (15, 40), X = (30, 5), X = (30, 20) X = (30, 40).
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Figure 4: Absolute relative bias for the estimated standard error of the heterogeneity parameter

(lognormal frailties); ◦ = (15, 20), © = (15, 40), X = (30, 20), X = (30, 40).
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Figure 5: Effect of the number of clusters and patients on the mean estimated standard error,

semi-parametric gamma model; ◦ = empirical, 4 = nonparametric, ¤ = model-based (2).
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Figure 6: Effect of heterogeneity and event rate on the mean estimated standard error, semi-

parametric gamma model; ◦ = empirical, 4 = nonparametric, ¤ = model-based (2).
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Table 1: Estimated standard error for heterogeneity parameter estimate; for each setting: 40
patients per center, first line for 15 centers, second line for 30 centers.

True Setting Bootstrap non-par. model-based(2)

(θ, h0) assumption mean (θ̂) SEE mean(SEB) mean(SEB)

(0.6, 0.5) Gam., par. 0.4129 0.1606 0.1460

0.3997 0.1128 0.1020

Logn. Gam., s.-par. 0.4038 0.1562 0.1332 0.1479

0.3943 0.1116 0.0971 0.1048

Logn., s.-par. 0.5947 0.3111 0.2903 0.3314

0.5563 0.2247 0.1885 0.2025

(0.6, 0.5) Gam., par. 0.4994 0.1722 0.1760

0.5850 0.1441 0.1436

Gamma Gam., s.-par. 0.4930 0.1732 0.1556 0.1805

0.5846 0.1472 0.1453 0.1500

Logn., s.-par. 0.9120 0.5794 0.5729 0.5940

1.1672 0.5536 0.6653 0.5112

(0.6, 0.1) Gam., par. 0.4214 0.1904 0.1508

0.3988 0.1195 0.1016

Logn. Gam., s.-par. 0.4144 0.1913 0.1270 0.1542

0.3934 0.1205 0.0991 0.1049

Logn., s.-par. 0.6287 0.4116 0.2918 0.4629

0.5567 0.2313 0.1955 0.2039

(0.6, 0.1) Gam., par. 0.5370 0.2138 0.1903

0.5804 0.1373 0.1424

Gam. Gam., s.-par. 0.5370 0.2195 0.1666 0.1953

0.5749 0.1362 0.1353 0.1479

Logn., s.-par. 1.1026 0.8512 0.7907 0.7719

1.0862 0.4510 0.5260 0.4541

(0.1, 0.5) Gam., par. 0.0840 0.0358 0.0362

0.0914 0.0237 0.0260

Logn. Gam., s.-par. 0.0782 0.0434 0.0341 0.0404

0.0876 0.0304 0.0296 0.0314

Logn., s.-par. 0.0883 0.0511 0.0412 0.0487

0.0957 0.0348 0.0343 0.0365

(0.1, 0.5) Gam., par. 0.0934 0.0375 0.0392

0.0987 0.0274 0.0277

Gamma Gam., s.-par. 0.0903 0.0458 0.0400 0.0441

0.0969 0.0347 0.0313 0.0337

Logn., s.-par. 0.1020 0.0547 0.0480 0.0544

0.1069 0.0411 0.0374 0.0400

(0.1, 0.1) Gam., par. 0.0885 0.0404 0.0371

0.0937 0.0275 0.0266

Logn. Gam., s.-par. 0.0840 0.0496 0.0369 0.0421

0.0890 0.0347 0.0303 0.0318

Logn., s.-par. 0.0941 0.0588 0.0439 0.0515

0.0984 0.0412 0.0361 0.0382

(0.1, 0.1) Gam., par. 0.0969 0.0487 0.0410

0.0940 0.0245 0.0275

Gam. Gam., s.-par. 0.0924 0.0565 0.0399 0.0447

0.0910 0.0316 0.0299 0.0321

Logn., s.-par. 0.1066 0.0704 0.0506 0.0567

0.1005 0.0371 0.0354 0.0378
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Table 2: Estimated standard error for estimate of treatment effect; for each setting: 40 patients
per center, first line for 15 centers, second line for 30 centers.

True Setting Bootstrap non-par. model-based(2)

(θ, h0) assumption mean (β̂) SEE mean(SEB) mean(SEB)

(0.6, 0.5) Gam., par. 0.2547 0.1143 0.0992

0.2523 0.0651 0.0700

Logn. Gam., s.-par. 0.2530 0.1159 0.0997 0.1047

0.2518 0.0649 0.0688 0.0746

Logn., s.-par. 0.2530 0.1165 0.0996 0.1064

0.2521 0.0649 0.0688 0.0741

(0.6, 0.5) Gam., par. 0.2538 0.0922 0.0985

0.2464 0.0633 0.0703

Gamma Gam., s.-par. 0.2530 0.0915 0.0931 0.1062

0.2469 0.0640 0.0681 0.0754

Logn., s.-par. 0.2529 0.0915 0.0930 0.1071

0.2469 0.0639 0.0680 0.0777

(0.6, 0.1) Gam., par. 0.2474 0.0938 0.0999

0.2443 0.0609 0.0703

Logn. Gam., s.-par. 0.2471 0.0944 0.0950 0.1050

0.2441 0.0604 0.0690 0.0726

Logn., s.-par. 0.2469 0.0943 0.1051 0.1052

0.2443 0.0601 0.0689 0.0742

(0.6, 0.1) Gam., par. 0.2523 0.1008 0.1007

0.2490 0.0758 0.0709

Gam. Gam., s.-par. 0.2537 0.1021 0.0975 0.1070

0.2481 0.0758 0.0670 0.0761

Logn., s.-par. 0.2537 0.1019 0.0973 0.1096

0.2483 0.0757 0.0670 0.0764

(0.1, 0.5) Gam., par. 0.2719 0.1112 0.0999

0.2626 0.0609 0.0703

Logn. Gam., s.-par. 0.2712 0.1124 0.0946 0.1013

0.2627 0.0609 0.0688 0.0715

Logn., s.-par. 0.2714 0.1124 0.0940 0.1002

0.2627 0.0608 0.0688 0.0714

(0.1, 0.5) Gam., par. 0.2370 0.1008 0.0983

0.2501 0.0721 0.0698

Gamma Gam., s.-par. 0.2372 0.1015 0.0947 0.1014

0.2492 0.0713 0.0700 0.0701

Logn., s.-par. 0.2373 0.1013 0.0943 0.1004

0.2492 0.0714 0.0700 0.0712

(0.1, 0.1) Gam., par. 0.2411 0.1006 0.0985

0.2440 0.0780 0.0703

Logn. Gam., s.-par. 0.2413 0.1007 0.0934 0.1013

0.2431 0.0774 0.0682 0.0709

Logn., s.-par. 0.2415 0.1007 0.0933 0.1001

0.2432 0.0773 0.0682 0.0719

(0.1, 0.1) Gam., par. 0.2541 0.1038 0.0991

0.2512 0.0710 0.0699

Gam. Gam., s.-par. 0.2533 0.1056 0.0921 0.1002

0.2513 0.0709 0.0680 0.0701

Logn., s.-par. 0.2531 0.1056 0.0916 0.1009

0.2513 0.0709 0.0680 0.0719
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Table 3: Coverage proportion of percentile and bias-corrected accelerated intervals for θ for
a nominal coverage of 95%; (θ, h0) = (0.6, 0.5), gamma distributed frailties; 40 patients per
center, first line for 15 centers, second line for 30 centers.
Bootstrap Bootstrap non-par model-based(2)

confidence interval assumption

Percentile Gam., par. 0.79

0.92

Gam., s.-par. 0.71 0.76

0.86 0.90

BCa Gam., par. 0.90

0.93

Gam., s.-par. 0.79 0.91

0.86 0.94
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