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ABSTRACT 
 

Inventory management models aim to find an optimal 

solution in terms of minimal costs by proposing decisions 

on delivery quantities using data on order quantity 

purchasing costs and holding costs. Goods have to be 

transported from the supplier to the customer and the 

transport (freight charge) cost can be included in various 

ways. Some production companies make use of a private 

carrier, offering transport services only for one or a few 

companies. Most companies make use of the services of a 

common carrier, which offers its transport service to 

whatever customer in need for transporting goods. A 
common carrier offers its transport services mostly in terms 

of less-than-truckload tariffs. Those tariffs depend on 

shipment sizes, but also on commodity class (representing 

ease of handling or risk of shipping) and on shipment 

distance. These additional costs make the integration of 

ordering and shipment decision problem more complex. In 

this paper, after the literature review, the optimal solutions 

are investigated for four different inventory model types 

with or without backlogging using various types of cost 

functions in combination with a number of freight charge 

models. For most combinations no analytical results are 
available but the optimal solutions can be easily found 

using spreadsheets based on our formulas. In this way the 

models are kept accessible to practitioners without the need 

for a complex software.  

  

 

INTRODUCTION AND LITERATURE REVIEW 

 

The service objectives, as put forward by a 

company, are influenced by several logistics strategies: an 

inventory strategy, a transport strategy and a location 

strategy. Decisions with respect to those three strategies 
many times are taken independently of each other, while it 

has been considered that interactions between the strategies 

may play an important role. Transportation many times is 

the most important single element in the logistics costs in 

many companies. The movement of freight might absorb 

between one-third and two-thirds of total logistics costs 

(Ballou, 2004, chapter 6). 

In this study a closer look is taken how inventory and 

transportation decisions might interact.  The link between 
transport and inventory in literature many times is related to 

the choice of transport mode. In their frequently cited 

article Baumol and Vinod (1970) try to make a trade-off 

between speed of transport and cost by introducing, what is 

later known in literature as the inventory-theoretic 

approach. When lead times are uncertain, maybe due to 

uncertainty in travel times, decisions on modes of transport 

or transportation quantities interplay with order size and 

safety stocks. Tyworth (1991, 1992) has developed some 

models including uncertainties both in sales and in lead 

times. 

Inventory decisions made without taking into account 
transportation costs would fail to take advantage of the 

economies of scale in shipping. Since the work by Baumol 

and Vinod (1970)  more  research has been done in 

determining inventory policies when transportation costs 

are included (e.g. Langley (1980), Larson (1988), Tyworth 

and Zeng (1998)). 

Transportation costs or freight charges are brought 

into decision models in various ways, depending on the 

organisation of transport by the company and on the 

structure of the freight charges. With respect to the 

structure, freight charges may be related to shipment size 
(weight), shipment distance (rate basis), and commodity 

type (class). With respect to the organisation, a shipper may 

provide his own transportation as a private carrier. The 

alternative is that a shipper hires a common carrier. A 

common carrier transports goods for any person or 

company and is responsible for any loss of goods during 

transport. A common carrier provides two basic types of 

service: less-than-truckload (LTL), and full truckload (TL). 

An LTL service is rendered for shipments which are small 

enough to require consolidation with other shipments at the 

carrier’s terminal facility. A TL service is rendered for 

shipments which are large enough to be shipped directly 
from origin to destination by the same truck. 
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MODEL FORMULATION 

 

This section introduces a number of models, which 

belong to a class of stationary lot sizing problems, like in 

Muth and Spremann (1978). They all make use of the 

following assumptions: 

- there is only a single product, 

- the demand rate is constant over time, 

- the production capacity is constant in time, 

- the production cost, or alternatively the ordering 

cost is an affine linear function of the quantity, 
- the inventory cost per unit time is proportional to 

the amount of inventory, 

- there are no restrictions on inventory capacity, 

- the backlog cost is either proportional to the 

backlog or proportional to both the backlog and 

the time delay caused by it.  

 

Before constructing a mathematical formulation, we 

first define notations used in this paper as follows: 

 

q    is the production lot size, 
k    is  the setup (ordering) cost per order, 

d    is the demand rate, 

m   is the marginal production cost, 

h    is the inventory carrying unit cost per unit time, 

AC(.)  is the average total cost per item for a model type, 

P         is the production rate, 

s  is  the amount of backlog, 

p is the penalty cost per unit of backlog, 

ct  is the freight charge units per weight unit, 

F  is cost of shipping in currency units per shipment, 

V  is shipment size in weight units, 

n  is the number of shipments per period, 
f  is a function of basis and class of commodity. 

 

 This paper considers four different inventory 

models which have been widely studied in literature:   

 Model A: Instantaneous production without 

backlogging, 

 Model B: Uniform production without 

backlogging, 

 Model C: Instantaneous production with 

backlogging (penalty cost  is proportional to backlog),  

 Model D: Instantaneous production with 
backlogging (penalty cost   is proportional to backlog and 

time delay). 

 

Let, for a production or replenishment lot size q, the 

production/ replenishment cost be written as   

             

and the production lot size and transport lot size connected 

by 

      
 

The average costs for the various types of models  

are obtained as follows (in which the freight charge per 

item ct is not yet modeled in further detail). The average 

costs for Models A, B, C, and D are written as: 
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for model type C 
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In order to integrate transportation and inventory 

decisions, transportation charge models have to be 

formulated.  Those models are based on freight rates 

offered by common carriers.  

Each item which is transported is a commodity. As it 

is impossible to offer tariffs for each individual commodity, 

a classification system has been introduced. Commodities 

of a similar nature are grouped in commodity classes based 
on characteristics like the commodity’s density, load 

ability, value, and susceptibility to damage. Less-than-

truckload tariffs, in reality, consist of tables. By commodity 

class and by rate basis, rates exist for a range of shipment 

sizes. Five different freight charge models are considered. 

First they are formulated while an explanation towards 

reality follows afterwards. 

 

Model 1:     ct = constant A 

 

 
Model 2: 

 

 

Model 3:  
 

 

Model 4:  

 

 

 

Model 5:  

 

 

The simplest charge model, Model 1, relates to 

contract or private carriage in which a fixed cost F for a 
shipment is charged for one type of product from an origin 

to a destination. A common carrier may consolidate 

shipments to reduce the transportation cost per unit weight. 

This phenomenon is illustrated in Model 2. The value of α 

may be interpreted as a scale economy factor. If α > 0, the 

transportation cost declines with shipment size, so scale 

economies exist. 
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In practice, LTL tariffs consist of a series of tables. 

Each table has rates organized by commodity class and rate 

basis. This combination is expressed in the function f 

appearing in Model 3. A commodity class is an index 

number given to a commodity based upon various factors 

like weight per volume unit, ease in handling, or risk of 

shipping. The classifications are in the US published by the 

National Motor Freight Classification. A rate basis is an 

estimate of the shipment distance. It is calculated from the 

principal tonnage points within areas of about 40 square 

miles. The rate basis numbers are published in tables 
similar to distance tables in a road map. 

In total 20 models may be considered which form the 

combination of a cost of inventory model and a freight 

charge model, for example Model A1 combines Model A 

with Model 1.  

The objective of these models is to find the optimal 

order quantity q*, number of shipping n*, and amount of 

backlog s* (if any) by minimizing average total cost AC(.) 

for each model.  

 

RESULTS AND DISCUSSION 

 

Specific analytical findings 

 

In Model A1, the freight charge is constant.  Then it can be 

easily shown that AC(q,n) is increasing in n.  When the 

value of n is fixed, the optimal order quantity can be written 

as: 
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When n = 1, the optimal lot size q* approaches to .  On 
the other hand, when n is large, the optimal lot size 

approaches to                     
 

 

 

which is the optimal solution in the basic EOQ model. 

 

In Model B1, we have 
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In Model C1, it can be shown that s* = 0.  Thus, average 

total cost AC* (q,s,n) does not depend on the shortage cost, 

p.  In addition, the optimal solutions in this model reduce to 

Model A1. 

 

In Model D1, the optimal solutions are 
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When n approaches , the optimal solution becomes 
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 The optimal solutions for the other model 

combinations cannot be obtained explicitly. 

 

Numerical simulation of other models 

 

Numerical examples are considered in order to 

investigate how the optimal order quantity q*, optimal 

shipment size n*, and optimal backlog s* change for 

different sets of parameters.  We consider seven different 

scenarios. The parameters for each scenario are as shown in 
Table 1. 

 

Scenario k m h d A 

1 100 1 20 10,000 1,000 

2 10 1 2 10,000 1,000 

3 10 1 2 10,000 4.66 

4 10 1 2 10,000 11.7 

5 10 1 1 10,000 11.7 

6 1000 1 20 10,000 1,000 

7 10 1 20 10,000 1,000 

Table 1: Parameter values for scenario simulation 

 

The value of  is varied between 0.4 and 3 and a = 
{0.5, 1, 1.5, 2, 2.5, 2.7, 3, 3.5}. The production rate, P, is 

varied between 15,000 and 25,000 in Models B.  The 

penalty cost, p, is varied between 40 and 480 in Models C 

and D. The conclusions of the simulation are shown in 

Table 2. 

Also some graphical results are shown for specific 
models with limited comments. They include optimal cost 

versus n for model B1, optimal lot size versus n for models 

B2 , and optimal backlog versus n for model A2. 
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Table 2: Relation between the cost and optimal parameter values 
versus n 

 

 
 

Figure 1: Optimal cost versus n for model B1 

 

The behavior of optimal costs changes in the number of 

shipments n depending on the model.  The costs may 

increase, decrease, or be convex. It can be seen in Figure 1 

showing the results for model B1. When P > 2d, the optimal 

cost increases in n.  On the other hand, when P < 2d, the 

optimal cost decreases in n. In model B2, the optimal cost 

behavior depends on the value of . When  is low, the 

optimal cost increases in n and when  is high, the optimal 
cost is convex in n.  

Similar results can be obtained for the optimal lot size, 

q*. It can increase, decrease, or first decrease and then 

increase. Examples are given in Figure 2 for model B2. 

 

   
Figure 2: Optimal lot size versus n for model B2 

 

Also the optimal value of allowed backlog s* shows some 

relationship with n which is not monotone and also depends 
on the parameter α. An example is shown in Figure 3. 

 

 
 

Figure 3: Optimal backlog versus n for model A2 

 

4. CONCLUSIONS 

It is well-considered in the business world that placing an 

order for a product is one decision but negotiation about the 

number of shipments from the production plant to the 

warehouse is another story as it may greatly influence the 

total logistics cost. The study of the transportation cost per 

unit in practice many times is not an easy mathematical 
relationship which leads to standard nice formulae. The 

paper has shown that in most cases no analytical form of 

the optimal order size can be obtained, so numerical 

simulation is required. Furthermore it has been shown that  

the behavior of the cost versus the number of shipments 

highly depends on the parameters of the cost function of the 

transportation cost part. By this, no general conclusions can 
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be formulated as each case, depending on the cost 

parameters should be carefully investigated. 
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