
Declarative Networking:
Recent Theoretical Work on Coordination,
Correctness, and Declarative Semantics⇤

Tom J. Ameloot
†

Hasselt University &
Transnational University of Limburg

Diepenbeek, Belgium
tom.ameloot@uhasselt.be

ABSTRACT
We discuss recent theoretical results on declarative net-
working, in particular regarding the topics of coordina-
tion, correctness, and declarative semantics.

1. INTRODUCTION
Cloud computing refers to the principle that com-

putations are distributed over a network of comput-
ing nodes to increase parallelism [54]. Cloud com-
puting is challenging to implement because mes-
sages can be delayed, computing nodes can crash,
network links can be broken, etc. It seems desir-
able to abstract away from some of these technical
aspects, and let them be automatically handled by
a suitable framework.

Paradigms for cloud computing have emerged that
hide some technical aspects and provide intuitive
concepts instead. Well-known examples are MapRe-
duce [24], Pregel [44], and GraphLab [41]. These
paradigms suggest concrete and yet simple ways
to think about cloud computing. The programmer
typically provides the functionality in the form of a
few modules, and the runtime engine takes care of
the actual distributed execution of these modules.
In general, the modules are specified with impera-
tive programming languages.

Now, declarative networking is another proposal
to simplify programming of cloud computing, using
high-level declarative languages instead of imper-
ative languages. The programmer expresses what
should happen instead of how to e↵ectively achieve
this. The runtime engine will generate a distributed
⇤
Database Principles Column. Column edi-

tor: Pablo Barceló. Department of Computer Sci-
ence, University of Chile, Santiago, Chile. E-mail:
pbarcelo@dcc.uchile.cl
†PhD Fellow of the Fund for Scientific Research, Flan-
ders (FWO).

physical query plan to perform the desired cloud
computation. For example, regarding messages, a
declarative program will only generate the event
to send a specific message to a certain recipient,
and the runtime engine chooses some e�cient de-
livery strategy. Languages for declarative network-
ing elegantly combine messaging features with lo-
cal computation. Originally, the term declarative
networking referred specifically to Datalog-inspired
languages, and also more specifically to network-
ing protocols [39]. In the meantime, the languages
remain mostly Datalog-inspired, but several works
now also consider their use for general distributed
database queries. In this context, cloud data is typ-
ically viewed as a distributed database.

In this paper, we discuss recent theoretical results
on declarative networking, thereby complementing
the surveys of Hellerstein [30] and Loo et al. [40]
that discuss various applications and practical as-
pects of declarative networking.

We give an overview of the paper. First, Sec-
tion 2 briefly introduces basic database and Data-
log terminology. The following two sections discuss
theoretical results on distributed execution. Sec-
tion 3 discusses coordination, and studies in par-
ticular the CALM conjecture by Hellerstein. Sec-
tion 4 discusses correctness of distributed computa-
tions, including decidability results. Next, Section 5
highlights features of languages in declarative net-
working and reviews declarative semantics for such
languages; in this context, we also examine a sec-
ond conjecture by Hellerstein, namely, the CRON
conjecture. Section 6 provides directions for further
work.

2. PRELIMINARIES
The purpose of this section is to introduce some

concepts that are frequently used in this paper [3].

SIGMOD Record, June 2014 (Vol. 43, No. 2) 5



A database schema D is a set of pairs (R, k),
where R is a relation name and k 2 N is its associ-
ated arity. A fact over D is of the form R(ā) where
R is a relation name from the schema and ā is a tu-
ple of values matching the arity of the relation. An
atom over D is of the form R(ū) where R is again
a relation from the schema, and ū is now a possibly
mixed tuple of values and variables, matching the
arity of the relation.

A conjunctive query with negation over D is of
the following form:

T (ū) R1(v1), . . . , Rp

(v
p

),¬S1(w1), . . . ,¬S

q

(w
q

).

where T (ū) and all R

i

(v
i

) and S

j

(w
j

) are atoms
over D. A conjunctive query with negation may
also be called a (Datalog) rule. Atom T (ū) is called
the head and the other atoms constitute the body.
The order of body atoms is usually irrelevant. The
R

i

-atoms are called positive: they test the presence
of facts. The S

j

-atoms are called negative: they
test the absence of facts; the symbol ‘¬’ stands for
negation. For simplicity, we make the common as-
sumption that all variables of a rule occur in its
positive body atoms.

To evaluate a rule on a set of input facts, we seek a
substitution of the rule variables by values so that
facts resulting from positive body atoms occur in
the input and facts resulting from negative body
atoms do not occur in the input. Applying this
substitution to the head atom results in a fact, the
so-called derived fact.

A Datalog program over a database schema is a
set of rules over this schema. A Datalog program is
called positive when its rules contain only positive
body atoms.1 A Datalog program is called recursive
when some head relations of rules also occur in rule
bodies.

3. COORDINATION
Coordination means that nodes of a cloud are try-

ing to obtain a global consensus. For example, by
exchanging messages about the presence or absence
of data in the cloud, coordination protocols could
ensure that all nodes have the desired data before
applying negation in their local computation. Be-
cause computation at all nodes is halted during co-
ordination, which reduces parallelism, we want to
avoid coordination as much as possible.

Recent research on coordination consists of two
main approaches. Both approaches provide indica-
1The term “Datalog” originally denoted programs with
only positive bodies [3]. But to simplify terminology,
this paper also uses the term for programs with negative
body atoms.

tions about how e�cient the distributed runtime en-
gines for declarative networking can be made. The
first approach, as embodied by the CALM conjec-
ture, investigates which distributed computations
can completely avoid coordination and are thus “em-
barrassingly parallel” [30]. For distributed compu-
tations that can not completely avoid coordination,
the other approach quantifies the required amount
of coordination. Even for computations that can
avoid coordination, a quantitative approach can shed
light on the costs involved. These approaches are
complementary, and are discussed in Sections 3.1
and 3.2 respectively.

3.1 CALM Conjecture
During his PODS 2010 keynote, Hellerstein pre-

sented a number of intriguing conjectures to the
database community [30]. The first conjecture is
called the CALM conjecture (Consistency And Log-
ical Monotonicity), that we repeat for convenience:

Conjecture 1 (CALM [30]). A program has
an eventually consistent, coordination-free execution
strategy if and only if it is expressible in (mono-
tonic) Datalog.

We explain the meaning of this conjecture. Even-
tual consistency is a correctness notion: it indicates
that the program can tolerate arbitrary message
delays, as occurring in asynchronous communica-
tion settings (cf. Section 4). Coordination-freeness
means that coordination is completely avoided.
Monotonic Datalog refers to positive Datalog, that
is indeed restricted to so-called monotone compu-
tations where previous output facts remain valid
whenever the input is extended with new facts (and
new output facts may also be produced). So, the
CALM conjecture suggests that a distributed pro-
gram can avoid coordination (and stay correct) if
and only if that program is expressible in positive
Datalog.

One direction of the CALM conjecture was al-
ready known: positive Datalog programs can be im-
plemented without coordination [39]. This actually
holds more generally for all monotone programs,
even those that are not expressible in positive Dat-
alog: the main intuition here, is that the nodes can
send the input data to each other and steadily ac-
cumulate these messages; whenever a new message
arrives, a node can always again evaluate the mono-
tone program. Because the program is monotone,
no wrong outputs are produced by previous evalua-
tions. This strategy results in eventual consistency.

But the other direction of the CALM conjecture
appears new: it suggests an upper bound on the ex-

6 SIGMOD Record, June 2014 (Vol. 43, No. 2)



pressivity of distributed programs that can proceed
without coordination. This direction has prompted
several investigations, that we discuss below.

Coordination-freeness and monotonicity. Because
the CALM conjecture was only stated informally,
it had to be formalized first. Ameloot et al. [12]
have proposed a formal definition of coordination-
freeness: a program is called coordination-free when
for each set of input facts, there is some right way
to distribute these facts over the network so that
the nodes can already compute the entire output
without communicating. Intuitively, the program
still has to be correct for all possible input distri-
butions, but there is a right distribution enabling
an embarrassingly parallel execution. Although the
original CALM conjecture mentioning Datalog was
disproved in the formal framework of Ameloot et
al., nonetheless the main intuition of the conjec-
ture turns out to hold [12]: a distributed program
is coordination-free if and only if it is monotone.

Coordination-freeness and non-monotonicity. Us-
ing the same definition of coordination-freeness as
Ameloot et al. [12], Zinn et al. [55] have subse-
quently obtained additional insights on the CALM
conjecture. Surprisingly, it turns out that some
non-monotone programs are coordination-free when
each node is given knowledge about the distribu-
tion policy of the global input data. This way, a
node can sometimes locally conclude that certain
input facts are globally absent, allowing some non-
monotone programs to proceed without coordina-
tion. In the previous model [12], where this policy
is not exposed, a node would always have to coor-
dinate with all other nodes to conclude such global
absences. Moreover, it turns out that in some vari-
ations of the model considered by Zinn et al., all
programs can be made coordination-free; these vari-
ations, however, are quite expensive in terms of how
much additional data each node should have.

Weaker forms of monotonicity. Recently, the results
by Ameloot et al. [12] and Zinn et al. [55] have been
combined in a more unified theory on the CALM
conjecture [11]. In particular, the non-monotone
programs that can avoid coordination, as identi-
fied by Zinn et al. [55], have been characterized se-
mantically with weaker forms of monotonicity: two
classes have been identified, called domain-distinct-
monotone and domain-disjoint-monotone programs,
that we explain below.

Recall that for an “ordinary” monotone program,
previous output facts remain valid whenever the in-

put is extended with arbitrary new facts (and new
output facts may also be produced). Now, a pro-
gram is called domain-distinct-monotone if previous
output facts remain valid when we extend the input
with facts that each contains at least one new value
not yet occurring in the old input. For example,
the di↵erence R \ S of two unary relations R and
S is domain-distinct-monotone: indeed, new input
facts added to R will not shrink the output, and
new facts added to S will not subtract from R if
they contain at least one value not yet occurring in
the old input. Note that R \ S is not monotone.

A program is called domain-disjoint-monotone if
previous output facts remain valid when we extend
the input with facts that share no values with the
old input. For example, the complement of the tran-
sitive closure on a binary edge relation R is domain-
disjoint-monotone: new edges that share no values
with the previous input can not establish a path
between old vertices. This program is not domain-
distinct-monotone.

Note that ordinary monotonicity implies domain-
distinct-monotonicity and that the latter implies
domain-disjoint-monotonicity.

In accordance with the results of Zinn et al. [55],
domain-distinct-monotone programs can be imple-
mented without coordination if the nodes of the
cloud are made aware of how input facts are dis-
tributed. The same awareness is needed for domain-
disjoint-monotone programs to be implemented with-
out coordination, but also with the additional as-
sumption that nodes are now “responsible” for in-
put values: each node is initialized with all input
facts containing any value the node is responsible
for.

Efficient coordination-free strategies. The above
works theoretically relate distributed coordination
to program monotonicity. They are complemented
by works that investigate e�cient implementation
strategies for coordination-free programs. For ex-
ample, the works of Loo et al. [38, 39] and Nigam
et al. [47] provide concrete algorithms for the case
of distributed positive Datalog programs. When-
ever some input facts change, these algorithms e�-
ciently update the state at the nodes of a cloud. To
avoid recomputing the entire state at every node,
only incremental changes are propagated. This re-
duces communication and needless recomputation.
These algorithms are coordination-free; handle re-
cursive Datalog; and, tolerate messages delayed by
the network, i.e., they are eventually consistent.

SIGMOD Record, June 2014 (Vol. 43, No. 2) 7



3.2 Quantification
The second approach to understanding coordina-

tion is to quantify the amount of coordination, and
any related costs.

First, Alvaro et al. [7, 8] propose program analy-
sis techniques to detect code fragments where co-
ordination is perhaps overused. This way, some
uses of coordination could be replaced with strate-
gies like eventual consistency, reducing the overall
amount of coordination.

Koutris and Suciu [33] define the massively par-
allel model of computation (MP). An execution in
this model is a sequence of global MP steps. In each
step, the nodes first communicate and then they
perform local computation. Each step represents
a global round of coordination. Koutris and Suciu
also define when an algorithm is load-balanced in
this model: this intuitively means that each server
locally processes an equal share of the total prob-
lem size. In this setting, Koutris and Suciu prove
that the tall-flat conjunctive queries are precisely
those conjunctive queries that can be computed in
one MP step in a load-balanced way.

Beame et al. [18] extend the work of Koutris and
Suciu by considering a parameter to control the
amount of data that each node may receive dur-
ing a step. Higher values of the parameter allow
more replication of data. Less replication is viewed
as more e�cient. Beame et al. quantify the repli-
cation required when a computation may only use
one global communication step. Beame et al. also
quantify the number of global steps required when
the allowed replication is fixed.

Interestingly, the positive conjunctive queries con-
sidered for load-balanced algorithms [33] and repli-
cation [18] can be implemented with a coordination-
free strategy in the models used for the CALM con-
jecture [12, 55]. However, these coordination-free
strategies would not be e�cient because they grad-
ually replicate the input over the network. Thus,
the notion of coordination-freeness is only part of
a larger picture, where costs can be formalized and
measured in multiple ways.

4. CORRECTNESS
Cloud computing often works over an asynchro-

nous communication model, where messages can be
arbitrarily delayed. Larger networks are typical set-
tings with asynchronous communication, because
routers can forward messages di↵erently depending
on network congestion, subjecting messages to un-
predictable latencies.

It is important to design distributed programs
that tolerate message delays. We may call a dis-

tributed program correct if, for each input, it suc-
ceeds in producing the desired output no matter
how much messages are delayed. We discuss two
main strategies for ensuring correctness, namely,
construction and verification, given in Sections 4.1
and 4.2 respectively.

4.1 Constructive Approach
A first main strategy to obtain correct distributed

programs, is to use certain principles for program
construction.

On one side of this spectrum, we have eventual
consistency [52, 30, 16]. This means that the output
is eventually produced if messages are eventually
delivered, in some arbitrary fashion. There is no
coordination here. It is well-known that monotone
computations can be executed in an eventually con-
sistent way: indeed, whenever a node receives a new
message, it can simply recompute the local result,
which is guaranteed to be part of the overall out-
put by monotonicity (cf. Section 3.1). Another ap-
proach to eventual consistency consists of so-called
commutative replicated data types, where messages
represent commutative operations, that are thus re-
silient to unpredictable reorderings [50, 22, 16].

Coordination protocols are at the other side of
the spectrum, e.g., used when the computation is
not monotone or if messages do not commute. Note,
however, that some classes of non-monotone com-
putations can be implemented without coordina-
tion [55].

4.2 Deciding Correctness
A second main strategy, is to decide correctness

for distributed programs.
Ameloot and Van den Bussche [13] have investi-

gated decidability of correctness for distributed pro-
grams in which each computing node of a cloud is
represented by a (relational) transducer [4, 25, 26,
27, 51]; such a distributed program is referred to
as a transducer network. Here, a transducer is a
collection of queries over a database schema, where
each of the relations is used for either input, out-
put, memory, messages, or auxiliary system rela-
tions; the queries update the output and memory
relations, and generate messages.

Now, Ameloot and Van den Bussche [13] define
correctness as a confluence notion: a distributed
program is called confluent if for any two finite ex-
ecution traces on the same input, the second trace
can always be extended to obtain the (partial) out-
put of the first trace. Intuitively, the prior execution
of the program will not prevent outputs from be-
ing produced. The opposite of confluence is called

8 SIGMOD Record, June 2014 (Vol. 43, No. 2)



di✏uence. Deciding di✏uence for so-called simple
transducer networks, where transducers are imple-
mented with restricted conjunctive queries, turns
out to be NEXPTIME-complete. The restrictions of
simple transducer networks are: (i) the network
is recursion-free, where rules cannot be mutually
recursive through positive body atoms; (ii) delet-
ing from output and memory relations is forbidden;
(iii) negation on message relations is forbidden; (iv)
rules inserting into output and memory relations
must be “message-bounded”;2 finally, (v) message-
sending rules only use input and message relations.

Ameloot and Van den Bussche [13] have shown
that simple transducer networks compute exactly
all distributed queries expressible by unions of con-
junctive queries with negation, or equivalently, the
existential fragment of first-order logic. Compared
to standard database queries, the location of facts
matters for distributed queries. We may conclude
that simple transducer networks are indeed a weaker
computational model, but that is not totally useless.

Ameloot [10] has investigated decidability of a
second formalization of correctness, referred to as
consistency, also appearing in prior works [2, 12]: a
distributed program is called consistent if any two
infinite fair execution traces on the same input yield
the same output. The fairness conditions demand
that all sent messages are eventually delivered and
that all nodes are made active infinitely often. De-
ciding inconsistency for simple transducer networks
is again NEXPTIME-complete. The expressivity of
simple transducer networks is the same under both
confluence and consistency.

5. DECLARATIVE LANGUAGES
This section is devoted to languages in declara-

tive networking, and their semantics. Section 5.1
highlights some important features of languages in
declarative networking. Section 5.2 discusses oper-
ational semantics. Section 5.3 discusses declarative
semantics as an alternative to operational seman-
tics; we also use this context to discuss a second
conjecture by Hellerstein, namely, the CRON con-
jecture [30].

5.1 Datalog Variants
As we have mentioned in the Introduction, declar-

ative networking originally developed around Dat-
alog [39, 30]. Today, Datalog is still an attractive
foundation for declarative networking, because it al-
lows expressing advanced algorithms with relatively
2This corresponds to input-boundedness, as first iden-
tified by Spielmann [51] and further investigated by
Deutsch et al. [26, 27].

few lines of code [30]. We are also seeing a more
general interest in Datalog [23, 31, 17].

A notable language proposed in declarative net-
working is Dedalus [9, 30], a minimalistic extension
of Datalog to the distributed setting: it only pro-
vides basic features for reasoning about distributed
facts, and it provides a simple way to designate
some facts as messages between nodes. Initial ex-
pressivity and complexity properties of Dedalus are
provided by Ameloot and Van den Bussche [14].

Dedalus [9] and its predecessor languages [39] have
influenced other recent language designs in declara-
tive networking such as WebdamLog [2, 1], Bloom [7,
8], and several other works [29, 32, 37].

Location specifiers. A frequently occurring feature
in declarative networking, is the use of location spec-
ifiers to tag facts with the node that stores that
fact [39]. Accordingly, rules have additional vari-
ables for location specifiers in head and body atoms;
each atom contains precisely one such variable. Of-
ten, the same location specifier is used in all body
atoms, meaning that the rule can be evaluated lo-
cally on a single node. Now, if the head location
specifier variable is di↵erent from the body location
specifier variable, derived facts are sent as messages
to the node indicated by the head variable. Other-
wise, derived facts are stored locally. For each case,
the runtime engine handles the details of message
sending or local storage, respectively.

Delegation. The language WebdamLog [2, 1] has
introduced the novel feature to delegate at runtime
a piece of functionality, as represented by a set of
rules, to the node with the best opportunity to
evaluate these rules; this typically means that the
node has the required data. Also, an important
design principle of WebdamLog is that previously
unseen nodes can start to participate in a com-
putation that is already running, each contribut-
ing new local rules. To make di↵erent WebdamLog
rules still globally interoperate, a programmer could
write variables in place of relation names.

Time. In its “unsugared” presentation, Dedalus ex-
plicitly exposes time variables in its rules. The
intention of exposing time, is to more clearly rea-
son about dynamic changes to the memory of the
computing nodes; all from within the declarative
program itself, instead of deferring this aspect to
the runtime engine. Concrete values for time vari-
ables may be called timestamps, and are often just
natural numbers. The exposure of time connects
Dedalus to temporal deductive databases and tem-

SIGMOD Record, June 2014 (Vol. 43, No. 2) 9



poral logic programming (cf. Section 5.3.2).

5.2 Operational Semantics
To describe how programs in declarative network-

ing are distributedly executed, often an operational
semantics is used. This represents how the runtime
engine underneath the declarative language works.
The results on coordination (Section 3) and correct-
ness (Section 4) are about such operational seman-
tics.

It is well understood how such an operational se-
mantics might be defined [27, 46, 29, 2, 12]. Typi-
cally, a transition system is used, describing how the
cloud moves from one global state to another global
state as the result of local computation at nodes
and message sending between nodes. This transi-
tion system is infinite because nodes can run in-
definitely and keep sending messages so that an un-
bounded number of messages can be floating around
in the network. In addition, the transition system
is highly nondeterministic, because each transition
chooses which node becomes active and which mes-
sages are delivered. This allows representing asyn-
chronous communication, where messages can be
delayed and eventually be delivered out of order.

Ameloot et al. [12] have defined an operational
model for declarative networking where each com-
puting node is implemented with a local relational
transducer (cf. Section 4.2). Fragments of Datalog
may be used to implement such transducers, for ex-
ample, unions of conjunctive queries with negation
or first order logic. Ameloot et al. [12] also provide
expressivity results in this operational model. For
example, non-monotone distributed computations
require each node to have access to its own identi-
fier and the identifiers of all the other nodes. Also,
the transducer model turns out to be quite natural:
it only introduces a kind of iteration to the local
query language of the transducers.

Because an operational semantics might become
di�cult for a programmer to imagine, it is useful to
look at suitable abstractions. This may be called a
declarative semantics, which is discussed next.

5.3 Declarative Semantics
By hiding technical details of operational execu-

tions, a declarative semantics can help separate the
meaning of a program from the actual distributed
execution strategies. This way, old distributed ex-
ecution strategies can be replaced with new strate-
gies, as long as the new strategies satisfy the same
declarative semantics.

Based on their Datalog origin, languages in declar-
ative networking have already explored some well-

known semantics of Datalog as candidates for their
own declarative semantics: Section 5.3.1 discusses
simple fixpoint semantics; Section 5.3.2 discusses
syntactically and temporally stratified semantics;
and, Section 5.3.3 discusses the stable model seman-
tics. Although the stable model semantics might
be less intuitive for the programmer, it provides av-
enues for new theoretical and practical research. In
particular, Section 5.3.4 discusses how stable mod-
els allow reasoning about message causality.

5.3.1 Simple Fixpoint Semantics
Although strictly speaking it is still an opera-

tional semantics, a fixpoint semantics can be an
intuitive semantics for declarative networking. Es-
sentially, this semantics transforms an initial set of
input facts by successively applying updates gen-
erated by triggered rules. Updates could be inser-
tions, or deletions when rule heads contain nega-
tion. The computation ends when no more facts
can be added or removed, i.e., when a fixpoint has
been reached. Sometimes no fixpoint is reached.

In declarative networking, the programmer can
imagine that the fixpoint semantics is applied to
a centralized, holistic Datalog-like program having
access to all data and rules in the cloud. Here, com-
munication is viewed as happening instantaneously,
that is, asynchronous communication is abstracted
away. It is important, of course, to prove that out-
put under this fixpoint semantics really corresponds
to the output produced by the distributed execu-
tion.

Positive programs. For positive Datalog-like lan-
guages, i.e., programs not using negation (and not
doing deletions), several works establish a connec-
tion between a centralized fixpoint semantics and
a distributed execution [38, 39, 2, 47]. Here, the
fixpoint always exists.3 The intuition for mono-
tone programs applies (cf. Section 3.1): using mild
syntactic assumptions [2], positive programs will
steadily accumulate any received messages, thereby
creating the opportunity for delayed facts to still
participate in the monotone computation, and rela-
tional joins in particular.

Semi-monotone programs. Zinn et al. [55] have in-
vestigated a Datalog variant called semi-monotone.
Besides allowing rules to trigger fact insertions and
deletions, this language only allows two kinds of
computed relations: (i) relations only tested pos-
itively in rules and only inserted into, and (ii) rela-

3The fixpoint semantics for positive Datalog programs
corresponds to their minimal model semantics [3].

10 SIGMOD Record, June 2014 (Vol. 43, No. 2)



tions only tested negatively in rules and only deleted
from. For this language, Zinn et al. prove that
a deterministic fixpoint semantics corresponds to
distributed executions that are eventually consis-
tent. Again, the deterministic semantics appears
more intuitive compared to the nondeterministic
distributed execution.

5.3.2 Stratified Semantics
In declarative networking, two variants of strati-

fied programs have been studied.

Syntactically stratified programs. A Datalog pro-
gram is syntactically stratified when its rules can be
divided into sets, called strata, that are ordered in
such a way that rule bodies apply negation only to
relations computed in previous strata [3]. So, there
is no recursion through negation. The program is
evaluated by successively evaluating the strata: we
start with the first stratum, then the next stratum,
etc. Each stratum itself is evaluated under the fix-
point semantics, and it may read the facts generated
by the previous stratum.

Syntactic stratification can also be defined for
languages in declarative networking, e.g., for frag-
ments of Dedalus [9] or WebdamLog [2]. The con-
nection between a centralized semantics (cf. Sec-
tion 5.3.1) and distributed executions can also be es-
tablished for syntactically stratified programs, but
this is more challenging compared to positive pro-
grams [30]. Indeed, a relation T could be partially
computed by multiple nodes in the distributed set-
ting. So, whenever a node x wants to apply nega-
tion to relation T (as computed in a previous stra-
tum), node x needs to communicate with the other
nodes before it can determine the presence or ab-
sence of some T -facts. One way to achieve this, is to
let the global computation proceed in rounds: each
round corresponds to one stratum of the central-
ized program, and each round is followed by a coor-
dination phase to make sure that nodes have their
required facts from the previous stratum; then the
next round begins and nodes can safely apply local
negation. Here, although the centralized stratified
semantics is still intuitive for the programmer, the
distributed execution may need to employ some ex-
pensive coordination mechanisms.4

Temporally stratified programs. A Datalog program
is called locally stratified when for each input, all
possible ground rules based on the input values can
be grouped into strata such that ground atoms ap-

4Hellerstein [30] makes initial suggestions to reduce the
coordination complexity of stratified programs.

pearing negatively in rule bodies can be rule-heads
only in lower strata [15].5 Intuitively, no ground
atom can negatively depend on itself. So, this con-
dition is very much like syntactic stratification, ex-
cept we now use ground rules.

A particular kind of local stratification is tem-
poral stratification, that is well-studied in temporal
deductive databases and temporal logic program-
ming [53, 34, 42]. Seminal work in this field is
by Chomicki and Imieliński [21, 20]. In this set-
ting, all facts are tagged with an additional times-
tamp, to indicate the discrete moment on which the
fact exists. Accordingly, rules will mention an ad-
ditional timestamp variable for each head and body
atom. Intuitively, a program is said to be tempo-
rally stratified when each head timestamp variable
always represents a larger timestamp value than all
timestamp variables in the accompanying rule body.
This ensures that facts are only derived in the fu-
ture. Negation is thus only applied to relations com-
puted in the past, preventing cyclic dependencies
involving negation through time. Besides using a
model-based semantics [15], we can imagine that
the program evolves from timestamp to timestamp,
where facts available at the current timestamp may
contribute to deriving facts at future timestamps.

In the context of declarative networking, Dedalus
without (asynchronous) message rules is temporally
stratified [9, 30]. In the remaining rules, all body
atoms use the same timestamp variable, and the
head timestamp variable is either (i) the same as
the body timestamp variable, or (ii) it is restricted
to be the successor of the body timestamp variable.
Dedalus assumes that rules of the first kind, called
deductive rules, are syntactically stratified. This
ensures temporal stratification for the language with-
out message rules.

In a similar vein, Interlandi et al. [32] give a
Dedalus-inspired language for synchronous systems.
Here, nodes of the network proceed in rounds and
messages are not arbitrarily delayed. During each
round, nodes share the same global clock. Inter-
landi et al. show that an operational semantics for
their language coincides with a declarative model-
based semantics of a single holistic Datalog pro-
gram; this declarative semantics is enabled by the
temporal stratification.

More generally, it seems that when ignoring mes-
sage rules, many languages used in declarative net-
working can be (strictly) embedded in some of the
prior languages [53, 34, 42], because the remaining
rules represent local computation, which typically

5Ground rules are obtained from original program rules
by replacing their variables with concrete values.

SIGMOD Record, June 2014 (Vol. 43, No. 2) 11



only deals with the current time and the next time.
As an intermediate conclusion, the previous works

mentioning temporal stratification for declarative
networking have not yet investigated asynchronous
communication, where arrival timestamps of mes-
sages can be arbitrarily into the future. Asynchron-
ous communication can, however, be represented in
detail by the stable model semantics, as discussed
next.

5.3.3 Stable Model Semantics
We now discuss uses of the stable model seman-

tics [28] for languages in declarative networking. Al-
though it is perhaps less intuitive for the program-
mer, this semantics provides an interesting frame-
work for theoretical and practical research.

Dedalus stable models. Stable models have been
proposed as a way of thinking about the semantics
of Dedalus programs [45]. The main idea is that,
for a given distributed input, each stable model
represents another way in which nondeterminism is
caused by asynchronous communication.

A formal proof was provided to show the corre-
spondence between the stable model semantics and
an operational semantics [5, 6].6 In this proof, a
Dedalus program is first translated to a pure Dat-
alog program (with negation), to which the stable
model semantics is applied. This Datalog program
represents the computation of the entire cloud, thus
providing a kind of centralized semantics as in Sec-
tion 5.3.1. The pure Datalog program gives each
relation two dedicated components: one component
for the location of facts and the other component
for the local timestamp of facts at their location (cf.
Section 5.1). Now, asynchronous communication
is modeled with the choice construct by Saccà and
Zaniolo [49], allowing to nondeterministically select
an arrival timestamp at the addressee for each mes-
sage. The pure Datalog program is also extended
with auxiliary rules to enforce natural properties oc-
curring in an operational semantics. The first nat-
ural property is causality : messages are only deliv-
ered in the future, and not in the past. We elaborate
on this property in Section 5.3.4. The second natu-
ral property is that only a finite number of messages
arrive at each timestamp of a node.

Practical answer set programming. Stable model
semantics also enables verification and testing. For

6To the best of our knowledge, this is the only work to
rigorously establish a connection between stable models
and an operational semantics of the form discussed in
Section 5.2.

example, Lobo et al. [37] provide a semantics for
a Dedalus-like language based on answer set pro-
gramming (ASP), i.e., stable models. This is again
done by translating an original program into a pure
Datalog program that holistically describes the dis-
tributed computation, resembling the translation of
Dedalus programs to Datalog mentioned above [5,
6]. To enforce execution properties in their seman-
tics, like causality, Lobo et al. also specify auxil-
iary rules in the syntactical translation. By varying
certain rules, the communication semantics can be
specified, for example, whether messages are deliv-
ered synchronously or asynchronously.

By giving this holistic Datalog program to avail-
able ASP solvers, the original distributed program
can be simulated and thus analyzed [37]. Under
asynchronous communication, nondeterminism can
occur: multiple answer sets exist, each represent-
ing a di↵erent execution of the distributed program.
One might, for example, verify whether the dis-
tributed algorithm is correct in the sense of Sec-
tion 4 by enumerating or sampling the answer sets.
However, enumerating all possible answer sets un-
der asynchronous communication poses scalability
issues [37].

The work of Lobo et al. is extended by Ma et
al. [43], who also formalize an operational seman-
tics of distributed systems. Global properties of the
system can again be analyzed by translating it into
a logic program, to which an ASP solver can be
applied.

In this context we can also mention an area of
artificial intelligence closely related to declarative
networking: programming multi-agent systems in
declarative languages. The knowledge of an agent
can be expressed by a logic program and agents up-
date their knowledge by modifying their rules [36,
48, 35]. The semantics of such dynamic agents is of-
ten given by a stable model semantics, implemented
in practice with ASP solvers.

5.3.4 The CRON Conjecture
The term causality means that an e↵ect can only

happen after its cause. In the distributed setting,
this implies that a message can only arrive after it
was sent. To illustrate, if node x at local timestamp
2 sends a message A that arrives at local timestamp
1 of node y, then any message B that node y sends
at local timestamp 1 or later may not arrive on x

at local timestamp 2 or less; put di↵erently, local
timestamp 2 of x lies in the past with respect to
local timestamp 1 of y.

In practice, causality seems to be satisfied in gen-
eral, except in situations like crash recovery: there,

12 SIGMOD Record, June 2014 (Vol. 43, No. 2)



an arriving or logged message could appear to come
from the future when it is put side-by-side with an
old state snapshot. To illustrate, suppose in our
above example that x sets a local flag when it has
sent message A to y and that y sends B as a re-
ply when receiving A. If x crashes, x could now
be reverted to a state without the local flag; when
receiving message B in this state, node x will not
expect B, as if B is coming from the future in the
viewpoint of x. We may call this non-causality.

In this context, we can now study a second con-
jecture by Hellerstein, namely the CRON conjecture
(Causality Required Only for Non-monotonicity):

Conjecture 2 (CRON [30]).
Program semantics require causal message order-
ing if and only if the messages participate in non-
monotonic derivations.

The CRON conjecture relates causality of messages
to the nature of the computations in which those
messages participate, for example monotone versus
non-monotone. In particular, the conjecture sug-
gests that the order of messages (causality) is only
important for non-monotone computations. Per-
haps more generally, the CRON conjecture asks us
to think about the need for time, like when tempo-
ral delay on messages is needed for expressivity.

One way to investigate this conjecture is as fol-
lows. As explained in Section 5.3.3, the stable model
semantics for languages in declarative networking
allows representing asynchronous communication in
detail. In particular, the choice construct [49] allows
us to nondeterministically select an arrival times-
tamp at the addressee for each message. But aux-
iliary rules were be added to enforce causality [5,
37, 6]. Now, to formalize the CRON conjecture in
the Dedalus setting, Ameloot and Van den Buss-
che [14] study the e↵ect of omitting such auxil-
iary rules, to see how the behavior of the program
changes as a result. Concretely, omitting the aux-
iliary rules allows certain stable models where mes-
sages are sent “into the past”, representing non-
causality. Then, a Dedalus program that is already
correct in an operational semantics (cf. Section 4)
is said to tolerate non-causality when these non-
causal stable models yield the same output as the
operational executions.7 In this setting, the CRON
conjecture can be seen as suggesting a link between
tolerance to non-causality and monotonicity, much
like the CALM conjecture relates a semantic prop-
erty (coordination-freeness) to monotonicity.
7Inside a stable model, the output at a node x is the
set of all facts f for which there is a local timestamp
of x so that f is present at x in all the following local
timestamps.

However, Ameloot and Van den Bussche [14] show
that the CRON conjecture does not hold when for-
malized purely semantically, where a Dedalus pro-
gram is seen as expressing a database query. More
concretely, both directions of the following formal
conjecture can be disproved: A Dedalus program
computes a monotone query if and only if it toler-
ates non-causality. However, on a more syntacti-
cal level, it can be shown that all positive Dedalus
programs tolerate non-causality.8 This result es-
tablishes a class of programs that no not require
causality to be maintained on messages, for exam-
ple during crash recovery.

Outside crash recovery, the extreme non-causality
of sending messages “into the past” is unlikely to
occur. Yet, the result that positive Dedalus pro-
grams tolerate non-causality seems distantly related
to the result that positive programs have eventually
consistent distributed execution strategies (cf. Sec-
tion 4.1): indeed, eventually consistent programs
can deal with unpredictable message reorderings,
as occurring under asynchronous communication.

6. FURTHER WORK
We provide directions for further work.

Coordination.
For the CALM conjecture, we might need addi-

tional formal definitions of coordination-freeness. A
problem with the previous definition [12] is perhaps
that a distributed program is already coordination-
free when there is one right distribution of the in-
put on which nodes can locally compute the output,
while on more general distributions the program
may gradually replicate the input at all nodes.

From this perspective, theoretical work is also
needed on quantifying the costs required for com-
puting certain queries. Example costs are the num-
ber of coordination steps [33], and the amount of
replication [18].

Also interesting, is to investigate how increased
local knowledge on nodes allows non-monotone com-
putations to avoid coordination [55, 11].

Correctness.
The mentioned decidability results [13, 10] pro-

vide an indication that automatically deciding cor-
rectness of a distributed system might not be a use-
ful strategy in practice. Indeed, we have to severely
restrict expressivity to obtain decidability, and yet
8For completeness, we mention that this result depends
on the assumption that only a finite number of messages
arrive at each local timestamp of a node; a property also
mentioned in Section 5.3.3.

SIGMOD Record, June 2014 (Vol. 43, No. 2) 13



the time complexity remains prohibitively high.
It might be more promising to achieve correctness

through practical mechanisms and protocols [50, 16,
22], design guidelines [19], and insights about mono-
tonicity such as the CALM conjecture [30, 7, 55, 12,
11].

Declarative semantics.
The motivation behind declarative networking is

to simplify programming of cloud computing. Be-
sides o↵ering a convenient syntax, declarative net-
working should o↵er intuitive ways to think about
the programmed functionality, also in asynchronous
communication models. This could be done with a
suitable declarative semantics, for which some ini-
tial explorations have been mentioned in Section 5.3.

We believe that declarative semantics for declar-
ative networking deserves more attention. The dif-
ficulty is that a declarative semantics should at the
same time hide technical operational details, whilst
at the same time preserving an understanding of
the distributed setting. In particular, further work
seems needed to provide an intuitive semantics for
distributed negation. This investigation could also
encompass features like aggregation. But the intu-
itiveness of the semantics should not force execu-
tion engines to resort to heavy coordination. Per-
haps this will only work for some restricted classes
of programs.

Also, the stable models considered by previous
work [5, 37, 6] are typically infinite, because they
represent an infinite time domain in which the dis-
tributed computation unfolds. This is partly caused
by asynchronous communication, where messages
have arbitrary delays. In further work, it would be
interesting to find finite representations of these sta-
ble models, again perhaps only for restricted classes
of programs.

Regarding the CRON conjecture, further work is
needed to understand the spectrum of causality: be-
sides positive programs, perhaps richer classes of
programs can tolerate some relaxations of causal-
ity as well. Also, it might be intriguing to link the
CRON conjecture more concretely to crash recovery
mechanisms, or other application scenarios giving
rise to non-causality.

7. REFERENCES
[1] S. Abiteboul, E. Antoine, G. Miklau,

J. Stoyanovich, and J. Testard. Rule-based
application development using webdamlog. In
Proceedings of the 2013 ACM SIGMOD
International Conference on Management of
Data, pages 965–968. ACM, 2013.

[2] S. Abiteboul, M. Bienvenu, A. Galland, and
E. Antoine. A rule-based language for Web
data management. In Proceedings 30th ACM
Symposium on Principles of Database
Systems, pages 293–304. ACM Press, 2011.

[3] S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases. Addison-Wesley,
1995.

[4] S. Abiteboul, V. Vianu, B. Fordham, and
Y. Yesha. Relational transducers for electronic
commerce. Journal of Computer and System
Sciences, 61(2):236–269, 2000.

[5] P. Alvaro, T.J. Ameloot, J.M. Hellerstein,
W.R. Marczak, and J. Van den Bussche. A
declarative semantics for Dedalus. Technical
Report UCB/EECS-2011-120, EECS
Department, University of California,
Berkeley, Nov 2011.

[6] P. Alvaro, T.J. Ameloot, J.M. Hellerstein,
W.R. Marczak, and J. Van den Bussche. A
declarative semantics for Dedalus. Hasselt
University, Technical report,
http://hdl.handle.net/1942/14572, 2013.

[7] P. Alvaro, N. Conway, J. Hellerstein, and
W.R. Marczak. Consistency analysis in
Bloom: A CALM and collected approach. In
Proceedings 5th Biennial Conference on
Innovative Data Systems Research, pages
249–260. www.cidrdb.org, 2011.

[8] P. Alvaro, N. Conway, J.M. Hellerstein, and
D. Maier. Blazes: Coordination analysis for
distributed programs. Technical Report
UCB/EECS-2013-133, EECS Department,
University of California, Berkeley, Jul 2013.

[9] P. Alvaro, W.R. Marczak, N. Conway, J.M.
Hellerstein, D. Maier, and R. Sears. Dedalus:
Datalog in time and space. In de Moor et al.
[23], pages 262–281.

[10] T.J. Ameloot. Deciding correctness with
fairness for simple transducer networks. In
Proceedings of the 17th International
Conference on Database Theory, 2014 (to
appear).

[11] T.J. Ameloot, B. Ketsman, F. Neven, and
D. Zinn. Weaker forms of monotonicity for
declarative networking: a more fine-grained
answer to the CALM-conjecture. In
Proceedings 33rd ACM Symposium on
Principles of Database Systems, 2014 (to
appear).

[12] T.J. Ameloot, F. Neven, and J. Van den
Bussche. Relational transducers for
declarative networking. Journal of the ACM,
60(2):15:1–15:38, 2013.

14 SIGMOD Record, June 2014 (Vol. 43, No. 2)



[13] T.J. Ameloot and J. Van den Bussche.
Deciding eventual consistency for a simple
class of relational transducer networks. In
Proceedings of the 15th International
Conference on Database Theory, pages 86–98.
ACM Press, 2012.

[14] T.J. Ameloot and J. Van den Bussche.
Positive Dedalus programs tolerate
non-causality. Journal of Computer and
System Sciences, to appear.

[15] K.R. Apt and R.N. Bol. Logic programming
and negation: A survey. The Journal of Logic
Programming, 19-20, Supplement 1(0):9–71,
1994.

[16] P. Bailis and A. Ghodsi. Eventual consistency
today: Limitations, extensions, and beyond.
ACM Queue, 11(3), 2013.

[17] P. Barceló and R. Pichler, editors. Datalog in
Academia and Industry, volume 7494 of
Lecture Notes in Computer Science. Springer,
2012.

[18] P. Beame, P. Koutris, and D. Suciu.
Communication steps for parallel query
processing. In Proceedings of the 32nd ACM
Symposium on Principles of Database
Systems, pages 273–284. ACM Press, 2013.

[19] M. Cavage. There’s just no getting around it:
You’re building a distributed system. ACM
Queue, 11(4), 2013.

[20] J. Chomicki. Depth-bounded bottom-up
evaluation of logic programs. The Journal of
Logic Programming, 25(1):1–31, 1995.

[21] J. Chomicki and T. Imieliński. Finite
representation of infinite query answers. ACM
Transactions on Database Systems,
18(2):181–223, 1993.

[22] N. Conway, W.R. Marczak, P. Alvaro, J.M.
Hellerstein, and D. Maier. Logic and lattices
for distributed programming. In Proceedings
of the Third ACM Symposium on Cloud
Computing, pages 1:1–1:14. ACM Press, 2012.

[23] O. de Moor, G. Gottlob, T. Furche, and
A. Sellers, editors. Datalog Reloaded: First
International Workshop, Datalog 2010,
volume 6702 of Lecture Notes in Computer
Science, 2011.

[24] J. Dean and S. Ghemawat. Mapreduce:
Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113,
2008.

[25] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic verification of data-centric business
processes. In Proceedings 12th International
Conference on Database Theory, 2009.

[26] A. Deutsch, L. Sui, and V. Vianu.
Specification and verification of data-driven
Web applications. Journal of Computer and
System Sciences, 73(3):442–474, 2007.

[27] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven
Web services. In Proceedings 25th ACM
Symposium on Principles of Database
Systems, pages 90–99. ACM Press, 2006.

[28] M. Gelfond and V. Lifschitz. The stable
model semantics for logic programming. In
Proceedings of the Fifth International
Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

[29] S. Grumbach and F. Wang. Netlog, a
rule-based language for distributed
programming. In M. Carro and R. Peña,
editors, Proceedings 12th International
Symposium on Practical Aspects of
Declarative Languages, volume 5937 of Lecture
Notes in Computer Science, pages 88–103,
2010.

[30] J.M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed
logic. SIGMOD Record, 39(1):5–19, 2010.

[31] S.S. Huang, T.J. Green, and B.T. Loo.
Datalog and emerging applications: an
interactive tutorial. In Proceedings of the 2011
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages
1213–1216. ACM, 2011.

[32] M. Interlandi, L. Tanca, and S. Bergamaschi.
Datalog in time and space, synchronously. In
L. Bravo and M. Lenzerini, editors, AMW,
volume 1087 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

[33] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In Proceedings of the 30th
ACM symposium on Principles of Database
Systems, pages 223–234. ACM Press, 2011.

[34] G. Lausen, B. Ludäscher, and W. May. On
active deductive databases: The statelog
approach. In B. Freitag, H. Decker, M. Kifer,
and A. Voronkov, editors, Transactions and
Change in Logic Databases, volume 1472 of
Lecture Notes in Computer Science, pages
69–106. Springer Berlin Heidelberg, 1998.

[35] J. Leite and L. Soares. Adding evolving
abilities to a multi-agent system. In
Proceedings of the 7th International
Conference on Computational Logic in
Multi-agent Systems, CLIMA VII’06, pages
246–265. Springer-Verlag, 2007.

[36] J.A. Leite, J.J. Alferes, and L.M. Pereira.

SIGMOD Record, June 2014 (Vol. 43, No. 2) 15



Minerva – a dynamic logic programming
agent architecture. In Revised Papers from the
8th International Workshop on Intelligent
Agents VIII, ATAL, pages 141–157.
Springer-Verlag, 2002.

[37] J. Lobo, J. Ma, A. Russo, and F. Le.
Declarative distributed computing. In
E. Erdem, J. Lee, Y. Lierler, and D. Pearce,
editors, Correct Reasoning, volume 7265 of
Lecture Notes in Computer Science, pages
454–470. Springer, 2012.

[38] B.T. Loo, T. Condie, et al. Declarative
networking: language, execution and
optimization. In S. Chaudhuri, V. Hristidis,
and N. Polyzotis, editors, SIGMOD
Conference, pages 97–108. ACM, 2006.

[39] B.T. Loo, T. Condie, et al. Declarative
networking. Communications of the ACM,
52(11):87–95, 2009.

[40] B.T. Loo, H. Gill, C. Liu, Y. Mao, W.R.
Marczak, M. Sherr, A. Wang, and W. Zhou.
Recent advances in declarative networking. In
C. Russo and N. Zhou, editors, Practical
Aspects of Declarative Languages, volume
7149 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[41] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J.M. Hellerstein. Graphlab:
A new framework for parallel machine
learning. In P. Grünwald and P. Spirtes,
editors, UAI, pages 340–349. AUAI Press,
2010.

[42] L. Lu and J.G. Cleary. An operational
semantics of starlog. In G. Nadathur, editor,
Principles and Practice of Declarative
Programming, volume 1702 of Lecture Notes
in Computer Science, pages 294–310. Springer
Berlin Heidelberg, 1999.

[43] J. Ma, F. Le, D. Wood, A. Russo, and
J. Lobo. A declarative approach to
distributed computing: Specification,
execution and analysis. Theory and Practice
of Logic Programming, 13:815–830, 2013.

[44] G. Malewicz, M.H. Austern, A.J.C Bik, J.C.
Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of
the 2010 ACM SIGMOD International
Conference on Management of Data, pages
135–146. ACM, 2010.

[45] W.R. Marczak, P. Alvaro, N. Conway, J.M.
Hellerstein, and D. Maier. Confluence analysis
for distributed programs: A model-theoretic
approach. In Barceló and Pichler [17], pages

135–147.
[46] J.A. Navarro and A. Rybalchenko.

Operational semantics for declarative
networking. In A. Gill and T. Swift, editors,
Proceedings 11th International Symposium on
Practical Aspects of Declarative Languages,
volume 5419 of Lecture Notes in Computer
Science, pages 76–90, 2009.

[47] V. Nigam, L. Jia, B.T. Loo, and A. Scedrov.
Maintaining distributed logic programs
incrementally. Computer Languages, Systems
& Structures, 38(2):158–180, 2012.

[48] V. Nigam and J. Leite. A dynamic logic
programming based system for agents with
declarative goals. In Proceedings of the 4th
International Conference on Declarative
Agent Languages and Technologies, DALT,
pages 174–190. Springer-Verlag, 2006.

[49] D. Saccà and C. Zaniolo. Stable models and
non-determinism in logic programs with
negation. In Proceedings of the Ninth ACM
Symposium on Principles of Database
Systems, pages 205–217. ACM Press, 1990.

[50] M. Shapiro, N.M. Preguiça, C. Baquero, and
M. Zawirski. Convergent and commutative
replicated data types. Bulletin of the EATCS,
104:67–88, 2011.

[51] M. Spielmann. Verification of relational
transducers for electronic commerce. Journal
of Computer and System Sciences,
66(1):40–65, 2003.

[52] W. Vogels. Eventually consistent.
Communications of the ACM, 52(1):40–44,
2009.

[53] C. Zaniolo, N. Arni, and K. Ong. Negation
and aggregates in recursive rules: the ldl++
approach. In S. Ceri, K. Tanaka, and S. Tsur,
editors, Deductive and Object-Oriented
Databases, volume 760 of Lecture Notes in
Computer Science, pages 204–221. Springer
Berlin Heidelberg, 1993.

[54] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research
challenges. Journal of Internet Services and
Applications, 1:7–18, 2010.

[55] D. Zinn, T.J. Green, and B. Ludäscher.
Win-move is coordination-free (sometimes). In
Proceedings of the 15th International
Conference on Database Theory, pages
99–113. ACM Press, 2012.

16 SIGMOD Record, June 2014 (Vol. 43, No. 2)


