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Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however,

biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned

that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions.

The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for

conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results;

however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate

procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes

do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the

accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this

commentary, we direct researchers to appropriate procedures, outline amethod to present the remaining uncertainty in data accuracy,

and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves

for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data.

Reverse transcription followed by real-time

(or quantitative) PCR (RT-qPCR) has been

widely adopted for quantification of gene

expression by estimating steady state mRNA

levels (Taylor et al., 2010). Alternatives such

as RNA gel blotting or other RT-PCRmethods

reveal only relatively large differences inmRNA

levels. However, the higher sensitivity of RT-

qPCR necessitates accurate and precise

pipetting, high-quality RNA, accurate estima-

tion of RNA concentration, and efficient re-

verse transcription. Any variation in these

technical parameters can influence the ac-

curacy and precision of the results (Nolan

et al., 2006; Udvardi et al., 2008; Bustin et al.,

2009; Baker, 2011). Normalization to internal

controls, such as spiked foreign RNA or

internal reference genes, can control for

technical variation (Huggett et al., 2005;

Taylor et al., 2010; Baker, 2011). Unfortu-

nately, both of these controls have weak-

nesses. Spiked RNA cannot correct for

differences in extraction efficiency or overall

transcriptional activity, and spiking itself can

introduce bias if the small quantities of spiked

control RNA are inaccurately pipetted.

The use of reference genes to normalize

RT-qPCR data has been preferred by re-

searchers, since variation in the experimental

workflow affects all genes similarly (Huggett

et al., 2005; Vandesompele et al., 2009; Bustin

et al., 2013). A reference gene must show

stable expression under the conditions of

the experiment. Historically, and similarly to

RNA gel blot experiments, PCR experiments

have used a single housekeeping gene, as-

sumed tobestably expressed, as a reference.

However, the highly sensitive nature of RT-

qPCR requires more stability of expression

for reference genes; therefore, the Minimum

Information for Publication of Quantitative

Real-Time PCR Experiments (MIQE) guide-

lines call for the use of multiple reference

genes with validated expression stability in

each experiment (Bustin et al., 2009).

To ensure accurate RT-qPCR results, re-

searchers must limit technical variability and

select appropriate, stably expressed refer-

ence genes. To evaluate reports using RT-

qPCR data, reviewers must determine if the

technical quality of the experiment and the

normalization strategy justify the reported

RT-qPCR data. However, this judgment may

be difficult, since many variables can affect

the accuracy of RT-qPCR results, and most

reviewers are not RT-qPCR specialists. In

this commentary, we review essential guide-

lines that ensure reliable RT-qPCR results,

direct researchers to useful resources, and

provide a new way to represent RT-qPCR

data that allows the nonspecialist reader to

assess the quality and accuracy of the data.

USE OF MIQE GUIDELINES TO ENSURE

HIGH-QUALITY EXPERIMENTAL DATA

RT-qPCR experiments lack a standard

method; rather, they may include different

steps, multiple protocols, and diverse com-

mercial kits. Nonetheless, following basic

guidelines can help researchers make ap-

propriate experimental choices. Bustin et al.

(2009) described the MIQE guidelines and

provided a template (Bustin et al., 2010) to

help researchers adopt the guidelines and

report their adherence (as supplemental data

in publications). A number of other publica-

tions can help with the design, analysis, and

reporting of RT-qPCR experiments. Nolan

et al. (2006) provide detailed experimental

procedures for real-time PCR quantification

and discuss some critical experimental and

data analysis issues. Udvardi et al. (2008)
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summarize RT-qPCR essentials for plant

scientists. Further guidelines for reliable

data analysis using multiple reference genes

can be found in Hellemans et al. (2007) and

D’haene and Hellemans (2010), and Taylor

et al. (2010) present a practical approach to

producing RT-qPCR data that conform to

MIQE guidelines.

Although RT-qPCR data are considered

to be reliable when best practices are followed

as described in the MIQE guidelines, Bustin

et al. (2013) documented a widespread lack of

adherence to these guidelines in the published

literature. As the MIQE guidelines address the

principal criteria that determine the quality of

RT-qPCR data, assessment of these data

relies on transparent reporting of those

variables. Therefore, we urge the research

community to adopt MIQE reporting and

journal editors to consider MIQE reporting as

a required addition to articles with RT-qPCR

data (Bustin et al., 2013). To further aid re-

searchers in this endeavor, we provide some

critical discussion and useful tools below for

selecting reference genes, assessing qPCR

efficiency, and reporting RT-qPCR data.

SELECTING REFERENCE GENES FOR

RT-qPCR IN PLANTS

Producing accurate RT-qPCR results requires

the selection of reference genes with ade-

quately stable expression under the chosen

experimental conditions; using inappropriate

reference genes may lead to inaccurate and

misleading results (Gutierrez et al., 2008;

Bustin et al., 2013). The use of multiple

reference genes with validated minimal

expression variation has been the standard

for RT-qPCR data normalization for more

than a decade (Vandesompele et al., 2002;

Bustin et al., 2009). Nevertheless, the survey

by Bustin et al. (2013) found numerous ex-

amples of inadequate reference gene se-

lection. Selection of appropriate reference

genes involves identifying candidates, validat-

ing the candidates under the specific exper-

imental conditions, and then revalidating the

selected reference genes in each subsequent

experiment.

Candidate reference genes can be se-

lected from recent publications that provide

validation of many reference genes for diverse

plant species, in different organs and de-

velopmental stages, and under different stress

conditions (Zhang et al., 2013; Luo et al.,

2014), from self-produced transcriptomedata,

or by using Refgenes (Hruz et al., 2011) or

PlantRGS (Patel and Jain, 2011) to mine

public databases for closely related exper-

imental conditions. If data are not available for

the species under study, then orthologs of

known reference genesmay be considered as

candidates. Candidate reference genes of

different functional classes should be selected

to avoid coregulated genes.

The candidate reference genes must be

validated using the same set of cDNAs used

to quantify the gene of interest to ensure that

the selected reference genes show stable

expression across the conditions of the exper-

iment. Indeed, differences in the experimental

setup can influence the suitability of different

reference genes when used in different labo-

ratories or even in slightly modified experimen-

tal setups, such as alternative growth systems

or conditions, other genotypes (mutants) or

ecotypes, or different environmental condi-

tions. Various mathematical and statistical

algorithms such as geNorm (Vandesompele

et al., 2002), Normfinder (Andersen et al.,

2004), Bestkeeper (Pfaffl et al., 2004), and

others (reviewed in Vandesompele et al.,

2009) can be used to identify the combination

of reference genes that is minimally affected

by the experimental conditions.

Selection of about 10 candidate genes

provides a good starting point for validation

(Remans et al., 2008). After identifying the

subset that constitutes the best combination

of reference genes, a normalization factor is

calculated as the geometric mean of the

relative expression of multiple reference

genes and used to normalize the expres-

sion values for the genes of interest (GOIs;

Vandesompele et al., 2002; Hellemans et al.,

2007). Additionally, the selected reference

genes should be revalidated in each sub-

sequent experiment, even in repeated exper-

iments, by reassessing their performance in

each new sample set, and evaluation of

additional candidates is necessary if some of

these genes fail the revalidation (Hellemans

et al., 2007). To facilitate the use of these

procedures, we provide a flowchart for ref-

erence gene selection (Figure 1) and useful

criteria for (re)validation (Table 1).

THE IMPORTANCE OF ASSESSING

qPCR EFFICIENCY

PCR efficiency refers to the actual increase

in PCR amplicon quantity in each cycle of

amplification; at 100% efficiency, the quantity

of amplicons doubles in each PCR cycle

during the exponential phase. However, dif-

ferent sequences amplify with different effi-

ciencies, and differences in PCR efficiency

between reference genes andGOIs can affect

the accuracy of the results. PCR efficiency

can be measured for the actual assay (also

referred to as primer efficiency), as well as for

each sample within that assay. Determination

of sample-specific efficiency is possible (e.g.,

LinRegPCR; Ramakers et al., 2003), although

it lacks precision (Hellemans et al., 2007).

Nevertheless, estimation of sample-specific

PCR efficiency can help detect outliers,

i.e., samples whose amplification efficiencies

clearly deviate from the assay efficiency

(Hellemans et al., 2007). Such samples may

contain a substantial amount of inhibitors,

which can also produce amplification plots

that have a low slope and low plateau

(D’haene and Hellemans, 2010; Huggett

and Bustin, 2011).

By contrast, assay-specific efficiency pro-

vides an essential parameter for normaliza-

tion to reference gene expression. When the

assays for the reference gene and the GOI

assay differ in efficiency, the difference be-

tween target gene and reference gene re-

lative quantities will vary with varying template

amounts. Thus, assuming an efficiency of

100% can produce false expression ratios,

resulting in over- or underestimation of nor-

malized expression of the GOI (Pfaffl, 2004).

It is also more accurate to use efficiency-

corrected relative quantities to calculate the

normalization factor from multiple reference

genes.

The assay efficiency is measured using a

dilution series of a pooled sample contain-

ing an equal fraction of all cDNAs in the

experiment. The linear calibration curves are

set up by linear regression analysis of Cq

versus log(dilution), and the efficiency relative

to 2 is derived as E¼ 1021/slope (Pfaffl, 2004).

Relative quantities (RQs) are then calculated

as E2DCq or derived from the calibration curve

equation. Calibration curves also provide a

linear quantification range and analytical
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sensitivity (dilution at which cDNA amplifica-

tion stays below background or where primer

dimer formation becomes more important

than specific amplicons, hindering accurate

quantification). The linear range of the calibra-

tion curve ideally includes the interval for the

targets to be quantified (Bustin et al., 2009).

The SE on the slope of the calibration curve is

a reflection of how close the dilutions points

match the fitted regression line (Hellemans

et al., 2007). An efficiency of at least 1.80

with a SE of ,5% is appropriate (Table 1;

Supplemental Data Set 1).

A NEW WAY OF REPORTING RT-qPCR

DATA INCLUDING UNCERTAINTY

IN ACCURACY

The goal of RT-qPCR experiments is to

estimate the true in vivo GOI mRNA levels.

Selection of appropriate reference genes

and assessing qPCR efficiency as described

above are critical procedures to minimize

both biological and technical variation and

ensure the reliability of RT-qPCR data.

However, it is not possible to remove all

variability from an RT-qPCR experiment,

evenwhen applying appropriate procedures,

as reference genes always show small or

large differences in expression between tis-

sues or treatments. Thus, ideal reference

genes do not exist (Huggett et al., 2005), and

the normalization factor includes technical

and biological variation in expression of the

reference genes. Although a number of pub-

lications have sought to address these

problems, no practical guidelines for data

representation or quantitative measures for

data accuracy have been adopted. Here, we

provide a method to represent RT-qPCR

data that allows for assessment of the

accuracy of the data. Importantly, this data

representation allows visualization of im-

proper procedures and accuracy assess-

ment even by nonspecialists.

The accuracy of RT-qPCR data is related

to how close the obtained values are to the

true in vivo GOI mRNA levels, whereas the

precision is related to how close repeated

measurements are clustered together. These

repeated measurements should be derived

from at least three biological replicates

(Udvardi et al., 2008). Precision of measure-

ments can be increased by minimizing

technical variation and selection of appropri-

ate reference genes to normalize the remain-

ing technical variation. However, while using

reference genes to increase precision, the ac-

curacy can be affected, as explained below. In

practice, RQs are derived from Cq values by

the 22DCq or preferably the E2DCq method,

and for a single gene these RQs vary between

samples due to both real biological differences

in gene expression and technical variation.

The reference genes and GOIs in the same

sample experience the same technical varia-

tion; hence, the RQs of selected reference

genes can be used to normalize technical GOI

variation. However, this calculation assumes

that the variation in the reference gene RQ

includes only technical variation, whereas it

also comprises biological variation. Thus,

while normalizing to reduce technical varia-

tion, the biological variation in reference gene

expression introduces a systematic error that

affects the accuracy of the measurement.

Unfortunately, technical and biological varia-

tion cannot be disconnected and the degree

of technical variation relative to the biological

variation erroneously imposed on GOI data

remains unclear.

Note that RT-qPCR data normalized by

reference gene expression is accurate only

if all observed variation in the normalization

factor originates from technical variation.

Conversely, the alternate possibility—that

all observed variation in the normalization

factor originates from biological variation—

must also be considered. In this case,

normalization would not be necessary and

in fact would be detrimental, such that GOI

levels would be most accurately represented

by the non-normalized data. In reality, exper-

iments use imperfect reference genes and also

have technical variation, and the true in vivo

GOI expressionmost likely is situated between

the normalized and non-normalized values.

Thus, the normalized and non-normalized data

set the boundaries of the uncertainty in the

Figure 1. Flow Chart for the Identification of Suitable Reference Genes in New Experimental

Conditions and Subsequent Related Experiments.

A starting pool of minimum 10 reference genes, which may or not include a minimum number of

traditional housekeeping genes, can be selected from sources such as reference gene papers or from

transcriptome data. This pool should be evaluated by a chosen algorithm and evaluation criteria to

identify appropriate reference genes. For subsequent related experiments (closely related experimental

conditions or repeated experiments), it may be sufficient to start with the evaluation of the small number

of genes that were used for normalization in previous experiments, but when these genes fail the

criteria, additional ones need to be incorporated. Strongly deviating experimental conditions may

require reevaluation of the original starting pool to identify the best genes for normalization, or may even

need the incorporation of additional candidate reference genes.
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accuracy. In conclusion, as we cannot sepa-

rate biological and technical variation, we also

cannot accurately represent GOI levels with

one data set. Rather, we must report both the

normalized and non-normalized data as an

interval that most likely includes the true gene

expression levels. As examples, we use two

experimental data sets to demonstrate that

uncertainty in the accuracy of the data exists,

even when the selected reference genes pass

current evaluation algorithms, and that the

choice of reference genes influences this level

of uncertainty.We show how the uncertainty in

data accuracy of RT-qPCR experiments can

becalculated and visualized for fold changes in

gene expression between sample groups.

Example 1

Using data from Arabidopsis thaliana ex-

posed to excess zinc (Zn) (Remans et al.,

2012), we revalidated four reference genes

using the geNorm algorithm and additional

criteria (Vandesompele et al., 2002; D’haene

and Hellemans, 2010; criteria summarized in

Table 1), using the geometric mean as a

sample-specific factor to normalize GOI data.

The evaluation of reference genes is provided

in Supplemental Data Set 1. Using four

reference genes selected according to appro-

priate standards produced a lower uncertainty

(Figures 2B and 2E), compared with using the

Table 1. Checkpoints and criteria for validation of reference gene performance.

Checkpoint Criteria Notes Reference

qPCR efficiency E $ 1.8 with SE # 5%; use E2DCq for most

accurate quantification

Cq versus log(dilution) calibration curve for

a dilution series of a pooled sample

containing an equal fraction of all cDNA

samples in the experiment. Determine slope

and its SE by linear regression analysis.

E ¼ (1021/slope); SE measures deviation of

dilution points from the fitted slope.

Determine the linear quantification range

and analytical sensitivity: Samples with low

Cq should fall within calibration curve

without suffering from background signal

due to primer dimer formation. qPCR

efficiency also applies to GOIs.

1, 2

geNorm analysis Minimum two genes with M , 1 and

V , 0.15

Advisable to use at least three genes with

M , 1 and V , 0.15. Alternatively use

y genes when Vx/y shows minimal value

(that is ,0.15).

3, 4, 5

Coefficient of variation of

NRQs (CV)

Homogenous sample panels CV , 0.25

Heterogenous sample panels CV , 0.5

Heterogeneity of sample panel depends on

complexity of experimental comparisons, e.g.,

multiple conditions to be compared

(mutants, treatments).

1, 3

Visualize NFs for each

sample

NF should be . 0.3 when highest NF ¼ 1 NF , 0.3 indicates potential problem with

sample.

1, 3

If RQ of all reference genes are low for

a sample or group of samples, then

technical problem, e.g., (RT-)PCR inhibition.

If RQ of single reference gene is low for

a sample or group of samples, then technical

problem, e.g., accidental lower cDNA input.

If RQ consistently low for all genes in all

samples of the same condition, then

possible treatment influence on expression

of this reference gene.

NRQs, check for patterns

in expression and

possible coregulations

Check NRQs for each sample within a

reference gene; should be close

together

Outlying values for samples within a gene may

point to inappropriate normalization.

3

A number of criteria for evaluating the expression stability of reference genes have been published. Here, we compile checkpoints that we have chosen for

evaluating reference genes before implementation in our experimental conditions. It should be noted that this is our experimental choice; a number of other

suitable algorithms besides geNorm exist that can be used. RQ, relative quantity (22DCq or E2DCq); NF, normalization factor ¼ the geometric mean of the

RQs of the chosen reference genes; NRQ, normalized relative quantity (22DCq/NF or E2DCq/NF); CV, coefficient of variation (SD divided by mean); M and V,

geNorm parameters of expression stability and pairwise variation, respectively. 1, Hellemans et al. (2007); 2, Pfaffl (2004); 3, D’haene and Hellemans (2010);

4, Vandesompele et al. (2002); 5, Ling and Salvaterra (2011).
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single, nonvalidated housekeeping gene

ACT2 (Figures 2A and 2D; Supplemental Data

Set 2). A one-way ANOVA with Dunnett

posthoc testing to correct for the multiple

comparison of Zn treatments with controls

was performed separately on both the non-

normalized and the normalized data. When

both the normalized and non-normalized data

showed a statistical difference, we considered

theGOI tobeup-or downregulatedbya factor

between the values for the normalized and the

non-normalized data. When only the normal-

ized or non-normalized data but not both

showed a statistical difference, we considered

the up- or downregulation to be uncertain, as it

fell within the experimental noise and the

accuracy was not high enough to allow

a confident conclusion. Statistically, this is

considered a sensitivity analysis: The primary

analysis (e.g., on normalized data) is repeated,

substituting the data set with another set (non-

normalized data) to assess the impact of the

data input on the statistical outcome. We thus

explore if the same conclusion can be drawn

for both data sets that define the gene

expression level. The requirement for both

analyses to yield the same conclusion is more

stringent than analyzing only one data set.

For example, when using only ACT2 for

normalization, downregulation ofCATALASE2

(CAT2) expression at 500 µM Zn exposure in

the leaveswas uncertain (Figure 2A), but using

four appropriately selected reference genes

Figure 2. Representation of RT-qPCR Data in Column Graphs Including the Uncertainty on the Accuracy.

Relative expression data (RT-qPCR; average6 SE, n¼ 4 biological replicates from one experiment) of CAT2 in the leaves ([A] to [C]) and RBOHF in the roots

([D] to [F]) of Arabidopsis exposed to excess Zn (100, 250, and 500 mM) and relative to the control (0 mM¼ 1.0). Fold up- or downregulations are represented

on a log2 scale y axis. (The control condition equals 1.0; hence, bars are not visible but standard errors are.) The normalized data are represented in white and

the non-normalized data are in black. The difference between these is indicated by a gray bar and visualizes the uncertainty on the accuracy of the estimated

GOI up- or downregulation, which varies according to the reference genes used for normalization. Normalization of data was performed with ACT2 only ([A]

and [D]), four previously validated reference genes ([B] and [D]), or the gene(s) proposed by the GrayNorm algorithm yielding the lowest level of uncertainty

([C] and [F]). Statistics (one-way ANOVA and Dunnett comparison after testing normality with Shapiro-Wilk test and homoscedasticity with Bartlett test; *P,

0.05) were performed on both normalized and non-normalized data, and both data sets should yield significance to conclude a treatment effect. Uncertainty

remains no matter the set of reference genes chosen, but the uncertainty is smaller in (C) and (F), allowing more accurate estimation of true GOI levels. This

revealed, for example, that RBOHF is not upregulated in the roots at 500 mM Zn.
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produced a lower level of uncertainty, allowing

a more confident conclusion about the down-

regulation (Figure 2B).

Example 2

In a second example of data representation

including uncertainty, changes over a 72-h

period in expression of NADPH-DEPENDENT

THIOREDOXIN REDUCTASE A (NTRA) were

quantified in the leaves of Arabidopsis plants

exposed to 5 or 10 mM CdSO4 (data in

Supplemental Data Set 3). Again, true gene

expression levels would be contained be-

tween the normalized and non-normalized

data. Both data sets should indicate signif-

icant concentration dependent effects within

a time point after one-way ANOVA and

Tukey-Kramer posthoc test. Normaliza-

tion with ACT2 indicated an 8-fold upre-

gulation after 48 h exposure to 10 mM Cd,

but included a very large interval of un-

certainty between 3- and 8-fold (Figure 3A).

Using three previously validated reference

genes showed that a 3-fold upregulation at

that time point is more accurate (Figure 3B).

Hence, normalization influences the uncer-

tainty interval.

Such representation of the uncertainty in-

terval, delimited by the normalized and non-

normalized data, and statistical analysis of

both data sets compared with their control

conditions, should allow more confident as-

sessment of the reliability of observed fold

changes in GOI expression within the limita-

tions of variation of biological and technical

origin and help peer reviewers to assess the

quality of RT-qPCR experiments and the

validity of the conclusions.

In experiments in which it is difficult to

obtain good quality RNA from certain tissues

or conditions, the uncertainty interval on the

data would remain large irrespective of the

reference genes selected. Given the proba-

bility of high technical variation, the normal-

ized data likely should be trusted more than

the non-normalized data. This conclusion

could be strengthened by presenting addi-

tional data showing that the use of different

sets of reference genes does not significantly

lower the uncertainty interval. Guénin et al.

(2009) argued that if the differences between

the patterns obtained using the candidate Figure 3. Representation of RT-qPCR Data in Line Graphs Including the Uncertainty on the Accuracy.
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reference genes separately are small, then

the choice of candidate will not greatly affect

the gene expression profiles, thus providing

reassurance regarding the reliability of nor-

malization. In Example 1 described above,

there was a large uncertainty interval at 500

mMZn exposure in the roots (Figures 2D and

2E). These samples had low expression of all

reference genes (Supplemental Data Set 1),

which may point to condition-specific (RT-)

PCR inhibition (e.g., due to residual Zn ions in

the extract) or an overall lowered transcrip-

tional activity due to the severe stress im-

posed by exposure to 500 mM Zn. Although

the uncertainty level remains, it can be

argued that the normalized data provide

better accuracy.

GRAYNORM: A NEW ALGORITHM TO

IDENTIFY REFERENCE GENES THAT

YIELD THE LOWEST LEVEL OF

UNCERTAINTY

As is clear from the above examples, a small

uncertainty interval increases the reliability

of the data. The non-normalized GOI data

contain both genuine expression differences

and technical variation and remain fixed

once an experiment has been measured by

RT-qPCR. The size of the uncertainty interval

can vary only with the choice of reference

genes. What combination of measured refer-

ence genes would yield the lowest level of

uncertainty? Reference genes are used to

calculate the normalization factor (NF), and

the GOI data are divided by the NF during

normalization. Thus, 1/NF is the imposed

deviation from the non-normalized data,

creating the uncertainty interval. The closer

the average 1/NF per sample group is to 1.0,

the smaller the potential erroneous influ-

ence of reference genes and the higher the

resolution of the experiment, allowing more

accurate estimation of fold-changes in GOI

expression. The calculation of the deviation

of the average 1/NF from 1.0 is as follows:

(1) calculate the 1/NF for each sample, (2)

calculate the average 1/NF per condition

and relative to the control condition (¼1.0),

and (3) calculate the coefficient of variation

of these 1/NF per condition, which measures

the general deviation from 1.0 over all the

conditions. This calculation is relatively simple

for one set of reference genes; to perform

all the calculations for each possible com-

bination of measured reference genes, we

developed the freely available algorithm

GrayNorm, which minimizes the “gray zone”

of uncertainty. The algorithm then ranks the

combinations of genes by lowest coefficient

of variation of the 1/NFs over the conditions

(full details and explanation in Supplemental

Methods). GrayNorm produces a table that

can be sorted for other parameters, such as

cumulative deviation of 1/NF from 1 over all

conditions, or lowest deviation from 1 for a

certain condition, to provide better accuracy

for a particular condition.

We tested GrayNorm on Example 1 (Zn

exposure) and identified an optimal combina-

tion of three reference genes for the leaves

(ACT2,AT5G15710, andMSD1; Supplemental

Data Set 4) and a single reference gene for the

roots (AT5G08290; Supplemental Data Set 4).

For experiment 2 (kinetics ofNTRA expression

after Cd exposure) GrayNorm returned a single

reference gene (AT5G25760; Supplemental

Data Set 4). In these particular data sets, using

the reference genes identified by GrayNorm

produced a higher experimental resolution and

a lower level of uncertainty, even when using

a single validated gene for normalization,

comparedwith the current standard of using

multiple reference genes (Figures 2C, 2F,

and 3C; data in Supplemental Data Sets 2

and 3). Remarkably, a gene discarded for its

relatively low expression stability in the

leaves by the criteria of Table 1 (ACT2;

evaluated in Supplemental Data Set 1)

produced the most accurate normalization

when used in combination with MSD1 and

AT5G15710 as suggested by GrayNorm.

This could be due to selection of two

genes showing opposite variation, result-

ing in decreased NF variation (Andersen

et al., 2004).

Assessment of the uncertainty in data

accuracy and a high experimental resolu-

tion increase the confidence in the results.

This is especially relevant for unexpected

effects, such as the lack of downregulation

of CAT2 at 250 mM Zn exposure or the lack

of NADPH OXIDASE ISOFORM F (RBOHF)

upregulation at 500mM (Figure 2). Responses

to metals like Zn and Cd depend on exposure

time and concentration, which influencemetal

uptake. Furthermore, responses may peak in

time and disappear (Figure 3) and may be

biphasic or provoked by different mecha-

nisms at different exposure concentrations. A

confident analysis of an appropriate number

of biological replicates, and repeated exper-

iments with similar conclusions, would be

needed before further investigating the mo-

lecular basis or consequences of changes in

gene expression.

Conclusions

We present a method of reporting the un-

certainty in data accuracy that allows for

visual assessment of experimental varia-

tion and more confident estimation of fold

changes in gene expression in RT-qPCR

Figure 3. (continued).

Representation of log2 relative expression levels (RT-qPCR; average 6 SE, n ¼ 3 to 8 biological replicates from one experiment) of NTRA in leaves of

Arabidopsis exposed to Cd (5 and 10 mM) over a time period of 0, 2, 24, 48, and 72 h and relative to the control (0 mM, 0 h ¼ 1.0). The normalized data are

represented by full lines and the non-normalized data by dotted lines, which visualizes the uncertainty on the accuracy of estimated GOI up- or

downregulation. The uncertainty level varies with the (set of) reference genes used for normalization. Normalization of data was performed with ACT2 (A),

three previously validated reference genes (B), or the gene proposed by the GrayNorm algorithm yielding the lowest level of uncertainty (C). If statistical

differences (one-way ANOVA and Tukey-Kramer adjustment; P , 0.05) were observed between treatments within a time point, they are indicated with

different lowercase letters for normalized data and bold italic for non-normalized data (only indicated in [A], as they are the same for [B] and [C]). Both data

sets should yield significance to conclude a concentration dependent effect. Uncertainty remains no matter which normalization chosen, but the uncertainty

is smaller in (C), allowing more accurate estimation of true GOI expression levels.

October 2014 3835

COMMENTARY

http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.130641/DC1


analysis. Additionally, theGrayNormalgorithm

can be used to select the combination of

reference genes measured in the exper-

iment that yield the highest possible ac-

curacy. The choice of reference genes for

normalization influences experimental var-

iation, and we showed that this influences

the uncertainty level in data accuracy. The

strength of the data presentation proposed

here is that, irrespective of the individual

experimental choices regarding technical

procedures and reference genes, the effect

of these choices on GOI data becomes

more obvious for researchers and reviewers.

The consequences of inappropriate practices

become assessable, such as using a single

reference gene without validation, as well as

variations of technical origin that yield a larger

uncertainty interval. The issue of biological

significance also deserves attention. The bio-

logical consequences of small changes in

expression of single genes should not be

overinterpreted, and it is important to re-

member that changes in steady state levels

of mRNA are not necessarily correlated with

changes in protein abundance or activity. By

establishing an accuracy interval, false pos-

itive up- or downregulations can be uncovered

with high confidence, so that researchers can

focus on using other tools to pursue the

biological consequences of the changes in

gene expression that are true, repeatable, and

interesting.

METHODS

A description of the GrayNorm algorithm is outlined

in SupplementalMethods, andGrayNorm input and

output data sets for the experiments of this article

are in Supplemental Data Set 4. Plant materials,

growth conditions, and RT-qPCR procedures were

according to Remans et al. (2012) and Keunen et al.

(2013) and are included in Supplemental Methods.

Adherence to MIQE guidelines is described in

Supplemental Table 1. The GrayNorm algorithm is

also written as a python script and is included as

Supplemental File 1, along with a License and

a README file on how to use it on your data

(Supplemental Methods).

Supplemental Data

The following materials are available in the online

version of this article.

Supplemental Table 1. MIQE Reporting for

Examples 1 and 2.

Supplemental Methods. Methodologies for

Examples 1 and 2.

Supplemental Data Set 1. Data Set and

Reference Gene Evaluation for Example 1

(Zn Exposure).

Supplemental Data Set 2. GOI and Refer-

ence Gene Data Set for Example 1 (Zn

Exposure).

Supplemental Data Set 3. GOI and Refer-

ence Gene Data Set for Example 2 (Kinetics

Cd Exposure).

Supplemental Data Set 4. GrayNorm Input

and Output Data for Examples 1 and 2.

Supplemental Data Set 5. MIQE Reporting

for Examples 1 and 2 Using Template Table.

The following materials are freely available at the

GitHub repository: https://github.com/gjbex/

GrayNorm.

Supplemental File 1. graynorm.txt (Python

Script for GrayNorm Algorithm).
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