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SUMMARY

In recent years, it has been shown that individual heterogeneity in the acquisition of infectious diseases has
a large impact on the estimation of important epidemiological parameters such as the (basic) reproduction
number. Therefore, frailty modeling has become increasingly popular in infectious disease epidemiology.
However, so far, using frailty models, it was assumed infections confer lifelong immunity after recov-
ery, an assumption which is untenable for non-immunizing infections. Our work concentrates on refining
the existing frailty models to encompass complexities of waning immunity and consequently recurrent
infections while accounting for individual heterogeneity. Univariate and shared gamma frailty models,
frequently used in practice, and correlated gamma frailty models that have proven to be a valuable alter-
native are considered. We show that incorrectly assuming lifelong immunity when applying frailty models
introduces substantial bias in the estimation of both the baseline hazard and the frailty parameters, and
consequently of the basic and effective reproduction number. We illustrate our work using cross-sectional
serological data on parvovirus B19 (PVB19) from Belgium for which the link with varicella zoster virus
is exploited.

Keywords: Reproduction number; Serological data; SIR and SIRS transmission models; Social contact hypothesis;
Univariate, Shared and correlated gamma frailty models.

1. INTRODUCTION

Frailty models are frequently used in survival analysis to model univariate and multivariate event times.
The univariate frailty model, introduced by Vaupel and others (1979) and Lancaster (1979) to biostatis-
tics and econometric literature, respectively, incorporates a latent frailty variable representing unobserved
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2 S. ABRAMS AND N. HENS

individual characteristics of a specific subject. In multivariate frailty modeling, the concept of frailty terms
is used to model associations among event times, which goes back to the early work by Clayton (1978).
Such models are based on a common and general approach of assuming independence among multivariate
event times conditional on a set of latent variables (random effects). Upon the specification of a distribution
for these latent variables, one obtains a multivariate model for the observed data for which the dependence
structure arises when common or dependent latent variables enter in the conditional survival functions.
Traditionally, frailty models are derived under a conditional independence assumption by specification
of latent frailty terms that act multiplicatively on the baseline hazard. As individuals differ in their risk
of acquiring an infection, these frailty models have found their way into the field of infectious disease
epidemiology. Whereas interest in this paper goes to the specific use of frailty models in infectious dis-
ease epidemiology, the findings as reported here are of interest to the use of frailty models in the general
survival context.

Coutinho and others (1999) were the first to explicitly account for individual heterogeneity in the
acquisition of infections when estimating the infection hazard or force of infection. Farrington and others
(2001) used the shared gamma frailty model in the context of bivariate current status data on measles
and mumps in the UK. Hens and others (2009) illustrated that the restrictive assumption of a common
frailty for both infections can be relaxed by using a correlated gamma frailty model, albeit at the cost
of specifying a parametric baseline hazard function. From an epidemiological point of view, traditional
frailty models in infectious disease epidemiology assume lifelong immunity after recovery from the infec-
tion. For some diseases, however, reinfections with the same pathogen are possible and the assumption
of lifelong immunity therefore becomes untenable. Since individual heterogeneity inflates the estimates
for both the basic reproduction number and critical vaccination coverage (Farrington and others, 2001), a
correct assessment of heterogeneity, and therefore a correct specification of the disease processes, is of
utmost importance to obtain reliable estimates for these quantities. Goeyvaerts and others (2011) consid-
ered some of these mathematical transmission models allowing for waning immunity of immunoglobulin
G (IgG) antibodies against parvovirus B19 (PVB19) infection, thereby illustrating that models with waning
immunity processes greatly improved model fit. Moreover, in general, susceptible-infectious-recovered-
susceptible transmission dynamics (SIRS), referring to the different states in the compartmental model,
were found to be reasonably successful in describing the observed serological profile of PVB19. Conse-
quently, SIRS transmission models are used to derive frailty models encompassing potential reinfections.
Bivariate gamma frailty models are extended and evaluated using bivariate current status data on PVB19
and varicella zoster virus (VZV).

This paper is organized as follows. We start by introducing cross-sectional multisera data on PVB19
and VZV and data on social contacts in Section 2. In Section 3, we introduce the concepts required to
model these current status data. Thereafter, refined frailty models are explicitly derived for shared and
correlated frailty terms. In addition, the mass action principle is incorporated through which the disease-
specific forces of infection are related to the data on social mixing behavior. The application to serological
data on PVB19 and VZV is shown in Section 4. Finally, we discuss the conclusions drawn from our data
application, and present some avenues for further research in Section 5.

2. DATA

The methodology in this paper is illustrated using serological survey data on PVB19 and VZV infections
in Belgium. Residual blood samples were collected in Belgium between 2001 and 2003 and tested for the
presence of infection-specific IgG antibodies, reflecting infection experience. These blood samples are
tested using a so-called enzyme-linked immunosorbent assay test, thereby classifying samples as either
being seropositive or seronegative based on the cut-off level specified by the manufacturer, resulting in
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Modeling individual heterogeneity in the acquisition of non-immunizing infections 3

a binary outcome. Hence, the serological status of the individual is a direct measure of his/her immunity
against the disease, at least if complete serological protection is agreed upon. In addition, age at the time of
data collection was registered. Since the true infection time is unobserved, and infection takes place either
between birth and the monitoring time for seropositives or after the sampling time for seronegatives, we
are faced with type I interval-censored or current status data. The statistical analysis included in this paper
is limited to serological data on 2974 subjects with known immunological status for both PVB19 and VZV.

PVB19 causes a wide variety of diseases of which a childhood rash called fifth disease is the most well-
known clinical presentation. On the other hand, primary infection with VZV results in varicella (chicken-
pox) and mainly occurs in childhood. Upon recovery from varicella, the virus stays dormant within the
human body and may be reactivated after years to decades, giving rise to herpes zoster. Despite the fact
that herpes zoster is an important aspect of varicella zoster infections, herpes zoster occurrences are unob-
served in the serological profile and are therefore left aside. Transmission of both viruses occurs through
direct close person-to-person contact. As transmission rates relate to contact rates, data on social mixing
from the Belgian POLYMOD survey, a large-scale prospective survey conducted between May 2005 and
September 2006, are used in addition to the serology on PVB19 and VZV.

3. MATERIALS AND METHODS

3.1 Notation

Consider bivariate cross-sectional serological data (y1, y2, a) with yi the observed immunological status
of the individual for infection i = 1, 2 and a his/her age at monitoring time. Indices referring to the indi-
vidual level are suppressed from notation. The immunological status of an individual for infection i = 1, 2
is defined as the random variable Yi which takes value one (zero) if he/she is seropositive (seronegative).
The time variable represents the individual’s age at data collection, expressed in years. Based on these kind
of data, the true event time T ∗

i is unknown and censored. In fact, cross-sectional serological data constitute
type I interval-censored or current status data for which the true event time T ∗

i lies in the interval [0, Ti )

or [Ti ,∞), where Ti is the monitoring time with regard to infection i . Henceforth, univariate monitoring
times T1 = T2 = T equal to the age at sampling, a, are considered in all derivations. The binary response
variable Yi , conditional on the age a, follows a Bernoulli distribution with probability of being seroposi-
tive πi (a) (Yi |a ∼ Binomial(1, πi (a))). In this paper, a parametric model for πi (a) is assumed for which
the estimation of the model parameters θ is performed using maximum likelihood estimation. The sero-
prevalence πi (a) is related to the proportion of susceptible individuals Si (a) in the population through
πi (a) = 1 − Si (a), where Si (a) is termed the survival function. The individual contribution of bivariate
current status data (y1, y2, a) to the log-likelihood function is given by

ll(y1, y2, a|θ) = y1 y2 log(p11(a|θ)) + y1(1 − y2) log(p10(a|θ))

+ (1 − y1)y2 log(p01(a|θ)) + (1 − y1)(1 − y2) log(p00(a|θ)), (3.1)

where (p11(a|θ), p10(a|θ), p01(a|θ), p00(a|θ)) defines the multinomial probability distribution for Y|a,
Y = (Y1, Y2): p11(a|θ) = 1 − S1(a) − S2(a) + S12(a), p10(a|θ) = S2(a) − S12(a), p01(a|θ) = S1(a) −
S12(a), p00(a|θ) = S12(a). In general, pα1α2(a|θ) = Pr(Y1 = α1, Y2 = α2|a, θ ), where the indices α1, α2 =
0, 1 refer to the immunological status with respect to infections 1 and 2, respectively. Hence, the log-
likelihood function for n subjects equals

∑n
j=1 ll(y1 j , y2 j , a j |θ). For the sake of simplicity, the dependence

of the survival functions on the model parameters θ is suppressed from notation throughout the rest of the
paper. In conclusion, parametric models for the seroprevalence πi (a) result in expressions for the marginal
and joint survival functions that are substituted into the log-likelihood function. The log-likelihood func-
tion is then maximized to obtain maximum likelihood estimates for the model parameters. Throughout
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4 S. ABRAMS AND N. HENS

the paper, the subscript i refers exclusively to a specific infection and individual-specific subscripts are
generally omitted.

3.2 Infection dynamics

Although a lot of different mathematical transmission models can be found in the infectious disease
literature, we will focus on the most simple ones describing disease dynamics for infections either
conferring lifelong immunity or not. The most simple compartmental model is the so-called SIR
(susceptible-infected-recovered) model. To facilitate a mathematical derivation of the disease dynamics,
we make several assumptions (see, e.g. Hens and others, 2012). First, we assume that the infection is in
endemic equilibrium, meaning that the disease incidence may undergo cyclical epidemics, however, fluc-
tuating around a stationary average over time, which is believed to be a tenable assumption for PVB19 and
VZV. Further, we assume that the population has reached a demographic equilibrium implying that the age
distribution is stationary. Finally, the number of births and deaths are assumed to be constant over time and
exactly balanced, entailing a constant population of size N .

In the time-homogeneous SIR model, individuals of age a flow from the susceptible compartment S
to the infectious compartment I at an age-dependent rate λ(a). After being infected with the agent, these
individuals recover at a rate γ and move towards the recovered class R in which they remain until death.
Individuals in each state experience natural mortality at a rate μ(a). Disease-related mortality is neglected,
which is a plausible assumption, at least for the childhood infections under consideration in a developed
country such as Belgium. Therefore, the SIR model mimics simple features corresponding to immunizing
infections. However, as argued before, not all infectious diseases can be successfully described using an
SIR model. Extensions of the basic SIR model are numerous but for the purpose of this paper we consider
the slightly more complicated SIRS model. In the SIRS model, recovered individuals of age a are allowed
to move back to the susceptible class at a replenishment rate σ(a). A description of the SIRS model is
included in Appendix A of supplementary material available at Biostatistics online.

3.3 Waning antibodies and individual heterogeneity

Consider a univariate frailty term Z describing individual heterogeneity. The proportion of susceptible
individuals of age a with frailty Z , say S(a|Z), evolves following the ODE:

dS(a|Z)

da
= −λ(a, Z)S(a|Z) + σ(a)R(a|Z), (3.2)

with λ(a, Z) the conditional force of infection, σ(a) the replenishment rate and R(a|Z) the proportion of
seropositives of age a given the frailty term Z . In this paper, the replenishment rate σ(a) is assumed to be
independent of Z . The differential equation (3.2) can be solved using R(a|Z) ≈ 1 − S(a|Z) to obtain:

S(a|Z) = exp

(

−
∫ a

0
{λ(u, Z) + σ(u)} du

)

+
∫ a

0
σ(u) exp

(

−
∫ a

u
{λ(v, Z) + σ(v)} dv

)

du. (3.3)

Note that the expression for S(a|Z) reduces to the general exponential formula for an immunizing infec-
tion with hazard rate λ(a, Z) if the replenishment rate σ(a) equals 0, ∀a. We rely on the proportional
hazards assumption such that the frailty term Z acts multiplicatively on the baseline force of infection
λ0(a), i.e. λ(a, Z) = Zλ0(a) (see, e.g. Wienke, 2010). The unconditional survival function S(a) equals
the expectation of S(a|Z) with respect to Z , i.e. S(a) = E[S(a|Z)]. The expression for the unconditional
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Modeling individual heterogeneity in the acquisition of non-immunizing infections 5

survival function S(a) becomes:

S(a) = exp

(

−
∫ a

0
σ(u) du

)

L(M0(a)) +
∫ a

0
σ(u) exp

(

−
∫ a

u
σ(v) dv

)

L(M0(a) − M0(u)) du

= Wσ (Qσ (a))L(M0(a)) +
∫ a

0
σ(u)Wσ (Qσ (a) − Qσ (u))L(M0(a) − M0(u)) du, (3.4)

where Wσ (s) = exp(−s), Qσ (a) is the cumulative replenishment rate and M0(a) is the cumulative baseline
hazard function; L(s) represents the Laplace transform of the random variable Z , for which the explicit
form depends on the selected frailty distribution. In many applications, the mathematically convenient
gamma frailty distribution is considered, and therefore without loss of generality we focus on gamma
distributed frailty terms within this paper. The Laplace transform of a gamma distributed random variable
Z with unit mean and variance σ 2

f (i.e. Z ∼ �(1/σ 2
f , 1/σ 2

f )) has a closed-form expression that takes the

form L(s) = (1 + σ 2
f s)−1/σ 2

f .
In the univariate frailty setting, the frailty variance represents heterogeneity due to unobserved factors

in the population that have an impact on the infection time. However, modeling the occurrence of multiple
infections simultaneously allows us to quantify the association in acquisition of these infections and to
draw conclusions regarding similarities in routes of transmission.

3.4 Bivariate shared and correlated gamma frailty models

First, let Z represent a shared gamma frailty term for both infections under investigation. The frailty term
indicates how frail individuals are with respect to the acquisition of both infections. Therefore, the interpre-
tation of the frailty variance is fundamentally different from the one in the univariate setting. The general
form of the marginal survival function Si (a)(i = 1, 2), where i denotes the specific infection under investi-
gation, depends upon the constitution of the underlying infection process. For example, for an immunizing
infection, say i , conferring lifelong immunity after recovery, one easily ends up with the following formula
for the marginal unconditional survival function (see (3.4)): Si (a) = L(Mi0(a)), where L(s) is the Laplace
transform of Z ≡ Zi and Mi0(a) is the cumulative baseline hazard function corresponding to infection i .
For non-immunizing infections, the expression becomes more complicated. Essentially, the marginal sur-
vival function Si (a) simply reduces to the formula in (3.4), except for the specification of infection-specific
parameters such as σi (a), Mi0(a) and Qσi (a) with the same meaning as before. An expression for the joint
unconditional survival function S12(a) can be derived relying on conditional independence of the event
times given the frailty term Z (Appendix B of supplementary material available at Biostatistics online).

The shared gamma frailty model suffers from the restrictive assumption of perfect correlation among
infection-specific frailty terms. In some situations, a more flexible alternative is required that relaxes the
assumption of perfect correlation and allows for a more general correlation structure. Yashin and others
(1995) introduced the correlated gamma frailty model accounting for a positive correlation between
frailty terms. Recently, Hens and others (2009) have illustrated its value in the context of bivariate current
status data.

Following the notation by Hens and others (2009), frailty terms Zi (i = 1, 2) are additively decom-
posed into independent gamma distributed random variables Y ∗

l (l = 0, 1, 2) with mean and variance kl > 0:
Zi = σ 2

i f (Y
∗
0 + Y ∗

i ), where σ 2
i f represents the frailty variance. The superscript ∗ is used to avoid confusion

with the infection-dependent immunological status Yi of an individual. Consequently, the infection-specific
frailty terms Zi (i = 1, 2) are gamma distributed. Assuming the frailty terms to have unit mean, one eas-
ily derives expressions for the frailty variances σ 2

i f in terms of the component parameters kl(l = 0, 1, 2) :
σ 2

i f = 1/(k0 + ki ). Hence, the variance-covariance structure imposed by the additive decomposition of the
frailties implies a correlation between Z1 and Z2. The Pearson product–moment correlation coefficient for
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6 S. ABRAMS AND N. HENS

the frailty variables equals ρ12 = k0/
√

(k0 + k1)(k0 + k2) inducing an upper bound on the strictly positive
correlation coefficient: 0 � ρ12 � min(σ1 f /σ2 f , σ2 f /σ1 f ) which is rather restrictive when the frailty vari-
ances differ greatly. The marginal unconditional survival function Si (a) can be written as:

Si (a) = Li (Mi0(a))Wσi (Qσi (a)) +
∫ a

0
σi (u)Wσi (Qσi (a) − Qσi (u))Li (Mi0(a) − Mi0(u)) du. (3.5)

The only difference compared with the shared frailty setting is the dependency of the Laplace transform
Li (s) on the specific infection i through its frailty variance σ 2

i f . Making use of the conditional inde-
pendence assumption and independence of the gamma components Y ∗

l , the unconditional bivariate sur-
vival function can be expressed in terms of the component-specific Laplace transforms LY ∗

l
(l = 0, 1, 2)

(Appendix B of supplementary material available at Biostatistics online).
Correlated gamma frailty models are identifiable at least when specifying parametric baseline forces of

infection and replenishment rates. In the next section, we present the mass action principle in the presence
of individual heterogeneity, which yields a parametric model for the baseline forces of infection given a
known contact structure.

3.5 Baseline force of infection

The mass action principle relates the baseline force of infection λ0(a) to an augmented effective contact
function β(a, Z; a′, Z ′) representing the per capita rate at which an individual of age a′ and frailty Z ′
makes effective contact with an individual of age a and frailty Z . Under a multiplicative assumption, the
augmented contact function can be written as β(a, Z; a′, Z ′) = Z Z ′β0(a, a′). The multiplicative assump-
tion implies a proportional hazards assumption for λ(a, Z) such that the time homogeneous mass action
principle can be rendered as follows (Farrington and others, 2001):

λ(a, Z) = N D

L

∫ ∞

0

∫ ∞

0
Z Z ′β0(a, a′)λ(a′, Z ′)S(a′|Z ′)φ(a′) f (Z ′) da′ dZ ′, (3.6)

with f (Z ′) the probability density function for the frailty variable Z ′, S(a′|Z ′) the proportion of susceptible
individuals of age a′ given frailty Z ′, N the total population size, D the mean duration of infectiousness,

L the life expectancy and φ(a′) = exp
(
− ∫ a′

0 μ(u) du
)

the probability of being alive at age a′. Using the

proportional hazards assumption, (3.6) can be simplified to

λ0(a) = N D

L

∫ ∞

0

∫ ∞

0
Z ′β0(a, a′)λ(a′, Z ′)S(a′|Z ′)φ(a′) f (Z ′) da′ dZ ′. (3.7)

In order to integrate data on social contact behavior in the estimation of the age-dependent base-
line infection hazard, the baseline effective contact function β0(a, a′) is written as q(a, a′|c) × c(a, a′)
(Wallinga and others, 2006). The proportionality factor q(a, a′|c) represents the transmission potential
upon a contact between an individual of age a′ and one of age a. This might depend on several char-
acteristics related to susceptibility and infectiousness which could be ethnic-, climate-, disease- and/or
age-specific. In addition, conversational and physical contacts reported in social contact diaries serve as
proxies of those contacts by which the infection is successfully transmitted. Therefore, q(a, a′|c) can be
considered as an age-specific adjustment factor relating true contact rates underlying disease transmis-
sion to reported proxies. In addition, c(a, a′) is the annual rate at which individuals of age a′ contact
individuals of age a within the population. The contact rates are estimated from Belgian social con-
tact data (Section 2 of Goeyvaerts and others, 2011). Solving the mass action principle involves find-
ing a solution without explicit closed-form expression. Consequently, an iterative procedure described in
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Modeling individual heterogeneity in the acquisition of non-immunizing infections 7

Kanaan and Farrington (2005) is used to solve the mass action principle numerically after turning to a
discrete age framework, assuming a constant force of infection within each age interval. The reader is
referred to Appendix C of supplementary material available at Biostatistics online for more details on the
mass action principle.

3.6 Reproduction numbers

For an overview of the key ingredients and a graphical representation of the estimation procedure, we
refer to Appendix D of supplementary material available at Biostatistics online. Once the maximum like-
lihood estimates θ̂ of the model parameters are obtained, the basic reproduction number Ri0 with respect
to infection i , that is, the average number of secondary infections produced by a single infectious indi-
vidual during his/her entire infectious period when introduced in a fully susceptible population, is com-
puted as (1 + σ̂ 2

i f ) times the dominant eigenvalue of the next generation matrix N Di L−1φ(a)βi0(a, a′)
(Diekmann and others, 1990). Furthermore, the effective reproduction number Ri is the equivalent of Ri0

in a population which is not entirely susceptible, and is therefore defined as the leading eigenvalue of the
matrix N Di L−1φ(a)Si (a)βi0(a, a′) (see Appendix E of supplementary material available at Biostatistics
online).

4. RESULTS

In this section, we describe the results of fitting the shared and correlated gamma frailty models described
in Section 3.4 to bivariate serological data on PVB19 and VZV. Despite the general formulation of the
models in terms of infection-specific age-dependent proportionality factors qi (a, a′|c), these terms are
considered to be age-invariant in all fitted models as age-dependent proportionality in transmission did
not reveal any improvement in model fit. Drawing especially on the conclusions of Goeyvaerts and others
(2011), the transmission characteristics for PVB19 infection are modeled through an SIRS transmission
model in which reinfections are possible. In contrast to potential reinfections with PVB19, varicella zoster
infections are assumed to confer lifelong immunity as more complex disease dynamics did not improve
model fit. Especially, allowing for reinfections with VZV resulted in an estimated replenishment rate which
was not significantly different from zero (not shown).

Table 1 links the model definitions in Section 3.4 with the candidate models presented here. Frailty
models relying on the assumption of lifelong immunity for both infections are denoted by UGF-1, SGF-1
and CGF-1 for univariate, shared and correlated gamma frailty models, respectively. In addition, UGF-2a,
SGF-2a and CGF-2a models allow for replenishment of the susceptible compartment at a constant rate
σ1, at least for PVB19. Finally, UGF-2b, SGF-2b and CGF-2b models simply extend the previous models
by introducing an age-dependent dichotomous replenishment for PVB19 based on a cut-off value H (σ11

for a < H and σ12 for a � H ). The optimal cut-off value is selected to be H = 35 years based on a grid
search. As advocated previously, infections with VZV are considered to confer lifelong immunity leading
to σ2(a) = 0, ∀a. Furthermore, the joint survival function S12(a) in univariate gamma frailty models simply
reduces to the product of S1(a) and S2(a), indicated by “S1(a) × S2(a)” in Table 1. The general expressions
for the unconditional survival functions simplify according to the structure of the replenishment rates. The
statistical analysis was performed using R, version 2.14.2 (R Core Team, 2012). Documented R-code is
made available in Appendix J of supplementary material available at Biostatistics online.

In Table 2, the parameter estimates for the model parameters are presented together with bootstrap 95%
percentile confidence limits based on B = 500 bootstrap samples. Univariate (UGF), shared (SGF) and
correlated (CGF) gamma frailty models are fitted to the serological data at hand under different scenarios
for the transmission dynamics of PVB19. The results in Table 2 clearly indicate that the univariate, shared
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8 S. ABRAMS AND N. HENS

Table 1. Definition of the candidate models fitted to the bivariate serological survey data on PVB19
(i = 1) and VZV (i = 2) : IH = I (a < H). Simple SIR dynamics are assumed for VZV, giving rise to a

replenishment σ2(a) = 0, ∀a.

Model Frailty Dynamics Replenishment σ1(a) Survival functions
specification PVB19

S1(a) S2(a) S12(a)

UGF-1 Univariate SIR 0 Equation (3.4) Equation (3.4) S1(a) × S2(a)

UGF-2a Univariate SIRS σ1 Equation (3.4) Equation (3.4) S1(a) × S2(a)

UGF-2b Univariate SIRS σ11 IH + σ12(1 − IH ) Equation (3.4) Equation (3.4) S1(a) × S2(a)

SGF-1 Shared SIR 0 Equation (3.4) Equation (3.4) Equation (B.1)†

SGF-2a Shared SIRS σ1 Equation (3.4) Equation (3.4) Equation (B.1)
SGF-2b Shared SIRS σ11 IH + σ12(1 − IH ) Equation (3.4) Equation (3.4) Equation (B.1)
CGF-1 Correlated SIR 0 Equation (3.5) Equation (3.5) Equation (B.2)†

CGF-2a Correlated SIRS σ1 Equation (3.5) Equation (3.5) Equation (B.2)
CGF-2b Correlated SIRS σ11 IH + σ12(1 − IH ) Equation (3.5) Equation (3.5) Equation (B.2)

†Appendix B of supplementary material available at Biostatistics online.

and correlated gamma frailty models with SIRS dynamics for PVB19 outperform their SIR counterparts
assuming lifelong immunity after recovery for both infections. Moreover, based on the Akaike Information
Criterion (AIC) it turns out that the SGF-2b model is the best fitting model, whereas the Bayesian Infor-
mation Criterion (BIC) selects the SGF-2a model. Despite the fact that both information criteria select
different models, the key message lies within the improved fit when accounting for potential PVB19 rein-
fections compared with the traditional approach in which lifelong immunity is presumed. It is not com-
pletely clear what causes the decreased replenishment rate for people aged 35 years and above. It could
reflect the general observation that infection or boosting through exposure to individuals who are infec-
tious with PVB19, elicits higher antibody responses in mature immune systems, which could prolong the
process of antibody waning (Goeyvaerts and others, 2011). Although more flexible than shared frailty
models, using correlated frailty models here shows little advantage over using shared frailty models, at
least when accounting for reinfections with PVB19. Given that modeling the underlying infection process
decreases the unobserved infection-specific heterogeneity, it is no surprise that SGF-2a and SGF-2b frailty
models are preferred over their correlated counterparts (CGF-2a and CGF-2b). Since the estimated cor-
relation, implied by the additive decomposition of the correlated frailties, is bounded by the ratio of the
frailty standard deviations, the bootstrap-based 95% confidence intervals for ρ12 in CGF-2a and CGF-2b
are asymmetric.

The frailty variances in the univariate frailty models (UGF) are not comparable with those in the bivari-
ate models since their interpretation differs. In the univariate setting, the frailty variance reflects hetero-
geneity with respect to unobserved factors in the population. In contrast, in any bivariate frailty model,
frailty terms impose a correlation structure among infections. In Figure 1, the estimated marginal sero-
prevalences for PVB19 and VZV are graphically displayed based upon the three bivariate shared gamma
frailty models (SGF-1, SGF-2a and SGF-2b). The differences in estimated seroprevalence are more pro-
nounced for PVB19 compared with VZV due to the fact that the models only differ in assumptions regard-
ing PVB19 transmission. Fitting models with SIRS dynamics for both infections leads to an equivalent
performance in terms of log-likelihood value at the cost of one extra parameter which is estimated not
significantly different from 0. This coincides with our previous arguments to settle for SIR features with
regard to VZV.

In Figure 2, the estimated proportions of individuals having one of the four possible serological profiles,
determined by their status with respect to both infections, are displayed. These multinomial probabilities
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Table 2. Maximum likelihood estimates for the model parameters as well as for the basic and effective
reproduction numbers Ri0 and Ri , respectively, and together with 95% bootstrap percentile confidence
intervals in square brackets. The corresponding AIC- and BIC-values (minima underlined), obtained under
the assumption of Type I mortality. Application of univariate, bivariate shared and correlated gamma frailty

models to serology on PVB19 (i = 1) and VZV (i = 2).

Model R̂0 R̂ AIC BIC

UGF-1 q10 0.086 [0.079; 0.094] 5.27 [4.47; 6.22] 1.831 [1.568; 2.142] 4506.27 4530.26

σ 2
1 f 0.435 [0.316; 0.560]

q20 0.168 [0.159; 0.187] 8.36 [7.92; 9.77] 1.143 [1.133; 1.259]

σ 2
2 f 3.0e−6 [3.4e−7; 0.053]

ρ12 0.000 –

UGF-2a q10 0.071 [0.068; 0.074] 3.02 [2.89; 3.52] 1.054 [1.049; 1.229] 4481.84 4511.82
σ1 0.011 [0.007; 0.015]

σ 2
1 f 9.7e−7 [3.4e−7; 0.117]

q20 0.168 [0.159; 0.187] 8.36 [7.92; 9.77] 1.143 [1.133; 1.259]

σ 2
2 f 3.0e−6 [3.4e−7; 0.053]

ρ12 0.000 –

UGF-2b q10 0.071 [0.068; 0.074] 3.04 [2.92; 3.16] 1.063 [1.055; 1.072] 4477.00 4512.99
σ11 0.017 [0.012; 0.023]
σ12 0.008 [0.005; 0.012]

σ 2
1 f 1.5e−6 [3.4e−7; 4.0e−6]

q20 0.168 [0.159; 0.187] 8.36 [7.92; 9.77] 1.143 [1.133; 1.259]

σ 2
2 f 3.0e−6 [3.4e−7; 0.053]

ρ12 0.000 –

SGF-1 q10 0.073 [0.069; 0.077] 3.59 [3.27; 3.90] 1.278 [1.189; 1.368] 4537.28 4555.27
q20 0.209 [0.189; 0.232] 12.07 [10.46; 13.74] 1.516 [1.368; 1.664]

σ 2
f 0.158 [0.102; 0.210]

ρ12 1.000 –

SGF-2a q10 0.072 [0.068; 0.075] 3.17 [2.94; 3.43] 1.106 [1.052; 1.178] 4477.98 4501.97
σ1 0.011 [0.007; 0.014]
q20 0.177 [0.162; 0.196] 9.15 [8.07; 10.53] 1.221 [1.139; 1.333]

σ 2
f 0.036 [5.4e−7; 0.086]

ρ12 1.000 –

SGF-2b q10 0.072 [0.069; 0.075] 3.13 [2.95; 3.38] 1.093 [1.057; 1.165] 4474.39 4504.38
σ11 0.016 [0.010; 0.022]
σ12 0.008 [0.005; 0.012]
q20 0.173 [0.161; 0.191] 8.82 [8.01; 10.13] 1.189 [1.136; 1.300]

σ 2
f 0.021 [3.6e−7; 0.071]

ρ12 1.000 –

CGF-1 q10 0.086 [0.079; 0.094] 5.26 [4.44; 6.20] 1.827 [1.563; 2.135] 4505.62 4535.61
q20 0.180 [0.163; 0.200] 9.40 [8.19; 10.92] 1.246 [1.142; 1.375]

σ 2
1 f 0.433 [0.310; 0.558]

σ 2
2 f 0.048 [3.5e−7; 0.098]

ρ12 0.332 [0.001; 0.501]

(Continued)
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10 S. ABRAMS AND N. HENS

Table 2. Continued.

Model R̂0 R̂ AIC BIC

CGF-2a q10 0.072 [0.068; 0.075] 3.17 [2.94; 3.50] 1.106 [1.052; 1.210] 4481.98 4517.96
σ1 0.011 [0.007; 0.014]
q20 0.177 [0.162; 0.196] 9.15 [8.07; 10.53] 1.221 [1.139; 1.333]

σ 2
1 f 0.036 [4.6e−7; 0.105]

σ 2
2 f 0.036 [4.6e−7; 0.086]

ρ12 1.000 [0.565; 1.000]

CGF-2b q10 0.071 [0.067; 0.074] 3.08 [2.89; 3.34] 1.077 [1.040; 1.148] 4478.53 4520.51
σ11 0.017 [0.011; 0.022]
σ12 0.009 [0.006; 0.012]
q20 0.173 [0.161; 0.192] 8.82 [8.01; 10.20] 1.188 [1.135; 1.304]

σ 2
1 f 0.021 [3.5e−7; 0.071]

σ 2
2 f 0.021 [3.5e−7; 0.072]

ρ12 1.000 [0.653; 1.000]

Single underline indicates a minimum in the univariate frailty setting (models UGC-1, UGC-2a and UGC-2b).
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Fig. 1. The observed seroprevalence (dots with size proportional to the number of observations) and estimated
seroprevalence of PVB19 (left panel) and VZV (right panel) based on three bivariate shared gamma frailty models:
the SGF-1 model (solid line), the SGF-2a model (dashed line) and the SGF-2b model (dotted line).

are equal to pα1α2(a|θ̂), α1, α2 = 0, 1, as defined in Section 3.1, and θ̂ the maximum likelihood estimates
regarding the model parameters. For example, p11(a|θ̂) denotes the probability to be infected with both
infections before the age of a years. In line with the fitted marginal seroprevalence curves, one easily
observes that the shared gamma frailty models with SIRS dynamics for PVB19 (SGF-2a and SGF-2b)
improve the fit compared with the fit corresponding to the SGF-1 model. Especially, the largest improve-
ments are seen with respect to p11(a|θ̂) and p01(a|θ̂) in the left upper and left lower panel, respectively.
Interest lies in the quantification of the impact of misspecifying the underlying infection process on esti-
mates for the reproduction numbers R0 and R. In Table 2, the shared SIR gamma frailty model (SGF-1)
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Fig. 2. The observed prevalence with respect to one of the four serological profiles (dots with size proportional to the
number of observations) and estimated prevalences based on three bivariate shared gamma frailty models: the SGF-1
model (solid line), the SGF-2a model (dashed line) and the SGF-2b model (dotted line); p11(a|θ̂) (upper left panel),
p10(a|θ̂) (upper right panel), p01(a|θ̂) (lower left panel) and p00(a|θ̂) (lower right panel).

yields larger R0 estimates for both PVB19 and VZV (3.59 [3.27; 3.90] and 12.07 [10.46; 13.74], respec-
tively, with 95% confidence limits between squared brackets) when compared with the estimates of the
SGF-2a and SGF-2b models, encompassing reinfection dynamics for PVB19. Estimates for R0 and R in the
shared and correlated SIRS models (SGF-2a, SGF-2b, CGF-2a and CGF-2b) are almost identical (Table 2).
Simulation results are shown in Appendix F of supplementary material available at Biostatistics online.

5. DISCUSSION

Recently, frailty modeling gained much attention in infectious disease epidemiology due to the seminal
work by Farrington and others (2001) and the work by Hens and others (2009). Although mathematical
models describing various infection processes are extensively used to study the spread of infectious dis-
eases, characteristics of infection processes that deviate from traditional SIR features are not yet incor-
porated in the frailty setting. In this paper, we illustrate the necessity to account for such features when
infections are unlikely to confer lifelong immunity. The traditional frailty models are extended to encom-
pass other disease dynamics when compared with lifelong immunity after infection. The impact of these
refinements on the estimation of the basic and effective reproduction number is quantified in the context
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of serological data on PVB19 and VZV. Our findings support the hypothesis of PVB19 recurrences in
humans (see, e.g. Goeyvaerts and others, 2011), illuminating important epidemiological consequences if
these dynamics are not appropriately accounted for. Furthermore, applying traditional frailty models to
PVB19 serology induces the frailty variance to be largely overestimated, and as demonstrated, estimates
for the basic reproduction number R0 derived thereof are biased. Modeling the infection process of PVB19
more accurately decreases the amount of unexplained heterogeneity, and equivalently reduces the frailty
variance associated therewith. Consequently, the rather restrictive upper bound on the correlation coeffi-
cient in the correlated frailty model is elevated. This feature adds to the general usefulness of the correlated
gamma frailty model.

Although the refined shared gamma frailty models describe the age-dependent serological profile of
PVB19 reasonably well, the decrease at the ages 20–30 is not fully captured. A more flexible shape for the
age-dependent replenishment rate allows us to improve model fit further (not shown), albeit that the bio-
logical interpretation becomes more complicated. Nevertheless, additional work on this matter is required
to ascertain whether the decline in seroprevalence results solely from age-dependent differences in replen-
ishment. In the absence of any individual-specific covariates, individual heterogeneity is accounted for
through the specification of latent gamma frailty variables. In spite of the mathematical convenience of the
gamma frailty distribution, many other frailty distributions can be used in the presented models. However,
such an analysis would not change our conclusions with respect to the infection dynamics of PVB19 (see
Appendix G of supplementary material available at Biostatistics online). Furthermore, standard parametric
models for the baseline hazard functions such as Gompertz or Weibull hazards are easily implemented as
well, albeit that for the data at hand these models seem unable to capture the biological complexity.

Although we have limited our analyses to include only subjects with complete immunological informa-
tion for both infections, one is able to extend the likelihood to accommodate for individuals with incomplete
data. This direct-likelihood approach is described in Appendix H of supplementary material available at
Biostatistics online and yields almost identical estimates. As paired serological data give rise to multino-
mial observations, a higher empirical variance might be observed than can be accommodated for in the
presented models. One way to overcome this is to use a Dirichlet-Multinomial likelihood with an addi-
tional overdispersion parameter (Farrington and others, 2013). Further research is required to investigate
the effects of simultaneous modeling individual heterogeneity in the acquisition of infections and overdis-
persion. In this paper, we aim at extending existing models encompassing frailties in the acquisition of
infectious diseases to recurrent infections and at underlining the importance of a correct specification
of the underlying infection process which is identified as the most important source of misspecifica-
tion and for which the effects on the estimated reproduction numbers are far more pronounced. Note that
Farrington and others (2013) studied robustness against misspecification of the contact function of which
the impact is believed to be rather limited compared with the underlying infection process.

In addition, the use of cross-sectional serological survey data to model the seroprevalence relies on the
assumption of perfect classification of individuals into a seropositive and seronegative group. Nevertheless,
perfect testing is seldom achieved which could affect estimates with regard to the epidemiological param-
eters of interest. Although, to date, frailty modeling based on serology is performed without explicitly
accounting for imperfect test results and without quantifying its impact on derived estimates, test sensi-
tivity and specificity are useful quantities to adjust for potential misclassification (Appendix I of supple-
mentary material available at Biostatistics online). Further research is needed to allow for age-dependent
frailty terms in the context of recurrent infections. Recently, Farrington and others (2013) considered such
an age-dependency in addition to the assumptions of lifelong immunity and shared frailty terms. Further-
more, an extension of the correlated frailty concept to more flexible decompositions of the frailty variables
seems valuable. As pointed out earlier, correlated gamma frailty models rely on an additive decomposition
of the latent frailties thereby restricting the range of the correlation between them. Although the correla-
tion in these models does not describe the correlation among original infection times, it can be interpreted
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as a valid correlation measure. Therefore, the ability to impose more flexible correlation structures could
reveal additional information on the dependence among infections.

The approach undertaken in this paper allows us to model recurrent infections, even if the underlying
infection process is known to be more complex than the one proposed here. However, cross-sectional sero-
logical data deviate from general recurrent event data in the sense that only a single observation per subject
is available. In an epidemiological setting, acquiring recurrent event data rely on continuously monitoring
subjects and these data are therefore hard to collect. Upon knowledge of the underlying infection mech-
anism, these models convey an alternative way of assessing potential violations of the lifelong immunity
assumption and thereby retrieve the recurrent nature from cross-sectional serology. Whereas the use of the
refined frailty models is illustrated on type I interval-censored data with a single observation per subject,
these models offer the opportunity to model recurrent event data in the presence of any type of censoring,
any parametric baseline hazard, any frailty distribution, and are therefore important in the general survival
context.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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