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Abstract

This paper concerns the study of small-amplitude limit cycles that appear in the phase portrait near an 
unfolded fake saddle singularity. This degenerate singularity is also known as an impassable grain. The 
canonical form of the unperturbed vector field is like a degenerate flow box. Near the singularity, the phase 
portrait consists of parallel fibers, all but one of which have no singular points, and at the singular fiber, 
there is one node. We demonstrate different techniques in order to show that the cyclicity is bigger than or 
equal to two when the canonical form is quadratic.
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Fig. 1. Phase portrait of X0.

1. Introduction

This paper concerns the study of small-amplitude limit cycles that appear in the phase portrait 
near an unfolded degenerate singularity. More specifically, we assume that the unperturbed vector 
field can be put in a form that is like a degenerate flow box: near the singularity, the phase portrait 
consists of parallel fibers, all but one of which have no singular points, and the singular fiber has a 
semi-stable equilibrium point. This singularity is known as a fake saddle or an impassable grain, 
see [24]. In fact, it is a singularity with exactly two saddle sectors.

Though the paper deals with more general vector fields, to present the ideas, consider the 
following typical model:

X0:
{
ẋ = 0, ẏ = x2 + y2},

whose local phase portrait is shown in Fig. 1.
In any unfolding, the orbits {x = const} away from the origin will smoothly be perturbed in a 

trivial way. Close to the origin, more complicated phenomena may occur: we show the presence 
of Hopf bifurcations, Bogdanov–Takens bifurcations, slow–fast (canard) behavior, homoclinic 
and heteroclinic orbits. All the above phenomena are well-known mechanisms near which limit 
cycles can be born, and in fact the study of periodic orbits near the degenerate point is the prin-
ciple goal of this paper. We use the aforementioned mechanisms to show the presence of up to 
two small amplitude limit cycles, and provide evidence that by using these mechanisms this is 
the best cyclicity result one can get.

Determining an upper bound for the number of limit cycles turned out to be too difficult, as it 
was revealed that a multi-parameter global study of phase portraits was needed, going far beyond 
the traditional perturbative methods to create limit cycles.

In a study of unfoldings of a vector field like X0, it is best to make a homogeneous (family) 
blow-up of the perturbed family of vector fields, thereby focusing on the behavior at the blow-up 
locus. The behavior at the blow-up locus has been shown to be mostly determined by perturbation 
terms of degree two and lower. We will therefore focus our attention on perturbations of at 
most degree two. Though this restriction immediately shows a relation between the Hilbert 16th 
problem in degree 2, the study of the singularity at X0 has in fact no contribution in the degree-2 
program outlined by Dumortier, Roussarie and Rousseau [14]. In that program, homogeneous 
vector fields could be avoided using rescalings. Setting this point aside, the study of the cyclicity 
of X0 at the origin has a relevance by itself.

In Section 2 we consider forms for the unperturbed system under some additional generic 
and geometric constraints, and present a canonical form that depends on two parameters (A, B). 
Next, we present a reduction to canonical form of the unfolding of the degenerate singular point. 



590 P. De Maesschalck et al. / J. Differential Equations 258 (2015) 588–620
It is shown that a well-chosen canonical form of the unfolding is a 6-parameter family of vec-
tor fields: two parameters altering (A, B), and 4 additional parameters (μ1, μ2, μ3, μ4). More 
precisely, we prove that any smooth unfolding can be brought into the following canonical form:{

ẋ = ax2 + bxy + μ1 + μ2x + μ3y + O
(∥∥(x, y)

∥∥3)
,

ẏ = x2 + y2 − μ4 + O
(∥∥(x, y)

∥∥3)
,

(1)

where a = A + o(1) and b = B + o(1).
Normal forms for degenerate singularities have been studied before (see for example [1,26]). 

In this and in other papers, one typically cuts off the normal form, reducing it to the most dom-
inant part (which is the quadratic part in this context). While in [26], one could actually realize 
this cut-off by proving the presence of a cutting-off coordinate transformation, proving that (1)
is equivalent to its cut-off at degree 2 is not possible. See Remark 2 for a discussion.

The remainder of the paper deals with cyclicity results on the restriction of (1) to the class 
of quadratic vector fields. We present several results concerning the existence of limit cycles us-
ing perturbative arguments. In fact the maximum number of limit cycles obtained in this way is 
two, with configurations (2 : 0) and (1 : 1). In Section 3 we study the cyclicity and simultaneity 
properties near isolated singularities. We do this firstly by perturbing weak foci by computing 
Lyapunov coefficients, secondly by studying the presence of cusp points and their unfolding in 
a Bogdanov–Takens bifurcation diagram (in fact we prove the simultaneous existence of two 
BT-diagrams). A characterization of the centers of (1) restricted to the quadratic case can be 
found in Section 4. The quadratic perturbations of some centers included in these families have 
been studied by many authors. The Hamiltonian case is studied in [20] but the reversible non-
Hamiltonian case has only been considered in few particular cases, see [4,6,17,21], and in all 
cases the cyclicity is two. A short review of these cases is also given in this section. In Section 5, 
we study slow–fast families of vector fields appearing in the model.

In a final step, inspired by [6], we consider in Section 6 a class of symmetric unfoldings of the 
singular point. The imposed symmetry allows us to reduce the dimension of the parameter space. 
As the unperturbed vector field is invariant under the transformation (x, y, t) �→ (−x, −y, −t), 
we take the perturbations which are invariant under this transformation as well. Thus μ2 =
μ3 = 0, and the restricted quadratic family (1) can be written as{

ẋ = ax2 + bxy + μ,

ẏ = x2 + y2 − 1.
(2)

We prove that this family has at most two limit cycles in configuration (1 : 1). We show the 
limitations of the perturbative techniques as they fail to provide a global bifurcation diagram for 
the number of limit cycles even for this simple family of vector fields.

2. Reductions to canonical form

2.1. Canonical form of the unperturbed fake saddle

We consider a smooth vector field X0 having a smooth invariant curve x = φ(y) (with 
φ(0) = 0), and for which the reduction of X0 to this curve is given by the equation

ẏ = cy2 + O
(
y3), c > 0.
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The conditions in the following lemma determine precisely the kind of singularity we examine 
in this paper.

Lemma 1. Assume, under the above condition, that the origin is a degenerate singular point 
having exactly two separatrices, both of which are boundaries of two hyperbolic sectors. Then 
there exists a smooth local change of coordinates bringing the vector field into the form

{
ẋ = Ax2 + Bxy + O

(∥∥(x, y)
∥∥3)

,

ẏ = x2 + y2 + O
(∥∥(x, y)

∥∥3)
,

(3)

where A ≥ 0, B < 1 and A2 < 4(1 − B). (When the invariant fiber is a straight line, the change 
of coordinates is linear.)

Proof. We assume that X0 = (P, Q) has a degenerate singular point at the origin, implying that 
P(0, 0) = Q(0, 0) = 0. We also assume that the degenerate point has no other separatrices beside 
the ones on the fiber y = 0, and that {y = 0} separates two hyperbolic sectors. Since the origin is 
a degenerate singularity, a blow-up analysis reveals the nature of the singular point. We write

(x, y) = (r cos θ, r sin θ).

Imposing that {y = 0} is the border of a hyperbolic sector has the implication Py(0, 0) < 1. 
(This is done by requiring the Jacobian matrix of the blow-up vector field at (r, θ) = (0, ±π/2)

to have a saddle structure.) Under this condition, we can apply a linear transformation (x, y) �→
(x, ρx +y) to make Qy(0, 0) = 0. Furthermore, we can then exclude the case Qx(0, 0) = 0 from 
the study (since there are always extra separatrices then), after which we can scale the coefficient 
to 1. In short, we can assume

P(x, y) = Ax2 + Bxy, Q(x, y) = x2 + y2.

An additional search for separatrices would reveal the property A2 < 4(1 −B). Symmetry allows 
us to assume A ≥ 0. �

As a special case, we will sometimes consider those vector fields (3) that are invariant under 
the symmetry (x, y, t) �→ (−x, −y, −t). The quadratic part is of course always invariant under 
the symmetry, but for some vector fields the higher order terms can break symmetry.

Remark 2. Lemma 1 shows that one can represent fake saddle singularities with a simple ex-
pression (3). We will not call this expression a normal form in this paper. Normal forms typically 
have a restricted definition and usually refer to Takens normal forms, Poincaré–Dulac normal 
forms, Birkhoff normal forms, or other specific normal forms. Though there are some works on 
normal forms of degenerate singular points [26,27], there is no convention on what could be 
called a normal form for a degenerate singularity. In this paper, we will often refer to (3) as a 
canonical form.
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2.2. The degenerate flow-box property

The vector field (3) has the so-called degenerate flow-box property: there are two boxes 
Bi ⊂ Be (interior and exterior) with the following properties. Each of the boxes is diffeomor-
phic to a square, and its four boundaries consist of two orbits, an inset and an outset. Along the 
inset, the vector field is transverse and points inwards the box, and along the outside, the vector 
field is transverse and points outwards. The orbit-edges of Bi reach the outset of Be in positive 
time and the inset of Be in negative time. Furthermore, Be \ Bi has no singular points, and the 
size of the box Bi can be as small as desired.

Lemma 3. Any smooth perturbation of vector field (3) retains the degenerate flow-box property.

Proof. The boxes consist of regular orbits (which perturb to regular orbits), and insets and out-
sets. The transversality along the inset and outset also persists for small perturbations. �

Of course, the most interesting thing to study is what happens inside the interior box Bi for 
perturbations of (3). In the next section, we study unfoldings.

2.3. Canonical form for unfoldings of the fake saddle

We now consider a perturbation

{
ẋ = Ax2 + Bxy + εP (x, y),

ẏ = x2 + y2 + εQ(x, y).

We let

x = X + pY + q, y = Y + rX + s,

where p, q, r, s are to be determined implicitly below and keeping in mind all four ought to 
be O(ε). For the new equations in (X, Y), we will require that

∂Ẏ

∂X
(0,0) = ∂Ẏ

∂Y
(0,0) = ∂2Ẏ

∂X∂Y
(0,0) = ∂2Ẋ

∂Y 2
(0,0) = 0.

Considering the mapping Ψ : (p, q, r, s, ε) �→ ( ∂Ẏ
∂X

(0, 0), . . . , ∂
2Ẋ

∂Y 2 (0, 0)), then it is clear that 
Ψ (0, 0, 0, 0, 0) = (0, 0, 0, 0). On the other hand, it is a tedious but easy exercise to show that

∂Ψ

∂(p,q, r, s)
(0) =

∣∣∣∣∣∣∣∣∣
2(B − 1) 0 0 0

0 2 0 0

0 0 0 2

2 0 2 − B 0

∣∣∣∣∣∣∣∣∣ = 8(B − 1)(B − 2),
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so we can apply the Implicit Function Theorem to prepare the perturbation in the required form. 
This implies that we may consider

{
ẋ = ax2 + bxy + μ1 + μ2x + μ3y + O

(∥∥(x, y)
∥∥3)

,

ẏ = x2 + y2 − μ4 + O
(∥∥(x, y)

∥∥3)
,

where a = A + o(1), b = B + o(1), and a2 < 4(1 − b).
We now write

(μ1,μ2,μ3,μ4) = (
v2M1, vM2, vM3, v

2M4
)
, v ≥ 0.

In a perturbation scheme where μ ≈ 0, we can keep ‖(M1, M2, M3, M4)‖ = 1 and let v ≈ 0.

Lemma 4. The ((v, M1, M2, M3, M4)-families of) boxes Bi ⊂ Bo in (x, y)-space can be chosen 
so that Bi lies in an O(v)-neighborhood of the origin. (In the language of blow-up: in a family 
blow-up procedure, the interior box can be chosen as a compact K in the family chart.)

Proof. Use phase directional blow-up and the fact that the equator only contains singularities at 
the poles. �

We now blow up the origin using a homogeneous family blow-up and consider the phase 
directional chart:

(x, y, v) = (vX,vY ).

We find

{
Ẋ = aX2 + bXY + M1 + M2X + M3Y + O(v),

Ẏ = X2 + Y 2 − M4 + O(v).
(4)

Remark 5. It is clear that the behavior for v = 0 is the important piece of information needed to 
determine the behavior of (4). The system (4) with v = 0 has no singular points for M4 < 0, and 
for M4 = 0, it has a unique singular point at the origin, whose index is zero. Therefore, in both 
cases the restricted system has no limit cycles.

Remark 6. There is no hope of proving that (4) is in general equivalent to the truncated vector 
field with v = 0. In fact, this is only rarely true in versal unfoldings of degenerate singularities, 
and when one succeeds in proving so, it is due to restrictions on the complete family. This is 
shown for example in [26], where unfoldings of some degenerate singularities are discussed. In 
that paper, one considers unfoldings inside the class of vector fields that keep X = 0 and Y = 0
invariant. In the most generic setting of a degenerate singularity, the presence of a singularity 
is robust under perturbations respecting the structure. Hence, extra structure allows to prove a 
versal unfolding of finite codimension in [26]. This is not possible here.
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Fig. 2. Region of the parameters a and b.

2.4. Parameter charts of the quadratic canonical form

The canonical form obtained from (4), after reducing to v = 0, that can have limit cycles is{
Ẋ = aX2 + bXY + M1 + M2X + M3Y,

Ẏ = X2 + Y 2 − M4,
(5)

with M4 ≥ 0.
Recall also that (M1, M2, M3, M4) lies on a sphere and cannot be zero simultaneously. It 

is important to realize that the local problem that was initially posed in this paper, i.e. study 
the cyclicity of the degenerate singular point, has now become a global problem, both in phase 
space and parameter space. The control on the number of limit cycles is typically not easy in 
this situation.

Removing the capitals in the notation, we have reduced the local cyclicity study to the global 
cyclicity study of the following family of vector fields:{

ẋ = ax2 + bxy + μ1 + μ2x + μ3y,

ẏ = x2 + y2 − μ4,
(6)

where (x, y) is to be considered in a large compact set in the plane, and where the parameters 
(μ1, μ2, μ3, μ4) lie on a sphere and cannot be zero simultaneously, and (a, b) ∈ Ω := {(a, b) ∈
R

2 | a ≥ 0, a2 + 4b − 4 < 0}, see Fig. 2.
In some cases, instead of working on a sphere, we prefer to work in one of the charts of the 

sphere: μ4 = 1 and (μ1, μ2, μ3) ⊂ K ⊂R
3, that is, we can consider the system{

ẋ = ax2 + bxy + μ1 + μ2x + μ3y,
2 2

(7)

ẏ = x + y − 1,
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Fig. 3. Phase portrait of system (6) for the unperturbed one (left) and near the infinity (right).

where (x, y) lies in a large compact set in the plane, (a, b) ∈ Ω , and (μ1, μ2, μ3) ⊂ K ⊂ R
3

with K a large compact set as well. By choosing to work in this chart, we avoid the situation 
where μ4 ≈ 0 and (μ1, μ2, μ3) lies on a unit sphere. This choice is made for the sake of con-
venience and because it is to be expected that no additional phenomena are present there. With 
techniques similar to the ones proposed here, and by using extra desingularizations (blow-ups), 
a comprehensive study of the parameter chart μ4 ≈ 0 is equally possible.

Following the techniques described in [12] the phase portraits near the infinity of the unper-
turbed and perturbed system (6) are drawn in Fig. 3. In particular the limit cycles will appear in 
a compact region K in the phase space, in correspondence with the findings in Lemma 4. More-
over, the total index of finite singularities is zero because the index of the fake saddle singularity 
of the unperturbed system (6) is also zero.

3. Limit cycles bifurcating from singularities

This section is devoted to the research on limit cycles that bifurcate from singularities. From 
previous section we know that the total index of all finite singularities is 0. This research is 
divided into two subsections. In the former we will study the maximum order of a weak focus 
(index +1). The latter deals with the study of Bogdanov–Takens bifurcation (index 0). In both 
cases we first study each point separately and then study simultaneous bifurcations.

3.1. Bifurcation from weak foci

Let X be the vector field associated with system (6). Then its linearization matrix at a point 
(x, y) is

DX(x,y) =
(

2ax + by + μ2 bx + μ3
2x 2y

)
.

Thus, the trace and the determinant of DX(x, y) are denoted by

trDX(x,y) = 2(ax + by) + (2 − b)y + μ2, (8)

detDX(x,y) = 4y(ax + by) − 2b
(
x2 + y2) − 2μ3x + 2μ2y. (9)

Lemma 7. For a weak focus (x0, y0) of system (6) we have:

(i) The value x0 is non-zero.
(ii) The first Lyapunov quantities are given by
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V3 = −v30 − v31a − v32a
2

8x0α
5
0

, (10)

V5 = −2x0y0v50 + v51a + x0y0v52a
2 − v53a

3

16x3
0α7

0

, (11)

where α0 is the positive square root of detDX(x0, y0), and

v30 = 2x0y0(b + 2)
(
4(1 − b)x2

0 + α2
0 + 4y2

0

)
,

v31 = (
α2

0 + 4y2
0

)2 − 2b
(
12y2

0 + α2
0

)
x2

0 ,

v32 = 4x0y0
(
α2

0 + 4y2
0

)
,

v50 = (
2x2

0 + 4y2
0 + α2

0

)(
4x2

0 + 4y2
0 + α2

0

)
(b + 2),

v51 = 8(b − 2)(b − 3)x6
0 + (

112(2 − b)y2
0 + 2α2

0

(
b2 + 10 − 9b

))
x4

0

− 2
(
4y2

0 + α2
0

)(
α2

0(1 + b) − (13b + 14)y2
0

)
x2

0 − (
4y2

0 + α2
0

)3
,

v52 = 48bx4
0 − (

(32 − 152b)y2
0 + 2α2

0(4 − b)
)
x2

0 − 13
(
4y2

0 + α2
0

)2
,

v53 = 12x2
0

(
x2

0 + 3y2
0

)(
4y2

0 + α2
0

)
.

Proof. When x0 = 0 we have

trDX(0, y0) = μ2 + by0 + 2y0 = 0,

detDX(0, y0) = 2y0(by0 + μ2) = −4y2
0 ≤ 0.

Consequently (0, y0) is not a weak focus (see [25]). This proves (i).
To prove statement (ii), we will first use a suitable linear transformation to bring system (6)

in its Poincaré normal form.
By hypothesis trDX(x0, y0) = 0 and detDX(x0, y0) = α2

0 for a value α0 > 0. Hence, from 
(8) and (9) it follows that

μ2 = −2(ax0 + by0) − y0(2 − b) and μ3 = −2bx2
0 + α2

0 + 4y2
0

2x0
.

On the other hand, since (x0, y0) is a singular point, from (6) we can easily see that

μ1 = 2x2
0(ax0 + 2y0) + 2bx2

0 + α2
0 + 4y2

0

2x0
and μ4 = (

x2
0 + y2

0

)
.

By using the linear transformation

u = x0(x − x0) + y0(y − y0)

x0
, v = α0(y − y0)

2x0

and the time reparametrization dτ = α0 dt , the system (6) becomes
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{
u′ = −v + a20u

2 + a11uv + a02v
2,

v′ = u + b20u
2 + b11uv + b02v

2,
(12)

where the prime denotes the derivative with respect to τ , and

a20 = ax0 + y0

x0α0
, a11 = 2bx2

0 − 4y0(y0 + ax0)

x0α
2
0

,

b20 = 1

2x0
, a02 = 4y0(y0(y0 + ax0) + x2

0(1 − b))

x0α
3
0

,

b11 = 2y0

x0α0
, b02 = 2(x2

0 + y2
0)

x0α
2
0

.

The origin of this system corresponds to the point (x0, y0) of (6).
Finally, the expressions of the Lyapunov quantities V3 and V5 given in (10) and (11) follow 

after rewriting system (12) as

z′ = iz + Az2 + Bzz̄ + Cz̄2

(with z := u + iv), applying [28, Proposition 1.2] and simplifying V5|V3≡0. �
Theorem 8. Let (x0, y0) be a weak focus of the perturbed system (6).

(i) if a 
= 0, then (x0, y0) is of order at most 2.
(ii) if a = 0, then (x0, y0) is of order at most 1 if y0 
= 0 and b 
= −2; otherwise (x0, y0) is 

a center.

Proof. (i) It sufficient to show that if V3 = 0, then V5 
= 0. This follows if the resultant of the 
numerators of V3 and V5 with respect to y0 is a non-vanishing function. This resultant can be 
factored as

Res(V3,V5, y0) = a10α16
0 x20

0 (b − 2)2R1R
2
2R3,

where

R1 = 4
(
a2 + b2)x2

0 + b2α2
0, R2 = 2a2b + (b − 1)(b + 2)2

and

R3 = 5(3 − b)
(
3(b + 1)a2 + 4(2b − 1)2)x2

0 + α2
0

(
10b − 5 + 3a2)2

.

By the assumption a > 0, and the fact that x0 
= 0 (Lemma 7), it is clear that R1 > 0. To complete 
the proof we will prove that R2 and R3 do not vanish in Ω .

If (a, b) ∈ Ω , then a2 < −4(b − 1). Thus, R2 < (b − 1)(b − 2)2 < 0 in Ω because b − 1 < 0
and b − 2 < −1 in Ω .
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Showing that 3(b + 1)a2 + 4(2b − 1)2 and 3 − b are positive in Ω , is sufficient to show 
that R3 > 0 in Ω because x0 
= 0. If (a, b) ∈ Ω , then it is clear that 3 − b > 0. Moreover, if 
b ≥ −1, then b + 1 ≥ 0, which implies that 3(b + 1)a2 + 4(2b − 1)2 > 0; and if b < −1, then 
−4ba2 < −16b(b − 1), whereby

3(b + 1)a2 + 4(2b − 1)2 = 3(b + 1)a2 − 16b(1 − b) + 4 > 3a2 − ba2 > 0.

(ii) We consider the equivalent system (12). For a = 0, the Lyapunov quantity V3 simplifies 
to

V3 = y0(2 + b)(4(1 − b)x2
0 + α2

0 + 4y2
0)

4α5
0

.

Since in Ω we have 1 −b > 0, the polynomial 4(1 −b)x2
0 +α2

0 +4y2
0 is positive because α0 > 0. 

Hence, as we are assuming that y0 
= 0 and b 
= −2 we can conclude that V3 
= 0. Therefore, the 
origin of (12) or equivalently the weak focus (x0, y0) of (6) is of the order 1 at most.

To complete the proof we will prove that if y0 = 0 or b = −2, then (x0, y0) is a center. We will 
consider two cases.

Case 1. Suppose y0 = 0. From the expression of (6) we find that μ1 + μ2x0 = 0 because 
a = 0. On the other hand, from (8) we obtain trDX(x0, 0) = μ2, which is zero because (x0, 0)

is a weak focus. Thus, we obtain μ1 = μ2 = 0. Hence the system (6) becomes{
ẋ = y(bx + μ3),

ẏ = x2 + y2 − μ4.
(13)

Thus, from (9) it follows that detDX(x0, 0) = −2(bx2
0 + μ3x0) which must be positive because 

(x0, 0) is a weak focus. Hence b2 + μ2
3 
= 0. We will prove that this system has a first integral.

When b = 0 we can assume that μ3 
= 0 and e−2x/μ3 is an integrating factor that provides

μ3(2μ4 − 2y2 − μ2
3 − 2xμ3 − 2x2)

4 e2x/μ3

as a first integral, which has either a minimum or a maximum at (x0, 0). Therefore (x0, 0) is a 
center singularity of the system.

If b 
= 0, then (bx + μ3)
−(b+2)/b is an integrating factor and, consequently,

(b − 2)(x2 + (y2 − μ4)(1 − b)) − μ2
3 − 2xμ3

2(b − 1)(b − 2)(bx + μ3)
2
b

is a first integral. Hence, if (x0, 0) is a weak focus for the system, then the first integral has either 
a minimum or a maximum at (x0, 0) which implies that (x0, 0) is a center.

Case 2. Suppose b = −2. From (8) we get trDX(x0, y0) = μ2, which must be zero by the 
assumption on (x0, y0). Thus (6) becomes{

ẋ = −2xy + μ1 + μ3y,
2 2 (14)
ẏ = x + y − μ4,
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which is a Hamiltonian system with a Hamiltonian function

H(x,y) = x3

3
+ xy2 − μ3

2
y2 − μ4x − μ1y.

Therefore, if (x0, y0) is a weak focus of the system, it is a center singularity. �
Corollary 9. If a 
= 0 then the perturbed system (6) has no centers bifurcating from the origin of 
the unperturbed system.

Theorem 10. If system (6) has two simultaneous weak foci, then each one of them has order 1 at 
most.

Proof. If a = 0, then the assumption follows from statement (ii) of Theorem 8. Hence, for the 
rest of the proof we assume that a 
= 0.

Let (x0, y0) and (x1, y1) be two different weak foci of system (6). Using their characterization 
as singular points, together with (8) and (9), we find

ax2
i + bxiyi + μ2xi + μ3yi = 0,

x2
i + y2

i − μ4 = 0,

μ2 − (
2axi + (b + 2)yi

) = 0,

α2
i − 2xiμ3 + 2bx2

i + 4y2
i = 0,

where αi = detDX(xi, yi) > 0 for i = 0, 1. From these expressions we can write μ1, μ2, μ3, μ4,

x1, y1, α0, and α1 as functions of (x0, y0, a, b). Of particular note we get

x1 = (4a2 − (b + 2)2)x0 + 4a(b + 2)y0

4a2 + (b + 2)2
,

y1 = 4a(b + 2)x0 − (4a2 − (b + 2)2)y0

4a2 + (b + 2)2
.

We denote by Vj0 and Vj1 the Lyapunov quantities of the weak focus (x0, y0) and (x1, y1), re-
spectively. We note that the expression of Vj1 for j = 3, 5 comes from (10) and (11) in Lemma 7
if we replace x0, y0, and α0 by x1, y1, and α1, respectively. Of particular note,

V30 = Ṽ x0((b + 2)x0 − 2ay0)
2

α5
0(4a2 + (b + 2)2)2

and

V31 = Ṽ ((4a2 − (b + 2)2)x0 + 4a(b + 2)y0)((b + 2)x0 − 2ay0)
2

α5
1(4a2 + (b + 2)2)3

where Ṽ = −a(b − 2)(2ba2 + 3b2 + b3 − 4).
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We note that if (b + 2)x0 − 2ay0 = 0, then that implies that y1 = y0 and x1 = x0, which 
contradicts our assumption (x0, y0) 
= (x1, y1). Hence we have (b + 2)x0 − 2ay0 
= 0.

On the other hand, it is easy to see that the zero locus of Ṽ is outside of Ω \ {a = 0}, and 
we know that x0 
= 0 and x1 
= 0, that is, (4a2 − (b + 2)2)x0 + 4a(b + 2)y0 
= 0. Moreover, this 
implies that V30 
= 0 and V31 
= 0. Therefore, (x0, y0) and (x1, y1) are weak foci of order 1 at 
most. �
3.2. Bifurcation from nilpotent cusps

We consider cusp singularities in (7), i.e. singularities (x0, y0) where the determinant and the 
trace of the linearization are zero, but the linearization itself is not. It is an elementary computa-
tion to show that nilpotent singularities are located at (x0, y0) = (cos θ, sin θ) when

μ1 = a cos2 θ + (
2 + b cos2 θ

)
tan θ, (15)

μ2 = −(b + 2) sin θ − 2a cos θ, (16)

μ3 = (2 − b) cos θ − 2 cos−1 θ. (17)

Proposition 11. Around a nilpotent singularity and for any N ≥ 2, there exists a local set of 
coordinates bringing (7) locally in the form⎧⎪⎨⎪⎩

ẋ = y,

ẏ =
N∑

k=2

(
rkx

k + skx
k−1y

) + O
(∥∥(x, y)

∥∥N+1)
,

(18)

where in particular

r2 = 4 tan θ
(
1 + a sin θ cos θ − b cos2 θ

)
, s2 = 2b cos θ − 4a sin θ + 4 cos θ.

The two coefficients r2 and s2 only vanish simultaneously when both b = −2 and θ = 0 (mod π).

Proof. This proposition is even valid up to N = ∞ (this is a reduction to Liénard form, see 
for example [23]), and is well-known. Here we restrict ourselves to giving the procedure to 
normalize up to cubic terms, the general case being a direct generalization. We first write (x, y) =
(ỹ + x0, x̃ + y0) to put the singularity at the origin. Notice the exchange of the roles of x and y. 
After this, a linear change of coordinates (x̃, ỹ) = (2 cos θx, −2 sin θx + y) changes the linear 

part to 
(

0 1
0 0

)
. Finally, we write

x = X + a2X
2, y = Y + b0X

2 + b1XY + b2Y
2

and for suitable choices of (a2, b0, b1, b2) (easily found with the help of a symbolic math pro-
gram) one can eliminate the quadratic terms in Ẋ and the term with y2 in the Ẏ -equation. Let 
us finally mention that the system of equations {r2 = 0, s2 = 0} is solved when either sinθ = 0
(in which case b = −2 follows) or b = 2 + 2 cos−2 θ > 2, which is out of the parameter regime 
that we are considering. �
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When both r2 and s2 are non-zero, the nilpotent singularity is of codimension 2, and upon 
varying the parameters it unfolds in a complete Bogdanov–Takens diagram. This is easy to see: 
the trace at the singular point is given by 2ax + (b + 2)y + μ2, and a similar expression is 
found for the determinant at the nilpotent point. Computing the Jacobian determinant of the map-
ping (x0, y0, μ1, μ2) �→ (ẋ, ẏ, tr, det)|x=x0,y=y0 , evaluated at a point (x0, y0) = (cos θ, sin θ), and 
given the conditions (15), (16), and (17), gives −4 tanθ((b − 2) cos2 θ − 2) 
= 0 in the parameter 
domain under study and when θ 
= 0. In other words when θ 
= 0, the two parameters (μ1, μ2)

can be used as versal parameters completely unfolding the nilpotent point. We conclude that (7)
contains all the elements appearing in Bogdanov–Takens diagrams.

Remark 12. Similarly, the mapping (x0, y0, μ1, μ2) �→ (ẋ, ẏ, tr, det)|x=x0,y=y0 is easily verified 
to be regular at nilpotent singularities, especially when μ2 = μ3 = 0, i.e. the case that appears in 
the reversible system (2). This shows that not only cusp singularities appearing in (2) unfold in 
full Bogdanov–Takens diagrams, but they do so even inside the family (2).

Moreover, we can show that simultaneous BT-bifurcations occur:

Proposition 13. A nilpotent singularity (x0, y0) = (cos θ, sin θ) occurs simultaneously with an-
other nilpotent singularity at (x1, y1) = (cosφ, sinφ) only when θ = φ + π (mod 2π) and

a = (2 sin2 θ − 1) sin θ

cos3 θ
, b = −2 tan2 θ, μ1 = tan θ, μ2 = μ3 = 0.

The quadratic normal forms of Proposition 11 at both points are then the same, and r2 =
4 sin θ cos−3 θ and s2 = 4(1 − 2 sin2 θ) cos−3 θ . In the parameter domain {a 
= 0}, simultane-
ously occurring nilpotent singularities are always of codimension 2 and they unfold completely 
and independently upon varying the four parameters (a, b, μ2, μ3). In particular this implies the 
presence of two small-amplitude limit cycles or saddle-homoclinics near the two cusp singular 
points.

Proof. We express (ẋ, ẏ, tr, det) at (x0, y0) and at (x1, y1) and get a system of eight polyno-
mial equations, which we consider in eight variables y0, x1, y1, a, b, μ1, μ2, μ3, and treating 
for example x0 = cos θ as a parameter. A cumbersome computation shows that (x0, y0) neces-
sarily equals (cos θ, sin θ) and (x1, y1) equals (cosφ, sinφ) with φ = θ or φ = θ + π . From 
the same computation, we derive expressions for a and b, and using those expressions, we 
can simplify the known expressions for the quadratic coefficients r2 and s2. It is clear that 
r2 · s2 = 0 only when a = 0. Finally, assume φ = θ + π and both points are nilpotent. Com-
puting (ẋ, ẏ, tr, det) at both points (x, y) = (cos θ, sin θ) and (x, y) = (− cos θ, − sin θ) leads to 
a map from (x0, y0, x1, y1, a, b, μ2, μ3) into R8. The Jacobian determinant of this map can be 
easily verified to be non-zero which implies that (a, b, μ2, μ3) independently control the two 
bifurcation parameters of the Bogdanov–Takens bifurcation plane for both points. �

Two simultaneously appearing nilpotent singular points of codimension bigger than 2 hence 
could occur only along a = 0. Let us finally state a result concerning the maximal codimension 
of any appearing nilpotent singularity in our system through the next two propositions:

Proposition 14. A nilpotent singularity for which r2 = 0 and s2 
= 0 is of codimension three at 
most, and around this point, (7) can be locally brought into the form
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{
ẋ = y,

ẏ = s2xy + r3x
3 + s̃3x

2y + O
(∥∥(x, y)

∥∥5)
,

with s2 as before and non-zero r3 = 4(b − 2) and with s̃3 = s3 − 3s2r4/(5r3). The singularity is 
of nilpotent saddle, focus or elliptic type (see [16]), depending on parameters (s2, ̃s3, r3).

Proof. Starting from the Liénard form (18) of some degree N ≥ 5, one can consider yet another 
transformation

x = X + c2X
2 + c3X

3.

A time change allows to keep Ẋ = y. Tracking down the effect on the ẏ equation, we can choose 
c2 and c3 to remove the terms of order 4. However, with this change, a term of order 3 changes 
from s3x

2y to s̃3x
2y. The explicit expression for r3 is obtained exactly as r2 and s2 are obtained 

in the proof of Proposition 11. (In fact, one finds that r3 = 8a sin θ cos θ +4b(2 sin2 θ −1), which 
simplifies to 4(b − 2) along r2 = 0.) �
Proposition 15. At a nilpotent singularity for which s2 = 0 and r2 
= 0 (7) can be locally brought 
into the form {

ẋ = y,

ẏ = r2x
2 + s̃4x

3y + O
(∥∥(x, y)

∥∥5)
,

(19)

with s̃4 = s4 − s3r3/r2. Except when (a, b) = (0, −2), s̃4 is never zero together with s2 in the 
relevant parameter domain.

Proof. Just as in the previous proposition, we start with the Liénard form (18) of some degree 
N ≥ 5, and we consider x = X + c2X

2 + c3X
3, this time combined with y = Y + d2Y

2 + d3Y
3. 

A time rescaling again allows us to keep Ẋ = Y , and the coefficients c2, c3, d2, d3 are determined 
in order get Ẏ in the required form. The exact expression for s̃4 is quite long and we have chosen 
not to include it, as there are precise instructions on how to compute it. Algebraically, there are 
two disjoint curves where s̃4 = s2 = 0, and both of them lie outside the domain {b < 1, a2 +
4(b − 1) < 0}. �

We leave it to the interested reader to check whether or not a versal unfolding of the two 
codimension 3 situations described above is found in (7). Versal unfoldings of the situations 
described in Propositions 14 and 15 are found in [16] and [15], respectively. For (a, b) = (0, −2), 
and for

(μ1,μ2,μ3) =
(

2 sin3 θ

cos θ
,0,

2 cos 2θ

cos θ

)
,

system (19) around the singular point (x0, y0) = (cos θ, sin θ) degenerates further as s̃4 = 0, and 
the study remains inconclusive. It is easy to conclude that topologically, the singularities are 
cusps, but the unfolding is less clear. However, from the previous section, we know that since 
also μ2 = 0, the system is Hamiltonian in that case.
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4. Configuration of centers and their perturbations

This section deals with the centers of the family (7) and gives a review of known results 
concerning their quadratic perturbations.

Proposition 16. System (7) can have a center only if it has the form{
ẋ = y(bx + μ3),

ẏ = x2 + y2 − 1,
with b < 1 and μ3 ∈R; (20)

or {
ẋ = −2xy + μ1 + μ3y,

ẏ = x2 + y2 − 1,
with μ1,μ3 ∈R. (21)

The bifurcation diagrams of systems (20) and (21), as well as their different topological phase 
portraits on the Poincaré disc, are shown in Figs. 4 and 5, respectively. In particular,

(i) system (20) has a center if and only if

(μ3, b) ∈ {b < 1} ∩ ({μ3 − b > 0} ∪ {μ3 + b < 0}) ⊂ R
2, and

(ii) system (21) has a center if and only if

(μ1,μ3) ∈ {
μ2

1 < 1
} ∪ ({D < 0} ∩ {μ1 ≥ 1}) ⊂R

2,

where D = 64μ4
1 + μ2

1(μ
4
3 − 80μ2

3 − 128) − (μ3 − 2)3(μ3 + 2)3.

From this result we can classify the centers in three families: The non-reversible Hamilto-
nian ((21) with μ1 
= 0), the reversible Hamiltonian ((20) with b = −2 or (21) with μ1 = 0), 
and the reversible non-Hamiltonian ((20) with b 
= −2). As we show in the proof below, if the 
Hamiltonian associated with (21) has four or two different real singular points, then it has four 
singular values (in the complex plane) for μ1 
= 0. Then from [18] we see that at most two limit 
cycles can born from H3 and H5 under quadratic perturbations; in particular the cyclicity of the 
period annuli is at most 2. Moreover, in [22] it is proved that the cyclicity of the period annulus 
of H4 is at most 2. The reversible Hamiltonian is studied in [5] proving that again the cyclicity 
of the period annuli of H6 is two, when both are considered separately or simultaneously. How-
ever, the global cyclicity of H4 and H6 cannot be determined since limit cycles could bifurcate 
simultaneously from the cusp or from the heteroclinic connections, respectively. This problem 
remains open. The cyclicity of the period annuli in the reversible non-Hamiltonian case has only 
been considered in a few particular cases, and in all the cases again the cyclicity was two. See 
[4,6,17,21].

Proof of Proposition 16. From the proof of Theorem 8 we obtain that system (6) can have 
a center only if it writes as (13) or (14) which, after the rescaling introduced in Section 2.4, 
become (20) and (21), respectively. Moreover, by applying the map (x, y, t) → (−x, −y, −t)
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Fig. 4. Bifurcation diagram of system (20) and its different topological phase portraits.

we can assume, if necessary, μ3 ≥ 0 in systems (20) and (21). Finally, as the singularities at 
infinity are hyperbolic, we restrict our analysis to the finite singularities that globally have a total 
index of zero, see Section 3.

We first study the bifurcation diagram and the phase portraits for system (20) considering the 
division of the parameter space according to the number and type of its singularities.

If b = μ3 = 0, then the circle x2 + y2 = 1 is a curve of singularities of the system, and every 
vertical straight line is invariant. Thus, the phase portrait is topologically conjugated to I0 in 
Fig. 4.

For the remaining cases the points (−1, 0) and (1, 0), and the intersection points of y = 0
with the circle x2 + y2 = 1, are finite singularities of the system. Moreover, the system can 
have two additional singularities (−μ3/b, yi) for i = 1, 2 with y1 > 0 and y2 < 0, which are the 
intersection points of the invariant straight line x = −μ3/b with the circle x2 + y2 = 1.

The next table shows the classification of the singularities of the system. 

(−1,0) (1,0) (−μ3
b

, y1) (−μ3
b

, y2)

I1 saddle saddle unstable node stable node

I2 h − e saddle – –

I3 center saddle – –

I4 center center saddle saddle

where h − e means one hyperbolic sector and one elliptic sector,

I1 = {
(μ3, b)

∣∣ b < 1, b > μ3
}
, I3 = {

(μ3, b)
∣∣ b < 1, |b| < μ3, −b = μ3

}
,

I2 = {
(μ3, b)

∣∣ b < 1, b = μ3
}
, I4 = {

(μ3, b)
∣∣ b < 1, μ3 < −b

}
.

See Fig. 4.
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The proof of the above classification follows from the Hartman–Grobmann Theorem for hy-
perbolic singularities and from Theorem 8 for centers. This completes the local study of the 
phase portraits in regions I1, I3 for μ3 
= −b, and I4. The same can be applied for (1, 0) in I2
and (−1, 0) in I3 when μ3 = −b. The remaining cases, i.e. (1, 0) in I3 with μ3 = −b and (−1, 0)

in I2, are nilpotent singularities. To determine the local behavior we must apply the results con-
cerning the characterization of nilpotent singularities. See Section 3.4 and Theorem 3.5 in [12]. 
Alternatively, see [2, Ch. IX, Theorem 66].

The local phase portraits of the singularities determine the global ones for regions I2 and I3. 
The global phase portraits for regions I1 and I4 are determined by using the local phase portraits 
of the singularities and by keeping in mind the existence of an invariant straight line x = −μ3/b. 
See Fig. 4.

Secondly, we will study the bifurcation diagram and the phase portraits for system (21), which 
is a Hamiltonian system with a Hamiltonian function

H(x,y) = x3

3
+ xy2 − μ3

2
y2 − x − μ1y. (22)

As in the previous case, we first divide the parameter space into regions according to the num-
ber of singularities. This can be done by studying the intersection points of the two components 
of the vector field. That is a hyperbola or the product of two straight lines with the unit circle. 
Consequently, the number of finite singularities is 0, 1, 2, 3, 4. Alternatively, such a division is 
given by the zero-locus of the discriminant of the resultant between the components of the vector 
field:

�
(
Res

(−2xy + μ1 + μ3y, x2 + y2 − 1, x
)
, y

)
= �

(
4y4 + (

μ2
3 − 4

)
y2 + 2μ1μ3y + μ2

1, y
)

= 256μ2
1

(
64μ4

1 + μ2
1

(
μ4

3 − 80μ2
3 − 128

) − (
μ2

3 − 4
)3) = 256μ2

1D(μ1,μ3). (23)

See Fig. 5.
We will describe the phase portraits and the bifurcation diagram in terms of the number of 

singularities. For simplicity, each region and the corresponding phase portrait are denoted by the 
same symbol.

In H0 = {D > 0, |μ1| > 1} the conics do not intersect. Consequently, there are no finite sin-
gularities and the phase portrait is topologically equivalent to H0 in Fig. 5.

The conics are tangent in only one point in H1 = {D = 0, |μ1| > 1}. The unique singularity is 
nilpotent and it is a cusp point because the vector field is Hamiltonian. The global phase portrait 
is topologically equivalent to H1 in Fig. 5.

When there are at least two singularities we prove that the values of the Hamiltonian for two 
of them coincide only when μ1 = 0. Hence, only in this case, two singularities can be connected 
by an invariant curve. Writing the singularities as

(xi, yi) =
(

1 − t2
i

1 + t2
i

,
2ti

1 + t2
i

)
, i = 1,2,

with t1 
= t2, the values of μ1 and μ3 are uniquely determined in terms of t1, t2. Thus, the differ-
ence of the Hamiltonian at these points is
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Fig. 5. Bifurcation diagram of system (21) and its different topological phase portraits. The curve D = 0 is drawn as a 
continuous line.

4(t1 + t2)(((3t2
1 + 1)t2 − 2t1)

2 + 3(t2
1 + 1)2)(t1 − t2)

3

3(t2
1 + 1)3(t2

2 + 1)3(3t2
1 + 1)

,

which vanishes only when t1 = −t2, that is x1 = x2 and y1 = −y2, or equivalently μ1 = 0.
There are two different situations with two singular points. The first, in H2 = {μ1 = ±1,

μ3 = 0}, when the conics are tangent in two different points, and the second, in H3 = {D < 0} ∪
{μ3 = ±2, μ1 = 0}, when the conics intersect transversally. In H2 the singularities are of cuspi-
dal type, using the same argument as in region H1, and the global phase portrait is topologically 
equivalent to H2 in Fig. 5 because the cusps are not connected. In H3, the system is Hamilto-
nian. There, both singularities are simple, because the transversality, and of index +1 and −1
respectively. Consequently, they are of saddle and center type, and the global phase portrait is 
completely determined and it is topologically equivalent to H3 in Fig. 5.

In H4 = {D = 0, 0 < |μ1| < 1} the conics intersect in two transversal points and one tangent. 
The local behavior of these points is the same as the equivalent points in the previously studied 
cases. Then there are a cusp, a saddle and a center point. As the Hamiltonian at the cusp and the 
saddle do not coincide, the global phase portrait is topologically equivalent to H4 in Fig. 5.

The remaining cases are the ones with four singularities. As the conics intersect transversally, 
the system is Hamiltonian and the total index is 0, we have two points with index +1 (centers) and 
two with index −1 (saddles). The global phase portrait depends on the value of the Hamiltonian at 
the saddle points. These values do not coincide in region H5 = {D > 0, 0 < |μ1| < 1} and hence 
the saddles are disconnected. They coincide in region H6 = {μ1 = 0, |μ3| < 2}. Additionally, 
in the last region, the system has a vertical invariant straight line that connect the saddles. The 
global phase portraits are topologically equivalent to H5 and H6 in Fig. 5, respectively. �
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5. Singular perturbations

We consider {
ẋ = ε

(
ax2 + bxy + μ1 + μ2x + μ3y

)
,

ẏ = x2 + y2 − 1,
(24)

where ε is a small perturbation parameter. This system is obtained from (7) after rescaling the 
parameters by ε (and using the same symbols for the rescaled variants). Note that (εa, εb) ∈ Ω

when ε ≥ 0 is small enough.
This kind of system will be studied using techniques from geometric singular perturbation 

theory. This involves studying two limiting systems

{
ẋ = 0,

ẏ = x2 + y2 − 1,
and

{
ẋ = ax2 + bxy + μ1 + μ2x + μ3y,

0 = x2 + y2 − 1.

These two systems are called the fast reduced system and the slow reduced system. We define 
C = {(x, y): x2 + y2 = 1} as the critical curve, a circle. Away from the singular points of the 
fast system, i.e. away from C, the dynamics of (24) is a perturbation of the dynamics of the 
fast system, whereas close to C, the dynamics of the slow system play a role. Of interest in C
are two so-called contact points, located at (x, y) = (±1, 0). There, C is tangent to the vertical 
fibers of the fast subsystem, and the fast vector field has a nilpotent singular point (at other points 
of C, we have a partially hyperbolic singular point). The presence of contact points allows the 
possibility of the existence of slow–fast cycles of canard type. Before checking the conditions on 
the presence of canard cycles in detail, we prepare the computations by presenting expressions 
in polar coordinates. In polar coordinates (x, y) = (r cos θ, r sin θ), we have

⎧⎨⎩
ṙ = (

r2 − 1
)

sin θ + εR(r, θ) cos θ,

θ̇ = r2 − 1

r
cos θ − ε

r
R(r, θ) sin θ,

with R(r, θ) = ar2 cos2 θ + br2 cos θ sin θ + μ1 + μ2r cos θ + μ3r sin θ . Around partially hy-
perbolic points of C, the critical curve C perturbs to an ε-dependent invariant manifold. Using 
formal methods, it is easy to see that such invariant manifolds have the expression

r = 1 − ε
cos θ

2 sin θ

(
a cos2 θ + b cos θ sin θ + μ1 + μ2 cos θ + μ3 sin θ

) + O
(
ε2).

Note that the invariant manifolds potentially break down when sinθ = 0, e.g. at the contact 
points. For canard solutions to exist around the point (x, y) = (+1, 0), it is clear that a + μ1 +
μ2 = o(1) as ε → 0. We will prove in the next lemma that this is indeed a necessary condition. 
The fast subsystem is simply the reduction to ε = 0, while the slow subsystem can now be 
expressed in terms of θ :

θ̇ = −a cos2 θ + b cos θ sin θ + μ1 + μ2 cos θ + μ3 sin θ
.

sin θ
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(We have plugged in the expression for the invariant manifold into the vector field to obtain this 
formula.) Checking near θ = 0, this yields

θ̇ = −a + μ1 + μ2

θ
− (b + μ3) + O(θ). (25)

We have already obtained heuristically that the first term should be zero. In that case it is clear 
that the second term should be positive: for a periodic orbit of slow–fast type to appear, the orbit 
has to go up along the circle slowly, and then go along a fast vertical fiber downwards to close 
the loop. These heuristical remarks can be made exact:

Lemma 17. There exists a smooth function λ+(ε, a, b, μ1, μ2, μ3) that is 0 at ε = 0 and for 
which system (24) has canard cycles around (x, y) = (+1, 0) when

a + μ1 + μ2 = λ+, b + μ3 < 0. (26)

There exists a smooth function λ−(ε, a, b, μ1, μ2, μ3) that is 0 at ε = 0 and for which system 
(24) has canard cycles around (x, y) = (−1, 0) when

a + μ1 − μ2 = λ−, b − μ3 < 0. (27)

Proof. We write (x, y) = (1 + ỹ, x̃) and consider{ ˙̃x = 2ỹ + x̃2 + ỹ2,

˙̃y = ε
(
(a + μ1 + μ2) + (b + μ3)x̃ + (μ2 + 2a + bx̃)ỹ + aỹ2).

A well-known trick is to simply replace a + μ1 + μ2 by a new parameter which we call λ:{ ˙̃x = 2ỹ + x̃2 + ỹ2,

˙̃y = ε
(
λ + (b + μ3)x̃ + (μ2 + 2a + bx̃)ỹ + aỹ2).

Properties of this new system, restricted to the parameter surface λ = a +μ1 +μ2, clearly imply 
similar properties of the original system. In this form we can readily apply Theorem 4 of [8]. It 
is easy to see that under the conditions of Lemma 17, all conditions of this theorem are verified. 
The theorem then implies the existence of canard cycles. This can also be done near (x, y) =
(−1, 0). �

Using the implicit function theorem, we can for example explicitly write μ1 in terms of the 
other parameters so that (26) is satisfied, thereby showing the presence of canard cycles around 
(x, y) = (+1, 0). Similarly for the left contact point. Also, considering (26) and (27) as a system 
of equations, the same implicit function theorem allows us to find an implicit solution by writing 
(μ1, μ2) in terms of the remaining parameters (a, b, μ3, ε).

Lemma 17 shows the presence of a small-amplitude canard cycle near the contact point. The 
canard cycle consists of (a perturbation of) a fast vertical path connecting (x, y) = (cos θ0, sin θ0)

and (x, y) = (cos θ0, − sin θ0), (for θ0 ≈ 0 or θ0 ≈ π ) together with a small arc on the circle. The 
stability of the obtained periodic orbit can be computed using a slow divergence integral, see [7]. 
This integral is the divergence of the fast vector field, integrated along the slow arcs, and it is 
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well-known that it can be computed in arbitrary coordinate systems. In polar coordinates the 
divergence is given by 2y + O(ε) = 2 sin θ + O(ε), so we define

I+(θ0) = −
θ0∫

−θ0

2 sin2 θ

a cos2 θ + b cos θ sin θ + μ1 + μ2 cos θ + μ3 sin θ
dθ,

as the slow divergence integrals of slow–fast cycles around the contact point (x, y) = (+1, 0), 
and

I−(θ0) = −
θ0∫

2π−θ0

2 sin2 θ

a cos2 θ + b cos θ sin θ + μ1 + μ2 cos θ + μ3 sin θ
dθ,

for slow divergence integrals of slow–fast cycles around (−1, 0). It is clear that these expressions 
only make sense when the integrand is well-defined for θ in the integration interval. We can now 
prove:

Proposition 18. The coexistence of canard cycles around slow–fast Hopf points in a (1 : 1) con-
figuration in (24) occurs for any choice of (a, b, μ3) with b < 0 and |μ3| < |b|, along a specific 
choice of (μ1, μ2) in terms of (ε, a, b, μ3) and of the size of the cycles. In case of coexisting 
canard cycles, one always has a (1 : 1) configuration when a 
= 0.

Proof. From Lemma 17, we know that b < 0 and |μ3| < −b must be satisfied for coexisting 
canard cycles to appear. Letting θ+ ∈ (0, π) be an angle uniquely defining a canard cycle passing 
near the contact point (x, y) = (+1, 0), and letting θ− ∈ (0, π) be an angle uniquely defining a 
canard cycle passing near (x, y) = (−1, 0), then Lemma 17 states that μ1 and μ2 are determined 
in terms of θ+ and θ− (and the other parameters), and that (μ1, μ2) = (−a, 0) + o(1). The slow 
divergence is given by

I+(θ+) = −
θ+∫

−θ+

2 sin θ

μ3 + b cos θ − a sin θ
dθ

(with a similar expression for I−(θ−)). Observe that ∂
∂a

I+(θ+) is strictly positive and that 
I+(θ+) = 0 at a = 0, which implies that the slow divergence integral has a fixed sign along θ+. 
It follows, for a 
= 0, from results in [9] and [11] that the number of canard cycles around the 
contact point (x, y) = (+1, 0) is one, i.e. we cannot have more than one canard cycle in each 
nest. The same is true for the contact point at (x, y) = (−1, 0). �

In case a = 0 the coexisting canard cycles appear along μ1 = μ2 = 0; in that case we have a 
symmetric vector field, corresponding to the singularly perturbed center case. While the slow–
fast center case has been studied before and some partial results could be obtained using the 
notion of slow divergence integral, the degenerate situation that appears in this context also 
needs to be studied when there are extra singularities in the slow dynamics (i.e. μ3 + b cos θ+ −
a sin θ+ = 0). Though known results could be extended to such situations, there is no direct result 
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to fall back on. We have therefore decided to exclude the case a = 0 from the slow–fast study, 
though it should be clear that no phenomenon different from the case a 
= 0 is expected.

In the remainder we check the presence of a nest of N ≥ 2 canard cycles around one of the 
contact points. In short we show that N = 2 appears and that it is the most logical upper bound 
to expect, though a full proof remains out of reach. Clearly, it is sufficient to deal with the cycles 
around (x, y) = (+1, 0), so we assume that a+μ1 +μ2 ≈ 0 and b+μ3 < 0. The slow divergence 
integral is expressed by

I (θ0) =
θ0∫

−θ0

2 sin2 θ

a sin2 θ − b cos θ sin θ + μ2(1 − cos θ) − μ3 sin θ
dθ.

Proposition 19. Around a slow–fast Hopf point at (x, y) = (+1, 0), there are at most two canard 
cycles.

Proof. Clearly I (0) = 0, so any solution of I = 0 leads by Rolle to the existence of an interme-
diary solution of I ′(θ0) = 0. Furthermore, if for any solution of I ′ = 0, we find I ′′(θ0) has a fixed 
sign not depending on θ0, then clearly there is only one such point and hence also at most only 
one solution of I = 0 (besides θ = 0). By the results of [11], we know that this translates to the 
presence of at most two canard cycles. Let N(θ) be the denominator appearing in the integrand 
of I , i.e. I (θ) = ∫ θ0

−θ0
2 sin2 θ/N(θ) dθ . We find

I ′(θ) = 2 sin2 θ0

N(θ0)
+ 2 sin2 θ0

N(−θ0)
= 2 sin2 θ0

N(θ0)N(−θ0)

(
N(θ0) + N(−θ0)

)
= 4 sin2 θ0

N(θ0)N(−θ0)
(1 − cos θ)(μ2 + a + a cos θ).

A zero is found at θ = θ∗ := arccos μ2+a
−a

, only when −2a < μ2 < 0 or 0 < μ2 < −2a. A lengthy 
computation shows that

I ′′(θ∗) = sin θ∗
4a2(μ2 + 2a)

(bμ2 + ba − μ3a)2
,

which has a fixed sign. This proves the proposition. �
Besides the canard cycles involved in this study, there can also be canard cycles at more 

degenerate contact points (not slow–fast Hopf): we distinguish in particular slow–fast Bogdanov–
Takens points of codimension 2, and the more general slow–fast nilpotent contact points of 
codimension n.

Lemma 20. At (x, y) = (+1, 0), a slow–fast Bogdanov–Takens contact point appears when 
(μ1, μ3) = (−a − μ2, −b) + o(1) and μ2 
= −2a. A slow–fast contact point of codimension 
3 appears when (μ1, μ2, μ3) = (a, −2a, −b) + o(1) and b 
= 0. A slow–fast contact point of 
codimension 4 appears when (μ1, μ2, μ3, b) = (a, −2a, 0, 0) + o(1). There are no slow–fast 
contact points of codimension higher than 4.
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Proof. Recall expression (25). Expanding it further in θ , a contact point of codimension n is 
found (for a definition, see [10]) when the first n coefficients of this expansion are zero. Hence, 
the lemma follows after an easy computation. �

The cyclicity near slow–fast contact points of codimension n is known up to n = 3. For n = 1, 
it is elaborated in [13], for n = 2 in [10], for n = 3 in the PhD thesis of R. Huzak (first part of 
the proof published in [19]). Using these results, it is possible to prove that the cyclicity near 
slow–fast contact points is at most 2. However, for slow–fast contact points of codimension 4, 
there are no results that can be applied.

6. The cyclicity of the reversible families

The quadratic family introduced in this paper has, basically, two symmetric subfamilies: 
(2) or (20). The objective of this section is to study the existence, nonexistence, uniqueness, 
and maximum number of limit cycles of the first subfamily with respect to the plane (a, b), be-
cause the cyclicity of the second one is zero since it has no limit cycles (see Proposition 16). 
First, we prove in Lemma 21, that (2) and (20) are the only reversible subfamilies. After that, we 
find the maximum number of limit cycles of (2), see Theorem 22. Then we restrict our analysis 
to (a, b) ∈ Ω , where we prove that there are several regions in the parameter space (a, b, μ) such 
that (2) has no limit cycles, and finally, we prove that there is a region in the (a, b)-plane such 
that (2) has two limit cycles for suitable values of μ, always in the configuration (1 : 1). These 
values correspond with Hopf and Bogdanov–Takens bifurcations.

Lemma 21. Any system (6) which is invariant with respect to a point or a straight line can be 
transformed to (2) or (20), respectively.

Proof. After a translation and a rotation of (6), the proof follows imposing the invari-
ance of the transformed vector field with respect to (x, y, t) → (−x, −y, −t) or (x, y, t) →
(x, −y, −t). �
Theorem 22. System (2) has at most two limit cycles, and if it has limit cycles, then the only 
possible configuration is (1 : 1).

Proof. By using the change of variables u = x, v = ax2 + bxy + μ system (2) becomes

{
u′ = buv,

v′ = f (u, v)u2 + g(u, v),
(28)

where

f (u, v) = (
a2 + b2)u2 + a(b − 2)v + 2μa − b2

and

g(u, v) = (bv + v − μ)(v − μ).
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Now, by applying the transformation {x = u2, y = v}, the previous system reduces to

{
x′ = 2bxy,

y′ = ((
a2 + b2)x + a(b − 2)y + 2μa − b2)x + (by + y − μ)(y − μ),

which is a quadratic system with an invariant straight line. Therefore, the last system has at most 
one limit cycle. This implies that system (28) has at most 2 limit cycles, and if it has limit cycles 
the only possible configuration is (1 : 1). This ends the proof of the first part of the statement 
because systems (28) and (2) are equivalent. �

As announced at the beginning of this section, we will study in detail system

{
ẋ = ax2 + bxy + μ,

ẏ = x2 + y2 − 1,
(29)

when (a, b) ∈ Ω . We note that some of the conclusions about nonexistence can also be extended 
to the full space (a, b, μ), but we are only interested in system (29) inside the class of system (6)
as a perturbation of a fake saddle singularity, i.e. (a, b) ∈ Ω .

The zero locus of

G(a,b) = 8a2 + b3 + 4b2 + 4b (30)

defines the points in the (a, b)-plane for which system (29) can exhibit cusp points, see the proof 
of Proposition 23. Hence, for analyzing the limit cycles of this system, we will split Ω into 
disjoint regions:

R0
0 := {

(a, b) ∈ Ω
∣∣ a = 0

}
,

R+
0 := {

(a, b) ∈ Ω
∣∣ a 
= 0,0 < b < 1,G(a, b) > 0

}
,

R−
0 := {

(a, b) ∈ Ω
∣∣ a 
= 0, b ≤ 0,G(a, b) > 0

}
,

R±
11 := {

(a, b) ∈ Ω
∣∣ a 
= 0,±(2 + b) > 0,G(a, b) < 0

}
,

Γ ± := {
(a, b) ∈ Ω

∣∣ a 
= 0,±(2 + b) > 0,G(a, b) = 0
}
, (31)

see Fig. 6.
After the results and simulations of this section we can state that system (29) can only have 

limit cycles, always in configuration (1 : 1), when the values of (a, b, μ) are in R+
11 and μ < 0

or R−
11 and μ > 0. In fact when (a, b) ∈ R±

11 the two limit cycles bifurcate simultaneously from 
two weak foci.

6.1. Local behavior of the singularities

This subsection deals with the number and local phase portrait of the singularities of sys-
tem (29).
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Fig. 6. Decomposition of Ω in the disjoint regions.

Proposition 23. Consider (a, b) ∈ Ω . When (a, b) = (0, 0), then system (29) has no finite singu-
larities if μ 
= 0 and otherwise the unit circle is filled with singularities. On the other hand, when 
(a, b) 
= (0, 0), consider μ± = (−a ± √

a2 + b2 )/2, then the next properties hold.

(i) If μ /∈ [μ−, μ+], then system (29) has no finite singularities.
(ii) If μ = μ±, then system (29) has exactly two singularities. Moreover,

• when (a, b) ∈ Γ + and μ = μ−, or (a, b) ∈ Γ − and μ = μ+, both singularities are regu-
lar cusps;

• when (a, b) = (0, −2), they are degenerate nilpotent singularities;
• in the remaining cases, they are saddle-nodes.

(iii) If μ ∈ (μ−, μ+), then system (29) has exactly four finite singularities: a pair of saddles and 
a pair of anti-saddles, located in the unit circle, and the points of each pair are antipodals.

Proof. The statement for (a, b) = (0, 0) can be deduced directly from the structure of (29). From 
now on we assume that (a, b) 
= (0, 0).

The statement on the number of singularities follows directly studying the intersection points 
of the zero-locus of the components of the vector field: ax2 +bxy +μ and the circle x2 +y2 −1, 
and using the symmetry of system (29). A simple computation shows that the two zero-loci only 
intersect when μ ∈ [μ−, μ+]. Moreover, when μ = μ± both curves are tangent in two antipodal 
symmetric points and when μ ∈ (μ−, μ+) there are two pairs of two antipodal points.

Since all the singularities lie on the unit circle, we can write each of them as

(x0, y0) =
(

1 − t2

1 + t2
,

2t

1 + t2

)
,

with t a solution of S = (a + μ)t4 − 2bt3 + (−2a + 2μ)t2 + 2bt + a + μ = 0. Then we have
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trDX(x0, y0) = −2
at2 − (b + 2)t − a

t2 + 1
,

detDX(x0, y0) = −2
bt4 + 4at3 − 6bt2 − 4at + b

(t2 + 1)2
.

The resultant, with respect to the variable t , of the numerators of the above trace and determi-
nant with S are 16T 2

ab and 4096(a2 + b2)2D2
ab, respectively, where Tab = (4a2 + (b + 2)2)μ −

ab2 + 4a and Dab = 4μ2 + 4aμ − b2. Finally, the resultant, with respect to μ, of Tab and Dab , 
is −G(a, b)2, see (30).

From the above resultants, we see that when μ ∈ (μ−, μ+), the determinant detDX(x0, y0)

never vanishes. Consequently, the local behavior of all singularities is given by Hartman–
Grobmann Theorem because of their hyperbolicity except in the weak focus case. But all the 
singularities are saddles or anti-saddles. The location on the circle follows from the work of 
Berlinskiı̆, see [3]. This concludes statements (i) and (iii).

When μ = μ±, using the previous resultants, the determinant detDX(x0, y0) vanishes and 
the trace trDX(x0, y0) only vanishes when G(a, b) = 0. Hence, when G(a, b) 
= 0 the points are 
semi-hyperbolic, in fact they are of saddle-node type, see [12].

The remaining cases are μ = μ± and G(a, b) = 0. We focus on μ = μ+, the other case being 
completely the same. The set {G(a, b) = 0} ∩ Ω = Γ + ∪ Γ − ∪ {(0, −2)} is parameterized by 
(a, b) = (±s(1 −s2), −2s2), taking the + sign and s ∈ (0, 1) for Γ +, taking the − sign and s > 1
along Γ −, and s = 1 for (a, b) = (0, −2). Solving {ẋ = 0, ẏ = 0, trDX = 0} along Γ + with 
respect to (x, y, s) shows that solutions are only present when μ = −s (and along the solution 
also detDX = 0). Evaluating the expression μ+ = (−a + √

a2 + b2 )/2 in this parameterized 
form along Γ + yields μ+ = s3 
= −s = μ. On the other hand, solving {ẋ = 0, ẏ = 0, trDX = 0}
along Γ − shows solutions along μ = s, which corresponds to μ+ when s > 1.

When μ = μ± and the trace is non-zero, the singularities are clearly semi-hyperbolic of 
saddle-node type. On the other hand, in the nilpotent case, one can apply Proposition 11, 
compute r2 and s2 along Γ ± and one finds that r2 · s2 is always non-zero, except when 
(a, b, μ) = (0, −2, ±1) (in that case, s2 = 0 but r2 
= 0 since θ = ±π/4). Proposition 15 can 
be applied to see that it is a degenerate nilpotent singularity. �
6.2. Nonexistence of limit cycles

The next result describes the conditions on the parameter space where system (29) does not 
have limit cycles.

Theorem 24. System (29) has no limit cycles in the cases:

(i) 0 < b < 1.
(ii) a = 0 or b = 0.

(iii) μ /∈ (μ−, μ+).
(iv) −2 ≤ b < 0 and μ ∈ [0, μ+), or b ≤ −2 and μ ∈ (μ−, 0].
(v) (a, b) ∈ R−

0 ∩ {−2 ≤ b < 0} and μ ∈ (μ−, μ̂], or (a, b) ∈ R−
0 ∩ {b ≤ −2} and μ ∈ [μ̂, μ+), 

where

μ̂ = a(b2 − 4)

4a2 + (b + 2)2
.
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Proof. (i) First, it is well-known that any limit cycle of a quadratic system has only one singu-
larity of index one inside of it, and such a singularity is a focus. Hence, to prove this statement, 
it is enough to demonstrate that each singularity of (29), with 0 < b < 1, is a saddle, or a node, 
or a saddle-node. We will split the proof of this case in two parts: μ = 0 and μ 
= 0.

Suppose now μ = 0. Then, see Proposition 23, system (29) has four singularities, two of 
them on the line {x = 0}, which are (0, 1) and (0, −1), and the other two singularities are the 
intersections of the line {ax + by = 0} and the circle {x2 + y2 = 1}, which we denote by p1
and p2. A straightforward computation of the trace and the determinant at these singularities, 
by using (8) and (9), and the Hartman–Grobmann Theorem implies that (0, 1) and (0, −1) are 
nodes, and that p1 and p2 are saddles.

Next suppose that μ 
= 0. Let (x0, y0) be a singularity of (29). Since μ 
= 0, x0 
= 0. Hence we 
have y0 = −(ax2

0 + μ)/bx0, and a simple computation shows that

(
tr2 DX − 4 detDX

)
(x0, y0) = (a(b + 2)x0

2 − μ(b − 2))2 + 8b3x4
0

b2x2
0

.

Thus, (tr2 DX − 4 detDX)(x0, y0) > 0 for 0 < b < 1, which implies that (x0, y0) is a node 
if detDX(x0, y0) > 0, and it is a saddle if detDX(x0, y0) < 0. The case detDX(x0, y0) = 0
follows from Proposition 23 and the point (x0, y0) is a saddle-node singularity. Thus, we have 
proved statement (i).

(ii) First, suppose b = 0. If a = 0, then (29) has no singularities; and if a > 0, then (29) has 
two invariant straight lines which contain all the singularities of the system. These properties 
imply that (29) has no limit cycles.

Suppose that a = 0. From previous cases we can assume b < 0. If μ = 0, then the resulting 
system is a particular case of (20), which does not have limit cycles. If μ 
= 0 and f (x) = x− b+2

b , 
then we obtain

div(f X) = −μ(b + 2)x− 2(b+1)
b

b
,

where X = (P, Q) is the vector field associated with (29). Thus, div(f X) does not change sign 
for x > 0. Hence, the classical Bendixson–Dulac Theorem implies the assertion.

(iii) It follows from (i) and (ii) of Proposition 23 because in the first case system (29) has no 
singularities, and in the second one the type of singularities implies the nonexistence of limit 
cycles.

(iv) We can assume b < 0 and a > 0. By using the function f (x) = x− b+2
b we obtain

div(f X) = −x− 2(b+1)
b

b

(
a(2 − b)x2 + μ(b + 2)

)
.

Hence, if −2 ≤ b < 0 and μ ≥ 0, then div(f X) ≥ 0 for x > 0; and if b ≤ −2 and μ ≤ 0, then 
div(f X) ≥ 0 for x > 0. Thus, the Bendixson–Dulac Theorem implies that system (29) has no 
limit cycles.

(v) As μ 
= 0 the y-axis is without contact with respect to the vector field. By symmetry we 
can restrict our analysis to the half plane x > 0. In this region, system (29) has one saddle and 
one anti-saddle, see Proposition 23. The straight line, L0S , joining the origin and the saddle 
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point also passes through the other saddle. Consequently, as the vector field is quadratic, L0S

has no tangent points except the saddle point and the limit cycle cannot cross it. Hence the limit 
cycle remains, if it exists, in the angular region defined by L0S and the y-axis that contains the 
anti-saddle point. The proof follows because, for the values of the parameters, the line where the 
trace vanishes does not intersect this angular region. �
6.3. Hopf and Bogdanov–Takens bifurcations

From Theorem 24 it follows that system (29) can only exhibit limit cycles when μ ∈
(μ−, μ+). Next, we prove the existence of a Bogdanov–Takens bifurcation curve and a Hopf 
bifurcation surface.

Theorem 25. For each (a0, b0) 
= (0, −2) in Γ +(Γ −) there exists μ0 < 0 (μ0 > 0) such that 
system (29) undergoes two simultaneous Bogdanov–Takens bifurcations on R+

11 (R−
11).

Theorem 26. System (29) undergoes two simultaneous non-degenerate Hopf bifurcations on the 
surface

μ = a(b2 − 4)

4a2 + (b + 2)2
(32)

if and only if (a, b) ∈R±
11.

A direct consequence of the above two theorems is the next result.

Corollary 27. For each (a, b) in R+
11 (R−

11), there are values of μ < 0 (μ > 0) such that sys-
tem (29) has two limit cycles in configuration (1 : 1).

Proof of Theorem 25. We focus on Γ +, where we write

(a, b) = (
s
(
1 − s2),−2s2), 0 < s < 1

(see the proof of Proposition 23), and find singularities of nilpotent type when μ = −s at (x, y) =
(cos θ, sin θ) when tan θ = −s. A lengthy computation of r2 and s2 from Proposition 11 shows 
that r2s2 
= 0 whenever (a, b) 
= (0, −2) (i.e. whenever s 
= 1). Using Remark 12, we know that 
regular cusps appearing in the family (29) unfold completely according to a Bogdanov–Takens 
diagram inside the family (29). This proves the theorem. �
Proof of Theorem 26. Let X = (P, Q) be the vector field associated with system (29). This 
system has critical points with a vanishing trace when {(x, y) ∈ R

2 | P(x, y) = Q(x, y) =
trDX(x, y) = 0}. A necessary condition so that the previous set is not empty is

Res
(
Res(P, trDX,y),Res(Q, trDX,y), x

) = 0.

The surface (32) follows from the above equation when b 
= −2. We choose μ∗ such that 
(a, b, μ∗) is in this surface, then the change
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(a, b) =
(

r(1 − t2)

2(t2 + 1)
,

2rt

t2 + 1
− 2

)
with r > 0 and −1 < t < 1, means that the singularities of (29) can be written as

p±
t = ±

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
,

q±
t = ±

(
2(−2t2 + rt − 2)(t2 − 1)

(t2 + 1)
√

F
,
rt4 − 8t3 + 6rt2 − 8t + r

(t2 + 1)
√

F

)
,

with F = r2t4 + 14r2t2 − 32rt3 + 16t4 + r2 − 32rt + 32t2 + 16. Straightforward computations 
show that, when a 
= 0, F > 0. Moreover, the function G(a, b), defined in (30), moves to

G(r, t) = 2r2(t6 + 4rt3 − 5t4 − 5t2 + 1)

(t2 + 1)3
.

The trace and the determinant at the singularities, see (8) and (9), are

tr
(
p+

t

) = 0, det
(
p+

t

) = −2G(r, t)

r2
,

tr
(
q+
t

) = ±2(t2 + 1)2G(r, t)

r
√

F(r, t)
, det

(
q+
t

) = 2G(r, t)

r2
.

Their sign is given in the next table: 

If G(r, t) < 0 If G(r, t) > 0

tr det tr det

p+
t 0 > 0 0 < 0

p−
t 0 > 0 0 < 0

q+
t < 0 < 0 > 0 > 0

q−
t > 0 < 0 < 0 > 0

If G(r, t) < 0 and a 
= 0 then Theorem 8(i) asserts that p+
t is not a center. Consequently, its 

stability is determined and p±
t are weak foci. If G(r, t) > 0 there are no weak foci because p±

t

are saddles. Thus, there are no Hopf bifurcations if (a, b) ∈R±
0 .

Finally, we show that two Hopf bifurcations exist when G(r, t) < 0, that is, when (a, b) ∈R±
11. 

Let ε be a small parameter. Thus, system (29) with μ = μ∗ + ε has a critical point, (xε, yε), close 
to p+

t , and a straightforward computation shows that

xε = 2t

t2 + 1
+ ε

(t2 − 1)(t4 + 2t2 + 1)

2(t6 + 4rt3 − 5t4 − 5t2 + 1)
+ O

(
ε2),

yε = t2 − 1
2

− ε
t (t4 + 2t2 + 1)

6 3 4 2
+ O

(
ε2).
t + 1 t + 4rt − 5t − 5t + 1
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Fig. 7. Phase portraits evolution, for μ ≤ 0 when (a, b) ∈ R+
11.

This implies that tr(DX)(xε, yε) = −(r3/G(r, t))ε + O(ε2). Therefore, when we cross the sur-
face (32), a critical point of focus type of system (29) changes the stability and, as it is not a 
center on the surface, a limit cycle bifurcates from p+

t . At the same time, and with opposite 
stability, another one bifurcates from p−

t . �
6.4. Phase portraits

From the previous sections, system (29) exhibits limit cycles when (a, b) ∈ R+
11 and μ < 0

or when (a, b) ∈ R−
11 and μ > 0. Figs. 7 and 8 shows phase portraits of the systems in these 

parameter regions. We have only shown these transitions because they are the only ones that, 
with our results and simulations, exhibit limit cycles. We think that there are no other bifurcations 
nor phase portraits in these parameter regions.

We explain these transitions following the results of the previous sections and some simula-
tions using the software P4, see [12].

Assume that (a, b) ∈ R+
11. When μ < μ− there are no critical points, see Proposition 23. For 

μ < μ− two symmetric saddle-nodes appear that bifurcate into a pair: a symmetric saddle point 
and an anti-saddle point. For μ = μH , see Theorem 26, the system has two symmetric weak 
foci and two symmetric small limit cycles bifurcate from them, both of which remain present 
for μH < μ < μL. The limit cycles grow in amplitude and disappear in two finite symmetric 
homoclinic connections for μ = μL. Then two types of finite saddle connections appear for 
μ = μSS− and μ = μSS+ . When μ = 0, x = 0 is an invariant straight line (see Theorem 24), the 
points on this line are saddles and there are no limit cycles.
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Fig. 8. Phase portraits evolution, for μ ≥ 0 when (a, b) ∈ R−
11.

Assume that (a, b) ∈ R−
11. As in the previous evolution, when μ = 0, x = 0 is an invariant 

straight line (see Theorem 24), the points on this line are saddles and there are no limit cycles. 
Then for μ = μL the system has two symmetric finite homoclinic connections. When they break, 
two symmetric limit cycles appear and shrink, to disappear in two simultaneous Hopf bifurca-
tions for μ = μH , see Theorem 26. Then the symmetric pair of saddle and anti-saddle points 
collide in two symmetric saddle points when μ = μ+. Afterwards, μ > μ+, the system has no 
finite singular points.

Theorem 26 provides the existence of μH < 0 (μH > 0) for any (a, b) in R+
11 (R−

11). Conse-
quently the Hopf surface projects the full region R±

11. Theorem 25 provides existence of μL < 0
(μL > 0) for values (a, b), close to Γ + (Γ −) in R+

11 (R−
11). We have continued numerically 

these homoclinic connection values to obtain a homoclinic connection surface that also projects 
in the full region R±

11. Theorem 24 proves the nonexistence of limit cycles in R+
0 and all our 

simulations never provide them in R−
0 . All the results and numerical simulations given in this 

paper lead us to think that system (29) never exhibit limit cycles in R0 = R+
0 ∪R−

0 . They only 
exist, in configuration (1 : 1), in R11 =R+

11 ∪R−
11.
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