

A B S T R A C T

In this dissertation, I explore designing for intelligibility and control in ubiquitous
computing applications, in particular, in context-aware systems. Earlier work has
identified a number of interaction challenges that users face when dealing with
context-aware systems, such as being unable to understand why the system is re-
sponding in a certain way, or being unable to intervene when the system makes
a mistake. These challenges impact users’ feelings of trust and of being in control,
and could eventually lead to users disengaging from interaction with the system al-
together. It is important to address these interaction challenges to allow for smooth
integration of ubicomp technologies into our lives. For this purpose, two general
principles have been proposed that should be supported by context-aware systems:
intelligibility and control. Intelligibility is the ability of a context-aware system to
present itself and its behaviour to its users, while control deals with allowing users
to step in and intervene to correct the system. Although a number of techniques
have been explored to improve intelligibility and control for context-aware systems,
it is not yet clear how ubiquitous computing researchers, developers and interaction
designers should design for intelligibility and control.

This dissertation serves as a design space exploration to inform the design of fu-
ture ubiquitous computing applications that provide support for intelligibility and
control. I aim for this work to be both generative by guiding designers in exploring
various ways to support intelligibility and control, and generalizable by exploring
techniques that can be applied by interaction designers in a wide range of ubiqui-
tous computing scenarios. In particular, I provide the following three major contri-
butions:

First, I present a design space that captures different decisions that designers face
when adding support for intelligibility and control. This design space consists of
six dimensions and can be used both as an analytical tool to classify and compare
different techniques, and can help designers explore alternative designs.

Second, I present general design principles and techniques that can be applied in
a wide range of ubicomp scenarios. I contribute three general techniques that can
be used at three different times during the interaction: feedforward (before actions),
slow-motion feedback (during actions), and why questions (after actions).

Third, I describe an in-depth case study of supporting intelligibility and control
in proxemic interactions. This can serve as inspiration for designers and researchers
looking to consider these principles in different ubicomp applications. In particular,
I propose the use of a secondary, assisting floor display that informs users about the
tracking status, indicates action possibilities, and invites and guides users through-
out their interaction with the primary display.

v

A C K N O W L E D G M E N T S

This dissertation would not have been possible without the support and encourage-
ment of several people.

First, I would like to thank my advisor Prof. Dr Karin Coninx. Karin, thank you for
providing me with the opportunity to pursue a PhD, for your support and encour-
agement throughout the years, and for giving me the freedom to pursue my own
research interests. I truly enjoyed the many discussions we had during the course
of writing this dissertation. Thank you for the countless suggestions and comments
that helped shape this work into its current form. I would also like to thank my
co-advisor Prof. Dr Kris Luyten, without whom I might not have embarked on this
journey in the first place. Kris, thank you for sparking my interest in HCI research
as an undergraduate student, and for your endless encouragement, energy and en-
thusiasm. Your feedback and suggestions had a large impact on the ideas presented
here. During the final two years of my PhD, I also had the opportunity to work with
Prof. Dr Johannes Schöning. Johannes, thank you for your invaluable advice (usu-
ally provided over a morning coffee), and for teaching me about German efficiency.

I would like to thank the members of my jury: Prof. Dr Wim Lamotte, Prof. Dr Jo-
hannes Schöning, Em. Prof. Dr Joëlle Coutaz, Prof. Dr Hans Gellersen, and Dr Nico-
lai Marquardt: thank you for your constructive and valuable feedback that helped
to improve this dissertation. I also like to thank the chairmain of my jury, Prof. Dr
Marc Gyssens.

I would like to express my gratitude to the EDM management, Prof. Dr Eddy
Flerackers and Prof. Dr Frank Van Reeth, for providing me with the opportunity
to work in such a supportive environment. I also thank Ingrid Konings and Roger
Claes for helping me with administrative tasks and taking care of logistics, and Luc
Adriaens for audiovisual support.

Thank you to all my friends and colleagues in the EDM HCI group. Special thanks
to Dr Davy Vanacken for his helpful advice during my first years as a teaching assis-
tant. I would also like to single out Dr Lode Vanacken and Dr Jan Meskens for all the
interesting research discussions we had during the course of my PhD. Thank you to
Dr Geert Vanderhulst for being an amazing collaborator on PervasiveCrystal. I also
like to thank Daniël Teunkens for sketching the scenarios used for PervasiveCrys-
tal, and Karel Robert for creating the visual designs used for the Visible Computer.
Thanks to Dr Mieke Haesen for acting so convincingly in the Visible Computer
video, and to Raf Ramakers for helping me shoot the ProxemicFlow video. Also
thanks to all my other colleagues in the EDM HCI group that contributed to mak-
ing my time there a fantastic experience: Kashyap Todi, Dr Tim Clerckx, Dr Yves
Vandriessche, Dr Sean Tan, Tom De Weyer, Gustavo Rovelo Ruiz, Kris Gabriëls,
Kristof Thys, Dr Petr Aksenov, Sofie Notelaers, Dr Jan Van den Bergh, Donald De-
graen, Dr Alexandre Demeure, Pavel Samsonov and many others. Also thank you

vii

to the many amazing master’s students who I co-supervised, with special thanks
to Gert Vos and Jonathan Slenders who contributed to the work presented in this
dissertation.

I also had the opportunity to work with several external collaborators during
the course of my PhD. I would like to especially thank Dr Nicolai Marquardt for
our wonderful collaboration, for his support and for all the things I learned while
working on our projects in London. I also want to particularly thank Prof. Dr Hans
Gellersen for providing me with the opportunity to spend a couple of weeks at his
research group at Lancaster University. Thank you to Dr Fahim Kawsar and Prof.
Dr Gerd Kortuem for our collaboration on the situated glyphs project. Fahim, also
thanks for all your advice over the past years. I also thank: Prof. Dr Elise van den
Hoven, Prof. Dr Saul Greenberg, Prof. Dr Sebastian Boring, Jakub Dostal, Sarah
Mennicken, Prof. Dr Elaine Huang, Victor Cheung, Diane Watson, Prof. Dr Mark
Hancock, Prof. Dr Stacey D. Scott, Steven Houben, Prof. Dr Jakob Bardram, Dr
Adalberto L. Simeone and Kevin Smith.

I met some amazing PhD students along the way, and I particularly want to thank
Sarah Mennicken, Dr Brian Y. Lim, Dr Rémi Barraquand, and Lindsay MacDonald.
Special thanks to Lindsay and Sarah for proof-reading early drafts of this disserta-
tion.

I would like to thank my family and friends for their support. In particular, thank
you to my parents for their encouragement, and for taking care of so many little
things that made my life easier in the last few months. I would especially like to
thank my father for sparking my interest in science, and always encouraging me to
challenge myself and explore the limits of my abilities. Special thanks to my late
uncle Tony who unfortunately passed away while I was pursuing this degree. Thank
you for your feedback on my early papers, which greatly improved my English
writing skills. I wish I could have shared this accomplishment with you. Also thanks
to my aunt Lieve for all her support and encouragement, and to my cousin Sarah for
doing amazing voice-overs for my research videos. I also like to thank my friends
for the necessary diversions from work. In particular, thank you to Bart Dehairs,
Davy Jooken, Johan Nulens, Dr Lode Vanacken and Luk Vloemans for always being
available for support and distraction.

Last but not least, I would like to thank my girlfriend Nancy. Thank you for being
so patient with me (especially during these last months), for always believing in me
and encouraging me during the most stressful times, and for supporting me in all
my endeavours.

viii

P U B L I C AT I O N S

Materials, ideas and figures have appeared previously in the following publications.
A full list of publications is available in Appendix A.

conference papers

• Jo Vermeulen, Kris Luyten, Karin Coninx, and Nicolai Marquardt. The Design
of Slow-Motion Feedback. In Proceedings of the 2014 Conference on Designing
Interactive Systems, DIS ’14, pages 267–270, 2014. ACM. ISBN 978-1-4503-2902-
6.

• Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. Crossing
the Bridge over Norman’s Gulf of Execution: Revealing Feedforward’s True
Identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 1931–1940, 2013. ACM. ISBN 978-1-4503-1899-0.

• Jo Vermeulen, Kris Luyten and Karin Coninx. Intelligibility Required: How
to Make us Look Smart Again. In Proceedings of the 10th Romanian Conference
on Human-Computer Interaction, ROCHI ’13, 2013.

• Jo Vermeulen, Kris Luyten, and Karin Coninx. Understanding Complex Envi-
ronments with the Feedforward Torch. In Ambient Intelligence, volume 7683 of
Lecture Notes in Computer Science, pages 312–319. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-34897-6.

• Jo Vermeulen, Fahim Kawsar, Adalberto L. Simeone, Gerd Kortuem, Kris
Luyten, and Karin Coninx. Informing the Design of Situated Glyphs for a
Care Facility. In Visual Languages and Human-Centric Computing (VL/HCC), 2012
IEEE Symposium on, VLHCC ’12, pages 89–96, 2012.

• Fahim Kawsar, Jo Vermeulen, Kevin Smith, Kris Luyten, and Gerd Kortuem.
Exploring the Design Space for Situated Glyphs to Support Dynamic Work En-
vironments. In Pervasive Computing, volume 6696 of Lecture Notes in Computer
Science, pages 70–78. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21725-
8.

• Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Pervasive-
Crystal: Asking and Answering Why and Why Not Questions about Pervasive
Computing Applications. In Intelligent Environments (IE), 2010 Sixth Interna-
tional Conference on, pages 271–276, 2010. IEEE.

• Jo Vermeulen, Jonathan Slenders, Kris Luyten, and Karin Coninx. I Bet You
Look Good on the Wall: Making the Invisible Computer Visible. In Ambient

ix

Intelligence, volume 5859 of Lecture Notes in Computer Science, pages 196–205.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-05407-5.

extended abstracts

• Jo Vermeulen. Improving Intelligibility and Control in Ubicomp. In Adjunct
Proceedings of the 12th ACM International Conference on Ubiquitous Computing,
Ubicomp ’10 Adjunct, pages 485–488, 2010. ACM. ISBN 978-1-4503-0283-8.

• Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Answering
Why and Why Not Questions in Ubiquitous Computing. In Proceedings of the
11th ACM International Conference on Ubiquitous Computing – Adjunct Papers,
Ubicomp ’09 Adjunct, pages 210–213, 2009.

x

R E S E A R C H C O L L A B O R AT I O N A C K N O W L E D G E M E N T S

The research presented in this dissertation was not undertaken by me alone. Even
though a dissertation is mostly an individual contribution to science, it would not
be possible without successful and inspiring collaborations with other researchers.
Here, I acknowledge the contributions of a talented group of research collaborators
both at Hasselt University and at external institutions. Without their efforts, this
research could not have been realized in its current scope. My first and foremost
collaborators were my advisor Prof. Dr Karin Coninx and co-advisor Prof. Dr Kris
Luyten, under whose supervision I undertook this dissertation research.

Chapter 4 The situated glyphs prototype and system were developed by a team
at Lancaster University (UK), led by Prof. Dr Gerd Kortuem and Dr Fahim Kawsar.
I contributed to the conceptual design of situated glyphs, and designed and con-
ducted the study at Mainkofen District Hospital in collaboration with Dr Fahim
Kawsar, Prof. Dr Gerd Kortuem and Esunly Medina. This research resulted in two
publications: one paper detailing the situated glyphs design space (Kawsar et al.,
2011) and a follow-up study (Vermeulen et al., 2012a) at another care facility. Co-
authors on these publications are Fahim Kawsar, Gerd Kortuem, Kris Luyten, Karin
Coninx, Adalberto L. Simeone and Kevin Smith.

Chapter 5 The research on reframing feedforward (Vermeulen et al., 2013b) was
done in collaboration with Prof. Dr Elise van den Hoven (TU Eindhoven, Nether-
lands). Gert Vos implemented the Feedforward Torch prototype and conducted the
study for his Master’s thesis at Hasselt University, under the supervision of me and
my advisors. I did the conceptual work on the Feedforward Torch and iteration on
prototyping, and wrote the resulting publication (Vermeulen et al., 2012b).

Chapter 6 The conceptualization of slow-motion feedback (Vermeulen et al.,
2014) was done in collaboration with Dr Nicolai Marquardt (University College
London, UK). The research on The Visible Computer (Vermeulen et al., 2009a) was
conducted in collaboration with Jonathan Slenders during his research internship
at Hasselt University, under supervision of me and my advisors. Jonathan Slenders
implemented the prototype of the Visible Computer; the conceptual foundation for
the prototype and iteration on visualization designs were done by me, in addition
to the design and execution of the study.

Chapter 7 The research on PervasiveCrystal (Vermeulen et al., 2010) was con-
ducted in collaboration with Dr Geert Vanderhulst at Hasselt University. Part of the
implementation was done collaboratively with Dr Geert Vanderhulst, but the major-
ity of programming work was done by me. The study was designed and conducted
by me.

xi

Chapter 8 The research on Proxemic Flow was done in collaboration with Dr
Nicolai Marquardt (University College London, UK), Dr Jon Bird (City University
London, UK) and my advisors. The conceptual work for the floor visualizations
was done in collaboration with Dr Nicolai Marquardt. Dr Jon Bird developed the
LED floor display hardware and initial software. I led the design and implemen-
tation of the Proxemic Flow architecture, including the floor toolkit, tracking and
rendering components, and the alternative projector-based setup. The majority of
the programming work was done by myself, but parts with respect to integrating
the floor display hardware and software were done collaboratively with Dr Nicolai
Marquardt. A paper describing Proxemic Flow co-authored by the above team is
still in submission at the time of publication of this dissertation.

xii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Approach and Methodology . 2

1.3 Contributions . 3

1.4 Dissertation Outline . 4

2 the problem : interaction challenges in ubiquitous comput-
ing 7

2.1 Ubiquitous computing – The Dawn of Context-Aware Computing . . 7

2.2 Interaction Challenges within Context-Aware Computing 12

2.2.1 What Changed with Context-Aware Computing 12

2.2.2 Fundamental Problems with the Notion of Context-Aware Com-
puting . 14

2.2.3 The Need for Intelligibility and Control 16

2.3 Intelligibility and Control in Norman’s Stages of Action 21

2.3.1 Norman’s Seven Stages of Action 21

2.3.2 Interaction with Autonomous Systems 23

2.3.3 Coping with the Complexity and Dynamic Behaviour of Context-
Aware Systems . 25

2.3.4 Dealing with Implicit Input . 27

2.3.5 Mapping the Dissertation Chapters to the Seven Stages of Ac-
tion Model . 28

2.4 Conclusion . 29

3 a design space for intelligibility and control 31

3.1 Introduction . 31

3.2 Techniques to Support Intelligibility and Control 32

3.2.1 Support for Intelligibility: Improving Understanding 32

3.2.2 Support for Control: Allowing Users to Intervene 34

3.3 Design Space . 36

3.3.1 Timing . 38

3.3.2 Generality . 39

3.3.3 Co-location . 41

3.3.4 Initiative . 42

3.3.5 Modality . 44

3.3.6 Level of Control . 46

3.4 Insights from Mapping the Design Space 47

3.5 Conclusion . 49

4 exploratory study of a context-aware guidance system for

nurses 51

4.1 Introduction . 51

4.2 Situated Glyphs: Providing Activity-Aware Visual Instructions 52

4.3 User Study . 55

xiii

xiv contents

4.3.1 Objectives and Motivation . 55

4.3.2 Results from Formative Study at District Hospital Mainkofen . 56

4.3.3 System Description . 56

4.3.4 Study Methodology . 60

4.4 Quantitative Results . 63

4.5 Qualitative Results . 64

4.5.1 Use Attachable Displays to Present Real-time, Activity-centric
Information . 65

4.5.2 Allow Nurses to Switch to User-driven Interaction 68

4.5.3 Task Overviews and Completion Confirmations are Key Infor-
mation . 70

4.6 Discussion . 70

4.7 Conclusion . 71

5 the design principle feedforward 73

5.1 Introduction . 73

5.2 Background . 74

5.3 Use of Feedforward . 76

5.4 Feedforward Definitions . 78

5.4.1 Djajadiningrat: Going Beyond Affordances 78

5.4.2 Wensveen: Inherent, Augmented & Functional Feedforward . . 79

5.4.3 Gaver: Technology Affordances 81

5.4.4 Kaptelinin and Nardi: Mediated Action & Affordances 82

5.4.5 Hartson: Feedforward as a Cognitive Affordance 83

5.4.6 Norman: Natural Mapping, Conceptual Models, Symbols and
Constraints . 87

5.5 Reframing Feedforward . 89

5.5.1 Disambiguation: Affordances, Feedforward & Feedback 90

5.5.2 Hidden and False Feedforward 92

5.5.3 Nested and Sequential Feedforward 94

5.5.4 Retrospect: Definitions and Examples 94

5.6 Case Study: The Feedforward Torch . 96

5.6.1 Introduction . 96

5.6.2 The Prototype: Hardware and Functionality 97

5.6.3 Related Work . 98

5.6.4 User Study . 100

5.6.5 Discussion . 102

5.7 Conclusions . 103

6 slow-motion feedback 105

6.1 Introduction . 105

6.2 Design Space for the Timing of Feedback 107

6.2.1 Introduction . 107

6.2.2 Relation to the Design Space for Intelligibility and Control . . 108

6.2.3 Strategies Covered by the Design Space 110

6.2.4 Defining Slow-Motion Feedback 112

6.3 An Application of Slow-Motion Feedback: The Visible Computer . . . 113

contents xv

6.3.1 Introduction . 113

6.3.2 Related Work . 115

6.3.3 A Visual Representation of Behaviour 116

6.3.4 Implementation . 118

6.3.5 Evaluation . 120

6.4 Applications of Slow-Motion Feedback 122

6.4.1 Visualizing Behaviour and Causality: The Visible Computer . . 122

6.4.2 System Demonstration . 122

6.4.3 Progressive Feedback . 123

6.4.4 Postponed Feedback . 124

6.4.5 Emphasizing Change . 125

6.5 Discussion . 125

7 answering why and why not questions about context-aware

applications 127

7.1 Introduction . 127

7.1.1 Answering Why and Why Not Questions to Improve Under-
standing . 127

7.1.2 Scope and Chapter Outline . 128

7.2 Usage Scenario . 129

7.2.1 Posing Why Questions . 129

7.2.2 Why Not Questions . 130

7.3 Related Work . 131

7.4 The Behaviour Model . 133

7.4.1 ReWiRe: A Framework for Rewiring Context-Aware Ubicomp
Applications . 133

7.4.2 Annotating ReWiRe’s Behaviour Model 136

7.5 Supporting Why Questions and Providing Control 138

7.5.1 Generating Questions . 138

7.5.2 Generating Answers . 139

7.5.3 Providing Control . 140

7.6 User Study . 141

7.6.1 Participants and Method . 141

7.6.2 Observations . 142

7.7 Limitations and Possible Extensions . 143

7.7.1 Scalability . 143

7.7.2 Support for Machine Learning 143

7.7.3 Supporting Other Types of Questions 143

7.8 Conclusion . 144

8 intelligibility and control for proxemic interactions 145

8.1 Introduction . 145

8.1.1 Proxemic Interactions . 145

8.1.2 Relation to Context-Aware Computing and Relevance to This
Dissertation . 146

8.1.3 Proxemic Flow: In-Situ Floor Visualizations to Mediate Large
Surface Interactions . 147

xvi contents

8.2 Background and Motivation . 149

8.2.1 Intelligible Sensing . 149

8.2.2 Implicit Interaction . 150

8.2.3 Invisibility of Action Possibilities and Lack of Guidance 150

8.2.4 Lack of Support for Opt-in and Opt-out Mechanisms 150

8.3 Related Work . 151

8.3.1 Feedback, Discoverability and Guidance for Large Interactive
Surfaces . 151

8.3.2 Interactive Illuminated Floors . 153

8.4 In-Situ Floor Visualization Strategies . 154

8.4.1 Phase 1. In-Situ Personal Tracking Feedback with Halos 156

8.4.2 Phase 2. Zones and Borders: Entries and Exits for Interaction . 159

8.4.3 Phase 3. Waves and Footsteps: Inviting for Approach, Spatial
Movement or Next Interaction Steps 161

8.4.4 Summary . 163

8.5 Proxemic Flow Architecture . 163

8.5.1 Hardware Setup of the Interactive Floor Display 164

8.5.2 Tracking Users . 165

8.5.3 Rendering Pipeline: Updating the Floor Display 165

8.5.4 Proxemic Flow Toolkit . 166

8.5.5 Generalizability . 168

8.6 Discussion . 169

8.6.1 What to Show? . 169

8.6.2 When to Show Information? . 170

8.6.3 Where to Show Information? . 171

8.7 Conclusion . 171

9 conclusions 173

9.1 Restatement of Contributions . 173

9.2 Future Work . 174

9.2.1 Intelligibility and Control “In the Wild” 174

9.2.2 Multi-User Intelligibility . 175

9.2.3 Further Exploring and Extending the Design Space 176

9.2.4 Beyond Context-Aware and Ubiquitous Computing Applica-
tions . 179

9.3 Closing Remarks . 180

a list of publications 181

b user studies 185

b.1 Situated Glyphs . 185

b.2 The Feedforward Torch . 191

b.3 The Visible Computer . 196

b.4 PervasiveCrystal . 199

c nederlandstalige samenvatting 203

bibliography 205

L I S T O F F I G U R E S

Figure 2.1 The three waves of computing according to Weiser: main-
frames, PCs, and ubiquitous computing1. 8

Figure 2.2 Weiser’s vision of three different device form factors: (a) the
inch-scale PARCtab, (b) the slightly larger foot-scale PARC-
pad, and (c) the yard-scale LiveBoard (image sources: Weiser
(1991) and PARC2). 9

Figure 2.3 An example of the shift towards more implicit interaction:
the Portholes system (Dourish and Bly, 1992), providing aware-
ness of distributed groups of co-workers through video snap-
shots (image source: Buxton, 1995a). 11

Figure 2.4 Norman’s Action Cycle (Norman, 2013b): formulating goals,
executing actions that impact the state of ‘the world’, and
evaluating these changes to see whether the goals have been
met. The Seven Stages of Action consist of one stage for goals,
three stages for execution and three for evaluation. 22

Figure 2.5 When a context-aware system acts autonomously, we start at
the right side of the action cycle, where the user goes through
the three stages of evaluation. 23

Figure 2.6 When users decide that the system’s action is undesired, and
wish to override it, we move back to the left side of the action
cycle: the execution stage. 25

Figure 2.7 Explanations can help users to build up a conceptual model,
both in the evaluation and execution stages. Feedforward is
useful in the execution phase: it helps users predict what the
result of their actions will be. 26

Figure 2.8 Systems that employ implicit interaction can increase the gulf
of execution due to a lack of discoverability and visibility of
action possibilities. 28

Figure 2.9 Overview of how the different techniques proposed in this
dissertation can be situated as design solutions in Norman’s
Seven Stages of Action. 29

Figure 3.1 Google Maps shows a blue circle that changes in size to con-
vey how confident it is of the user’s current location (source:
Google Maps for Android, base map © Google Maps 2014). . 31

Figure 3.2 Explanations for recommendations in Amazon’s Kindle Store. 33

Figure 3.3 The design space for intelligibility and control, consisting of
six dimensions. 36

Figure 4.1 A hypothetical nursing care scenario with and without situ-
ated glyphs. Situated glyphs present task- and activity-centric
information to the nurse. 52

xvii

xviii List of Figures

Figure 4.2 An illustrative design of a situated glyph. 53

Figure 4.3 Different placement possibilities for situated glyphs. 54

Figure 4.4 Different versions of the situated glyph prototypes. The first
prototype (a) enclosed an iPod touch to only show part of
the screen. The latest prototype (b) runs on custom hardware
and has a physical size of 51 mm ⇥ 30 mm. 55

Figure 4.5 The different types of glyphs used in the study. 57

Figure 4.6 The two prototypes in use. Participants held the external pro-
totype (an Apple iPod touch) in their hand while perform-
ing tasks, or they wore the embedded prototype around their
neck which allowed them to keep both hands free. 58

Figure 4.7 The embedded prototype consisted of a wearable plastic case
with a strap, allowing participants to wear the device around
their neck. The case contained an Apple iPod touch running
our software connected to a MicroVision ShowWX™ Laser
Pico Projector and a mirror oriented at 45 degrees to allow
the projected image to be displayed in front of the participants. 59

Figure 4.8 The wizard controlled the prototypes through a dedicated
controller web page. 59

Figure 4.9 The apparatus used for the study: a variety of toy medical
instruments (e.g., a stethoscope and manometer, an injection
needle, bandages) together with dolls that served as stand-
ins for patients. All objects were numbered and tagged with
RFID tags (coloured square stickers). 61

Figure 4.10 The setup of the rooms: two beds with patients (a table with
a doll) on opposite sides of the room, and a cart with medical
equipment (a chair with toy instruments) in the middle of the
room. 62

Figure 4.11 The different medical procedures participants had to per-
form during the study and their allocation to the four dif-
ferent patients. 63

Figure 4.12 Results based on questions from the IBM Computer Usability
Satisfaction Questionnaire for all four conditions. 64

Figure 4.13 Results based on questions from the NASA Task Load Index
for all four conditions. 65

Figure 4.14 Nurses felt they had to be aware of the wearable projector
at all times, as it would dangle and sometimes twist and
turn when they were leaning forward, causing the projected
image to be displayed elsewhere. 66

Figure 4.15 Participants often placed the mobile device in front of them
in order to still have both hands free to do the activities. . . . 67

Figure 5.1 When the flash is set to auto (top left corner in both figures),
the iPhone shows a yellow flash icon in low light conditions
(b) to indicate that the camera flash will be used (source:
Apple iOS 7). 73

List of Figures xix

Figure 5.2 The role of perceived affordances (or signifiers: see Norman,
2008), feedforward, and feedback in Norman’s Stages of Ac-
tion model (image based on Norman, 1988). 76

Figure 5.3 Examples of feedforward in gestural interaction (images based
on Kurtenbach et al., 1993 and Bau and Mackay, 2008). 77

Figure 5.4 Wensveen’s three types of feedforward. Images from (Wensveen,
2005) reused with permission (Copyright © 2005 Stephan
Wensveen). 80

Figure 5.5 The need for physical, cognitive, sensory and functional af-
fordances in Norman’s Stages of Action model according to
Hartson (image based on Hartson, 2003). 86

Figure 5.6 The result of combining Figure 5.2 and Figure 5.5, which sug-
gests that both feedback and feedforward can be seen as cog-
nitive affordances. 86

Figure 5.7 Norman’s view on feedforward and feedback: feedforward
answers questions of execution, while feedback answers ques-
tions of evaluation (image based on Norman, 2013b, pg. 71). . 88

Figure 5.8 An overview of how (a) perceived affordances, (b) feedfor-
ward, and (c) feedback (c) can be explained using Hartson’s
four types of affordances. C, S, F and PH refer to Hartson’s
Cognitive, Sensory, Functional and Physical affordances re-
spectively. In (c), the functional and physical affordances to-
gether constitute an action possibility. While perceived af-
fordances and feedforward provide information before the
user’s action (pre-action), feedback occurs after the user’s ac-
tion. 91

Figure 5.9 False and hidden feedforward. False feedforward provides
incorrect information about the functional affordance, while
hidden feedforward provides no information about the func-
tional affordance that is coupled to the action. 93

Figure 5.10 An example of false feedforward: so-called ‘scareware’ that
tricks users into installing malware, although it actually ad-
vertises to clean the user’s computer. 93

Figure 5.11 Two examples of nested feedforward: Disney AppMATes and
The Tangible Video Editor (image sources: YouTube). 96

Figure 5.12 Using the Feedforward Torch to understand a bank of light
switches. First, the user aims for the right object by pressing
a button on the bottom of the device that activates the laser
pointer. When he points at a particular light switch, a visu-
alization of the room is projected that shows which light(s)
will turn on when flipping that switch (call-out). 97

Figure 5.13 The Feedforward Torch encloses an Android smartphone,
pico projector and a laser pointer in a plastic case (left). It is
connected to a Wizard of Oz controller that runs on another
Android smartphone (right). 98

xx List of Figures

Figure 5.14 The Wizard of Oz controller application (right) provides con-
trols for showing specific visualizations categorized in differ-
ent rooms (see the drop-down menu at the top). The wizard
can also turn off the projection, indicate that no information
is available, or show a visualization for the opposite user action. 99

Figure 5.15 The three scenarios participants encountered in the study of
the Feedforward Torch. 101

Figure 6.1 An application of slow-motion feedback. Animations show
that the system is about to dim the lights (a). The system’s
action is slowed down to allow users to notice what is hap-
pening, and provide sufficient time to intervene, if necessary.
The lights are only dimmed when the animating line reaches
them (b). 106

Figure 6.2 Another example of slowing down the system action: pro-
viding a specific time window during which sent emails can
be ‘undone’ (source: Gmail). 106

Figure 6.3 The design space for when and how information about the
result of an action can be provided. These axes (time and level
of detail) also apply to the rest of the figures in this chapter. . 107

Figure 6.4 The three regions in the design space: before, during, and
after the action. 108

Figure 6.5 The design space combining time and level of detail (Fig-
ure 6.3) allows for a more fine-grained exploration of the
timing dimension in the overall design space for intelligi-
bility and control (Figure 3.3). 109

Figure 6.6 Feedback (a) and different options for the duration of feed-
back (b). 110

Figure 6.7 Incremental and continuous intermediate feedback. 111

Figure 6.8 Information about the result of an action can be shown before
t

0

, in which case it is feedforward (see Chapter 5). 112

Figure 6.9 Slow-motion feedback amplifies the time to intervene by show-
ing feedback until t

2

instead of t
1

. 113

Figure 6.10 A projected visual representation of the context-aware en-
vironment shows the different devices and sensors that are
present and how events trigger system actions. 114

Figure 6.11 Example trajectory visualizations. 117

Figure 6.12 When the action ‘light off’ is cancelled, the microphone de-
stroys the light icon. 118

Figure 6.13 Software applications in the context-aware environment can
send requests to the rendering engine to make their behaviour
visible to end-users. 119

Figure 6.14 Two examples of explanations that participants created dur-
ing the study: (a) explaining why the lights go out in task 1

and (b) explaining how the cancel feature works in task 2. . . 121

Figure 6.15 Using slow-motion feedback to visualize system behaviour. . 123

List of Figures xxi

Figure 6.16 Ju et al. use slow-motion feedback in the Range whiteboard
to provide users with awareness of system actions and pro-
vide the opportunity to override these actions. 123

Figure 6.17 Progressive feedback gives users control over the speed at
which information is revealed. 124

Figure 6.18 Postponed feedback is only shown after t

2

, even though the
action was already completed at t

1

. 124

Figure 6.19 Phosphor increases both the level of detail and time. 125

Figure 7.1 Two examples of the use of why questions to improve under-
standing: (a) in complex end-user GUI applications, and (b)
in debugging complex applications (source: images extracted
from the respective papers). 127

Figure 7.2 Posing a why question: PervasiveCrystal shows available ques-
tions, based on events that recently took place in the environ-
ment (A). Answers are generated by linking events to what
caused them to happen (B.1). Additionally, users have two
means for correcting the environment’s behaviour: they can
undo operations (B.2) or invoke fine-grained control user in-
terfaces (B.3), in this case: a light control user interface (B.4). . 129

Figure 7.3 Posing a why not question: This time, nothing happens when
Bob moves in front of the display. By asking a why not ques-
tion, Bob is able to figure out that the system did not sense
motion (A). He then notices that the camera cable is un-
plugged. Bob is again provided with different ways to con-
trol the environment. He can use the do command to force
the system to play the movie anyway (B), or bring up the
media control user interface (C-D). 131

Figure 7.4 ReWiRe’s environment ontology, of which an instance is cre-
ated dynamically at runtime to represent the context-aware
environment (image source: Vanderhulst, 2010). 134

Figure 7.5 ReWiRe’s behaviour model: (a) the behaviour model consists
of ECAA-1 rules where an event is represented by a combi-
nation of a resource and a sensor; (b) an instance of a rule
that turns on the lights when motion is sensed. Note that
this specific rule has no condition associated with it (images
based on Vanderhulst, 2010). 135

Figure 7.6 Script editor for adding behaviour rules using a few lines of
JavaScript. 135

Figure 7.7 Annotations added to ReWiRe’s behaviour model: (a) short
descriptive labels for each event, condition, and (inverse) ac-
tion together with ‘what’ and ‘why’ descriptions for events;
(b) an annotated version of the rule from Figure 7.5b, includ-
ing the ‘might trigger’ relation. 137

Figure 7.8 Annotations can be easily added in the JavaScript behaviour
editor. 137

Figure 7.9 The why menu allows users to pose why and why not ques-
tions about events that happened in the environment. Users
receive answers to their questions, and are offered a means
to recover from undesired behaviour. 138

Figure 7.10 The setup for the study: participants used PervasiveCrystal
on an UMPC in a smart museum environment. 141

Figure 8.1 The five dimensions of proxemics (image source: Greenberg
et al., 2011). 145

Figure 8.2 (a) Proxemic Flow provides awareness of tracking and fi-
delity, action possibilities, and invitations for interaction; (b)
the shaded region shows where Proxemic Flow fits in the
design space for intelligibility and control. 148

Figure 8.3 Examples of the use of LED floor displays in urban spaces. . . 149

Figure 8.4 Our photo gallery application responds to the user’s prox-
imity to the display. When users approach the display, it will
gradually reveal more thumbnails, a behaviour that is iden-
tical to the Proxemic Media Player (Ballendat et al., 2010). . . 155

Figure 8.5 Halos provide feedback about active tracking (a), and also
reveal the tracking quality: a green halo (b) indicates optimal
tracking, a yellow halo (c) represents reduced accuracy, and
a briefly pulsating red halo (d) shows that tracking is lost. . . 157

Figure 8.6 Halos for multi-user interaction when (a) both people are
visible to the system and (b) when one person is occluding
the other, indicated by the red halo. 158

Figure 8.7 Trails visualize the history of spatial movements of a person. 159

Figure 8.8 The interaction areas in front of the display represented as
(a) red and (b) blue rectangular zones; (c) borders indicate
thresholds to cross for (d) leaving the interaction space in
front of the display. 160

Figure 8.9 Waves inviting for interaction (a) and footsteps suggesting
action possibilities (b). 162

Figure 8.10 The floor displays consists of the 216 light wells as indicated
by the shaded area. 164

Figure 8.11 The Proxemic Flow rendering pipeline. Visualizations on the
floor display are abstracted in a floor scene (a). This floor scene
is processed by the floor renderer (b), resulting in (c) a floor
bitmap (an abstraction of a floor display update) that is send
over the network to the connected floor displays that imple-
ment the IFloor interface (d). We also implemented a pro-
jected floor display (f). 166

Figure 8.12 Alternative floor display using a ceiling-mounted short-throw
projector. 168

Figure 9.1 The different prototypes and case study situated in the de-
sign space for intelligibility and control. 177

xxii

Figure 9.2 The combination of dark areas shows the subspace within
the design space that was covered in this dissertation, while
lighter areas indicate additional open areas for exploration. . 178

L I S T O F TA B L E S

Table 3.1 The timing dimension allows us to distinguish between tech-
niques that provide information before, during, or after the
action. Note that coloured boxes with check marks indicate a
technique’s primary classification, while small check marks
indicate a possible alternative classification. 39

Table 3.2 The generality dimensions differentiates between techniques
that are generally applicable versus domain- or application-
specific ones. 40

Table 3.3 The degree of co-location dimension allows us to separate
techniques that are are embedded in the application from
techniques that are used through an external interface. 41

Table 3.4 The initiative dimension represents whether information is
is available upon request, or rather whether it is provided
automatically when deemed necessary. 43

Table 3.5 The modality dimension indicates what modality is used to
convey information or exert control over the system. 45

Table 3.6 The level of control dimension indicates what means users
have to control the system. 46

Table 3.7 Overview of the different techniques represented in the de-
sign space for intelligibility and control. 48

Table 5.1 Summary of the coverage of the feedforward definitions, their
differences and an analysis of several feedforward examples
in practice. 79

Table 8.1 An overview of our different floor visualization strategies. . . 155

L I S T I N G S

Listing 8.1 Code to implement a pulsating dot animation at a specific
location. 167

xxiii

xxiv Listings

Listing 8.2 Code that shows a steps animation towards ‘frontZone’, if
the user is currently not in that zone and has been standing
still for more than 5 seconds. 167

1
I N T R O D U C T I O N

1.1 motivation

In the last decade, we have seen computing being increasingly integrated into our
everyday lives. Computers have moved from the desktop into our pockets, onto our
wrists and into our homes, where they are being integrated into everyday household
appliances such as thermostats and vacuum cleaners. In terms of performance, to-
day’s mobile computers are yesterday’s supercomputers. They use an ever-growing
array of sensors and sophisticated algorithms to automatically respond to the situa-
tion in which they are used, making them context-aware. In this sense, one could say
that we have arrived at Weiser’s vision of ubiquitous computing (Weiser, 1991).

The increasing sophistication of computers and their advanced sensing capabili-
ties might indicate that they have become easier to use, but this is not necessarily
the case. At the heart of the problem lies the great paradox of context-aware com-
puting: as machines become ‘smarter’, have more capabilities to sense what we are
doing, and attempt to autonomously respond to those changes, they can actually
become harder to use. When context-aware systems work well, they correspond to
Weiser’s ideal of calm computing (Weiser and Brown, 1995) and can indeed make
our lives easier. However, when they fail, they become an inconvenience and can
make our lives more difficult, requiring us to constantly monitor them (Norman,
2009). In contrast, traditional ‘dumb’ computers behave in a more expected manner,
that is to say, they tend to only act when they are told to.

In “The Design of Future Things”, Norman (2009, pg. 13) argues that machines
themselves are not intelligent, rather, their intelligence resides in the mind of the
designer, who tries to imagine all possible situations that might occur and devise
solutions to each of these situations. It is, however, unlikely that the designer can
predict every situation that may cause errors in the operation of the machine, and
even more unlikely that the designer will be present to devise a solution to unex-
pected situations. Even systems that rely on sophisticated inferencing algorithms
are trained to recognize and respond to specific types of situations. Computers will
continue to have difficulties in dealing with unexpected situations, and this issue
will persist for many years to come (Rogers, 2006). Moreover, when computers in-
teract with humans, unexpected situations are the norm rather than the exception.
Context-aware systems will make mistakes as there are usually unique human as-
pects of the context that cannot reliably be sensed (Bellotti and Edwards, 2001).

The difficulty of building robust context-aware systems and the interaction chal-
lenges users face when interacting with context-aware systems have been identified
in previous work (e.g., Bellotti and Edwards, 2001; Bellotti et al., 2002; Cheverst et al.,
2001; Erickson, 2002; Greenberg, 2001). In the literature, two important principles

1

2 introduction

have been proposed to address interaction challenges with context-aware comput-
ing: intelligibility and control. Intelligibility is the ability of a context-aware system to
present itself and its behaviour to its users: what it knows, how it knows this, and
how it is using that information (Bellotti and Edwards, 2001). Control, on the other
hand, deals with allowing users to intervene when the system makes a mistake (e.g.,
to cancel or control a system action in progress). There are also some situations in
which systems require user involvement (e.g., because there is an increased risk of
the system making the wrong decision). It is important to note that intelligibility is
a prerequisite for control: before users can intervene, systems must provide them
with sufficient information about what they have done and are currently doing.

Although a number of techniques have been explored to improve intelligibility
and control for context-aware systems, such as providing textual explanations (Lim
and Dey, 2010), it is not yet clear how ubiquitous computing (ubicomp) researchers,
developers and interaction designers should design for intelligibility and control.
The availability of a library of existing examples and a set of reusable design princi-
ples that can be employed could lay the groundwork that is required to resolve the
difficulties of smoothly integrating ubicomp technologies into our lives.

1.2 approach and methodology

In this dissertation, I approach providing support for intelligibility and control in
context-aware systems from a design perspective. This work serves as a design space
exploration that aims to be:

• generative by providing design dimensions that can inform the design and
selection of various ways to support intelligibility and control; and

• generalizable by presenting design principles and techniques that can be ap-
plied in a wide range of ubicomp scenarios.

Similar to generative theories in human-computer interaction (Rogers, 2004; Shnei-
derman, 2006), which provide design dimensions and constructs to generate new
ideas and inform novel designs, this design space exploration can be used to in-
form and guide ubicomp interaction designers, researchers, and developers in cre-
ating innovative design solutions to support intelligibility and control. Based on
a review and analysis of the literature, and informed by insights from designing
context-aware systems for demanding work environments (Chapter 4), I present
several design dimensions that capture different decisions that designers face when
adding support for intelligibility and control (Chapter 3). I then analyse differ-
ent designs as points in a multi-dimensional space formed by the design space
dimensions, and contribute a number of novel techniques within this space (see
Section 9.2.3 for an overview). This dissertation particularly focuses on the timing
dimension in the design space, as this dimension has not been extensively explored
in the literature before. To further increase the generative power of the presented de-
sign space (Beaudouin-Lafon, 2004), I introduce general design principles and tech-
niques along the timing dimension (Chapters 5–7). Finally, I discuss a case study

1.3 contributions 3

of supporting intelligibility and control for proxemic interactions that can serve as
inspiration for designers looking to apply the work presented in this dissertation to
different ubicomp applications (Chapter 8).

Given the multi-dimensional nature of the problem, I use a multi-faceted method-
ological approach, combining several research methods. As mentioned previously,
I performed a design space analysis in Chapter 3 to provide an overview of design
decisions related to intelligibility and control. Additionally, I conducted an in-depth
literature review to provide a refined definition of feedforward and disambiguate
it from perceived affordances and feedback (Chapter 5). The design-centric perspec-
tive is combined with technology-centric (i.e., prototypes and technical frameworks)
and analysis-centric perspectives (i.e., user studies), where appropriate. In particu-
lar, several prototypes were developed to illustrate the proposed design principles,
concepts and techniques, and to demonstrate their feasibility (e.g., the Feedforward
Torch in Section 5.6, the Visible Computer in Section 6.3, PervasiveCrystal in Chap-
ter 7, and Proxemic Flow in Chapter 8). The resulting proof-of-concept systems pro-
vide an underlying platform to further explore different interactions. Additionally,
I gathered informal user feedback on several of the presented techniques, which
allowed me to refine my ideas, inform future design iterations and reflect on the
presented design space.

1.3 contributions

This dissertation makes the following major contributions:

1. A design space for intelligibility and control (Chapter 3) that captures different
decisions that designers face when adding support for intelligibility and con-
trol. The design space can be used as an analytical tool and can help designers
with exploring alternative designs.

2. An in-depth exploration of the timing dimension in this design space. In particular,
I contribute three general techniques that can be used at three different times
during the interaction: before, during, and after actions.

a) Before—The design principle feedforward (Chapter 5), which informs users
of the results of their actions. A new definition of feedforward is pro-
vided that further disambiguates feedforward from feedback and affor-
dances. Several existing examples of feedforward are discussed, includ-
ing the Feedforward Torch technique. Additionally, I identify four new
classes of feedforward: hidden, false, sequential, and nested feedforward.

b) During—The design principle slow-motion feedback (Chapter 6), aimed at
allowing users to intervene during system actions by having the system
slow down when taking action and provide intermediate feedback. I il-
lustrate the application of slow-motion feedback in the Visible Computer
system to provide real-time and in-place feedback in context-aware envi-
ronments using projected visualizations. Furthermore, I introduce a de-

4 introduction

sign space to reason about when and how feedback is provided, and use
this to analyse notable existing applications of slow-motion feedback.

c) After—The ability to pose why questions about the behaviour of a context-
aware system (Chapter 7). This allows users to gain an understanding
of how the system works by receiving intelligible explanations of why
it acted in a certain way. I introduce PervasiveCrystal, a framework for
building context-aware applications that can provide answers to ‘why?’
and ‘why not?’ questions about their behaviour.

3. A case study (Chapter 8) in supporting intelligibility and control for proxemic
interactions, a subdomain of context-aware computing. I discuss the design
and implementation of dynamic peripheral floor visualizations to address in-
teraction challenges with proxemic-aware interactive surfaces. The Proxemic
Flow system uses a floor display that plays a secondary, assisting role to aid
users in interacting with the primary display. The floor informs users about
the tracking status, indicates action possibilities, and invites and guides users
throughout their interaction with the primary display.

1.4 dissertation outline

This dissertation consists of nine chapters including this introductory chapter and
a concluding chapter. As a guide to the organization of the remainder of this disser-
tation, I provide a brief overview of the following chapters:

Chapter 2 The Problem I set the scene by investigating specific interaction
challenges that users face when dealing with ubiquitous computing environments.
I start with an historical account of ubicomp, the notion of context-awareness and
common interaction patterns in ubicomp environments. I then provide an overview
of the interaction challenges users face when dealing with these systems, and ex-
plore the notions of intelligibility and control as means to address these challenges.
Finally, I position these challenges within Norman’s Stages of Action model (Nor-
man, 2013b), and clarify how they relate to the different chapters in this dissertation.

Chapter 3 A Design Space for Intelligibility and Control In this chapter, I ex-
plore design decisions faced by designers when adding support for intelligibility
and control. I introduce a design space for intelligibility and control techniques that
consists of six dimensions and allows for classification and comparison of different
techniques. The following chapters introduce techniques that are situated at differ-
ent points in the design space. Chapters 5–7 explore the timing dimension in the
design space.

Chapter 4 Exploratory Study of a Context-Aware Healthcare System I describe
an exploratory study of a proactive, context-aware mobile guidance system aimed
at aiding nurses in their daily care-giving routines. The study provides additional

1.4 dissertation outline 5

insights into the issues people face when interacting with context-aware systems,
and allowed for a better understanding of the impact of different design choices.

Chapter 5 Feedforward I explore the design principle feedforward, which
tells the user what the result of their action will be. Regarding the timing dimen-
sion, feedforward provides intelligibility before the action. I provide a new defini-
tion of feedforward and further disambiguate it from the related design principles
affordances and feedback. In addition to the discussion of several existing examples of
feedforward, I describe the Feedforward Torch prototype. Finally, I identify four new
classes of feedforward: hidden, false, sequential, and nested feedforward.

Chapter 6 Slow-Motion Feedback Next, I present slow-motion feedback, a tech-
nique to provide intelligibility during the execution of system actions. Slow-motion
feedback provides users with sufficient time to notice what the system is doing and
intervene if necessary. I discuss The Visible Computer, an application of slow-motion
feedback that uses projection to show in-place, real-time feedback about system
actions that are being executed. I then introduce a design space to reason about
the time at which feedback is provided. This design space is used to differentiate
between slow-motion feedback, feedforward and feedback; and to analyse notable
applications of slow-motion feedback.

Chapter 7 Why Questions In this chapter, I look into providing intelligibility
and control after actions have been executed. I present PervasiveCrystal, a frame-
work for building context-aware applications that support automatically generated
answers to ‘why?’ and ‘why not?’ questions about their behaviour.

Chapter 8 Intelligibility and Control for Proxemic Interactions I describe a case
study in supporting intelligibility and control for proxemic interactions. Proxemic
interactions feature people-aware ensembles of devices that employ fine-grained
knowledge of the identity, proximity, orientation or location of their users, and can
thus be seen as a specific type of context-aware systems. I discuss the design and
implementation of Proxemic Flow, a system that relies on a floor display to assist
users in interacting with the primary proxemic-aware display. I describe several dy-
namic peripheral floor visualizations to inform users about tracking status, indicate
action possibilities, and invite and guide users throughout their interaction with the
primary display.

Chapter 9 Conclusions To conclude, I summarize the contributions of this
dissertation and discuss future work.

2
T H E P R O B L E M : I N T E R A C T I O N C H A L L E N G E S I N
U B I Q U I T O U S C O M P U T I N G

In this chapter, we investigate the specific interaction problems that occur within
ubiquitous computing environments, and what it is that specifically makes inter-
action within these environments difficult for end-users. We start with an analysis
of Weiser’s original vision of ubiquitous computing (Weiser, 1991), followed by ex-
amples of the types of interaction and user interfaces that are common in these
environments, in particular focusing on context-aware computing. We then pro-
vide an overview of what changed with context-aware computing, and the different
challenges users encounter when interacting with context-aware systems. We ex-
plore the notions of intelligibility and control as means to address these interaction
challenges. Finally, we situate these interaction problems in Norman’s Seven Stages
of Action model, and clarify at what stages in the interaction with context-aware
systems users face difficulties.

2.1 ubiquitous computing – the dawn of context-aware computing

In his seminal Scientific American article (1991), Mark Weiser outlined his vision
of ubiquitous computing, in which computing moves beyond the desktop and into
our everyday environments. He described ubiquitous computing (ubicomp) as the
third wave of computing, where each person has access to multiple computing
devices that are integrated into their daily environments. In contrast, the first wave
of computing is the mainframe era in which many people used a single computer,
while the second wave of computing is the personal computer (PC) era, with one
computer per person (Figure 2.1).

Weiser’s vision has been influential for research in human–computer interaction,
and in computer science in general. Given the proliferation of large interactive sur-
faces and mobile devices (e.g., smart phones, tablets and smart watches) together
with the integration of computing into household appliances (e.g., smart TVs, ther-
mostats1 smart lighting), Weiser’s prediction of multiple computers per person has
certainly been realized (Bell and Dourish, 2007). Weiser also suggested the use of
computing devices of different form factors. In the late eighties and early nineties
(Weiser et al., 1999), Weiser developed a number of devices together with his col-
leagues at the Xerox Palo Alto Research Center (PARC) to illustrate this idea. They
developed the inch-scale PARCtabs, the slightly larger foot-scale PARCpads (both
mobile with wireless communication abilities), and yard-scale LiveBoards, shown
in Figure 2.2. These three types of devices—‘tabs’, ‘pads’ and ‘boards’—have now
indeed become the dominant form of modern computing, currently instantiated

1 For example, the Nest thermostat: https://nest.com/thermostat
7

https://nest.com/thermostat

8 the problem : interaction challenges in ubiquitous computing

as smartphones, tablets and large interactive surfaces such as tabletops and public
displays (Davidoff, 2012; Abowd, 2012).

20
05

20
00

19
95

19
90

19
85

19
80

19
75

19
70

19
65

19
60

19
55

19
50

19
45

Mainframe (one computer, many people)

PC (one person, one computer)

Ubiquitous Computing (one person, many computers)

D
ev

ic
es

Time

19
40

Figure 2.1: The three waves of computing according to Weiser: mainframes, PCs, and ubiqui-
tous computing2.

Weiser’s article (1991) starts with the now famous phrase: “The most profound
technologies are those that disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it.” He argued to push computers
into the background, and making them an integral, invisible part of people’s lives.
In later articles, Weiser and Brown clarified their idea of ‘the invisible computer’
with the concept of calm computing (Weiser and Brown, 1995, 1997), where ‘calm’
refers to the desired state of mind of the user (Weiser et al., 1999). They argue
that calm technology “will move easily from the periphery of our attention, to the
center, and back” (Weiser and Brown, 1995), and offers information to users, without
demanding attention. In other words, the computer is invisible unless attention
from the user is needed.

With his vision of ubiquitous computing, Weiser laid the foundations for context-
aware computing (Schilit et al., 1994). Context-aware systems use sensors to gain
knowledge about the context—the situation in which they are used—and try to
adapt to this context. Having systems react according to changes in the context of
use without requiring explicit input is a way to effectively move computers into the

2 Reproduced from (Want, 2009) and Mark Weiser’s personal website: http://www.ubiq.com/hypertext/
weiser/UbiHome.html

http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html

2.1 ubiquitous computing – the dawn of context-aware computing 9

(a)

(b) (c)

Figure 2.2: Weiser’s vision of three different device form factors: (a) the inch-scale PARCtab,
(b) the slightly larger foot-scale PARCpad, and (c) the yard-scale LiveBoard (image
sources: Weiser (1991) and PARC3).

background. Context-awareness can therefore be seen as an enabling technology for
realizing Weiser’s vision of ubiquitous computing (Abowd and Mynatt, 2000).

Schilit et al. (1994) state:

“Such context-aware systems adapt according to the location of use,
the collection of nearby people, hosts and accessible devices, as well as
to changes to such things over time. A system with these capabilities
can examine the computing environment and react to changes to the
environment. Context includes lighting, noise level, network connectiv-
ity, communication costs, bandwidth, and even the social situation; e.g.,
whether you are with your manager or with a co-worker.”

Later, Dey (2001) further refined context as “any information that can be used to
characterize the situation of an entity” where an entity is “a person, place, or object
that is considered relevant to the interaction between a user and an application,
including the user and applications themselves”. Dey considers a system context-
aware if “it uses context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task” (Dey, 2001).

The idea is that context-aware systems would release us from the burden of ex-
plicitly providing input to perform the desired operations and from having to pay
full attention to the system. An example of this vision is the work by Cooperstock
et al. (1997) on reactive environments, in which “the technology itself, rather than a
human, manages the low-level operation of the room”. This is similar to Buxton’s

3 http://blogs.parc.com/blog/2010/09/its-time-to-reap-the-context-aware-harvest/

http://blogs.parc.com/blog/2010/09/its-time-to-reap-the-context-aware-harvest/

10 the problem : interaction challenges in ubiquitous computing

notion of ‘off-loading’ secondary commands to the system (Buxton, 1995b). Coop-
erstock et al. argue for reactive environments that respond to the user’s high-level
actions, thereby reducing their cognitive load and the amount of training required.
For example, in the reactive videoconferencing room, slightly leaning left causes a
motorized camera to pan. In contrast with traditional computing systems, context-
aware systems take action based on input collected from the environment using
sensors, allowing for the use of implicit interaction. As argued by Schmidt (2000),
this represents a radical shift in human–computer interaction from direct manipu-
lation graphical user interfaces towards more implicit interaction that is based on
the situational context. Earlier, Nielsen (1993) already identified this shift towards
more implicit interaction with next-generation ‘non-command’ interfaces that “al-
low users to focus on the task rather than on operating the computer”. One of the
arguments for more implicit interaction, as argued by Nielsen (1993), is that “many
users would probably prefer a computer that did what they actually wanted, rather
than what they said they wanted”. As an example, Nielsen discusses the Portholes
system (Dourish and Bly, 1992) that aimed to provide lightweight awareness in
distributed work groups using a collage of video snapshots of co-workers that are
updated every 5 minutes (Figure 2.3). Nielsen mentions that with Portholes, users
“do not need to take any action to inform their co-workers that they are in the office
or that they are meeting with somebody and should not be disturbed”.

In her dissertation, Ju (2008) discusses a number of key differences between im-
plicit and explicit actions, including attention, exclusivity, and grounding. With re-
spect to attention, she mentions that explicit actions require the user’s full attention,
while implicit actions occur in the user’s attentional periphery. In contrast to ex-
plicit actions, which exclude other focal targets, implicit actions are non-exclusive.
Finally, regarding grounding, Ju states that implicit actions require some level of
interpretation, while explicit actions tend to have a generally understood meaning.
Implicit input occurs when a user is, perhaps unconsciously, performing actions in
their attentional periphery and the system reacts accordingly (e.g., walking past a
public display), whereas explicit input is a focused action by the user to provide
input to the system such as clicking a button (Ju, 2008).

Early research in context-aware computing mainly focused on location-awareness,
i.e., having systems respond to location changes. Schilit et al. (1994) discuss several
techniques that make use of the ActiveBadge indoor location tracking system (Want
et al., 1992), such as selecting devices based on physical proximity (e.g., the printer
in the current office), easily exchanging information with nearby devices and peo-
ple and location-aware reminders. Similar functionality is commercially available
today, e.g., Apple’s AirPlay feature to share information across devices4 or Google
Now, which provides location-specific information and reminders on mobile de-
vices5. Other examples of location-aware systems are context-aware mobile guides
such as GUIDE (Cheverst et al., 2000), CyberGuide (Abowd et al., 1997) or ImogI
(Luyten et al., 2004); satellite navigation systems such as TomTom6; and mobile map

4 https://www.apple.com/airplay/
5 http://www.google.com/landing/now/
6 http://www.tomtom.com/

https://www.apple.com/airplay/
http://www.google.com/landing/now/
http://www.tomtom.com/

2.1 ubiquitous computing – the dawn of context-aware computing 11

Figure 2.3: An example of the shift towards more implicit interaction: the Portholes system
(Dourish and Bly, 1992), providing awareness of distributed groups of co-workers
through video snapshots (image source: Buxton, 1995a).

apps such as Google Maps7. The implicit interaction aspect of these location-aware
systems lies in the fact that the user just moves (or drives) to another location, to
which the system adapts its contents. A satellite navigation system, for example,
would provide updated turn-by-turn directions, while a mobile guide would show
updated location-specific information. Users do not need to explicitly provide their
location to the system, or request information that is relevant to their current loca-
tion; their only ‘command’ to the system is their physical presence at that location
(Nielsen, 1993).

Researchers also explored the use of other sensors, such as accelerometers to
sense device orientation and switch between portrait and landscape mode (Hinckley
et al., 2000), the use of RFID tags and scanners to link physical objects to their
virtual counterparts (Want et al., 1999) or RFID-enabled badges to identify people
in front of a public display and adapt the contents accordingly (McCarthy et al.,
2004). In addition, researchers have built ‘context-aware environments’ or ‘smart
spaces’ using frameworks that linked several devices and context-aware services
together: e.g., HP Cooltown (Kindberg et al., 2002), the Stanford iRoom (Borchers

7 https://www.google.com/maps

https://www.google.com/maps

12 the problem : interaction challenges in ubiquitous computing

et al., 2002), and Speakeasy (Newman et al., 2002). Examples of such context-aware
environments are meeting rooms (Cooperstock et al., 1997), classrooms (Abowd,
1999) and smart homes (Kidd et al., 1999; Mozer, 1998; Cook et al., 2003).

However, the characteristics of context-aware computing (such as the use of im-
plicit interaction) also introduce new interaction challenges, which are only exac-
erbated when we move from simple context-aware applications to context-aware
environments. In what follows, we provide an overview of what exactly changed
with context-aware computing, and discuss how these changes result in interaction
challenges.

2.2 interaction challenges within context-aware computing

2.2.1 What Changed with Context-Aware Computing

There are several basic notions about the way we interact with computers—and
with GUI/WIMP systems (Hutchins et al., 1985) in particular—that changed with
the introduction of context-aware computing (Bellotti et al., 2002). Compared to
interacting with context-aware environments, interaction with desktop computers
and GUI applications is easy (Bellotti et al., 2002). There is no doubt what the sys-
tem is: (the box on your desk), there is no confusion over how to provide input
to the system (either using the mouse or keyboard) and where feedback will ap-
pear (on the display). Unlike the adaptive and dynamic context-aware system, the
GUI/WIMP system is fairly predictable; it typically does not do anything unless it
is instructed to do so by the user.

Nielsen (1993) describes several dimensions in which next generation ‘non-com-
mand interfaces’ (which includes context-aware computing) differ from traditional
interfaces. Similar to the idea of reactive environments (Cooperstock et al., 1997), he
mentions that in these interfaces most of the control will pass from the user to the
computer, which will “sometimes even choose to perform actions without explicit
user control”. The computer’s role will shift towards “interpreting user actions and
doing what it deems appropriate”. In addition, the ‘locus of interaction’ will not
be on the computer’s screen, mouse and keyboard, but will be “embedded in the
user’s environment, including the entire room and building” (Nielsen, 1993).

Basic interaction mechanisms that we learned over time tell us where input will
go (e.g., a flashing cursor), and what we can do (e.g., menus that provide visibility
of the system’s functionality and encourage exploration). Bellotti et al. (2002) argue
that there are no such interaction mechanisms designers can rely on when design-
ing ‘sensing systems’ (i.e., systems that gather input through sensors). Given the
shift in the ‘locus of interaction’ to the user’s environment (Nielsen, 1993), how do
users know where the system is, and how they can address it (Bellotti et al., 2002)?
Consider, for example, the case of a smart home: how do users receive feedback
about actions taken by the home (e.g., turning off the heating), and what caused the
system to take these actions? How can inhabitants override the home’s automatic
behaviour, or specify deviations from inferred routines (Mennicken et al., 2014)?

2.2 interaction challenges within context-aware computing 13

In recent years, there has been a shift from the GUI/WIMP paradigm to more
natural touch- and gesture-based user interfaces as employed by smartphones and
tablets. Still, the touch-based interaction style shares many commonalities with the
GUI/WIMP paradigm. It is essentially an evolved, easier to use implementation of
direct manipulation, in which users directly touch objects of interest using their fin-
gers instead of using a mouse and pointer. The issues highlighted in the papers by
Bellotti et al. are thus still valid today. Moreover, one could argue whether natural
user interfaces (NUIs) are really natural (Norman, 2010). Gestural and speech inter-
faces, for instance, exhibit many problems related to discoverability, visibility and
feedback.

In summary, we argue that there are four main changes when we move from
traditional systems to context-aware systems. Each of these changes result in inter-
action challenges for the user that are not (or only marginally) present in traditional
systems:

• Dynamic behaviour: The same input can give different results depending on the
context, making systems less predictable (Ju, 2008). How do users know that
the system is doing, has done or will do the right thing (Bellotti et al., 2002)?

• Implicit Input: Users might be unaware that the system recognizes their actions
and interprets those actions as input to the system (e.g., when walking past a
public display that reacts to the presence of people). In the worst-case scenario
this can result in the Midas touch problem, where every (unconscious) action
by the user is interpreted as another command (Jacob, 1990). How can users
know when they are addressing the system, and avoid doing so unintention-
ally (Bellotti et al., 2002)?

• Autonomy: Systems may react to context changes by taking autonomous ac-
tions (Cooperstock et al., 1997). How can users be made aware of the system
state, and know what caused these autonomous system actions to occur? How
can users intervene when the system takes an undesired action? Can an action
in progress be cancelled or controlled?

• Complexity: Context-aware systems may take decisions based on complex rule-
based systems or rely on machine learning algorithms, which can be hard to
understand for end-users (Dey and Newberger, 2009; Tullio et al., 2007). How
can users build up a mental model of the system, and be made aware of the
general reasoning employed by the system, without being overwhelmed by
technical details or possibly contradictory information (Norman, 2013b, pg.
183)?

Next, we delve deeper into these interaction challenges and also discuss a number
of criticisms of context-aware computing.

14 the problem : interaction challenges in ubiquitous computing

2.2.2 Fundamental Problems with the Notion of Context-Aware Computing

Context-aware computing has long been hailed as the solution to interaction chal-
lenges and usability problems with computers. The general idea was that if we add
more sensors, more data and better inference algorithms, our systems would au-
tomatically be able to do ‘the right thing’ (Taylor, 2006). Taylor (2006) argues that
this vision is exemplified by early work on context-aware computing, such as the
omission of “any representation of human involvement in sensing, interpreting and
acting on contextual information” in the conceptual framework and toolkit intro-
duced by Dey et al. (2001).

Given that computing systems are not (yet) able to read our minds, the outset of
fully autonomous systems is likely to be infeasible. Indeed, as argued by Bellotti
and Edwards (2001), there are several aspects of the context that cannot be reliably
sensed by computers. Rogers (2006) even compares the challenge of making com-
puters do the right thing automatically to the promise of strong AI, “a vision in
which a computer is not merely a tool, but a mind in itself”. If we would succeed in
doing this, we would therefore also have solved all the difficult intricate challenges
in the field of AI, and would have essentially created a human-like intelligence,
which will probably remain an unsolved problem for many years to come.

A similar argument is made by Erickson (2002), who argues, “the context-aware-
ness exhibited by people is of a radically different order than that of computational
systems. People notice a vast range of cues, both obvious and subtle, and inter-
pret them in light of their previous experience to define their contexts.” In contrast,
context-aware systems only detect a very small set of cues (based on the available
sensors), and have limited means to reason about these sensor values. Doing the
right thing would require considerable intelligence. The example given by Erickson
is that of a phone’s awareness of being motionless in a dark place with high ambient
noise, which is still very different from the human awareness of being in a theatre
(Erickson, 2002). Even though one might argue that services such as Foursquare8

and Google Maps, which have an extensive set of venues at specific locations, could
infer that the user is in a movie theatre based on their current location, this kind
of context-awareness would still fail when the user is watching a movie at an out-
door festival, or at home with friends, or when the movie theatre is repurposed
for other events. It is exactly this interpretation of subtle cues that proves difficult
for machines, no matter how much data or sensor readings we throw at them. For
example, a recent study of the Nest smart thermostat (Yang and Newman, 2013)
found that although the thermostat took into account users’ inputs, it would often
fail to catch their real intent. Participants often felt that it made incorrect assump-
tions and felt out of control as they could not train it to make other assumptions.
One participant even described the Nest as being ‘arrogant’, “feeling that it would
do whatever it thought was right” (Yang and Newman, 2013). These observations
clearly demonstrate Erickson’s point on the difficulty of sensing the more subtle
cues that are part of human situational awareness.

8 https://foursquare.com/

https://foursquare.com/

2.2 interaction challenges within context-aware computing 15

Greenberg (2001) states that context is “a dynamic construct viewed over a period
of time, episodes of use, social interaction, internal goals and local influences”. Or in
other words, context “is a continually evolving and highly situation-dependent con-
struct”. Greenberg claims that the idea of using context as a stable set of contextual
states that can accurately be inferred from a predefined set of sensed information
is—in all but the simplest of cases—difficult or even impossible. He supports this
claim by reviewing several existing theories that suggest the dynamic nature of
context, such as situated actions (Suchman, 1987) and activity theory (Nardi, 1995).
What follows from this is also that a correct ‘set of rules’ that determines the appro-
priate action given a specific context cannot always be defined. Finally, Greenberg
(2001) says that it is all too easy to trivialize context when representing it in a system,
and that as a result, there is a strong likelihood that the system might get things
wrong and take inappropriate actions. Moreover, he suggests that systems should
be conservative, and only take risky actions when there is “compelling evidence of
correctness”, since a single inappropriate action may be enough to preclude people
from using the system further.

Dourish (2004) discusses how, even though context-aware computing has been
inspired by social scientists’ critiques on conventional system design (i.e., Such-
man’s work on how interaction with systems cannot be separated from the setting
in which it occurs (Suchman, 1987)), “the social and technical ideas often sit un-
easily together”. Dourish mentions that most of the ubicomp literature has tack-
led context as a representational problem (i.e., “what is context and how can it be
encoded?”). According to Taylor (2006), Dourish instead argues that, “context is
something that is continuously being made and dependent to a large degree on
the ever-changing relations between people and the resources they bring to bear in
everyday settings”. Context is thus an interactional problem (Taylor, 2006). This is
similar to Greenberg’s critique about how context is not a stable set of contextual
states, but rather a dynamically evolving situation-dependent construct (Greenberg,
2001). Dourish observes that the sociological critique on context-awareness is that
“the kind of thing that can be modelled” using the representational approach to
context, “is not the kind of thing that context is” (Dourish, 2004).

Next to these high-level critiques on the notion of context-aware computing, a
number of researchers have also reported on their experiences and issues encoun-
tered with real-world deployments of context-aware systems. Based on their expe-
riences with the GUIDE location-aware mobile guide, Cheverst et al. (2001) discuss
several pitfalls that designers should take into account when developing context-
aware systems. First, they discuss the difficult balance in providing ‘ease of use’ by
adapting to the current context and still maintaining sufficient freedom or flexibility
for the user. For example, an initial version of GUIDE only allowed users to receive
touristic information about the area they were currently in. Since this lack of flex-
ibility caused frustration, Cheverst et al. later added the option to search informa-
tion based on keywords as well. As another example, an earlier version of GUIDE
removed all closed attractions from the list of nearby attractions, which again frus-
trated some users. Secondly, visitors using GUIDE also struggled when the context
information was not accurately sensed; when the system experienced difficulties

16 the problem : interaction challenges in ubiquitous computing

in correctly determining the user’s location, some locations that were presented as
nearby attractions were, in reality, not so nearby as users expected. Finally, Cheverst
et al. (2001) suggest using sensing technology that is dependable, meaning it is both
accurate and available in a timely manner (e.g., early GPS antenna’s only obtained
a GPS fix after a couple of minutes). Moreover, they state that there needs to be a
way for users to override the system’s context adaptation strategy.

One could argue that context-awareness in our daily environments has mostly
been confined to specific, predictable and low-risk microinteractions (Saffer, 2013),
such as a smartphone’s proximity sensor that detects when the user is holding the
device close to their face after which the device blanks the screen and ignores touch
screen input, the use of accelerometers to automatically rotate the screen (Hinckley
et al., 2000), or lights equipped with motion sensors that automatically turn on
or off depending on people’s presence (Cooperstock et al., 1997). Even in those
simple cases, the system might still perform the wrong action based on the sensed
information and consequently frustrate its users—e.g., when a smartphone’s display
stays blank because part of the user’s hand is triggering the proximity sensor, or
when a mobile device inadvertently switches to landscape or portrait mode when
laying on a flat surface.

Context-aware systems that act based on simple context rules—in other words, a
‘trivialized notion of context’ (Greenberg, 2001)—may feel like magic to users when
they perform the right action at the right time. However, when they fail, the con-
sequences can be severe and even lead to users abandoning the system altogether
(Greenberg, 2001; Vihavainen et al., 2009). In those situations, rather than feeling
like magic, the technology may seem haunted instead.

2.2.3 The Need for Intelligibility and Control

In this section, we explore solutions to address the previously discussed problems
with context-aware computing. In particular, we focus on two principles that were
proposed as key features that should be supported by context-aware systems: intel-
ligibility and control.

2.2.3.1 Intelligibility: Helping Users Understand How the System Works

In an ideal world, in which the interpretation of sensed context information would
be 100% accurate, computers would essentially be rendered invisible. Users would
not ‘notice’ the computers embedded in their environment, they would just experi-
ence the right actions ‘magically’ being performed at the right time. As discussed
before, this assumption is, however, unrealistic. Bellotti and Edwards (2001) argue
that “the more we try to get systems to act on our behalf, especially in relation to
other people, the more we have to watch every move they make.” Given that context-
aware systems cannot perfectly sense the user’s context, Bellotti and Edwards pro-
pose that context-aware systems should be made intelligible9: they should be able

9 The notion of intelligibility was first introduced by Brown and Newman (1985).

2.2 interaction challenges within context-aware computing 17

to “inform users about what they know, how they know it, and what they are doing
with that information”.

Analogously, Dourish (1995) discussed how systems could provide ‘accounts’ of
their own behaviour through computational reflection—essentially a self-represen-
tation—that helps the user in understanding how the system works. An account
not only describes behaviour, but also provides users with the means to control
that behaviour. Dourish stresses that accounts are not the same as mental models
(Norman, 2013b), as they exist on different sides of the interface: “We distinguish be-
tween an account of system behaviour as offered by a system, and the understand-
ing of system behaviour formed by a user in response” (Dourish, 1995). Dourish
argues that even though abstractions in software are useful, they sometimes hide
details that turn out to be crucial to our interactions. In a similar fashion, hiding
the context inference process or the rules of behaviour can pose problems to users
when context-aware systems fail. Taylor (2006) stresses that work that is ‘off-loaded’
to the system (Buxton, 1995b) and is directly related to the users’ interaction with
information “should be easily understood by users”.

In his critique of the representational view on context-aware computing (Dour-
ish, 2004), Dourish proposes to think instead about “how ubiquitous computing
can support the process by which context is continually manifest, defined, negoti-
ated and shared”. As an example, he explains how “a system can display aspects of
its own context—its activity and the resources around which that activity is organ-
ised”. By doing that, the system essentially provides users with “a more nuanced in-
terpretation of the meaning of the system’s action”. Correspondingly, Taylor (2006)
discusses the need for design principles that enable users to make their own infer-
ences about the state of the world “as perceived by them, and as reported by the
system”.

Similar arguments have also been made by Cheverst et al. (2005) and Kay et al.
(2003); Assad et al. (2007). They suggest that in order not to surprise or frustrate
the user, context-aware systems should allow the user to interrogate or scrutinise
their user model (which includes the rules of behaviour of the system). Greenberg
(2001) mentions that “People should be able to see what context the system thinks
it has inferred.” Abowd and Mynatt (2000) further discuss the issues with empha-
sizing ‘invisibility’ in Weiser’s vision of ubiquitous computing, and how it conflicts
with informing users about how they are being sensed. They also stress the need
for making this information visible, and as a next step, providing users with con-
trol over what the system is doing. Similarly, Cooperstock et al. (1997) mention that
appropriate feedback and opportunities for user intervention are necessary prereq-
uisites to realize their vision of reactive environments. Rehman et al. (2002) discuss
a number of issues introduced by interfacing with ‘the invisible computer’, such as
the user’s lack of an appropriate mental model of the system which results in dif-
ficulties with predicting the system’s behaviour or even its available features. They
also state that users often have no means to control or override the system, due to
either feasibility concerns (“what control interface should be offered to users?”) or
the desire to ‘hide’ the computer.

18 the problem : interaction challenges in ubiquitous computing

Coutaz et al. (2005) state that one of the major challenges for context-aware sys-
tems is “finding the appropriate balance between implicit and explicit interaction”,
and “the appropriate degree of autonomy, which can impact every level of abstrac-
tion”. In a later article, Coutaz (2007) presents the notion of ‘meta-user interfaces’, a
set of functions and user interfaces necessary to allow users to evaluate and control
the state of interactive ambient spaces.

Edwards and Grinter (2001) discuss seven challenges for introducing ubiquitous
computing into the home (or in other words, challenges for ‘smart homes’). One of
their challenges is “The ’Accidentally’ Smart Home”, in which they discuss issues of
predictability and complexity, and what to do when the context-aware adaptation
fails. The problem is essentially “intelligibility in the face of radical—and perhaps
unexpected—connectivity” (Edwards and Grinter, 2001). Edwards and Grinter ar-
gue that context-aware systems, especially those that exhibit an intermediate level
of intelligence by inferring the user’s context and taking action accordingly, will
never be right all the time and will thus need to provide models of how they arrive
at their conclusions to users. Inference should be “done in a way that is predictable,
intelligible, and recoverable” (Edwards and Grinter, 2001).

Edwards and Grinter (2001) further discuss important design questions that need
to be addressed in order to solve that challenge, such as what kinds of affordances
should be provided to make the system intelligible, how to inform inhabitants about
the potential configurations of different devices in the home and when these devices
are interacting, where the locus of interaction will be, or how they can control these
devices and the home in its entirety. These questions were further explored in a
later paper by Bellotti et al. (2002), in which it is argued that such sensing systems
are hard to use because designers of these systems have to reinvent all the user
interface mechanisms that we rely on everyday in graphical user interfaces, such as
appropriate feedback (Norman, 2013b) and feedforward (Vermeulen et al., 2013b;
Djajadiningrat et al., 2002; Wensveen, 2005) (see Chapter 5).

2.2.3.2 Control: Allowing Users to Recover from Mistakes

Next to intelligibility, users should also be provided with the means to override
and control context-aware systems when they take inappropriate actions or make
a mistake. As argued by Greenberg (2001), “some contexts can never be inferred”
(e.g., because they appear only infrequently), so users should have the option to
completely override the system. Failing to provide users with control might result
in users who lose trust in the system (Barkhuus and Dey, 2003) or even abandon it
altogether (Greenberg, 2001; Vihavainen et al., 2009).

In a study of a location-aware microblogging service, Vihavainen et al. (2009)
found that users were worried about automatic location sharing, and expressed
concerns such as not being able to lie anymore about their whereabouts. In one
group of users, inappropriate automation led to abandonment of the service. More-
over, the study also revealed problems related to intelligibility: users were at times
confused about (perhaps incorrectly) reported locations, as they had no means to
assess the system’s confidence in that location.

2.2 interaction challenges within context-aware computing 19

Experiments with the MavHome (Cook et al., 2003), a smart home that adapted
to the routines of inhabitants over time, exemplify the problems resulting from a
lack of user control. When an occupant moved into the home, who, unlike previous
occupants, led a more chaotic life and often had visitors over late at night, the
home failed to adapt from the previously learned behaviour. The lights would still
be turned off every evening, despite the fact that the occupant was awake and
active. A striking finding of the study was that the occupant later stated, “they were
learning to live in the dark because it was too bothersome to correct the system”
(Youngblood et al., 2005). Moreover, the study also reported on a number of fights
between the same inhabitant and the home over control.

A number of researchers have observed that users’ sense of control tends to de-
crease when the autonomy of the application increases (Barkhuus and Dey, 2003;
Cheverst et al., 2002; Vihavainen et al., 2009). Sheridan and Parasuraman (2005)
introduce a scale of 8 different levels of automation ranging from “the computer
offers no assistance, the human must do it all” to “the computer selects the method,
executes the task, and ignores the human”, and argue that the appropriate level of
automation depends on the situation. Similarly, Bellotti and Edwards (2001) discuss
several design strategies for control depending on the system’s confidence in what
the desired outcome is, such as being offered a means to correct the system’s ac-
tion, a means to confirm the system’s action, or offering the user available choices
for system action. In addition, Greenberg suggests to take into account the amount
of risk involved, i.e., whether taking action might have ‘dangerous consequences’:
“context-aware systems should be fairly conservative in the actions they take, should
make these actions highly visible, and should leave ‘risky’ actions to user control”
Greenberg (2001).

While not specifically targeting context-aware systems, Don Norman wrote on
how appropriate design can help us deal with automation problems (Norman, 1990).
Norman mainly uses examples from automation in the aviation industry (e.g., the
autopilot), but we believe that his arguments are also applicable to context-aware
systems in general, and in particular, to automation in context-aware environments
such as smart homes (Mennicken et al., 2014). Norman’s view is that it is not over-
automation that causes problems, but the lack of appropriate feedback. He states
that the source of all difficulties is that “automation is powerful enough to take
over control that used to be done by people, but not powerful enough to handle
all abnormalities”. Essentially, this is similar to the arguments made by Bellotti and
Edwards (2001) or Erickson (2002): there are some situations in which the system
either cannot make a decision on what to do next, or will have an increased chance
of making the wrong decision and thus needs to defer to the user instead. In or-
der to allow users to take over, we need to offer them the means to do so (i.e.,
control) and provide them with sufficient information about what the system has
done and is currently doing (i.e., intelligibility) to allow for intervention. Similar to
the context-awareness in reactive environments (Cooperstock et al., 1997), automa-
tion in airplanes has the goal of reducing the workload to allow the operator to
focus on what’s important (and, in the case of the aviation industry, increase safety).
However, Norman argues that automation also (mentally) isolates the crew from

20 the problem : interaction challenges in ubiquitous computing

the details of flying and the state of the aircraft, and therefore, when the equipment
fails, increases the difficulties and the magnitude of the problem in diagnosing the
situation and determining the appropriate course of action. It is this lack of en-
gagement, according to Norman, that causes the main problems with automation:
“feedback is essential because equipment does fail and because unexpected events
do arise”. He suggests that what is needed, is “continual feedback about the state
of the system, in a normal natural way”, i.e., without overwhelming or interrupting
the user. Norman’s viewpoint is related to the arguments made by Dourish (1995)
about how abstractions hide details that are sometimes crucial to our interactions.

Intelligibility or ‘scrutability’ can be seen as a prerequisite for control (Kay et al.,
2003; Assad et al., 2007; Cheverst et al., 2005) or as the most basic level of control
(Coutaz, 2007; Bellotti and Edwards, 2001). To clarify this, consider the case of a
very simple context-aware system: an outdoor light equipped with a motion sensor.
Our basic understanding of the light’s behaviour, i.e., that the light turns on when
it detects motion and that there is a certain amount of time after which it automat-
ically turns off, together with the location and range of the motion sensor allows
us to modify our behaviour to control it. Because we know that the light reacts to
motion, we would typically move into the range of the motion sensor and wave
our hands until the light turns on again. Similarly, intelligible systems that provide
us with an understanding of how they work, allow us to infer what actions are
needed to influence their behaviour. Coutaz (2007) defines several levels of control,
ranging from observability (which she considers the minimum level that should be
supported), over traceability to controllability. Observability refers to allowing users
to “evaluate the internal state of the service from its current perceivable representa-
tion”, while traceability enables them to “observe the evolution of the service over
time”. Both levels of control can be considered to be aspects of intelligible systems.

From this overview, it is clear that we need support for intelligibility and control
to unlock the potential of context-aware environments and make such smart spaces
“usable, predictable and safe for users” (Bellotti and Edwards, 2001). However, this
is not an easy problem to solve. Studies have revealed that users have little interest in
learning about a system’s workings as an independent activity (Yang and Newman,
2013), and their preconceived notions about how a system works may be difficult to
change (Tullio et al., 2007). Moreover, a study by Lim and Dey (2011b) found that
intelligibility might have a negative impact on the user’s impression of the system.
They conclude that intelligibility is helpful for applications with high certainty, but
harmful if applications behave appropriately but display low certainty. There is also
a delicate balance in the amount of detail that should be provided to users, where
too much information might easily confuse them (Kulesza et al., 2013). Indeed, the
use of intelligibility in commercial recommender systems, has mostly been confined
to very high-level information, which could indicate that users are generally not in-
terested in the low-level details. For example, Gmail’s priority inbox uses high-level
phrases to inform users of why it marked an email as important, such as “because of
the sender of the message”, “because of the words in the message”, or “because you
often read messages with this label”. Similar high-level phrases are used in explain-
ing recommendations by YouTube, Amazon or the Apple App Store (e.g., “because

2.3 intelligibility and control in norman’s stages of action 21

you bought/liked/watched X”). It is, however, unclear whether these high-level ex-
planations work well because recommender systems mostly ‘suggest’ rather than
‘decide’, and if this would also generalize to other systems with a higher degree
of autonomy (see also Bunt et al., 2012). Especially with autonomous systems, care
should be taken not to overly dumb down the information that the system provides,
to avoid the abstraction and mental isolation problems discussed by Dourish (1995)
and Norman (1990).

2.3 intelligibility and control in norman’s stages of action

In this dissertation, we explore the problem of supporting intelligibility and control
in context-aware systems from a design perspective. This dissertation serves as a de-
sign space exploration, in which we aim to be both generative by guiding designers
in exploring various ways to support intelligibility and control, and generalizable by
exploring techniques that can be applied by interaction designers in a wide range of
ubicomp scenarios. Given this focus, we now revisit the previously discussed inter-
action challenges (Section 2.2) and situate these within a design model that has been
widely used for analysing interaction problems: Don Norman’s Seven Stages of Ac-
tion (Norman, 2013b). We start by briefly discussing the basic flow of Norman’s
model including the gulfs of execution and evaluation.

2.3.1 Norman’s Seven Stages of Action

Norman introduced the Action Cycle in his book “The Psychology of Everyday
Things” (often abbreviated as ‘POET’) (Norman, 1988) as a way to analyse how
we interact with ‘everyday things’, including doors, light switches, kitchen stoves
but also computers and information appliances (e.g., mobile devices). The book
was later updated with a new title and clarified terminology (Norman, 2002) (“The
Design of Everyday Things” or ‘DOET’) and recently received a major revision (Nor-
man, 2013b).

Norman suggests that there are two parts to an action: executing the action and
evaluating the results, or “doing and interpreting” (Norman, 2013b). Furthermore,
actions are related to our goals; we might formulate a goal, execute certain actions to
achieve that goal, evaluate the state of ‘the world’ to see whether our goal has been
met, and if not, execute more actions to achieve our goal, or otherwise, formulate
new goals that again result in more actions (Figure 2.4). He introduces the Stages
of Execution and the Stages of Evaluation as a break-down of these two parts, which
together with goal formulation, form the Seven Stages of Action. Starting from our
goal, we go through three stages of execution: plan (the action), specify (an action
sequence) and perform (the action sequence). To evaluate the state of the world,
there are again three steps: perceive (what happened), interpret (making sense of it)
and compare (was what happened what was wanted?), as illustrated in Figure 2.4.
Norman notes that not all activity in these stages is conscious (even goals may
be subconscious), “We can do many actions, repeatedly cycling through the stages

22 the problem : interaction challenges in ubiquitous computing

while being blissfully unaware that we are doing so. It is only when we come across
something new or reach some impasse, some problem that disrupts the normal flow
of activity, that conscious attention is required.” (Norman, 2013b, pg. 42).

THE WORLD

GOAL

B
rid

ge
 o

f E
xe

cu
tio

n)
B

ridge of E
valuation

Plan

Specify

Perform

Compare

Interpret

Perceive

Figure 2.4: Norman’s Action Cycle (Norman, 2013b): formulating goals, executing actions
that impact the state of ‘the world’, and evaluating these changes to see whether
the goals have been met. The Seven Stages of Action consist of one stage for goals,
three stages for execution and three for evaluation.

The main notion put forward in Norman’s book is that “both execution and eval-
uation require understanding: how the item works and what results it produces”,
an understanding that can be communicated through design (Norman, 2013b). Peo-
ple face two essential problems when trying to use something: figuring out how
it operates, and figuring out what happened. When we face difficulties in figuring
out how something operates, we need to bridge the ‘gap’ between our goals and
the realization of these goals which Norman calls the Gulf of Execution (the left side
of Figure 2.4). On the other hand, when we have problems in trying to figure out
what happened, there is a gap between the results of our actions in the world, and
deciding whether our goals have been achieved, which Norman calls the Gulf of
Evaluation (the right side of Figure 2.4). When we can successfully move between
the stages of execution to perform our actions, and when we can successfully go
through the stages of evaluation to assess whether our goals have been met, both
gulfs have been bridged. It is the role of the designer to help people bridge the two
gulfs (Norman, 2013b, pg. 38).

We now explain how Norman’s Stages of Action can be related to context-aware
systems. As discussed before, there are four major changes when we compare
context-aware systems to traditional systems: dynamic behaviour, implicit interac-
tion, autonomy and complexity. We investigate each of these within the context of
Norman’s framework.

2.3 intelligibility and control in norman’s stages of action 23

2.3.2 Interaction with Autonomous Systems

Context-aware systems have the ability to act autonomously (e.g., based on informa-
tion gathered from sensors), without user involvement. Traditional systems bridge
the gulf of evaluation by employing informative feedback. Feedback typically con-
firms that the system has recognized and is responding to the user’s actions, or
shows what the effect of the user’s actions was. When a system is acting on its own,
there is no user action to which it responds. In this section, we will explore how
to represent this type of system using Norman’s framework, and how the gulf of
evaluation can be bridged in this case. It is important to note that with autonomous
systems, mistakes made by the system need to be accounted for in addition to mis-
takes made by users.

Norman (2013b, pg. 42–43) mentions that, “the action cycle can also start from
the bottom, triggered by some event in the world, in which case we call it either
data-driven or event-driven behaviour.” This is precisely what happens when a
context-aware system takes action on the user’s behalf—or at least when the effect
of that action is visible to the user. In this situation, we start on the right side of the
action cycle (Figure 2.4), where something happens in ‘the world’, after which the
user goes through the three stages of evaluation (perceiving the change, interpreting
what they perceived and comparing that to their goals), as shown in Figure 2.5.

THE WORLD

GOAL

B
ridge of E

valuation

Compare

Interpret

Perceive

System
action

Figure 2.5: When a context-aware system acts autonomously, we start at the right side of the
action cycle, where the user goes through the three stages of evaluation.

Unfortunately, autonomous systems do not always allow users to perceive that
something has happened, or may fail to inform users of their current state, i.e., what
the consequences are (Norman, 1990). If the result of the system’s action is invisible,
users have no way to detect potential mistakes. Even if systems do provide feedback
about actions going on in the background, we cannot expect people will always pay
close attention. As an example, Norman discusses an accident with a cruise ship
that was caused by a failure in the ship’s GPS antenna (2013b, pg. 215). The naviga-
tion system— which normally relies on an accurate GPS location—had, given the

24 the problem : interaction challenges in ubiquitous computing

antenna problem, switched to ‘dead reckoning’ mode10, which the captain failed
to notice. The problem here was that this mode switch was only indicated by the
tiny letters ‘DR‘ on the captain’s display. In his book “The Design of Future Things”
(2009, pg. 138), Norman notes, “If the inappropriate use of feedback is frustrating
with simple devices such as elevators, what will it be like with the completely au-
tomatic, autonomous devices of our future?” Without proper feedback, in addition
failing to notice the action, users may also be frustrated when the system suddenly
takes an undesired action. Consider even the simple example of motion sensors in
a smart home that result in all the lights getting turned on when you get in late at
night, even though someone is sleeping on the couch in the living room.

Ju (2008) suggests that an autonomous system must “demonstrate how it will
act, and also hint at what the consequences of its actions will be”. In the case of
the cruise ship, a demonstration of the mode switch together with information
about its consequences might have succeeded in alerting the captain. Furthermore,
providing feedback only after the action has already been completed prevents users
from reacting when the action was undesired. In a similar argument, Norman (2009)
discusses the tension for control between the system and the user. He mentions that
there are bound to be mistakes due to the limited intelligence of the system (see also
Section 2.2.2), and argues that many systems can make the problem even worse by
making it very hard to recover from errors: “When the machine intervenes, we have
no alternatives except to let it take over: ‘It’s this or nothing,’ they are saying, where
‘nothing’ is not an option.” (Norman, 2009, pg. 3)

This brings us to the next challenge users face when dealing with autonomous
systems: having the means to control the system when necessary. As mentioned be-
fore, users go through the three stages of evaluation when the system takes action
on their behalf to notice what happened and determine whether or not this matches
their goal. Intelligible systems let users know what they are doing, but what hap-
pens when the system’s action does not match the user’s goal (e.g., the system that
turns on the lights in the living room in the previous example)? In this case, the
system should provide users with the option to recover from the mistake, or even
prevent the mistake from ever happening by first demonstrating what it will do. The
smart home could allow users to prevent the lights from turning on, by first slowly
increasing the intensity of the lights, and providing a means to cancel this action
(e.g., clicking one of the light switches). In both cases, there is again an execution
phase involved to control the system. After perceiving the system’s action and de-
ciding that it does not match our goal, we formulate a new goal: overriding the
system action. To reach that goal, we again go through the three stages of execution,
as shown in Figure 2.6. In other words, systems should not only show users what
they are doing, but also make clear how the system action can be overridden, and
offer users control.

In Chapter 6, we introduce slow-motion feedback (Vermeulen et al., 2014), a tech-
nique that allows users to notice actions taken by the system, and provides them
with sufficient time to intervene when the action is undesired. Making users aware

10 Dead reckoning means that the location is approximated based on the last known location, the current
speed and direction.

2.3 intelligibility and control in norman’s stages of action 25

THE WORLD

GOAL

B
ridge of E

valuation

Compare

Interpret

Perceive

System
action

B
rid

ge
 o

f E
xe

cu
tio

n)

Plan

Specify

Perform

Override)

Figure 2.6: When users decide that the system’s action is undesired, and wish to override it,
we move back to the left side of the action cycle: the execution stage.

of how a context-aware system is acting based on the context, is part of the notion
of intelligibility (Bellotti and Edwards, 2001). However, Bellotti and Edwards also
discuss that systems should provide more detailed information by informing users
about their understanding of the world, and how they have arrived at those conclu-
sions. We come back to these issues when we discuss how we can allow users to
cope with the complexity of context-aware systems.

2.3.3 Coping with the Complexity and Dynamic Behaviour of Context-Aware Systems

Two characteristics of context-aware systems that complicate interaction, are their
complexity and dynamic behaviour (see Section 2.2.1). Under the hood, context-
aware systems may use a large set of interconnected rules or machine learning al-
gorithms, that can be hard to understand for end-users (Dey and Newberger, 2009).
Users should be able to build up a model of how the system works without being
overwhelmed with technical details or possible contradictory information (Norman,
2013b, pg. 183). Moreover, the dynamic behaviour of context-aware systems, where
the same input from the user might effectively yield another result depending on
the context, makes it hard to predict how the system will behave. Norman (2009,
pg. 52) mentions that machines getting more powerful and autonomous opens up a
supergulf that separates machines and humans, caused by a lack of common ground
in communication (Clark and Brennan, 1991). Essentially, what Norman refers to is
that on the one hand, people are experiencing difficulties understanding machines
and why they act in a certain way, and on the other hand machines will never
have a complete picture of our intentions or goals (as also mentioned earlier, e.g.,
Dourish, 2004). Given the fact that machines cannot communicate and understand
the same way we do, Norman (2013b, pg. 67) states that designers “have a special
obligation to ensure that the behaviour of machines is understandable to the people
who interact with them”.

26 the problem : interaction challenges in ubiquitous computing

Norman (2013b, pg. 25) suggests, as one of his fundamental design principles,
that systems should provide users with a simple conceptual model: “an explana-
tion, usually highly simplified, of how something works”. A conceptual model can
be incomplete or even inaccurate, but what matters is that it helps users in inter-
acting with a system. Conceptual models help users to predict how the system will
behave, and to figure out what to do when things go wrong. However, this is not an
easy thing to do, given the complexity and dynamic behaviour that context-aware
systems tend to exhibit, especially if we consider context-aware environments con-
sisting of several interconnected systems. Norman (2013b) discusses the Nest ther-
mostat as an example of a system that constantly explains what it is doing, and thus
provides continual feedback. He nevertheless notes that the Nest is not perfect and
this has also been found in recent studies suggesting that there are still important
problems with respect to intelligibility and control (Yang and Newman, 2013), as
previously discussed in Section 2.2.2.

Specific stages can be identified within the Stages of Action model where the sys-
tem can help users build up a conceptual model of its behaviour (Figure 2.7). First,
in the stages of evaluation, systems could not only show that they are performing
an action, but also explain the reasoning behind that action, which could help users
predict the system’s future behaviour (as with the previous example of the Nest).
Providing this information is what Bellotti and Edwards (2001) refer to as “inform-
ing users of the current contextual system’s understandings and capabilities”. It is
important to note that users might also require information from the system when
the system did not act, even though they expected it to do so. Secondly, when users
are in the execution phase, the system could allow them to explore the consequences
of their actions, by giving them information about what would happen when they
perform a certain action.

GOAL

Compare

Interpret

Perceive

Plan

Specify

Perform

Explanations
Why? Why not?)

THE WORLD

Explanations
What if? How to?

Feedforward)

System
action

Figure 2.7: Explanations can help users to build up a conceptual model, both in the evalua-
tion and execution stages. Feedforward is useful in the execution phase: it helps
users predict what the result of their actions will be.

A common method to explain the system’s reasoning is through the use of au-
tomatically generated explanations (Cheverst et al., 2005; Lim et al., 2009; Lim and

2.3 intelligibility and control in norman’s stages of action 27

Dey, 2010; Kulesza et al., 2009; Vermeulen et al., 2009b, 2010). In Chapter 7, we
present our work on automatically generated explanations that answer ‘why?’ and
‘why not?’ questions about system actions that allow users to build up a conceptual
model of the behaviour of a rule-based context-aware system. Lim and Dey (2010)
have also explored the use of ‘what if?’ and ‘how to?’ questions, which are useful
in the stages of execution. Furthermore, in Chapter 5, we introduce another way to
help users bridge the gulf of execution: the design principle feedforward (Vermeulen
et al., 2013b) that designers can employ to show users what the result of their action
will be. Feedforward is also mentioned by Bellotti and Edwards (2001) as a specific
type of intelligibility information that helps users to predict the consequences of
their actions. When the system provides intelligibility during the evaluation phase
that helps users build up a conceptual model, users can also use this knowledge in
the execution phase to figure out what actions are necessary to achieve their goals.

2.3.4 Dealing with Implicit Input

The fact that context-aware systems typically rely on implicit interaction can also
cause interaction problems. We already discussed the problems on the evaluation
side in our discussion on interacting with autonomous systems (Section 2.3.2). On
the execution side, we mainly focus on issues with implicit input.

One of the most important problems caused by the reliance on implicit input is
the lack of visibility and discoverability (Norman, 2013b). Visibility allows users to
answer important questions such as ‘what is supported by the system?’ and ‘what
can I do?’. Unlike traditional GUI/WIMP systems (see Section 2.2.1), users have no
way of exploring the system’s functionality. Indeed, this even seems to be implied
by the premise of the ‘invisible computer’, where sensors and components that are
hardly noticeable still play a role in performing part of the interaction (e.g., a camera
that detects movements in front of a display). Moreover, how do users determine
where and how they can provide input to the system? Many systems relying on
implicit interaction make it difficult for users to discover how to do this.

We know analyse implicit input in the context of the action cycle. First, consider
the situation where the user did not intend to provide input to the system and is sur-
prised when the system suddenly reacts. This is essentially the situation portrayed
in Figure 2.5. Although the system is responding to the user’s (implicit) input here,
unlike when it acts autonomously, the user did not perform any conscious action
with a goal in mind. In the user’s mind, the system just suddenly acts, not real-
izing that it actually responded to their actions. It is important in this situation
to make sure that users are aware of the system’s action (see Section 2.3.2), and
to inform users that they caused that action to occur (e.g., see Section 2.3.3). This
would improve discoverability and allow users to build up a conceptual model of
the system’s behaviour by connecting their own actions to the system’s responses.

Secondly, consider the situation where a user has formulated a goal, wants to
interact with the system, but does not know how to interact with the system. In this
case, the user is uncertain about the action possibilities and about how to perform
the necessary actions to achieve their goals. As shown in Figure 2.8, this problem

28 the problem : interaction challenges in ubiquitous computing

GOAL

Plan

Specify

Perform

THE WORLD

What can I do?

What happens if …?

How do I …?

Figure 2.8: Systems that employ implicit interaction can increase the gulf of execution due to
a lack of discoverability and visibility of action possibilities.

increases the gulf of execution. Ju’s implicit interaction framework (Ju and Leifer,
2008; Ju et al., 2008; Ju, 2008) mentions a number of strategies to improve discov-
erability, such as offers that convey potential actions to users at the right time, and
feedforward that tells users what the consequences of their actions are.

In Chapter 8, we investigate how we can convey action possibilities and provide
tracking feedback for systems that rely on implicit interaction. More specifically, we
explore techniques to improve discoverability and visibility for a proxemics-aware,
large public display. Additionally, the design principle feedforward (Chapter 5) can
be used to help users in performing the appropriate actions.

2.3.5 Mapping the Dissertation Chapters to the Seven Stages of Action Model

This dissertation proposes several techniques to improve intelligibility and control.
Figure 2.9 shows how the different techniques (and corresponding chapters) can
be situated within Norman’s Seven Stages of Action Model. In Chapter 5, we dis-
cuss how we can provide users with information about what will happen, allowing
them to better bridge the gulf of execution. In Chapter 6, we discuss how systems
can make their actions more visible to users, while also offering users sufficient time
to intervene. Next, In Chapter 7, we present the use of explanations to provide users
with detailed knowledge of the system’s decisions, which improves predictability
and helps users construct an accurate conceptual model. Finally, in Chapter 8, we
explore how we can address interaction challenges in proxemic-aware large interac-
tive surfaces by showing subtle cues on a secondary floor display. This technique
mainly addresses problems of feedback (gulf of evaluation), visibility and discover-
ability (gulf of execution).

2.4 conclusion 29

GOAL

Compare

Interpret

Perceive

Plan

Specify

Perform

Ch5: Feedforward! Ch7: Explanations!

Ch6: Slow-Motion
Feedback!

Ch8: Proxemic Flow!

THE WORLD

Ch8: Proxemic Flow!

Ch6: Slow-Motion
Feedback!

Override)

Figure 2.9: Overview of how the different techniques proposed in this dissertation can be
situated as design solutions in Norman’s Seven Stages of Action.

2.4 conclusion

In this chapter, we introduced the research areas of ubiquitous computing and
context-aware computing, in which we situate this dissertation. In addition, we
investigated the motivation for this work by surveying interaction challenges with
context-aware computing. Based on the existing literature, we then proposed the
need for intelligibility and control as a means to address these problems. We further
clarified how intelligibility and control can improve interaction with context-aware
systems by analyzing those interaction challenges within Norman’s Seven Stages of
Action.

In chapters 5–8, we delve deeper into the proposed techniques as illustrated in
Figure 2.9. Before moving on to these techniques, however, we present a design
space that introduces different design choices that play a role when providing in-
telligibility and control (Chapter 3). In Chapter 4, we present an exploratory study
of a context-aware guidance system for nurses to illustrate the different design de-
cisions covered by this design space, and discuss insights gained from that study
with respect to the interaction challenges discussed in this chapter.

3
A D E S I G N S PA C E F O R I N T E L L I G I B I L I T Y A N D C O N T R O L

3.1 introduction

As mentioned in Section 2.2.3, Bellotti and Edwards (2001) state that context-aware
systems need to be intelligible, and should be able to represent to their users “what
they know, how they know it, and what they are doing about it”. Moreover, they
argue that effective control strategies should be provided to allow users to intervene
when the system makes a mistake.

Nevertheless, there are many possible ways to design for intelligibility and con-
trol, each of which could be suitable in some situations, but not in others. Consider,
for example, the subtle cues that Google Maps employs to convey its confidence
in the user’s location. When the location is accurately tracked, it is visualized on
the map using a blue dot. When the application is not entirely sure of the user’s
location, however, it shows a blue circle around the dot (Figure 3.1). The circle’s size
indicates the location tracking accuracy: the larger the circle, the larger the area in
which the user might be located, and thus also the lower the accuracy. Although
this is an effective (and quite natural) way of revealing location tracking inaccura-
cies, a different intelligibility strategy might be necessary in other circumstances,
for example when dealing with non-spatial data or in situations where users are
not paying close attention to the display.

Figure 3.1: Google Maps shows a blue circle that changes in size to convey how confident
it is of the user’s current location (source: Google Maps for Android, base map
© Google Maps 2014).

31

32 a design space for intelligibility and control

In this chapter, we explore design decisions that ubicomp designers, developers
and researchers face when adding support for intelligibility and control. We start
with a literature overview of different techniques that have been employed, after
which we introduce a design space.

3.2 techniques to support intelligibility and control

Several techniques have been explored to support end-users in understanding context-
aware systems, and allowing them to control, configure or even program context-
aware ubicomp environments. In what follows, we provide a short literature overview.

3.2.1 Support for Intelligibility: Improving Understanding

3.2.1.1 Textual Explanations

One of the most studied techniques to support intelligibility is the use of automati-
cally generated textual explanations (e.g., Cheverst et al., 2005). In particular, explana-
tions answering ‘why?’ and ‘why not?’ questions have been investigated intensively
(e.g., Lim et al., 2009; Lim and Dey, 2009, 2010; Kulesza et al., 2009; Vermeulen
et al., 2010). In Chapter 7, we discuss our own work on why questions with the
PervasiveCrystal system (Vermeulen et al., 2009b, 2010).

The use of explanations originated in research on making ‘intelligent systems’ un-
derstandable for end-users, and has been applied, for example, in expert systems
(see Gregor and Benbasat, 1999 for an overview) and recommender systems (e.g.,
Cramer et al., 2008). In addition, explanations have also been investigated for tradi-
tional GUI applications. Myers et al. (2006) used automatically generated answers to
‘why’ and ‘why not?’ questions in a word processor to help end-users understand
complex behaviours and interdependencies among various of the application’s fea-
tures (answering questions such as ‘Why is this text bold?’). On-line stores such
as Amazon also use why questions in combination with high-level explanations to
help shoppers understand ‘why’ some articles are recommended to them, as shown
in Figure 3.2.

3.2.1.2 Visualizations

Another common approach to make systems more intelligible is through the use
of visualizations. Visualizations have been used to improve understanding of the
system’s state and behaviour, show action possibilities, or show the outcome of an
action.

In fact, the circle visualization shown in Figure 3.1, is an effective way to display
one aspect of the state of a location-aware system: its confidence in determining
the user’s location. Variations of this type of location error visualization have also
been explored in the literature (e.g., Dearman et al., 2007; Aksenov et al., 2012;
Lemelson et al., 2008; Burigat and Chittaro, 2011; Kjærgaard and Weckemann, 2012).
Uncertainty in general is often represented in text: using numerical values (e.g., Lim

3.2 techniques to support intelligibility and control 33

Figure 3.2: Explanations for recommendations in Amazon’s Kindle Store.

and Dey, 2011a; Antifakos et al., 2005), sometimes combined with colour ranges
(e.g., Rukzio et al., 2006; Lemelson et al., 2008), or using categorical values (e.g.,
Cheverst et al., 2005). In Chapter 8, we discuss visualizations that indicate how well
users are tracked in front of a public display and make them aware of potential
tracking problems.

Rehman et al. (2005) investigated visualizing interaction zones for a location-
aware application. Their application allows users to bring up their personal desktop
environment on any nearby display in the office. Wearing a head-mounted display,
users see a visualization of the exact zone in which they needed to be in order to
trigger the ‘desktop teleport’ feature. Although this technique is somewhat clunky
due to the use of a head-mounted display, the invisibility of interaction zones is in-
deed a common problem in ubicomp environments, which has also re-emerged in
studies of interactive public displays (e.g., Jurmu et al., 2013). In Chapter 8, we dis-
cuss our approach to visualize interaction zones for people-aware public displays
using a secondary floor display.

Next to textual explanations, we can also use visualizations to make users aware
of how the system works, and why it is behaving in a certain way. In Section 6.3, we
discuss projected visualizations in a smart room that show events firing in real-time
(Vermeulen et al., 2009a). Furthermore, by revealing connections between system
actions and the different devices and sensors in the room, we provide users with
an understanding of the system’s behaviour (i.e., by explaining what caused system
actions to be executed). Lim and Dey (2011a) also explored several custom visual
explanations to make a social awareness application intelligible. This application
used sensors to give users an impression of the availability of others, i.e., whether it

34 a design space for intelligibility and control

would be appropriate to interrupt them. The explanations were specific to the sen-
sor data and the type of information that was inferred from that data. For instance,
a pan flute metaphor was used to represent sound pitch when explaining infer-
ences of whether the person was talking to someone or listening to music. Dey and
Newberger (2009) introduced the Situations framework—an extension to the Con-
text Toolkit (Dey et al., 2001)—that allows designers to connect custom-designed
interfaces (and visualizations) to the internal logic of context-aware applications.
One of their example applications shows a unified interface to monitor and control
context-aware lighting and temperature in a smart home. Similarly, the Nest smart
thermostat can be monitored and controlled through mobile and web applications
that allow users to consult visualizations of its current state, energy consumption
and schedule (Rogers, 2013).

Visualizations can also help users understand the outcomes of their own actions.
The design principle feedforward (see Chapter 5) tells users what the result of an ac-
tion will be (Vermeulen et al., 2013b; Bellotti and Edwards, 2001). In Section 5.6, we
discuss the Feedforward Torch, a combination of a smartphone and mobile projec-
tor that projects visualizations on objects in users’ everyday environments (such as
light switches or complex appliances). The Feedforward Torch shows feedforward
to inform users of the consequences of their own actions. Visual animations of action
outcomes were especially deemed useful when the action outcome either did not
happen immediately, or when it would be invisible to the user (e.g., a light switch
that turns on the lights upstairs). Visualizations of the outcomes of users’ actions
have also been employed in the OctoPocus gestural guide (Bau and Mackay, 2008).
Just like many context-aware systems, gestural interaction lacks proper visibility of
action possibilities, which makes it hard for users to know which gestures are avail-
able and what commands they trigger. OctoPocus helps users perform gestures by
continuously showing the possible remaining gesture paths, and what commands
are triggered by those gestures.

Finally, visualizations have been used to improve awareness of system actions
in context-aware systems. In their proximity-aware interactive whiteboard, Ju et al.
(2008) use animations to show the outcome of system actions. For example, when
the user is approaching the whiteboard, it switches from ambient mode to drawing
mode, which means that all content will be cleared. It makes this switch apparent
by animating each content element on a path from the centre of the whiteboard to
the side. Additionally, the whiteboard visualizes how it has interpreted the user’s
input. When users step back, the whiteboard shows outlines around the users’ ink
strokes to show how they are being clustered. In Chapter 6, we introduce a general
technique to improve awareness of system actions: slow-motion feedback (Vermeulen
et al., 2014).

3.2.2 Support for Control: Allowing Users to Intervene

Several approaches to support end-users in controlling, configuring or program-
ming ubicomp environments have been explored in the literature. We focus our

3.2 techniques to support intelligibility and control 35

overview mainly on tools and techniques that extend control to end-users, and thus
exclude rapid prototyping tools targeted at developers.

3.2.2.1 Overriding System Actions

One of the simplest control mechanisms is allowing users to override actions per-
formed by the system, similar to an ‘undo’ command. Note that in this case, how-
ever, the user is not undoing an action they did before, but an action performed by
the system. For example, when content moves from the centre of Ju et al.’s inter-
active whiteboard to the side to make space, users can simply grab the content to
stop it from moving. We also provide users with a cancel command when project-
ing visualizations (see Section 6.3), and when showing answers to ‘why questions’
(see Chapter 7). A related technique is to allow users mediate or correct the system’s
inferences (Dey and Mankoff, 2005). Mediation techniques allow the user to go into
dialogue with the system to fix incorrect inferences and teach the system to avoid
making similar mistakes in the future.

3.2.2.2 Configuration Interfaces

Another common approach is providing users with the means to configure the sys-
tem’s state and part of its behaviour using specific configuration interfaces. Cheverst
et al. (2005) shows visualizations of decision tree rules in their IOS system and al-
lows end-users to manipulate system parameters. As mentioned earlier, Situations
(Dey and Newberger, 2009) supports custom intelligibility and control interfaces
that can be connected to the underlying logic and parameters of a context-aware
application. Dey and Newberger (2009) discuss an example that allows a museum
administrator to configure how context-aware displays near exhibits react to peo-
ple’s presence. Similarly, in our own work on explanations (see Chapter 7), we also
allow users to bring up a specific configuration interface. For example, when users
ask why the lights went out, they can either override that system action (and turn
the lights on again), or bring up a specific control interface that allows them to con-
figure specific details such as the light’s intensity, or to select another light to turn
on instead (Vermeulen et al., 2010).

3.2.2.3 End-User Programming

Finally, the most powerful kinds of techniques—but also the most difficult ones to
make accessible to end-users—provide the means to (re-)program ubicomp environ-
ments. For example, iCAP (Dey et al., 2006) is a tool that allows users to prototype
context-aware applications without having to write code. Observations from a study
revealed that end-users without a programming background were able to use iCAP
to create reasonably complex applications. With iCAP, users build up rules that
associate ‘situations’ to actions, using a visual rule building interface, that they can
afterwards try out using a simulator. Similarly, Rodden et al. (2004) developed a
tool to construct rules using the metaphor of assembling jigsaw pieces, represent-
ing sensors or operations. Others have looked at more physical ways to construct

36 a design space for intelligibility and control

rules and configure system behaviour. Kawsar et al. (2008) allowed end-users to de-
ploy context-aware services in their homes by linking applications and artefacts—
augmented objects in the home, such as a toothbrush with integrated accelerometer
or a mirror with integrated display—together using RFID cards.

The previous tools, however, all rely on a rule-based specification of behaviour.
Alternatively, recognition-based approaches that rely on machine learning might be
necessary to reliably sense certain aspects of context. For example, machine learn-
ing might be necessary to recognize patterns in accelerometer data or to analyse
ambient acoustics to determine whether someone is talking. Although these could
also be supported in a rule-based approach as specific recognition components,
this would prevent users from creating their own recognizers. Dey et al. (2004) de-
veloped ‘a CAPpella’, a tool that involves end-users in specifying these rules by
allowing them to demonstrate the desired behaviour to the system, after which a
machine-learning algorithm tries to generalize the user’s inputs—also known as
programming by demonstration (Cypher et al., 1993). Additionally, researchers have
been investigating whether users can understand and modify machine-learned sys-
tems (Kulesza et al., 2009, 2013).

3.3 design space

The techniques that were discussed in the previous section typically only represent
a single point in the larger design space of possible strategies for intelligibility and
control. In order to compare different techniques and generate design alternatives,
we introduce a design space for intelligibility and control techniques (Vermeulen,
2010; Vermeulen et al., 2013a) consisting of six dimensions (Figure 3.3).

during afterbefore
Timing

Generality

Degree of co-location

Initiative

Modality

Level of Control

general domain-specific

embedded external

user system

visual hapticauditory

intelligibility programmabilitycounteract configuration

Figure 3.3: The design space for intelligibility and control, consisting of six dimensions.

3.3 design space 37

A design space presents both the design choices that need to be made, together
with the alternatives for these decisions (Shaw, 2012). The dimensions of the design
space represent the design decisions, while the values on those dimensions repre-
sent possible alternatives. Design space analysis is a common technique in HCI,
with the aim of comprehending different designs as points in a multi-dimensional
space formed by the design space dimensions (e.g., Card et al., 1991; Fitzmaurice
et al., 1995; Coutaz, 2007).

The six dimensions of the design space in Figure 3.3 were derived from a review
of existing techniques for intelligibility and control, and a meta-analysis of existing
taxonomies and frameworks with respect to interaction challenges in context-aware
and ubiquitous computing. Additionally, our design space was informed by insights
on the impact of different design choices from designing a context-aware guidance
system for nurses, as discussed later in Chapter 4.

We start with a brief overview of the design space dimensions, after which we
discuss each of them in more detail and position different techniques in the design
space:

• Timing: Both intelligibility and control can be supported at certain times dur-
ing the interaction: before, during and after events take place.

• Generality: User interfaces and interaction techniques for intelligibility and
control can be general (i.e., when they can be applied across different types
of applications and domains) or domain-specific.

• Degree of co-location: Support for intelligibility or control might be embedded, or
integrated with the rest of the user interface, versus external, when users need
to switch to a separate interface.

• Initiative: Users may have to explicitly request intelligibility information or
means to control the system (user initiative), or might automatically be pre-
sented with these features when necessary (system initiative).

• Modality: Several modalities can be used to help users to understand or control
the system (e.g. visual, auditory, haptic).

• Level of Control: The level of control end-users can exert over the system ranges
from intelligibility, where no additional control is added beyond intelligibility,
over counteract, where users can perform the opposite action, to configuration,
where users can tweak predefined system parameters, and finally programma-
bility where users can themselves (re-)define how the system works.

Even though this design space for intelligibility and control is non-exhaustive,
we believe it is valuable as an analytical tool and can play a generative role to help
designers come up with alternative designs. In the remainder of this chapter, we
will represent the design space of Figure 3.3 using a table for brevity and clarity.

38 a design space for intelligibility and control

3.3.1 Timing

Intelligibility and control can be provided at different phases during the interaction.
We differentiate between different moments in time relative to when events take
place: before, during or after that event. We define an event as either an action initiated
by the user or an action initiated by the system.

For example, consider the case where the system acts autonomously by respond-
ing to the context (see Section 2.3.2 and Figure 2.5):

• Before the system action, the system could inform the user of what it is going
to do (intelligibility), and for example, allow the user to reject or accept that
action (control).

• During the action, the system could slow down the action to allow users to no-
tice what is happening (see Chapter 6), or help users to construct a conceptual
model of the system’s behaviour by visualizing the interplay between triggers
and consequences of the action (see Section 6.3). Both examples are strategies
to support intelligibility. Systems can provide control at this stage by allowing
users to override actions that are in progress.

• After the action, the system could allow the user to request detailed informa-
tion about that action or what caused it, e.g., by providing explanations (in-
telligibility), revert the system to its previous state if the action was undesired
(control), or provide a historical trace of past events (intelligibility).

In Table 3.1, we show how different techniques can be viewed with respect to the
timing dimension. The last four rows represent our own systems and techniques,
which we will present in detail in Chapters 5–8.

Lim and Dey’s concept of ‘what if?’ questions (Lim and Dey, 2009, 2010) is an
example of intelligibility that is provided before any action (by the system or user)
is performed. They allow the user to know what an application would do given a
set of inputs that characterize a certain situation (or context). Also, the interaction
zone visualization by Rehman et al. (2005) is an example of information provided
before the action; it helps users know what actions are possible, and how to perform
an action (i.e., in what region they need to be).

Ju et al.’s proximity-aware whiteboard (Ju et al., 2008) can be seen as providing
intelligibility and control before, but mostly during system actions. As discussed be-
fore, with their ‘system demonstration’ technique, the system shows the user what
it is doing or going to do, such as switching from ambient mode to drawing mode
upon approach and clearing the existing content. Moreover, while the whiteboard
is transitioning between modes, users can grab the moving contents to cancel the
mode switch (a technique Ju et al. refer to as ‘override’). Similarly, while users are
performing gestures, gesture guides such as OctoPocus (Bau and Mackay, 2008) or
ShadowGuides (Freeman et al., 2009) show the possible gestures and feedforward
about the commands associated with those gestures. The principle of just-in-time
chrome (Wigdor and Wixon, 2011, pg. 152) where gestures are made self-revealing

3.3 design space 39

Timing

Before During After

Amazon's explanations ✔

Crystal (Myers et al., 2006) ✔

IOS (Cheverst et al., 2005) ✔ ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔ ✔

Visualizing interaction zones (Rehman et al., 2005) ✔ ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔ ✔

ShadowGuides (Freeman et al., 2009) ✔ ✔

TouchGhosts (Vanacken et al., 2008) ✔ ✔

Situations (Dey and Newberger, 2009) ✔ ✔

“What if?” (Lim and Dey, 2009, 2010) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔

Proxemic Flow (Vermeulen et al., 2014) ✔ ✔ ✔

Table 3.1: The timing dimension allows us to distinguish between techniques that provide in-
formation before, during, or after the action. Note that coloured boxes with check
marks indicate a technique’s primary classification, while small check marks indi-
cate a possible alternative classification.

with ‘just-in-time’ extra on-screen graphics is another example of supporting intel-
ligibility during the action.

Finally, answers to ‘why?’ and ‘why not?’ questions (e.g., Myers et al., 2006;
Kulesza et al., 2009; Lim and Dey, 2010; Vermeulen et al., 2010; see Chapter 7),
explanations for recommender systems (e.g., as in Amazon’s store, see Figure 3.2)
and Cheverst et al.’s explanations are examples of intelligibility information pro-
vided after the action. A means to ‘undo’ the action performed by the system, is an
example of control provided after the action.

3.3.2 Generality

Intelligibility or control techniques can be generally applicable (general) or specific
to a certain domain or a specific type of application (domain-specific), as illustrated
in Table 3.2.

An example of a domain-specific intelligibility interface is the location tracking
accuracy visualization used in Google Maps, as discussed before (see Figure 3.1).
While domain-specific techniques might limit flexibility and reuse, they might be
easier for users to understand as they can be more easily expressed in terms of
the user’s goals (i.e., they provide a better match). After all, it is easier to esti-

40 a design space for intelligibility and control

Generality

General Domain-specific

Amazon's explanations ✔ ✔

Crystal (Myers et al., 2006) ✔ ✔

IOS (Cheverst et al., 2005) ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔ ✔

Visualizing interaction zones (Rehman et al., 2005) ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔

ShadowGuides (Freeman et al., 2009) ✔

TouchGhosts (Vanacken et al., 2008) ✔

Situations (Dey and Newberger, 2009) ✔ ✔

“What if?” (Lim and Dey, 2009, 2010) ✔

a CAPpella (Dey et al., 2004) ✔

iCAP (Dey et al., 2006) ✔

Jigsaw editor (Rodden et al., 2004) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔ ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔

Proxemic Flow (Vermeulen et al., 2014) ✔

Table 3.2: The generality dimensions differentiates between techniques that are generally ap-
plicable versus domain- or application-specific ones.

mate the impact of imprecise location tracking by interpreting a visualization of
the possible error on a map than by interpreting an error percentage. In addition,
domain-specific techniques are typically easy to integrate into applications for that
same domain (see also the co-location dimension: Section 3.3.3), which can help
users to stay concentrated on their current task. Our Proxemic Flow techniques for
people-aware public displays (see Chapter 8) are also domain-specific. An example
of a general interface for intelligibility and control is PervasiveCrystal (Vermeulen
et al., 2010) (see Chapter 7), which provides users with the possibility to pose why
and why not questions about any event occurring in a ubicomp environment and
also offers simple control primitives.

Nevertheless, it might sometimes be difficult to categorize a technique as general
or domain-specific. For example, even though Ju et al.’s user reflection, system demon-
stration and override techniques are generally applicable, their implementation of
those techniques for the Range whiteboard is fairly specific to that type of applica-
tion.

3.3 design space 41

3.3.3 Co-location

The co-location dimension refers to the level of integration between an interface
for intelligibility and control, and the application in which it is being employed.
Intelligibility or control could be offered in a separate interface (external), or could
be an integrated part of the application (embedded). In her discussion on meta-user
interfaces (user interfaces that support evaluating and controlling the state of a smart
space), Coutaz (2007) makes a similar distinction; she refers to this dimension as
the ‘level of integration’.

Degree of co-location

Embedded External

Amazon's explanations ✔

Crystal (Myers et al., 2006) ✔

IOS (Cheverst et al., 2005) ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔

Visualizing interaction zones (Rehman et al., 2005) ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔

ShadowGuides (Freeman et al., 2009) ✔

TouchGhosts (Vanacken et al., 2008) ✔

Situations (Dey and Newberger, 2009) ✔ ✔

“What if?” (Lim and Dey, 2009, 2010) ✔ ✔

a CAPpella (Dey et al., 2004) ✔

iCAP (Dey et al., 2006) ✔

Jigsaw editor (Rodden et al., 2004) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔ ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔

Proxemic Flow (Vermeulen et al., 2014) ✔

Table 3.3: The degree of co-location dimension allows us to separate techniques that are are
embedded in the application from techniques that are used through an external
interface.

The idea of an embedded interface for intelligibility is somewhat similar to the
general notion of embedded help (Nielsen, 1993). Techniques that help users per-
form gestures such as OctoPocus (Bau and Mackay, 2008), TouchGhosts (Vanacken
et al., 2008) or ShadowGuides (Freeman et al., 2009) are therefore also typically em-
bedded (see Table 3.3). Indeed, Freeman et al. (2009) also classify gesture learning
systems based on the “degree of co-location of the learning space and performance
space”. Their notion of ‘in-situ’ gesture learning systems, where learning gestures
is integrated into the same mode where gestures are performed (i.e., the user’s

42 a design space for intelligibility and control

current task), is similar to our concept of an embedded interface for intelligibility.
Likewise, the principle of just-in-time chrome (Wigdor and Wixon, 2011) to provide
self-revealing gestures with a minimum of extra on-screen graphics is another em-
bedded technique.

Most domain-specific techniques tend to be embedded within the user’s current
application. For example, Ju et al.’s techniques (Ju et al., 2008) and the Google Maps
location error visualization are additional examples of embedded intelligibility in-
terfaces. In their observations of how people use the Nest thermostat, Yang and
Newman (2013) argue for providing intelligibility “opportunistically and in small
pieces”, corresponding to the occasional, incidental interactions that users have with
the Nest. They call this incidental intelligibility, or “interaction elements that increase
users’ understanding of the system’s intelligent behaviour embedded in the tasks
they consciously seek to accomplish” [emphasis ours] (Yang and Newman, 2013),
which is again analogous to the idea of embedded intelligibility.

External interfaces tend to be useful for controlling or understanding high-level,
generic components of a system. Examples of external interfaces are iCAP (Dey
et al., 2006) and a CAPpella (Dey et al., 2004). While users only need to learn how
to use external interfaces once, unlike embedded interfaces, they might require the
user to interrupt their task and switch to a separate mode.

In ubicomp spaces, instead of an application running on a machine, the ‘inter-
face’ in which intelligibility is to be integrated, might be the user’s environment
itself (see also Nielsen’s argument about the shift in interface locus). Our original
definition of co-location still applies: co-location then becomes the level of integra-
tion with the environment. Because of the heterogeneous nature of ubicomp spaces,
co-located information can indeed be very useful. In an experiment with Pervasive-
Crystal (Vermeulen et al., 2010) (another external interface), we observed that users
occasionally felt disconnected from the explanations we provided (e.g., “the lights
turned on because motion was detected”). They were, for example, confused over
where in the room motion had been detected by the system (see Chapter 7). Intel-
ligibility and control interfaces that are embedded into the environment can direct
users attention appropriately to a specific point of interest. For example, our ‘Visi-
ble Computer’ technique where we show projected event visualizations (Vermeulen
et al., 2009a) (see Section 6.3), informs users not only about what is is happening,
but also where it is happening. Similarly, the Feedforward Torch (Vermeulen et al.,
2012b) (Section 5.6), our Proxemic Flow techniques (Chapter 8) and the augmented
reality system by Rehman et al. (2005) show co-located guidance.

3.3.4 Initiative

The initiative for showing information to improve the users’ understanding can be
taken by the system itself (system initiative) or this information can be made avail-
able upon request by the user (user initiative). When the system takes the initiative,
it could reveal information to draw the user’s attention to a certain event, as with
Ju et al.’s system demonstration technique. Alternatively, the system could provide
users with the means to request detailed information if they need it, similar to the

3.3 design space 43

way services like Amazon allow users to ask why certain products were recom-
mended to them (see Figure 3.2). In Table 3.4, we categorize different techniques
with respect to who takes the initiative.

Initiative

User System

Amazon's explanations ✔

Crystal (Myers et al., 2006) ✔

IOS (Cheverst et al., 2005) ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔

Visualizing interaction zones (Rehman et al., 2005) ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔ ✔

ShadowGuides (Freeman et al., 2009) ✔ ✔

TouchGhosts (Vanacken et al., 2008) ✔ ✔

Situations (Dey and Newberger, 2009) ✔

“What if?” (Lim and Dey, 2009, 2010) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔

Proxemic Flow (Vermeulen et al., 2014) ✔ ✔

Table 3.4: The initiative dimension represents whether information is is available upon re-
quest, or rather whether it is provided automatically when deemed necessary.

The Feedforward Torch (Section 5.6) is an example of a user-driven technique.
Users point the device at an object in their environment (e.g., a light switch), af-
ter which it projects feedforward information related to that object. The Pervasive-
Crystal system where we allow users to pose why questions is also user-driven. In
contrast, our ‘Visible Computer’ technique where we project the event flow between
different devices and sensors (Vermeulen et al., 2009a) is a system-driven technique.

There might be several arguments for choosing between these two strategies. Au-
tomatically providing information all the time might be distracting or even annoy-
ing for the user. We observed that with the Visible Computer, some users mentioned
that they sometimes received too much information, which confused them (see Sec-
tion 6.3 for more details). When automatically providing information, it is tricky to
find the right balance between the amount of detail that is provided, to not over-
whelm users but still make sure the provided information is sufficiently detailed to
be useful. In select cases, it can be useful to have access to very detailed information
to debug the system’s behaviour and understand deeper details of how the system
works. In this case, we would recommend to leave the initiative of showing this
information to the user, so that the information is only there when necessary. On

44 a design space for intelligibility and control

the other hand, simple and informative feedback that explains to users what the
system is doing might be useful to show at all times, even for expert users.

One way to make sure that the user is not overloaded with information when
relying on system initiative, is to distinguish between novices and experts. To illus-
trate this, we again draw on the domain of gestural interaction. An elegant way of
supporting the transition from novice to expert, can be found in marking menus
(Kurtenbach et al., 1993). Marking menus are a variant of pie menus that support
two types of interaction: either popping up the circular menu and selecting an item
by tapping, or making a straight ‘mark’ (or gesture) in the direction of the desired
menu item without revealing the menu. The menu only pops up after a certain
time (commonly called the ‘dwell time’), which naturally occurs when users hes-
itate. Experts who already know which menu item they want to select, can make
a mark in that direction instead. In this way, the system has a way to distinguish
between novices and experts, and can thus only show the pie menu when necessary.
Moreover, Wigdor and Wixon (2011) note that the software for marking menus is
identical in novice and expert mode: “the user simply uses the system faster and
faster”. Because there is really almost no change in interaction, users do not experi-
ence a drop in speed of performance when switching from novice to expert mode
(what Wigdor and Wixon refer to as ‘The Gulf of Competence’). Note that when an
expert is unsure, they can still slow down to see the pop-up menu. In that sense,
this kind of technique can also be seen as a mixed approach, as users can still de-
liberatively trigger it (note the small check marks in the ‘User’ column in Table 3.4).
Advantages of this method include this smooth transition from novice to expert
(and back, if necessary), and the fact that experts are not slowed down by the inter-
face for novice users. A similar approach of reacting to the user’s hesitation is used
in OctoPocus (Bau and Mackay, 2008). In our Proxemic Flow techniques (Chapter 8),
we also show guidance after a certain dwell time. Nevertheless, the general prob-
lem of distinguishing between novices and experts is not an easy one to solve. One
could even argue that the generalized problem is a meta-problem, where we would
need perfect context sensing to tailor intelligibility information to the user (i.e., the
context that we would need to sense here consists of the user’s previous experience
and skills)—which we know is close to impossible (see Section 2.2.2).

3.3.5 Modality

Depending on the domain and the context of use, some modalities might be more
appropriate than others. When driving a vehicle, for example, users need to keep
their eyes on the road. This makes interfaces that require visual attention or accu-
rate pointing inappropriate, making it necessary to provide intelligibility or control
using other modalities. For this dimension, we distinguish between visual, haptic
and auditory interaction. It is important to note that these modalities are not mu-
tually exclusive. Systems can also support intelligibility using multiple modalities
(e.g., providing both visual and auditory information), which may or may not be
used simultaneously during the interaction.

3.3 design space 45

Modality

Visual Auditory Haptic

Amazon's explanations ✔

Crystal (Myers et al., 2006) ✔

IOS (Cheverst et al., 2005) ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔

Visualizing interaction zones (Rehman et al., 2005) ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔

ShadowGuides (Freeman et al., 2009) ✔

TouchGhosts (Vanacken et al., 2008) ✔

Situations (Dey and Newberger, 2009) ✔

“What if?” (Lim and Dey, 2009, 2010) ✔

a CAPpella (Dey et al., 2004) ✔

iCAP (Dey et al., 2006) ✔

Jigsaw editor (Rodden et al., 2004) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔ ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔ ✔

Proxemic Flow (Vermeulen et al., 2014) ✔

Table 3.5: The modality dimension indicates what modality is used to convey information or
exert control over the system.

Most systems typically only support intelligibility or control using the visual
modality, as is apparent from Table 3.5. In our own work, we have also mostly fo-
cused on visual information, bar a few exceptions. For the Visible Computer, we pro-
vided functionality to override the system by uttering the speech command ‘cancel’.
Nevertheless, we observed that speech input is accompanied by its own problems,
such as the lack of discoverability (see Section 6.3). With the Feedforward Torch,
we also experimented with vibration to notify the user of when information was
available. Our slow-motion feedback technique (see Chapter 6) can be used with
several modalities, but our application of the technique in the Visible Computer
(Vermeulen et al., 2009a) only relies on visual information.

Within the visual modality, there are of course also possible variations, such as tex-
tual information versus visuals or animations. Studies have found that compared to
written instructions, animated visual instructions might increase performance and
reduce mistakes (Palmiter and Elkerton, 1993) and might be preferred for tasks deal-
ing with human movement (Wong et al., 2009). Nevertheless, there are also some
disadvantages to animations: there is less retention over time compared to textual
instructions (Palmiter and Elkerton, 1993) and motion in animations is often misin-
terpreted (Tversky et al., 2002). In our own experiments with the Feedforward Torch

46 a design space for intelligibility and control

(Vermeulen et al., 2012b), participants preferred visualizations and animations over
written instructions, which they found more time-consuming to interpret (see Sec-
tion 5.6). Moreover, animations were appreciated for situations where the action
outcome was not immediately perceivable.

3.3.6 Level of Control

We distinguish between four increasing levels of control that end-users can exert
over a system. Table 3.6 classifies the different techniques based on the level of
control they support.

Level of control

Intelligibility Counteract Configuration Programmability

Amazon's explanations ✔

Crystal (Myers et al., 2006) ✔ ✔

IOS (Cheverst et al., 2005) ✔ ✔ ✔ ✔

Google Maps location error ✔

Range (Ju et al., 2008) ✔

Visualizing interaction zones (Rehman et al., 2005) ✔

“Just-in-time chrome” (Wigdor and Wixon, 2011) ✔

OctoPocus (Bau and Mackay, 2008) ✔

ShadowGuides (Freeman et al., 2009) ✔

TouchGhosts (Vanacken et al., 2008) ✔

Situations (Dey and Newberger, 2009) ✔ ✔ ✔

“What if?” (Lim and Dey, 2009, 2010) ✔

a CAPpella (Dey et al., 2004) ✔

iCAP (Dey et al., 2006) ✔

Jigsaw editor (Rodden et al., 2004) ✔

Feedforward Torch (Vermeulen et al., 2012) ✔

PervasiveCrystal (Vermeulen et al., 2010) ✔ ✔ ✔

Visible Computer + Slow-Motion Feedback (Vermeulen et al., 2009, 2014) ✔ ✔

Proxemic Flow (Vermeulen et al., 2014) ✔

Table 3.6: The level of control dimension indicates what means users have to control the
system.

As discussed before (see Section 2.2.3), intelligibility can be viewed as the most
basic level of control, where users exert control over a system based on their un-
derstanding of how it works. An example of this level of control would be only
the availability of explanations about the system’s behaviour. Based on the under-
standing gained from these explanations, users could then alter their behaviour to
attempt to control the system. The next level of control is counteracting. Next to pro-
viding intelligibility, systems that provide this level of control also allow users to
override the system’s actions. Examples of this level of control are PervasiveCrys-
tal’s ‘undo’ command (Vermeulen et al., 2010), Ju et al.’s ‘override’ technique or
the “Don’t use for recommendations” button in Figure 3.2. Next are systems that

3.4 insights from mapping the design space 47

allow users to tweak predefined system parameters support configuration, such as
Dey and Newberger’s Situations framework (Dey and Newberger, 2009), or our
configuration interface in PervasiveCrystal. The most advanced level of control, pro-
grammability, is available when users can themselves (re-)define how the system
works, such as in iCAP (Dey et al., 2006), a CAPpella (Dey et al., 2004), the Jigsaw
editor (Rodden et al., 2004), and Cheverst’s IOS system (Cheverst et al., 2005).

3.4 insights from mapping the design space

In Table 3.7, we show an overview table of how the different techniques can be
mapped into the design space. Note that grey areas in the table indicate when
a certain dimension is not applicable to that specific technique (i.e., initiative and
timing make no sense for end-user programming tools). We will now briefly discuss
insights for each of the six dimensions, and explore how they can be related to each
other.

timing This dimension has been mostly underexplored in previous work. There
are few general techniques to provide intelligibility and control across the timing
dimension, especially before and during actions. Additionally, only a couple of sys-
tems provide information about what will happen (the before column in the table).
In our own work, we have focused on this aspect through feedforward (Chapter 5,
illustrated with the Feedforward Torch in Section 5.6). Some techniques span mul-
tiple alternatives of the timing dimension, such as Ju et al. (2008), the IOS system
(Cheverst et al., 2005), and our Proxemic Flow case study (Chapter 8), but most only
offer a specific moment in time at which intelligibility is provided. Ideally, systems
should be intelligible about past, present and future events.

generality We covered a variety of domain-specific and general interfaces in
our design space. Some systems or techniques are essentially general but can be im-
plemented in a domain-specific way, e.g., recommender systems, what-if questions
and Situations (Dey and Newberger, 2009). Most of our own work can be classified
as general techniques, although we have also explored domain-specific ones, such
as Proxemic Flow.

degree of co-location We notice that most domain-specific interfaces are
also embedded (e.g., the location error visualization in Google Maps), while most
general interfaces are external. However, this is not always the case. For example,
Rodden’s jigsaw editor (Rodden et al., 2004) is a domain-specific interface for con-
trolling a smart home, but is nevertheless external. Moreover, systems that provide
intelligibility during actions, tend to be embedded. An explanation for this may be
that it is easier to provide information during actions when the intelligibility tech-
nique is integrated with the user’s current task (e.g., as in OctoPocus). In our own
work, we have explored both embedded and external techniques, although we be-
lieve that embedded techniques show the greatest promise (see also the findings by
Yang and Newman, 2013).

48 a design space for intelligibility and control

Ti
m

in
g

G
en

er
al

ity
C

o-
lo

ca
tio

n
In

iti
at

iv
e

M
od

al
ity

Le
ve

l o
f C

on
tr

ol

Am
az

on
's

ex
pl

an
at

io
ns

✔
✔

✔
✔

✔
✔

✔

Cr
ys

ta
l (

M
ye

rs
 e

t a
l.,

 2
00

6)
✔

✔
✔

✔
✔

✔
✔

✔

IO
S

(C
he

ve
rs

t e
t a

l.,
 2

00
5)

✔
✔

✔
✔

✔
✔

✔
✔

✔
✔

G
oo

gl
e

M
ap

s
lo

ca
tio

n
er

ro
r

✔
✔

✔
✔

✔
✔

Ra
ng

e
(J

u
et

 a
l.,

 2
00

8)
✔

✔
✔

✔
✔

✔
✔

✔

Vi
su

al
izi

ng
 in

te
ra

ct
io

n
zo

ne
s

(R
eh

m
an

 e
t a

l.,
 2

00
5)

✔
✔

✔
✔

✔
✔

✔

“J
us

t-i
n-

tim
e

ch
ro

m
e”

 (W
ig

do
r a

nd
 W

ixo
n,

 2
01

1)
✔

✔
✔

✔
✔

✔

O
ct

oP
oc

us
 (B

au
 a

nd
 M

ac
ka

y,
20

08
)

✔
✔

✔
✔

✔
✔

✔
✔

Sh
ad

ow
G

ui
de

s
(F

re
em

an
 e

t a
l.,

 2
00

9)
✔

✔
✔

✔
✔

✔
✔

✔

To
uc

hG
ho

st
s

(V
an

ac
ke

n
et

 a
l.,

 2
00

8)
✔

✔
✔

✔
✔

✔
✔

✔

Si
tu

at
io

ns
 (D

ey
 a

nd
 N

ew
be

rg
er

, 2
00

9)
✔

✔
✔

✔
✔

✔
✔

✔
✔

✔
✔

“W
ha

t i
f?

” (
Li

m
 a

nd
 D

ey
, 2

00
9,

 2
01

0)
✔

✔
✔

✔
✔

✔
✔

a
CA

Pp
el

la
 (D

ey
 e

t a
l.,

 2
00

4)
✔

✔
✔

✔

iC
AP

 (D
ey

 e
t a

l.,
 2

00
6)

✔
✔

✔
✔

Jig
sa

w
ed

ito
r (

Ro
dd

en
 e

t a
l.,

 2
00

4)
✔

✔
✔

✔

Fe
ed

fo
rw

ar
d

To
rc

h
(V

er
m

eu
le

n
et

 a
l.,

 2
01

2)
✔

✔
✔

✔
✔

✔
✔

✔
✔

Pe
rv

as
iv

eC
ry

st
al

 (V
er

m
eu

le
n

et
 a

l.,
 2

01
0)

✔
✔

✔
✔

✔
✔

✔
✔

Vi
si

bl
e

C
om

pu
te

r +
 S

lo
w

-M
ot

io
n

Fe
ed

ba
ck

 (V
er

m
eu

le
n

et
 a

l.,
 2

00
9,

 2
01

4)
✔

✔
✔

✔
✔

✔
✔

✔

Pr
ox

em
ic

 F
lo

w
 (V

er
m

eu
le

n
et

 a
l.,

 2
01

4)
✔

✔
✔

✔
✔

✔
✔

✔
✔

Befo
re

Duri
ng

Afte
r

Gen
era

l

Dom
ain

-!
sp

ec
ific

Embe
dd

ed

Exte
rna

l

Use
r

Syst
em

Visu
al

Aud
ito

ry

Hap
tic

Prog
ram

mab
ility

Con
fig

ura
tio

n

Cou
nte

rac
t

Int
elli

gib
ility

Table 3.7: Overview of the different techniques represented in the design space for intelligi-
bility and control.

3.5 conclusion 49

initiative Most systems that push intelligibility to the user (system initiative),
also appear to be embedded and domain-specific. We argue that these techniques
tend to be fairly specific to a certain type of application, since they need to have
a good idea of when the user requires information, a problem that is challeng-
ing to solve for the general case (see Section 3.3.4). In our own work, we explored
both system-driven as well as user-driven techniques (e.g., PervasiveCrystal and the
Feedforward Torch). We believe a combination of both techniques can be valuable.
However, through our experiments with the system-driven Visible Computer pro-
totype, we learned a lot about the difficult balance of providing useful information
while avoiding to overwhelm or confuse users (see Section 6.3.5). We tried to apply
these lessons in the design of the system-driven Proxemic Flow prototype (more on
this in Chapter 8).

modality It is apparent that most techniques rely on the visual modality. There
are only a few systems that provide intelligibility through other means, and even
these are usually providing visual information as well. Also in our own work, we
mostly focused on visual information, although we did explore other modalities
with the Visible Computer and the Feedforward Torch. The Feedforward Torch, for
example, vibrates to draw the user’s attention. Although we believe that a combina-
tion of several modalities can be useful, based on our experiences, we still see the
visual channel as the primary channel designers should target to support intelligi-
bility.

level of control With respect to control, almost all techniques are on one of
the opposite ends of the spectrum. Most systems only provide intelligibility (e.g.,
Google Maps, OctoPocus) without control mechanism. On the other end of the spec-
trum, there are very powerful systems such as Rodden’s jigsaw editor (Rodden et al.,
2004), IOS Cheverst et al. (2005) and a CAPpella (Dey et al., 2004). In our own work,
our major focus was on intelligibility, and less so on control. Nevertheless, with
PervasiveCrystal, we covered a fairly broad control spectrum, and observed that
redundant strategies to control the system were appreciated by users. We believe
one of the biggest remaining challenges is in allowing end-users themselves to pro-
gram their environments, one that will only become more important with the rise
of context-aware devices and services in our domestic environments (Mennicken
et al., 2014). Existing techniques that support programmability, usually employ an
external interface and are very general. One could argue whether these techniques
are really usable by non-technical users.

3.5 conclusion

In this chapter, we provided an overview of several existing techniques to support
intelligibility and control, and introduced a design space based on six dimensions.
As a tool for designers, this design space serves two main purposes: (1) it can be
used to analyse, compare and relate different existing and future techniques, and (2)
given a specific problem, it can be used to generate and iterate over different design

50 a design space for intelligibility and control

alternatives for supporting intelligibility and control. Designers could, for example,
take a system-driven, embedded technique that requires visual attention and think
about alternative techniques for that purpose—for example, one that is user-driven
with an external interface and relies on haptic feedback.

This dissertation provides an in-depth exploration of the timing dimension, given
the lack of general techniques to provide intelligibility and control before, during
and after actions. We propose three general techniques along this dimension: feed-
forward before actions (Chapter 5, illustrated with the Feedforward Torch in Sec-
tion 5.6), slow-motion feedback during actions (Chapter 6, illustrated with the Visible
Computer in Section 6.3), and why questions after actions (Chapter 7, illustrated
with PervasiveCrystal). Finally, we describe the design and implementation of Prox-
emicFlow (Chapter 8) as a case study in supporting intelligibility and control for
proxemic interactions, a subdomain of context-aware computing that exhibits many
of the challenges described earlier in Chapter 2 (see e.g., Greenberg et al., 2014). In
this case study, we cover the full timing dimension.

Before we delve deeper into the three techniques and case study (Chapters 5–8),
we describe an exploratory study of a proactive, context-aware mobile guidance
system aimed at aiding nurses in their daily care-giving routines (Chapter 4). This
study illustrates the impact of design choices covered by the design space and pro-
vides additional insights into the issues people face when interacting with context-
aware systems.

4
E X P L O R AT O RY S T U D Y O F A C O N T E X T- AWA R E G U I D A N C E
S Y S T E M F O R N U R S E S

4.1 introduction

In this chapter, we describe an exploratory study of a proactive, context-aware mo-
bile guidance system aimed at aiding nurses in their daily care-giving routines. Our
goal with this study was to get insights into the issues people face when interact-
ing with context-aware systems, and to get a better understanding of how different
design choices—such as the level of control—have an influence on these interaction
challenges (see also Chapter 3). In particular, we decided to study a context-aware
system in a demanding work environment, as the specifics of the user’s job place
serious demands on the acceptability of context-aware technologies. Certain design
decisions such as the use of proactive or autonomous behaviour might not be ac-
ceptable in these environments. Context-aware systems and ubicomp technologies
in general are increasingly being deployed in hospital environments to support clin-
icians in their daily work (e.g., Bardram et al., 2006; Favela et al., 2007). Even though
pervasive healthcare is gaining more acceptance, these systems sometimes suffer from
problems regarding uncertainty in context recognition. For example, during a three
month deployment of context-aware technologies in a hospital, Bardram et al. (2006)
found that clinicians rejected all active context-aware features, suggesting that it is
very important for clinicians to stay in control.

Previous studies have found that medical personnel would benefit most from
having specific information (e.g., guidelines) available about their current activity,
linked to medical equipment, places and patients relevant to this activity. However,
information in hospitals tends to be still tied to traditional manual (or digitized)
patient record files that are often not accessible when caregivers are attending to
patients. To address these problems, we developed situated glyphs, context-aware
micro-displays that show real-time, task-specific information and can be deployed
in healthcare environments (Kawsar et al., 2011; Vermeulen et al., 2012a). In this
chapter, we first describe the situated glyphs system. Next, we explain our study
setup: relevant information categories were first collected in a formative study at
the hospital ward (Altakouri et al., 2010), after which we performed a simulation of
the situated glyphs system with six nurses. Nurses were introduced to two different
hardware prototypes, with different levels of control and different ways of present-
ing information. We conclude with the findings of semi-structured interviews with
the nurses to identify what level of control would be appropriate, and what hard-
ware prototype was preferred.

51

52 exploratory study of a context-aware guidance system for nurses

4.2 situated glyphs : providing activity-aware visual instructions

Studies have indicated that there is a clear need to present task- and activity-centric
information in demanding work places, such as hospitals (Bardram, 2009) or indus-
trial plants (Heyer, 2010). Consider the situation depicted in Figure 4.1a, in which
a nurse is presented with multiple care options involving multiple patients and
equipment. She might decide to use saline solution with Patient One or Patient
Three, or she might decide to support only Patient Two instead. In each case, she
requires information that matches her current activity and is linked to the equipment
and patients that are relevant to this activity.

(a) (b)

Figure 4.1: A hypothetical nursing care scenario with and without situated glyphs. Situated
glyphs present task- and activity-centric information to the nurse.

The system we study in this chapter presents activity-centric information on
micro-displays in the form of glyphs (Kawsar et al., 2011): simple visual representa-
tions of physical activities that represent relationships between people and objects
relevant to that activity.

In the field of information visualization, a glyph is a single, graphical unit de-
signed to convey multiple data (Ware, 2012). Different parts of the representation
or different visual variables (e.g., shape, size, colour) (Bertin, 1983) are utilized to
encode different values. An early example of glyphs was shown by Chernoff (1973),
who represented multidimensional data through different attributes of human faces
(e.g., a nose, eyes). In the literature, glyphs have been used to represent different
attributes of documents (Mann, 1999) or for visualising software management data
(Chuah and Eick, 1998). Due to their intrinsic capability of representing multiple
variables with a single graphical representation, we identified opportunities to ex-
plore the use of glyphs for subtly exposing salient information in dynamic work
places.

To this end, we believe that glyphs provide an interesting design alternative to
present real-time, in-situ information to support multiple interleaved activities in-

4.2 situated glyphs : providing activity-aware visual instructions 53

volving multiple individuals and different types of equipment in complex work-
places. Accordingly, we have devised situated glyphs as graphical units that are situ-
ated in time and space—they are visual representations of activities, and are adap-
tive, mobile and replaceable. Figure 4.1b shows the same situation as explained
above, but here the environment is augmented with multiple situated glyphs. In
this case, when a nurse approaches a particular piece of equipment or a patient
to perform an activity, corresponding glyphs show the information that is relevant
to that activity. One of the key functions of situated glyphs is to help people dis-
cover the activities that can be performed in a given space, at a given time with the
devices and objects at hand.

Figure 4.2 shows an example design of a situated glyph to illustrate the concepts.
Consequently, the glyph shown in Figure 4.2b corresponds to a ‘red’ coded nurse’s
activity of measuring blood pressure with a ‘red’ coded patient numbered ‘3’, using
a ‘red’ coded blood monitoring device numbered ‘19’ which is available in the south-
east direction and working fine. This glyph design is adaptive and dynamically
changes its content depending on the activity at hand and the context of the activity.
Glyphs are initially abstract, but on approaching an individual or an object, more
detail is revealed as shown in Figure 4.2a.

Figure 4.2: An illustrative design of a situated glyph.

Moreover, the spatial distribution of glyphs—the distribution granularity and
placement alternatives of situated glyphs—can vary. Situated glyphs can be posi-
tioned at different locations in the environment: they can be wearable, portable, or
fixed in a certain location. One interesting point of discussion is defining the opti-
mum number of glyphs distributed across the environment. This placement gran-
ularity reveals the design trade-off between information capacity and fragmented
attention. By increasing the number of glyphs it is possible to present more fine-
grained information (Pousman and Stasko, 2006). Additionally, information can
then be dispersed across these glyphs in a more situated fashion, i.e., a glyph em-
bedded in an object shows only information about that object instead of showing
information about the activity as a whole. However, the caveat of increasing the
number of glyphs is that it introduces fragmentation of attention due to the de-

54 exploratory study of a context-aware guidance system for nurses

manding context switches which consequently increase the cognitive load of the
individuals involved in the activity.

Taking these distribution choices into account, we envision multiple possibilities
for the placement of the glyphs. Delving into the ‘Situative Space Model’ introduced
by Pederson (2003), we can logically distribute the glyphs into manipulable space and
observable space. A third alternative is the physical embodiment of a glyph onto an
entity. Accordingly, we identify three design alternatives for placement of glyphs:

1. Entity-centric: A glyph is embodied in every entity as shown in Figure 4.3a.
For individuals these glyphs come in a wearable form, whereas for physical
objects, glyphs are embedded in them.

2. Activity-centric: A glyph is placed at the location of the activity climax or in
the manipulable space as shown in Figure 4.3b. As an example, for an activity
involving a patient and a blood pressure monitor, the glyph can be placed on
the patient’s bed, assuming this activity will be conducted while the patient
is in bed.

3. Space-centric: A glyph is placed in the observable space and is shared across
multiple activities and entities as shown in Figure 4.3c. An example of this
kind of glanceable space is the wall between two patients’ beds.

(a) Entity-centric glyphs (b) Activity-centric glyphs (c) Space-centric glyphs

Figure 4.3: Different placement possibilities for situated glyphs.

Entity-centric glyphs represent the extreme end of the spatial spectrum. Even
though they provide the finest detail of information, they introduce maximum frag-
mentation of attention in comparison to activity-centric and space-centric glyphs.
In addition, compared to the other two alternatives, entity-centric glyphs require
fewer adaptations and information updates due to their situated nature.

Technically, such situated and activity-aware glyphs can be realised as a dis-
tributed display network. Our first prototype was created using an iPod touch
device in an enclosed plastic case, showing only part of its display (Figure 4.4a).
The iPod was configured to open the Mobile Safari web browser at a local webpage
showing a glyph and could be controlled externally (see also Section 4.3.3). In its
latest iteration (Kortuem et al., 2011), situated glyphs form a micro-display network
consisting of Jennic JN5139 micro-controllers with µOLED-160-G1 160x128 pixels

4.3 user study 55

(a) (b)

Figure 4.4: Different versions of the situated glyph prototypes. The first prototype (a) en-
closed an iPod touch to only show part of the screen. The latest prototype (b)
runs on custom hardware and has a physical size of 51 mm ⇥ 30 mm.

65k colours OLED displays, as shown in Figure 4.4b. The micro-displays run the
Contiki Operating System providing a TCP/IP suite on top of the ZigBee wireless
standard.

We studied the usefulness of situated glyphs in a simulation with six nurses of
the Geriatric Psychiatry ward at the District Hospital Mainkofen in Germany. In
the next section, we discuss the objectives and research questions explored in this
study. We also briefly discuss a formative study at the hospital that revealed the
most relevant information categories for the nurses. Next, we present the system
and tasks that were used during the study to examine the design space. We then
delve into the study methodology and explain our procedure for answering the two
research questions, followed by both the quantitative and qualitative results of the
study.

4.3 user study

4.3.1 Objectives and Motivation

The objective of this study was to investigate how best to present activity-centric
information in a hospital environment. We wanted to investigate which methods
to provide information are best suited in this kind of environment and under what
circumstances. More specifically, this study aimed to answer the following research
questions:

Q1 Degree of co-location: Should information be presented in an embedded or
external way? In what situation is there a preference for either, and why?

Q2 Initiative: Should the initiative lie with the user or the system? Or is a more
hybrid approach more suitable? In what situation is there a preference for
either, and why?

Note that each of these research questions corresponds to a dimension in the
design space for intelligibility and control that we introduced in Chapter 3. This

56 exploratory study of a context-aware guidance system for nurses

study provided us with additional insights into the advantages and disadvantages
of these different methods to provide information to users. To answer these research
questions, we conducted a study in which nurses were presented with different
prototypes along two axes (degree of co-location and initiative). We collected both
quantitative and qualitative data, the results of which are discussed in Sections 4.4
and 4.5.

4.3.2 Results from Formative Study at District Hospital Mainkofen

Before developing the prototype system, our colleagues conducted a formative user
study at a hospital (Altakouri et al., 2010). Both the formative study and the second
study took place in the Department of Geriatric Psychiatry of the District Hospital
Mainkofen, a specialist clinic near Deggendorf, Germany. Nurses in this department
support elderly patients suffering from dementia. In the formative study, a Contex-
tual Inquiry was conducted (Beyer, 1997) to observe and analyse the daily routines
of the nurses. The study was primarily focused on identifying the information needs
of nurses, rather than on investigating issues when deploying prototypes for this
environment. Based on analyzing the results from the formative study, we came
to four different categories of information that are relevant for nurses during their
daily routines (Kawsar et al., 2011), which we used as a foundation for developing
our prototype system:

1. Identity and Relationship: This category of information describes the identity of
a patient, medical equipment, etc. and their relationship with each other in the
context of an activity. This type of information helps nurses to make informed
decisions regarding what equipment to use with which patient.

2. Instructions: This information category describes guidelines to perform a med-
ical routine with or without specific medical equipment.

3. Confirmation: Feedback about successful completion of a medical routine with
or without specific medical equipment.

4. Explanations: This category of information provides explanations to address
exceptional situations e.g., when devices are malfunctioning.

4.3.3 System Description

4.3.3.1 Situated Glyphs Used During the Study

Figure 4.5 shows the six different types of glyphs we used in the study, which
contain information sorted into the four different information categories gleaned
from the formative study.

When nurses approach a patient, they are first shown an overview of the tasks
they must perform with this patient (Figure 4.5a). The task overview consists of a
short task list together with a patient ID (the number 2).

4.3 user study 57

(a) Task overview (b) Single task (c) Confirmation

(d) End confirmation (e) Exception (f) Explanation

Figure 4.5: The different types of glyphs used in the study.

The system or user then proceeds to the first task (depending on the initiative),
and is shown a glyph representing an individual task (Figure 4.5b). This type of
glyph consists of a short description of a task (in this case: “Blutdruck messen”,
German for “Measure blood pressure”), the patient ID (the number 2), and the ID of
the medical instrument to use for this task (the number 1: the ID of the stethoscope).
Patient and equipment IDs correspond to the Identity and Relationship information
category.

When participants complete a task, the system confirms this by showing a check
mark (Figure 4.5c). Finally, when all tasks for a patient have been successfully com-
pleted, a last confirmation is shown, consisting of a check mark and the patient ID
(Figure 4.5d). These glyphs correspond to the Confirmations information category.

When there is an exceptional situation (e.g., a patient is allergic to a certain type
of medication), the task glyph will indicate this. For the purpose of this study, we
used a single type of exception that reports problems with the medical instrument
needed to complete the task. In this case, the circle around the medical equipment
ID is coloured red (Figure 4.5e). The next glyph then shows an explanation of the
exception to help the nurses solve the problem. In this case, the explanation (Fig-
ure 4.5f) tells participants to get the insulin injection from a first aid kit in another
part of the room.

4.3.3.2 Hardware Prototypes

To investigate the Degree of co-location dimension (research question Q1), we used
two different hardware prototypes to show glyphs to participants, as shown in
Figure 4.6. For the External condition, we used an Apple iPod touch handheld (Fig-
ure 4.6a) where glyphs are shown on the display. For the Embedded condition, we

58 exploratory study of a context-aware guidance system for nurses

developed a wearable projector prototype using a plastic case with a mirror ori-
ented at 45 degrees at the bottom and a neck strap at the top which projects glyphs
in front of the user (Figure 4.6b), allowing them to focus on their current task.

(a) External prototype (b) Embedded prototype

Figure 4.6: The two prototypes in use. Participants held the external prototype (an Apple
iPod touch) in their hand while performing tasks, or they wore the embedded
prototype around their neck which allowed them to keep both hands free.

The plastic case contains another Apple iPod touch which is connected to a Mi-
croVision ShowWX™ Laser Pico Projector (Figure 4.7). The embedded prototype
weighed about 300 grams in total.

4.3.3.3 Software Prototype: A Distributed Display System

We built a distributed display system in order to be able to remotely control the
display of glyphs on both the embedded and external prototypes. Both prototypes
were configured to open the Mobile Safari web browser at a local webpage showing
a glyph. The web page was being served from a laptop running Apache with PHP
over an Apple Airport Express Wi-Fi base station inside the room. A specific web
page showed the current glyph (as seen by the nurse), while another web page
allowed the experimenters to control which glyph was currently being shown on the
prototype. Glyphs that were shown on the embedded prototype were automatically
mirrored and rotated to appear in the correct orientation when projected.

To simulate context-awareness, we used the Wizard of Oz technique1 (Kelley,
1984). One of the experimenters (Figure 4.8a) remotely controlled the glyph display

1 With the Wizard of Oz technique, an experimenter (the wizard) partially operates an intelligent system,
letting the user believe that the system works autonomously. It is commonly used to allow for rapid
evaluation without having to overcome all technical difficulties first, since participants can interact with
the system as if it was fully functional.

4.3 user study 59

(a) Top view (b) Side view (c) Worn on the body

Figure 4.7: The embedded prototype consisted of a wearable plastic case with a strap, al-
lowing participants to wear the device around their neck. The case contained an
Apple iPod touch running our software connected to a MicroVision ShowWX™
Laser Pico Projector and a mirror oriented at 45 degrees to allow the projected
image to be displayed in front of the participants.

on the prototypes through the specific controller web page (Figure 4.8b). She started
by selecting one of the trials for the experiment, and then showed specific glyphs
or cleared the screen. To update the glyph being displayed in the web page on the
prototype, we used AJAX calls and HTTP streaming2.

(a) Wizard (b) Wizard controller UI

Figure 4.8: The wizard controlled the prototypes through a dedicated controller web page.

4.3.3.4 Initiative: Voice Control versus Automatic Context Recognition

The dimension Initiative (research question Q2) was examined by varying the way
participants proceeded from task to task (user-driven versus system-driven interac-

2 HTTP streaming is a mechanism to stream server data in the response of a long-lived HTTP connection.

60 exploratory study of a context-aware guidance system for nurses

tion). In the case of user-driven interaction, participants were required to issue the
voice command, “Next”, after which the next glyph would be shown.

Both system- and user-driven interaction were controlled by the wizard. In the
case of system-driven interaction, the wizard would enact automatic recognition
of completed tasks by proceeding once she observed that the participant had com-
pleted a task. With user-driven interaction, the wizard would proceed to the next
glyph when the participant issued the voice command “Next”. Although partic-
ipants could see the wizard, we explained that she was there to make sure the
system would run smoothly. None of the participants realized that the wizard was
actually driving the interaction.

4.3.4 Study Methodology

4.3.4.1 Room Setup

We conducted our study in the Department of Geriatric Psychiatry of the District
Hospital Mainkofen, Germany. For the course of the study, we rented a room in this
hospital where we set up a number of tables and whiteboards to simulate two differ-
ent patient rooms, with two patients each. Participants took part in the experiment
in between their shifts, as we wanted nurses to be in the flow of their daily work
activities. Instead of requiring patients to be present in the room during the study,
we used dolls to serve as stand-ins for patients and toy equipment instead of real
medical equipment, as seen in Figure 4.9. Participants were asked to role-play their
usual behaviours as professional nurses on these dolls using the toy equipment.

There are a number of reasons why we relied on dolls instead of real human
patients. First of all, there are several ethical issues involved in using human patients
during the study, such as privacy concerns and the inability to guarantee their
well-being—as several patients at Mainkofen suffer from mild to severe cases of
dementia and might get confused or anxious during the trials. Second, our study
was mainly focused on supporting nurses in their daily activities, and not on the
patients. Finally, as part of their training, nurses are accustomed to practice medical
routines on training dolls (Lapkin et al., 2010).

We used tables and whiteboards to simulate two different rooms. Figure 4.10

shows the layout of the left room, which consisted of two tables with a doll on
each side, representing two patients in hospital beds (Figure 4.10a). During the
initial formative study in Mainkofen, nurses reported that they usually wheel a
cart with medical equipment from room to room. To simulate this situation, we
collected all toy instruments on a chair in the middle of the room before each trial
(Figure 4.10b), providing nurses with easy access to the necessary equipment. The
right room (which is partly visible on the right side of Figure 4.10) was set up in
exactly the same way. The left and right room were separated by the whiteboard in
the middle (representing a wall).

4.3 user study 61

Figure 4.9: The apparatus used for the study: a variety of toy medical instruments (e.g., a
stethoscope and manometer, an injection needle, bandages) together with dolls
that served as stand-ins for patients. All objects were numbered and tagged with
RFID tags (coloured square stickers).

4.3.4.2 Participants and Design

Initially, we recruited 10 nurses from the Geriatric Psychiatry ward at Mainkofen,
which consists of 17 nurses in total (4 male, 13 female). However, 4 nurses dropped
out of the study due to an incompatible shift work schedule, leaving us with 6

nurses in total. These 6 nurses (1 male, 5 female) participated in the study over the
course of approximately a week, and performed the experiment in-between their
shifts. Participants ranged from 27 to 46 years old, with a mean age of 34. In a
demographic survey that was conducted at the end of each session, all participants
reported owning a mobile phone. They rated their experience with computers and
mobile phones as average, ranging from 2 to 4 on a five-point Likert scale, with a
mean expertise of 3 out of 5 (5 = expert, 1 = none). Five out of six participants owned
simple phones (not smart phones), while one nurse used an iPhone. A complete
study session lasted for approximately 2 hours and nurses were paid 50 EUR for
their participation.

The study was set up as a 2⇥ 2 repeated measures within-subject design (Degree
of co-location x Initiative). The independent variables were the Degree of co-location
with two levels (External and Embedded) and Initiative with also two levels (System
and User). The factorial design produced 4 different trials per participant, one for
each combination of the Degree of co-location and Initiative.

62 exploratory study of a context-aware guidance system for nurses

Figure 4.10: The setup of the rooms: two beds with patients (a table with a doll) on opposite
sides of the room, and a cart with medical equipment (a chair with toy instru-
ments) in the middle of the room.

During each trial, subjects performed 3 medical procedures on one of the 4 pa-
tients (represented by 4 dolls). Participants always moved between patients in the
same order, but the 4 different conditions were assigned to patients in random or-
der to minimize learning effects. Figure 4.11 gives an overview of the medical pro-
cedures subjects had to perform during the study. These 6 tasks were randomized
over the 4 patients, but were kept stable between participants so that each partic-
ipant had to perform the same tasks with a certain patient (albeit possibly with a
different condition).

4.3.4.3 Procedure

Before each session, the researchers prepared the handheld and wearable projector
prototypes that would be used for investigating each of the four conditions. After
obtaining informed consent and explaining the basic setup and goal of the study,
participants were guided through a trial session with the External–System condi-
tion, to give them an idea of how the system worked. Participants were told that
exceptions might occur during the trials, which would be indicated with a red cir-
cle around the medical equipment ID (see Figure 4.5e). We also told participants
that the system would in this case instruct them what to do in order to solve the
problem.

Participants would then start with the first trial. As mentioned before, subjects
performed 3 medical procedures on one of the patients during each trial. A trial

4.4 quantitative results 63

Figure 4.11: The different medical procedures participants had to perform during the study
and their allocation to the four different patients.

ended when all tasks had been successfully completed. After each trial, we asked
participants to answer a questionnaire and conducted semi-structured interviews
to obtain both quantitative and qualitative feedback. The questionnaire included
general questions about the usability of the prototype, based on the IBM Com-
puter Usability Satisfaction Questionnaire (Lewis, 1995) and the NASA Task Load
Index (Hart and Staveland, 1988). When a participant had completed all four trials,
we gathered demographic data and conducted a final semi-structured interview in
which we asked questions primarily focused on comparing each of the four condi-
tions. The questionnaires used for the study can be found in Appendix B.1.

The entire study was video recorded, we took photographs of participants work-
ing with our prototypes and used a voice recorder to document all interviews. The
voice recordings were transcribed and photos and images inserted into the tran-
script. The results were collated and analysed by the researchers to understand the
data.

4.4 quantitative results

We compared the scores for each of the different conditions over both the IBM
Computer Usability Satisfaction Questionnaire (IBM CUSQ) and NASA Task Load
Index (NASA TLX) questions in the post-trial interviews. Mean results for each of
the post-trial interview questions can be found in Figure 4.12 and Figure 4.13. Note
that we were only able to perform the study with 6 participants since several nurses
dropped out of the study. Consequently, we do not claim that these results are
statistically significant or free from confounding factors caused by the small sample
size. Nevertheless, we still include them here, as they indicate general trends that
we discuss further in the qualitative analysis (Section 4.5).

The results indicate that External–System consistently scores highest (mean =
1.17, � = 0.21) on a five-point Likert scale (IBM CUSQ: 1 = strongly agree, 5 =

64 exploratory study of a context-aware guidance system for nurses

strongly disagree; NASA TLX: 1 = very low, 5 = very high); followed by Embedded–
System (mean = 1.77, � = 2.00); External–User (mean = 1.95, � = 0.59); and finally
Embedded–User (mean = 2.14, � = 0.57). Participants found the embedded prototype
uncomfortable (Figure 4.12) and physically demanding (Figure 4.13), resulting in
low scores for these respective questions. This was mainly due to the specific form
factor of the embedded prototype and the fact that projection requires fairly low
light conditions. The user-driven prototypes were also generally ranked worse by
participants, and this mostly because it was cumbersome for participants to have to
drive the interaction using voice input.

1,00!

1,40!

1,00!

1,00!

1,30!

1,20!

1,60!

1,20!

2,00!

2,60!

1,00!

1,40!

1,90!

2,30!

1,40!

2,20!

2,60!

1,00!

2,20!

2,20!

2,80!

1,60!

1,60!

2,90!

1,40!

2,40!

2,80!

3,00!

1"2"3"4"5"

It was simple to use this system. !

I was able to complete the medical tasks quickly
using this system. !

I felt comfortable using this system.!

It was easy to learn to use this system. !

The interface of this system is pleasant. !

I liked using the interface of this system. !

Overall, I am satisfied with this system. !

External—System! Embedded—System! External—User! Embedded—User!

Strongly
disagree! Disagree! Neutral! Agree! Strongly

agree!

Figure 4.12: Results based on questions from the IBM Computer Usability Satisfaction Ques-
tionnaire for all four conditions.

At the end of the study, participants were asked to choose between Embedded
versus External and User versus System respectively. Four out of six participants
preferred External above Embedded. The same four also preferred System over User,
indicating a divide between External–System (4 participants) and Embedded–User (2
participants), with a general preference for External–System. To better understand
participants’ motivations for these scores and answer our two research questions,
we now discuss the qualitative results of the study.

4.5 qualitative results

The semi-structured interviews with the participants were transcribed and coded,
after which they were analysed and discussed by two of the researchers. The anal-

4.5 qualitative results 65

1,00!

1,00!

1,33!

1,00!

1,17!

1,83!

2,33!

1,70!

1,83!

1,00!

2,00!

2,17!

1,67!

1,83!

2,17!

2,17!

1" 2" 3" 4" 5"

Mental Demand. How mentally demanding was
the task? !

Physical demand. How physically demanding
was the task?!

Effort. How hard did you have to work to
accomplish your level of performance? !

Frustration level. How insecure, discouraged,
irritated, stressed and annoyed were you? !

External—System! Embedded—System! External—User! Embedded—User!

Very
Low! Low! Neutral! High! Very

High!

Figure 4.13: Results based on questions from the NASA Task Load Index for all four condi-
tions.

ysis of these interviews combined with the quantitative findings revealed several
insights regarding nurses’ preferences for the alternative designs, qualitative assess-
ments of the prototypes and the overall user experience. In what follows, we go
over the qualitative results in the order of the two research questions.

4.5.1 Use Attachable Displays to Present Real-time, Activity-centric Information

The first research question (Q1) we sought to answer examined whether patients
would prefer to use a handheld device for receiving information while performing
medical routines, or rather rely on a wearable, personal projector. We anticipated
both advantages and disadvantages for these different form factors. While a mobile
device is easier to carry around, it does require focused attention and might there-
fore force the nurses to occupy themselves with the device instead of the patient.
Although a wearable projector would allow users to keep both hands free for in-
teracting with the patient while displaying information in-situ where it is needed,
it could be annoying to wear and requires specific lighting conditions. We were in-
terested in discovering how nurses weighed the disadvantages of each form factor
against its advantages and which one they preferred under which circumstances.

Participants in general felt that the wearable projector in the Embedded conditions
constrained them in their work activities, as they had to be aware of the projector at
all times. This was found to be mainly due to the device being relatively heavy, and

66 exploratory study of a context-aware guidance system for nurses

not being fixed to the participant’s body. When nurses had to lean towards a patient,
the device would dangle around their neck and sometimes twist and turn towards
their body, causing the projected image to be shown elsewhere, as shown in Fig-
ure 4.14. Another major issue that was reported during the interviews was the need
for low-light conditions, which might be unsuitable in patient rooms, especially dur-
ing daytime or when performing more delicate medical routines such as injecting
insulin. Additionally, nurses mentioned that there are several situations when there
would be no suitable projection surface available. They were also worried about the
projector blinding patients when facing them. Finally, several participants reported
they were afraid of their own safety and those of the patients when wearing a de-
vice around their neck in psychiatric departments. Patients in these departments
might be aggressive at times and try to grab and pull the device, which could stran-
gle the nurse. For this reason, nurses also refrain from wearing necklaces during
duty. Moreover, they were also worried about the patients’ safety while performing
routines (e.g., scratching patients with the device).

Figure 4.14: Nurses felt they had to be aware of the wearable projector at all times, as it would
dangle and sometimes twist and turn when they were leaning forward, causing
the projected image to be displayed elsewhere.

These comments were also reflected in the quantitative results, where participants
generally rate the physical demand for the embedded prototypes higher than for the
external ones (mean = 1.83 versus 1.00; median = 2.00 versus 1.00; � = 0.937). To ver-
ify whether the reported issues were due to the specific limitations of our employed
prototype, we also asked participants whether they could imagine using either a
similar system that employed steerable, ceiling-mounted projectors, or a wearable
projector the size of a stamp that would be attached to their uniform. Most partici-
pants again rejected both suggestions, due to the need for low-light conditions and a
suitable projection surface. Moreover, they were afraid that a stamp-sized projector
might still hurt patients while performing care-giving activities.

4.5 qualitative results 67

While we anticipated that nurses would experience some difficulties with the
wearable prototype, we expected them to appreciate the fact that they would have
both hands free for performing routines. Even though most participants confirmed
that this is indeed very important, four out of six nurses still preferred the hand-
held prototype. While they did mention that it was also important to be able to
move freely—which was more difficult with the wearable projector—we were still
surprised that the inability to use both hands did not have a stronger impact on
their preference for the handheld prototype. During the interviews and analysis
of the photographs and video recordings, however, we noticed that all participants
actually managed to keep both hands free during most of the trials with the hand-
held prototype. Participants intuitively placed the handheld on the table, waited for
instructions in between tasks, and would occasionally glance at the display while
performing routines, as seen in Figure 4.15. Two participants (P1 and P5) did prefer
the wearable prototype over the handheld one, even though they also tended to
put the handheld prototype on the desk in front of them. These participants were
mainly concerned about where to put the handheld device, which was also con-
firmed by other nurses. P1 stated: “I do not want to have to think where I should
put the handheld”. P5 also agreed: “Where should I put the iPhone? I can’t just
place it somewhere, patients might take it away.” P5 especially liked being able to
use the projector to share information with the patient (e.g., what she would be
doing, the patient’s progress).

Figure 4.15: Participants often placed the mobile device in front of them in order to still have
both hands free to do the activities.

Given the tendency of nurses to keep both hands free, we also asked participants’
opinion on having a fixed display next to the patients bed. Nurses were mostly
concerned about permanently fixing displays to the wall in their ward because ag-
gressive or disoriented patients might break or misconfigure the device. Moreover,

68 exploratory study of a context-aware guidance system for nurses

P3 mentioned that beds are moved all the time, which would render some of the
displays useless. When nurses were asked about a hybrid system that combines a
handheld device and a fixed display, by attaching handhelds to designated spots
on the wall when administering patients, three out of six nurses reacted very posi-
tively. P6 said: “It would be the ideal system.”, while P5 mentioned “This would be
super!”. The three other nurses were less confident about their opinion. They also
reported that a hybrid system could certainly be useful, but mentioned they would
need to try it out first.

Based on the results of our study, we feel that although personal projection cer-
tainly has its uses (Rukzio et al., 2012), the technology would probably be too inva-
sive for use in hospital environments. Nurses were especially concerned about the
need for low-light conditions and for a suitable projection surface. They also worry
about wearing devices on their body, both for safety reasons and because they want
to be able to move freely. Regarding the handheld prototype, nurses did not like the
fact that they had to find a place to put the handheld while performing routines,
and were concerned about patients damaging or taking away the handheld. They
generally preferred to put unnecessary devices or instruments away when they were
dealing with patients to guarantee their own safety and that of the patients. Given
these observations, we therefore recommend against personal projectors (especially
wearable ones), and propose a hybrid solution where nurses carry mobile devices
that they can attach to designated spots on the wall while administering patients.
All nurses saw value in this approach, and three out of six nurses were very pos-
itive about the idea. Further studies will be necessary to confirm the value of this
solution.

4.5.2 Allow Nurses to Switch to User-driven Interaction

The second research question (Q2) dealt with which type of initiative (system-driven
versus user-driven interaction) users would prefer under which circumstances. To
our surprise, the majority of participants (four out of six) preferred system-driven
interaction (System) over user-driven interaction (User). Several nurses reported that
they found system-driven interaction easier to use, as they did not have to think too
much about what to do next. During the semi-structured interviews, we asked par-
ticipants whether there would be situations in which they would need to override
the system. P3 argued it would be necessary to be able to skip certain medical pro-
cedures that they were assigned to perform to a patient, either to perform the tasks
at a later time or skip them completely when they would have been rendered un-
necessary. Even the participants who preferred system-driven interaction, reported
that there should always be a means for overriding the system. Moreover, several
nurses stressed the importance of being able to cope with unexpected situations
and emergencies, as interruptions often occur. P6 mentioned she needs to call a
doctor when she notices something unusual (e.g., out of the ordinary vital signs),
and might be called away herself at any time to assist doctors or other nurses (e.g.,
when a patient gets aggressive).

4.5 qualitative results 69

4.5.2.1 Allow Users to Determine the Pace

The nurses that preferred user-driven interaction (P1 and P5), both mentioned that
they did so because they wanted to control the speed of moving between tasks themselves.
System-driven interaction would sometimes be too slow or too fast for them. Two
other nurses—who generally preferred system-driven interaction—also stressed the
importance of being able to control the pace. The most experienced participant (P1,
aged 47) had a very strong preference for user-driven interaction, as he argued that
he knew exactly what to do and wanted to proceed to the next task as quickly as
possible. P1 was also the fastest in completing all four trials. The pace at which
nurses move through routines they have to perform can vary depending on factors
such as their experience, age, or the specific patient and situation (e.g., during emer-
gencies nurses have to act quickly, and cannot afford to wait for the system). During
one of the user-driven trials, P1 argued: “I like the fact that the system is fast, it fol-
lows my own pace.” For one of the system-driven trials, he said: “It was too slow, I
had to wait too long. It is very important to me that the system works at my usual
speed.” P2 reported waiting for confirmations slowed her down: “I know how to do
a task, I don’t like having to wait for a confirmation. My pace is higher than that of
the system.” We recommend to allow users to drive the interaction when they need
to in order to provide the flexibility that is needed to cope with the broad range of
diverse people and unexpected situations in hospitals.

4.5.2.2 The Level of Interaction Required Defines Who Drives the Interaction

As mentioned before, nurses generally liked the idea of having relevant tasks be
displayed automatically in a system-driven way, when the system detected that the
nurse was in the vicinity of a certain patient. The need to control the pace only came
into play when there were multiple tasks to do. In this case, nurses wanted to have
the means to mark a task as complete and move to the next one, if necessary. We
therefore argue that, when showing activity-centric information, the level of inter-
action required is a defining factor for deciding between user and system initiative.
When there is no interaction required (e.g., a single task for a particular patient), we
recommend system-driven interaction, as this will minimize the mental load of the
nurses. When nurses have to perform a multi-stage process (such as when there are
several routines to be performed on a patient), we recommend giving the nurses the
possibility to drive the interaction, as this would allow them to determine their own
pace and accommodate unexpected situations (e.g., when a patient’s blood pressure
suddenly drops).

4.5.2.3 Preference of Self-Reporting over Activity Recognition

Since nurses perform several common routines on a daily basis, they are often in
a better position to recognize when a task has been completed than the system.
P1 mentioned that he just wanted to tell the system to check off an item from
the patient’s list, and move on to the next task. Trained personnel such as nurses
are much better qualified to make accurate decisions about which procedure has

70 exploratory study of a context-aware guidance system for nurses

been completed and which one ought to be performed next. We therefore argue
that nurses should be able to report to the system which procedures have been
performed, instead of relying on automatic activity recognition, as the accuracy is
likely too low (Favela et al., 2007) and the cost of the system making mistakes will be
too high to warrant a fully autonomous system. We do believe it would be useful
for the system to make suggestions, as participants generally reported that they
liked the idea of having tasks displayed when they approached patients. This is in
line with a study by Bardram (2009), in which he argues that it makes sense to link
specific context events—such as the physician’s location in front of the patient’s bed,
or the presence of specific objects such as a certain patient’s pill tray—to a relevant
activity.

4.5.3 Task Overviews and Completion Confirmations are Key Information

Participants were extremely positive about being shown an overview of tasks that
had to be performed when they approached a certain patient. Nurses have to doc-
ument their activities on a PC, and usually have to do so after the facts, during a
quiet moment. All participants felt it would be great to have a system available that
automatically logs the routines that they perform. P5 stated: “Having the system
automatically document my actions would be great, it saves time.” P2 called the
idea “Super! It’s nice to see that people are trying to ease the job of nurses. But the
system should help us, and not draw our attention away from the patients.” P4 said:
“It is nice to know what to do. It lightens our work significantly. It is nice to know
you won’t forget something when you’re with a patient.” Finally, P2 and P4 both
mentioned they would have more time for their patients with this kind of system.

Additionally, participants especially appreciated the confirmations at the end (Fig-
ure 4.5d), while results were less conclusive about the individual task confirmations
(Figure 4.5c). Some participants even found the task confirmations annoying. P2

said: “Confirmations in-between are confusing”.

4.6 discussion

Drawing on the results of this study, we now describe several insights we gained
about the requirements for deploying context-aware systems in demanding work
environments such as hospitals. We relate these observations to the general theme
of this dissertation: addressing interaction challenges in context-aware systems by
making these systems intelligible and controllable.

First, with respect to the level of control, we noticed that participants generally
preferred the design in which the system was driving the interaction. Even so, par-
ticipants also indicated that they needed a certain level of control and flexibility,
suggesting that it is still necessary for this kind of system to provide end-user con-
trol. Especially given the frequency of exceptional situations, it is essential having a
means to override the system. A dynamic level of autonomy might be most appro-
priate, as several participants reported this as being ‘ideal’. Systems in healthcare

4.7 conclusion 71

situations should strike a delicate balance between having control over the system
and providing ease of use by having the system automatically perform actions on
behalf of the clinicians. We suggest that, in combination with system-driven inter-
action, nurses should be allowed to intervene and take control at all times.

Even though nurses generally indicated a preference for the handheld prototype,
we noticed during the interviews that having both hands free for performing activi-
ties is a key requirement for this kind of system. This was also evident because many
participants actually placed the handheld device on the table (see Figure 4.15). More-
over, the results also indicate that deploying wearable systems and relying on projec-
tion in hospital environments can introduce several problems. Nevertheless, given
the hands-free requirement, we argue that an alternative Embedded design, where
information is displayed in situ, would be most appropriate for these systems that
provide real-time, activity-aware instructions. Based on the results gleaned from
semi-structured interviews in this study, we argue for attachable, mobile displays
that nurses can carry around and attach to a surface when approaching a patient
in the next iteration. This way, nurses could reap the benefits of having both hands
free, without the limitations of wearable systems or projected imagery. A follow-
up study in a different ward, later confirmed that nurses indeed preferred the at-
tachable mobile display design (Vermeulen et al., 2012a) over a projection-based or
handheld-only system.

Finally, the study suggested that feedback is crucial. Nurses prefer to gather in-
formation as soon as possible, to be well prepared and maximize their efficiency.
More specifically, task overviews and confirmations that the system recognized an
activity or that all tasks for a specific patient were performed are considered to be
essential information. Participants were also very enthusiastic about the benefits of
automatically documenting their actions, which is currently a tedious task which
they have to perform after the fact.

4.7 conclusion

In summary, in this chapter we conducted a study of a context-aware prototype
that provides activity guidance for nurses in a geriatric psychiatry ward. Based on
a lab study with nurses and detailed semi-structured interviews, we extracted a
number of insights regarding interaction challenges of context-aware systems in de-
manding work environments. We concluded that it is important to strike a balance
between ease of use through autonomous behaviour and control by allowing users
to take over at all times. With these findings, we provide additional anecdotal evi-
dence for the interaction challenges discussed Chapter 2. The study also provided
us with additional understanding with respect to how the alternatives for the degree
of co-location and initiative dimensions in the design space compare (see Chapter 3).
Although we concluded that an embedded approach where activity guidance infor-
mation was presented in-place was most appropriate, we also observed that wear-
able computing and mobile projection technologies might be difficult to integrate
in hospital environments.

5
T H E D E S I G N P R I N C I P L E F E E D F O RWA R D

5.1 introduction

As discussed earlier (see Section 2.3.3), the design principle feedforward can be an
effective way to bridge Norman’s gulf of execution—the gap between the user’s
intentions and the allowable actions—as it tells users what the results of their actions
will be. If users know what they can expect, they can make an informed decision
about what actions need to be performed to achieve their goals. A very basic exam-
ple of feedforward is an informative label on a button, which tells users what will
happen when they push it. However, feedforward exists in many forms and guises.
Consider, for example, how the iPhone uses a small icon to indicate that the camera
flash will go off when taking a picture in low light conditions (Figure 5.1). Knowing
this can be helpful to avoid triggering the flash in situations where its use would be
inappropriate (e.g., in the cinema or at a concert). And indeed, this is feedforward,
as it gives users information about what will happen when they press the shutter
button. In fact, Wensveen (2005) would classify this as an example of augmented
feedforward, which we will explore further in Section 5.4.2.

(a) Flash will not go off (b) Flash will go off

Figure 5.1: When the flash is set to auto (top left corner in both figures), the iPhone shows a
yellow flash icon in low light conditions (b) to indicate that the camera flash will
be used (source: Apple iOS 7).

We argue that feedforward is one of the key design principles for dealing with
complexity in interaction ‘on the execution side’, as it helps users know what to ex-
pect and what to do to achieve their goals (Norman, 2013b). Although it is tempting
to argue that we should avoid complexity altogether, Norman (2011) stresses that
complexity is in some cases unavoidable and should rather be tamed through good

73

74 the design principle feedforward

design. The more complex the interaction, the larger the need for well-designed
feedforward. Factors that contribute to this complexity include dynamic behaviour
(which reduces predictability), a lack of discoverability or complex rules of be-
haviour (which make it harder to form a correct mental model)—common prob-
lems when interacting with ubicomp systems (Rehman et al., 2002). Consequently,
feedforward will also have an important role to play in the design of context-aware
systems and appliances, and ubicomp environments in general (see Section 2.3.3).
Indeed, as mentioned earlier, Bellotti and Edwards (2001, pg. 203) include feedfor-
ward among the four design principles that are necessary to make systems intelligi-
ble.

Unlike the notions of feedback and (perceived) affordances1 (Norman, 1988), which,
over the past few decades, have emerged as core concepts in interaction design, feed-
forward is not well-known among designers. Even so, almost every designer has—in
one way or another—already used feedforward in their designs. Yet, opportunities
for feedforward are often left unexplored because designers are not fully aware of
this design principle. An important factor contributing to this limited awareness
is the lack of a precise and generally accepted definition of feedforward. Further-
more, there is no existing library of examples and proven solutions for applying
feedforward that designers can rely on.

In this chapter, we address those problems. First, we provide a new definition: we
reframe feedforward by analysing and comparing existing definitions, and further
disambiguate it from the related design principles feedback and affordances. Secondly,
we discuss several existing examples of feedforward and clarify what is—and what
is not—feedforward. Finally, we identify four new classes of feedforward: hidden,
false, sequential, and nested feedforward. We begin our exploration with a short his-
torical background on feedforward and how it has been used before.

5.2 background

The term feedforward originated in control theory (e.g., Meckl and Seering, 1986).
In this domain, feedforward is also about predicting what will happen: feedfor-
ward control systems generate inputs to attain a certain desired output based on a
predictive model of the system. An advantage of feedforward control is increased
performance over systems that rely solely on feedback, with applications such as
engine-torque control (e.g., Iwasaki and Matusi, 1993) or speeding up disk seeks
(e.g., Atsumi, 2009). In addition, the term feedforward has also been used in arti-
ficial neural networks (e.g., Hornik et al., 1989), to denote neural networks where
information only flows in one direction (i.e., where there is no feedback between
the different layers).

1 Norman later argued for replacing the term ‘perceived affordance’ with ‘signifier’ to avoid confusion
(Norman, 2008, 2013b). However, for historical relevance and to accurately reflect what others have
written about the relation between feedforward and perceived affordances, we will continue to use
‘perceived affordance’ throughout this chapter. All mentions of this term can, however, be replaced with
‘signifier’.

5.2 background 75

In this chapter, however, we focus on the notion of feedforward in the context of
interaction design. An early reference to user interfaces that allow the user to predict
what will happen, is Nielsen’s notion of prospective feedback (Nielsen, 1993). When
discussing the Eager system (Cypher, 1991)—which automates repetitive tasks by
observing the user, i.e., an advanced form of automated form filling—Nielsen notes
that Eager “provides the user with information about what it will do before it does
it”. By showing what interface elements it will operate on next, Eager allows users
to first verify that its proactive behaviour is desired. When users are then confident
about Eager’s inferences and the resulting outcome, they can allow Eager to go
ahead and complete the task. Nielsen notes that “such prospective feedback is likely
to be a necessary usability principle as long as this type of system does not have
perfect inference capabilities”. This also reaffirms the importance of feedforward
for context-aware systems (Bellotti and Edwards, 2001), which—like Eager—exhibit
dynamic behaviour and take actions on the user’s behalf (see Section 2.3).

The first definition of feedforward in the context of user interface design was
given by Djajadiningrat et al. (2002, pg. 285). They define feedforward by contrast-
ing it with related concepts such as feedback and perceived affordances. Perceived
affordances refer to information available in the design that allows the user to per-
ceive action possibilities (Norman, 1999)2. Note that Djajadiningrat et al. (2002) state
that, unlike feedforward, perceived affordances do not communicate the purpose of
an action [emphasis ours]:

We distinguish between information before the user carries out the ac-
tion (pre-action), and after the user carries out the action (post-action).
These phases correspond with feedforward and feedback. Feedforward
informs the user about what the result of his action will be. Inviting the ap-
propriate action is a prerequisite for feedforward but it is not sufficient.
The product also needs to communicate what the user can expect. Feed-
back informs the user about the action that is carried out, shows that the
product is responding, indicates progress, confirms navigation, etc.

Based on this definition, we can situate perceived affordances, feedforward and
feedback within Norman’s Stages of Action model (Norman, 1988), as shown in
Figure 5.2. We would like to point out that Figure 5.2 is based on Norman’s original
illustration of the Stages of Action model (Norman, 1988), instead of the revised
version (Norman, 2013b) that we used in Section 2.3.1. We do this for historical
accuracy in relation to other definitions that have analysed the role of affordances
and feedforward in relation to Norman’s model (see Section 5.4).

Feedback bridges Norman’s Gulf of Evaluation—the amount of effort users must
exert to interpret the state of the system and to determine how well the expectations
and intentions have been met. Recall that, when evaluating the state of the world,
users go through the Stages of Evaluation shown on the right side of Figure 5.2
(see also Section 2.3.1). Feedforward, on the other hand, bridges Norman’s Gulf of

2 Gibson (1977, 1979) originally defined affordances as the available action possibilities in the environment
in relation to an actor, independent from whether they can be perceived or not. For further details on
the differences, see Section 5.4.1.

76 the design principle feedforward

Execution—the difference between the user’s intentions and the allowable actions—
by helping users decide what action to take based on that action’s expected outcome.
When users act on a certain goal, they go through the Stages of Execution seen on
the left side of Figure 5.2. Perceived affordances also help to bridge Norman’s Gulf
of Execution, but they serve a different purpose: suggesting a particular action to
users, such as pressing a button, or turning a knob.

Figure 5.2: The role of perceived affordances (or signifiers: see Norman, 2008), feedforward,
and feedback in Norman’s Stages of Action model (image based on Norman,
1988).

In the next sections, we will explore feedforward in depth. We start with cur-
rent use of the term—which is at times inconsistent and thus illustrates the need
for a more precise definition. Next, we discuss other definitions of feedforward to
develop our own reframing of feedforward in which we further elaborate on its rela-
tion with perceived affordances and feedback. Finally, we give an overview of what
the different definitions cover in terms of feedforward and analyse a few notable
examples of feedforward.

5.3 use of feedforward

Djajadiningrat et al. (2002) mostly focus on the importance of feedforward for tangi-
ble interaction. However, there have also been other application domains in which
feedforward has been successfully applied, such as gestural interaction. As dis-
cussed earlier (see Section 3.2.1), a common problem of gestural interfaces is their
lack of visibility: users lack awareness of the available gestures that are recognized
by the system, and what these gestures do. Feedforward can help users in perform-
ing the correct gesture by showing the result of invoking gestures.

An early example of the use of feedforward in gestural interaction are Kurtenbach
et al.’s marking menus (see also Section 3.3.4). Marking menus are circular menus
that support gestural interaction and are intended to accommodate both novice and

5.3 use of feedforward 77

expert users (Figure 5.3a). They allow a user to perform a menu selection by either
popping-up a pie menu, or by making a straight mark in the direction of the de-
sired menu item (without showing the menu). Bau and Mackay (2008) mention that
the pie menu serves as a ‘feedforward display’ that helps novice users who hesitate
when they are unsure of a gesture or command. When users become more expe-
rienced, they tend to use marks more, although they still look at the menu now
and then to refresh their memory (Kurtenbach and Buxton, 1994). Note that mark-
ing menus show both what gestures are possible and what users can expect when
they perform one of these gestures (e.g., ‘Cut’, ‘Copy’, ‘Paste’). Bau and Mackay
(2008) developed OctoPocus, a dynamic guide that combines on-screen feedforward
and feedback to help users learn, remember and execute gestures. They state that
“feedforward mechanisms provide information about a gesture’s shape and its as-
sociation with a particular command, prior to the execution or completion of the
gesture.” (Bau and Mackay, 2008). Like marking menus, OctoPocus takes advan-
tage of possible hesitation by appearing after a “press and wait gesture”. The set
of possible gestures and associated commands are continuously updated while the
user is performing a certain gesture, as illustrated in Figure 5.3b. Other examples
of feedforward in gestural interaction are ShadowGuides (Freeman et al., 2009) and
TouchGhosts (Vanacken et al., 2008), which extend Bau and Mackay’s concept of
dynamic guides to multi-touch gestures.

(a) Marking Menus (b) OctoPocus

Figure 5.3: Examples of feedforward in gestural interaction (images based on Kurtenbach
et al., 1993 and Bau and Mackay, 2008).

Additionally, Bellotti and Edwards (2001) mention that feedforward is an impor-
tant design principle for making context-aware systems intelligible. They mention
that feedforward answers the question “What will happen if I do this?”. Although
Bellotti and Edwards adhere to Djajadiningrat et al.’s basic notion of feedforward—
communicating the purpose or result of an action—they categorize it as a particular
type of feedback (Bellotti and Edwards, 2001, pg. 203), which is not in line with Dja-
jadiningrat et al.’s ideas. After all, Djajadiningrat et al. see feedforward and feed-
back as separate concepts, where one provides information before the action and

78 the design principle feedforward

the other provides information after the action. Bellotti and Edwards (2001) also
provide examples of feedforward in WIMP GUIs that are often taken for granted—
but, as they argue, are necessary components of the interface that help users know
what will happen when a certain action is performed—such as flashing insertion
points; cursors, pointers and handles; window highlighting; and rubberbanding.
The “What if?” questions by Lim and Dey (2010) can be seen as an example of the
kind of feedforward that Bellotti and Edwards refer to.

By comparing Djajadiningrat et al.’s original definition of feedforward to the in-
terpretations by Bellotti and Edwards (2001) and Bau and Mackay (2008), it is ev-
ident that the term feedforward has not always been used consistently. Different
subcommunities within human–computer interaction seem to interpret the concept
in a slightly different way. Moreover, there are only a handful of HCI textbooks that
talk explicitly about feedforward. One of them is Dan Saffer’s “Designing for Inter-
action” (Saffer, 2009), which refers to the definition by Djajadiningrat et al.. Saffer
argues that designers should look out for opportunities to use feedforward—even
though, as he mentions, “it is harder to design into products and services than feed-
back” (Saffer, 2009, pg. 133). After discussions with Don Norman about our paper
on feedforward (Vermeulen et al., 2013b), Norman incorporated feedforward in his
Stages of Action model in the 2013 revision of “The Design of Everyday Things”
(Norman, 2013b; see further: Section 5.4.6).

5.4 feedforward definitions

In this section, we outline the differences between existing definitions of feedfor-
ward. This overview will provide a thorough review on the notion of feedforward
and its relation to affordances. Table 5.1 lists different definitions and examples
of feedforward alongside a number of important dimensions. We will discuss this
table in more detail later (Section 5.5.4).

5.4.1 Djajadiningrat: Going Beyond Affordances

As previously mentioned, Djajadiningrat et al. (2002) have defined feedforward by
contrasting it with feedback and affordances. Feedback is one of the most well-
known design principles in interaction design, along with affordances, visibility,
constraints and mappings. Feedback is a message about whether or not a goal was
achieved or maintained (Saffer, 2009) and is typically used to inform the user that
the system is responding, to indicate progress or to confirm navigation (Bellotti and
Edwards, 2001). Djajadiningrat et al. (2002) state that feedforward, like feedback,
returns information about the result of a process or activity. However, while feed-
back is communicated during or after the action, feedforward is information that is
offered before the action takes place. Whereas feedback informs the user about the
action that is carried out, feedforward informs the user about what the result of their
action will be.

5.4 feedforward definitions 79

Hierarchy

Discrete Continuous

Definitions
Djajadiningrat ! ! ! !
Wensveen ! ! ! ! ! ! !
Gaver / McGrenere and Ho ! ! ! ! ! !
Hartson ! ! !
Norman ! ! !
Bau and Mackay ! ! !

Examples
OctoPocus / ShadowGuides ! ! !
TouchGhosts ! ! !
SpeakCup ! ! !
Disney Pixar Cars 2 AppMATes ! ! ! !
Tooltips ! ! !
Tangible Video Editor ! ! ! ! !
TempSticks ! ! ! ! !

St
at

ic

Sequential

Modality Detail Time

Vi
su

al

Ta
ct

ile

Au
ra

l

Hi
gh

Av
er

ag
e

Lo
w

Ne
st

ed
Table 5.1: Summary of the coverage of the feedforward definitions, their differences and an

analysis of several feedforward examples in practice.

Next to feedforward, affordances also provide information to users before they
carry out an action. Gibson (1977, 1979) defined affordances as:

All ‘action possibilities’ latent in the environment, objectively measur-
able and independent of the individual’s ability to recognize them, but
always in relation to the actor and therefore dependent on their capabil-
ities.

As introduced in the HCI literature by Norman (1988), perceived affordances
(affordances that the user is made aware of through good design) essentially invite
the user to a particular action. Affordances therefore suggest how one can interact
with a product or system. Typical examples in HCI are buttons which afford pushing,
knobs which afford turning, or sliders which afford moving up and down (or left and
right, depending on the orientation). Affording the right actions has been widely
regarded as a crucial aspect of usability. Even though perceived affordances are
very useful, Djajadiningrat et al. (2002) argue that inviting the appropriate action is
a prerequisite for feedforward, but it is not sufficient. They state that the essence
of usability lies not in communicating the necessary action, but the purpose of an
action.

5.4.2 Wensveen: Inherent, Augmented & Functional Feedforward

Wensveen et al. (2004) further elaborated on their previous definition (Djajadin-
ingrat et al., 2002) and distinguish between three different types of feedforward,
based on the ‘form of information’ that the user receives about their action: inherent,
augmented and functional feedforward (Figure 5.4).

80 the design principle feedforward

(a) Inherent (b) Augmented (c) Functional

Figure 5.4: Wensveen’s three types of feedforward. Images from (Wensveen, 2005) reused
with permission (Copyright © 2005 Stephan Wensveen).

Wensveen (2005) separates different types of feedforward in analogy with the way
he distinguishes between inherent, augmented and functional feedback3. Wensveen
explains the difference between these three types of feedback using the example of
turning on a television set (Wensveen, 2005, pg. 158–160). Inherent feedback is infor-
mation arising from acting on one of the action possibilities, from the movement
itself—the click you hear when pressing the ‘on’ button, and the way it feels when
you push it. Augmented feedback is information coming from an external source—the
red LED that lights up to confirm that the TV is turned on. Finally, functional feedback
is information generated by the system when performing its function—the picture
shown on the TV screen and the sound generated by its speakers. Wensveen (2005)
argues that—in a similar fashion—it is possible to distinguish between inherent,
augmented and functional feedforward:

inherent feedforward offers information related to the action possibilities of
the product and appeals primarily to the perceptual motor skills of the per-
son. Inherent feedforward communicates what kind of action is possible (e.g.,
pushing, sliding, rolling; see Figure 5.4a) and how this action can be carried
out (the amount of force required, body parts, etc.). Wensveen (2005, pg. 161)
states that “inherent feedforward can be viewed as a limited interpretation of
Gibson’s affordances” (Gibson, 1977).

augmented feedforward is information from an additional source about the ac-
tion possibilities of a product or system, or the purpose of these action possibili-
ties (Wensveen, 2005, pg. 162). This type of feedforward appeals primarily to
the cognitive skills of users. Figure 5.4b shows examples of augmented feedfor-
ward, such as on-screen messages indicating what to do (i.e., conveying the

3 The terms inherent and augmented feedback originated in the psychology of learning (see Laurillard,
1993).

5.4 feedforward definitions 81

action possibilities) and lexical or graphical labels communicating the purpose
of the action possibility. As mentioned earlier, another example of augmented
feedforward is the camera flash example shown in Figure 5.1 on page 73.

functional feedforward goes beyond the action possibilities and their spe-
cific purpose and instead informs the user about the more general purpose of
a product and its functional features (Wensveen, 2005, pg. 162–163). A possible
strategy for functional feedforward is making the functional parts visible—
similar to Norman’s notion of visibility (Norman, 1988). The candy vending
machine in Figure 5.4c (top), for example, makes the available types of candy
and the mechanism which delivers the products to the user clearly visible.

Note that by defining inherent feedforward as a limited interpretation of Gib-
son’s affordances, Wensveen does not contradict his earlier work (Djajadiningrat
et al., 2002)—where he does not yet differentiate between different types of feed-
forward. According to Wensveen (2010), when viewed holistically, feedforward as
a whole—the combination of inherent, augmented and functional feedforward—
still goes beyond affordances. Additionally, Wensveen (2010) clarified that the dis-
tinction between the three types of feedforward also relates to the kind of skills
we primarily use to process that information: perceptual motor skills for inherent
information, cognitive skills for augmented information, and the combination of
emotional, cognitive and perceptual motor skills for functional information.

Even though the above-mentioned definitions distinguish between feedforward
and affordances, there have been a number of frameworks for affordances (e.g.,
Gaver, 1991; Hartson, 2003; Kaptelinin and Nardi, 2012; McGrenere and Ho, 2000)
that included aspects of feedforward without explicitly mentioning the term. In the
next sections, we give an overview of these frameworks and explain how they relate
to feedforward.

5.4.3 Gaver: Technology Affordances

In his paper titled “Technology Affordances”, Gaver (1991) argues that affordances
are not always single, independent entities, but can be related to one another. He de-
scribes two different relationships between affordances: nesting and sequence. Nested
affordances are grouped in space, while sequential affordances are sequential in
time (i.e., acting on an affordance leads to information indicating new affordances).
Gaver states that affordances are not passively perceived, but explored. He also hints
at the possibility of conveying affordances through different modalities (e.g., sound,
tactile information).

Nested affordances, in particular, bear resemblance to feedforward. McGrenere
and Ho (2000) have analysed Gaver’s work, and clarify the concept of nested affor-
dances with the example of a button. They state that users are not interested in
clicking on a button for its own sake, but are interested in invoking a certain func-
tion. The function that will be invoked by a button is usually specified through its
label or icon. They explain that here the affordance of ‘button clickability’ is nested
within the affordance of ‘function invokability’. McGrenere and Ho stress that it is

82 the design principle feedforward

important to acknowledge that each of the levels of the affordance hierarchy may or
may not map to system functions. Furthermore, they believe that affordances are not
limited to physical aspects of the system (e.g., physical interaction with a mouse,
keyboard or screen), as implied by Norman in his clarification of the use of the term
affordances (Norman, 1999). They state that application software also provides pos-
sible actions. For example, a word processor affords writing and editing at a high
level, but also actions such as clicking and scrolling or dragging and dropping. Ac-
cording to McGrenere and Ho (2000), the functions that the user can invoke are the
(real) affordances in software (i.e., what the software ‘affords’). Labels, icons and
menus act as perceptible affordances that make these functions visible.

Given Gaver’s extension of nested affordances, Wensveen’s functional feedfor-
ward (Wensveen, 2005) could be seen as a perceptible affordance (Gaver, 1991)
which conveys the general (top-level) function of a system—or what the system
affords the user. This top-level affordance can be seen as the root of a hierarchy of
affordances. As an example, in Figure 5.4c (bottom), the speech-bubble shape of the
voice recorder conveys its general function to the user. However, to actually record
speech, users will also have to be aware of the nested functions and affordances for
these functions (e.g., the record button). One could argue that—through the concept
of functional feedforward—Wensveen is implicitly suggesting that feedforward is
nested as well, just like Gaver’s affordances.

Gaver also introduced sequential affordances, which are only available at certain
points in time. This is common in graphical user interfaces since these can be up-
dated during usage. In contrast—unless we are dealing with shape-changing inter-
faces (Coelho and Zigelbaum, 2011)—physical objects usually have a static phys-
ical appearance and cannot update their form over time. Gaver (1991) notes that
the information that specifies an affordance (e.g., a button on the screen), can be
quickly updated as new affordances become available (e.g., adding a drop down
menu when the button is clicked to allow the user to make a selection). Similarly,
we argue that feedforward could only be made available at certain points in time
or be updated during the user’s action to provide new information. The examples
of feedforward in gestural interaction that were discussed previously in Section 5.3
(marking menus and OctoPocus) can be seen as examples of sequential feedforward.
Sequential feedforward in combination with feedback could further blur the dif-
ference between the two concepts. Feedback provided after performing an action
might afterwards serve as feedforward for the action that logically follows the pre-
vious one.

5.4.4 Kaptelinin and Nardi: Mediated Action & Affordances

Kaptelinin and Nardi (2012) call for adopting a mediated-action perspective on tech-
nology affordances as an alternative for Gibson’s ecological psychology perspective
(Gibson, 1979). They differentiate between two types of affordances: instrumental
technology affordances which are comprised of a handling affordance and an effecter
affordance; and a set of auxiliary technological affordances such as maintenance, ag-
gregation and learning affordances. We mainly focus on instrumental technology

5.4 feedforward definitions 83

affordances—in particular effecter affordances—here, as these appear to be quite sim-
ilar to feedforward. Kaptelinin and Nardi (2012) explain the difference between
handling and effecter affordances with the example of a knife. A knife consists of
two distinct parts: the handle and the blade. The knife handle is used for holding
the knife, while the blade is used to manipulate objects (e.g., an apple). They argue
that this distinction also applies to digital technologies, and, more specifically, to
user interface widgets. For example, the ability to drag the scroll box of a scroll
bar is the handling affordance, while the ability to display a certain portion of the
document in the window is the effecter affordance.

Like Djajadiningrat et al. (2002) and Wensveen (2005), Kaptelinin and Nardi (2012)
distinguish between the purpose of an action (the effecter affordance) and the action
possibility (the handling affordance). Indeed, they provide an example of a user
interface dialog where: “handling affordances are clear but the outcomes of user ac-
tions (effecter affordances) are not immediately obvious. [...] The user can see that
they can select the checkboxes and click the buttons, but the effects of these actions
are not directly apparent.” They state that users will be confused when handling
and effecter affordances are not coupled tightly enough. Kaptelinin and Nardi’s ef-
fecter affordances appear to be closely related to feedforward since they convey the
outcome of a certain action. The idea of tightly integrated handling and effecter af-
fordances seems to be similar to how perceived affordances and feedforward can be
combined to communicate both the action possibilities and the expected outcomes
of those actions.

5.4.5 Hartson: Feedforward as a Cognitive Affordance

Hartson (2003) further clarified the concept of affordances, extending Gaver’s and
McGrenere and Ho’s work. He distinguishes between four types of affordances
based on the role they play in supporting users during interaction:

cognitive affordances are considered to be an extension of Norman’s per-
ceived affordances (Norman, 1988), helping users with their cognitive actions.
Hartson (2003) defines cognitive affordances as “a design feature that sup-
ports, facilitates, or enables thinking and/or knowing about something”.

Example: A button label that helps users know what will happen if they click
on it.

physical affordances help users with their physical actions, and match with
Norman’s real affordances (Norman, 1988)—or Gibson’s affordances (Gibson,
1977, 1979). According to Hartson (2003), a physical affordance is “a design
feature that helps, aids, supports, facilitates, or enables physically doing some-
thing”.

Example: A button that is large enough so that users can click on it accurately.

84 the design principle feedforward

sensory affordances help users with their sensory actions (perceiving infor-
mation). Hartson (2003) defines a sensory affordance as “a design feature that
helps, aids, supports, facilitates, or enables the user in sensing (e.g., seeing, hear-
ing, feeling) something”. Sensory affordances play a supporting role for cogni-
tive and physical affordances. Hartson thus explicitly separates sensing from
understanding.

Example: A label font size large enough to read easily.

functional affordances are a design feature that help users accomplish work.
It ties usage to usefulness, and is similar to McGrenere and Ho’s idea of ‘af-
fordances in software’. Functional affordances add purpose to a physical affor-
dance.

Example: The internal system ability to sort a series of numbers (e.g., invoked
by users clicking on the ‘Sort’ button).

These four types of affordances are tightly coupled and work together to help
users in their interaction. Physical affordances are associated with the ‘operability’
characteristics of user interface artefacts. Cognitive affordances are associated with
the semantics or meaning of user interface artefacts. Sensory affordances have a
supporting role, and are associated with the ‘sense-ability’ characteristics of user
interface artefacts, especially of physical affordances and cognitive affordances. Ac-
cording to Hartson (2003), it is design that connects sensory affordances to physical
and cognitive affordances, so that they can be seen, heard or felt to be used. More-
over, he notes that physical affordances carry a mandatory component of utility or
purpose—the functional affordance—to which statements about physical affordances
should refer.

Hartson’s framework significantly broadens the scope of affordances, so that they
also include both the notions of feedback and feedforward. A cognitive affordance
is explained by the example of “a button label that helps users know what will hap-
pen when they click on it” (Hartson, 2003, pg. 323), which essentially reveals the
purpose of this button. Of course, revealing the purpose of an action and informing
users of “what will happen” corresponds to the original definition of feedforward
by Djajadiningrat et al. (2002). Additionally, Hartson plugs his four types of affor-
dances into Norman’s Stages of Action model (Norman, 1988), as seen in Figure 5.5.
The way he does this seems to suggest that both feedback and feedforward are cognitive
affordances. Recall that we positioned feedforward and feedback in Norman’s Stages
of Action Model before (see Figure 5.2). Interestingly, Hartson identifies the need
for cognitive (and sensory) affordances exactly where we situate feedforward and
feedback. This is evident from Figure 5.6, which combines Figure 5.2 and Figure 5.5.
Hartson later indeed confirmed that he sees feedback and feedforward as examples
of cognitive affordances (Hartson, 2010, email communication).

Furthermore, we can also describe Wensveen’s augmented, inherent and func-
tional feedforward (Wensveen et al., 2004; Wensveen, 2005; see Section 5.4.2) in
terms of Hartson’s four types of affordances:

5.4 feedforward definitions 85

• Inherent feedforward: Wensveen (2005) sees inherent feedforward as a limited in-
terpretation of Gibson’s concept of affordance (Gibson, 1977, 1979). Wensveen
notes that inherent feedforward communicates what kind of action is possible
and how it can be carried out, regardless of its purpose (Wensveen, 2005, pg.
161). Norman made a difference between the presence of an action possibility,
and the information that makes that action possibility visible, as is evident
from the term perceived affordance (Norman, 1988). Wensveen’s inherent feed-
forward deals with both the action possibility and the information that reveals
it (“what action is possible”). According to Hartson (2003), the physical action
possibility in itself, is a physical affordance—a design feature that helps users
to physically do something. Revealing action possibilities happens through a
combination of well-designed cognitive and sensory affordances. We can there-
fore conclude that inherent feedforward is the combination of a cognitive and
sensory affordance that together reveal the underlying action possibility, or phys-
ical affordance.

• Augmented feedforward: this is a cognitive affordance, where lexical or graphical
labels (e.g., words, icons, spoken words) communicate the result of the action.
Hartson further separates the perception aspect through his notion of sensory
affordances, which in this case would ensure that the labels are legible and
sound is audible.

• Functional feedforward: informs the user about the more general purpose of a
product and its functional features (Wensveen, 2005). As noted above, Wens-
veen’s functional feedforward can be seen as a high-level nested affordance
in Gaver’s terminology. Even though Hartson does not explicitly state that
his four kinds of affordances can be nested, we feel this is implied by several
examples in his paper (Hartson, 2003). Wensveen’s functional feedforward
might thus be categorized as a cognitive affordance that makes the high-level
functionality of the product—or its functional affordance—visible. Again, this
cognitive affordance can be supported by a sensory affordance. For example, if
the high-level functionality of the product is conveyed through its physical
form, the discernability of that form can be seen as a supporting sensory
affordance.

Note that Hartson’s framework unites both Gaver’s and McGrenere and Ho’s
work on affordances, and can be used to explain feedforward according to both
Djajadiningrat et al.’s and Wensveen’s definitions (Wensveen, 2005; Wensveen et al.,
2004). While we started Section 5.4 with the assumption that feedforward goes be-
yond affordances, an analysis of Hartson’s framework (Hartson, 2003) suggests that
feedforward might just be a particular kind of affordance, i.e., a cognitive affordance.
We will later use Hartson’s framework to reframe feedforward and disambiguate
it from affordances and feedback (Section 5.5). We conclude this section with an
overview of aspects related to feedforward in Norman’s work.

86 the design principle feedforward

need for physical
and sensory
affordance

need for sensory
affordance

need for functional affordance

need for cognitive
and sensory
affordance

need for cognitive
affordance

Figure 5.5: The need for physical, cognitive, sensory and functional affordances in Norman’s
Stages of Action model according to Hartson (image based on Hartson, 2003).

Figure 5.6: The result of combining Figure 5.2 and Figure 5.5, which suggests that both feed-
back and feedforward can be seen as cognitive affordances.

5.4 feedforward definitions 87

5.4.6 Norman: Natural Mapping, Conceptual Models, Symbols and Constraints

Recall that feedforward reveals the purpose of an action, which according to Dja-
jadiningrat et al. (2002) is essential to create usable interfaces. However, in most of
his examples, Norman (1988) always seems to imply a purpose for a physical affor-
dance (e.g., a doorknob that can be turned in order to open the door). Hartson (2003,
pg. 321) confirms this [emphasis ours]:

In Norman’s Design of Everyday Things world of non-computer de-
vices, a purpose for a physical affordance is always implied. The door-
knob is a cognitive and physical affordance for operating the door. The
physical affordance offered by a doorknob does not mean merely that
the doorknob can be grasped and turned. It means that the doorknob
can be grasped and turned in order to operate (e.g., invoke the function or
mechanism of opening) the door; the user is enabled to operate the door.
In turn, the door itself is a functional affordance that, when invoked,
allows passage. In this interaction design view, a physical affordance
gives access to functionality, the purpose of the physical affordance used
to access it.

Hartson (2003) notes that even though the addition of purpose to the descrip-
tion of a physical affordance is an obvious extension, it should be made explicit
to avoid ambiguities in terminology. Moreover, when the interaction becomes more
complex—as is certainly the case for context-aware systems—it also becomes more
important for designers to explicitly communicate the purpose of an action.

Norman provides two ways to help users determine the purpose of a user inter-
face artefact: natural mappings and a good conceptual model (Norman, 1988). As these
mechanisms allow users to know what will happen when they perform an action,
they could be seen as examples of feedforward. First of all, natural mappings allow
users to determine the relationships between actions and results, between the con-
trols and their effects and between the system state and what is visible by exploiting
spatial relationships and temporal contiguity4. Common examples of natural map-
ping are light switches laid out in the same pattern as the lights in the room, or
stove controls using the same layout as the burners they control. In both cases, the
actionable elements are laid out in the same order as the artefacts in the physical
world that they control. However, according to Djajadiningrat et al. (2004), map-
pings fall short when dealing with abstract data that has no physical counterpart.
Secondly, a good conceptual model allows users to predict what will happen when
they perform an action (see also Section 2.3.3). Norman mentions that this can be
realized by exploiting consistency. He states that consistency in the presentation
of operations and results and a coherent, consistent system image are essential to
ensure that the user forms a correct conceptual model (Norman, 1988, pg. 53).

4 Temporal contiguity occurs when two stimuli are experienced close together in time, which allows an
association to be formed. In the case of a light switch, the immediate feedback of the light turning on
when we flip the switch, allows us to associate the switch with that light.

88 the design principle feedforward

Two other important design principles proposed by Norman are symbols and con-
straints (Norman, 1988). Norman argues that these are not affordances and that
wording in the label on a button, for example, is symbolic communication. Hartson
(2003) agrees, but states that under his own definition, communication is exactly
what makes good wording effective as a cognitive affordance. It helps the user in
knowing (e.g., what to click on). In other words, Hartson (2003) sees symbols, con-
straints, and conventions as essential underlying mechanisms that make cognitive
affordances—and therefore also feedforward and feedback—work. Hartson (2003)
argues cognitive affordances play an enormously important role in interaction de-
sign. He states that they are key to answering Norman’s question: “How do you
know what to do?”. Nevertheless, he acknowledges that the design of cognitive af-
fordances can depend greatly on cultural conventions (or constraints) as a common
base for communicating the meaning of cues from designer to user.

Feedforward in the Revised 2013 Edition of DOET

We had a few conversations over email with Don Norman about our paper on
feedforward (Vermeulen et al., 2013b). Norman later included feedforward into his
Stages of Action model (Norman, 2013b). In what follows, we briefly discuss Nor-
man’s view on feedforward.

THE WORLD

Fe
ed

fo
rw

ar
d) Feedback

What are
alternatives?)

What can I do?)

How do I do it?) What happened?)

What does it
mean?)

Is this okay?)

What do I want to accomplish?)

Figure 5.7: Norman’s view on feedforward and feedback: feedforward answers questions
of execution, while feedback answers questions of evaluation (image based on
Norman, 2013b, pg. 71).

In the revised and expanded edition of “The Design of Everyday Things” (Nor-
man, 2013b), Norman explains that he sees feedforward as an important aspect
in bridging the gulf of execution, as shown in Figure 5.7. He mentions that feed-
forward is the information that helps answering questions of execution: “while
feedback helps you know what happened, feedforward helps you know what you
can do” (Norman, 2013b, pg. 72). According to Norman, feedforward is realized
through the appropriate use of signifiers, constraints and mappings. Moreover, he
states that the conceptual model also plays an important role. Note that this is in

5.5 reframing feedforward 89

line with our earlier arguments. Conceptual models indeed allow the user to predict
what will happen. Likewise, mappings inform the user of the relationship between
controls and their actions, and thus tell users what the result of their actions will
be. Constraints limit the possible actions, and are therefore mainly useful for dis-
coverability and preventing errors. Additionally, they can also help the user with
knowing what will happen: natural mappings, for example, work by providing log-
ical constraints (Norman, 2013b, pg. 130). Similarly, cultural constraints can give
us insights into what we can expect (e.g., the colour red can be associated with
dangerous actions).

Nevertheless, as is evident from Figure 5.7, Norman seems to have a somewhat
broader view of feedforward that also includes discoverability and how users can
perform certain actions. According to our own definition (see Section 5.5), however,
action possibilities are conveyed through perceived affordances. We corresponded
with Norman about this (Norman, 2013a, email), and received the following reply
[quoted with permission]:

Feedforward is not about discoverability. In my definition and use of feed-
forward, it is specifically what should happen after performing an action. This
builds up the expectations for the result, which can then be confirmed or discon-
firmed.

Hmm. I answered above without looking at my book. Figure 2.7 [note: repro-
duced here as Figure 5.7] certainly does imply a far greater range. Interesting. I
wonder what I had in mind? Maybe I was thinking of the broader implications.
My explanation, above, makes sense. But I do like the figure. Feedforward, in
engineering control theory, is in the restricted sense I describe above. But maybe
the expanded notion of Figure 2.7 makes a lot more sense for designing for peo-
ple. I guess that is what I had in mind when I did the figure.

Hmm. So right now, I would go back and change my first paragraph after
the quote from your email: Yes, feedforward also answers questions about action
possibilities and how to perform actions.

When Norman mentions the broader implications of feedforward, he refers to the
fact that informing users of what will happen can also help them to know what is
possible, and how to perform actions. Norman’s view on feedforward is therefore
indeed broader than ours, which we will explain in detail in the next section.

5.5 reframing feedforward

In this section, we reframe feedforward informed by the above discussion of feed-
forward and related design principles such as affordances and feedback. We further
clarify the differences between feedforward, (perceived) affordances and feedback
based on Hartson’s four types of affordances (Hartson, 2003). As Hartson not only
incorporates Gibson’s affordances (Gibson, 1977, 1979) and Norman’s perceived af-
fordances (Norman, 1988), but also broadened the scope of affordances to include
both feedback and feedforward, we feel his framework is useful to reason about the

90 the design principle feedforward

differences and interrelationships between these design principles. As discussed
earlier, Hartson states that physical affordances carry a mandatory component of
utility or purpose—the so-called functional affordance–to which statements about phys-
ical affordances should refer. Hartson’s notion of conveying the purpose of an action
is, indeed, nothing else than feedforward.

5.5.1 Disambiguation: Affordances, Feedforward & Feedback

As discussed before, Hartson situated his four types of affordances into Norman’s
Stages of Action Model (Norman, 1988). Remember that Hartson identified the need
for cognitive (and sensory) affordances exactly where we positioned feedforward
and feedback in Norman’s Stages of Action model (see Figure 5.6), which suggests
that both feedback and feedforward are cognitive affordances. Indeed, Hartson later con-
firmed this in personal email communication (Hartson, 2010). Nevertheless, even
though it is a cognitive affordance, feedforward is also connected to the three other
types of affordances.

Our new view on feedforward, feedback and perceived affordances is as follows:

perceived affordances (Figure 5.8a) are cognitive affordances that are under-
standable through well-designed sensory affordances (e.g. a door’s handle)
and reveal a physical affordance (an action possibility), which is coupled to a
functional affordance (the action’s purpose). Perceived affordances occur be-
fore the user’s action and invite them to an appropriate action.

feedforward (Figure 5.8b) is a cognitive affordance that is understandable through
a well-designed sensory affordance (such as a readable, descriptive label or
an object’s physical shape) and reveals the functional affordance (the system
function) coupled to a physical affordance (the action possibility). Feedfor-
ward occurs before the user’s action and tells users what the result of their action
will be.

feedback (Figure 5.8c) is a cognitive affordance that is understandable through a
well-designed sensory affordance (e.g. an informative message), and provides
information about the result of a user’s action, which is revealed to the user
through the combination of physical and functional affordances. Feedback is
provided during or after a user’s action and informs them about the result of
performing their action. Feedback can later turn into feedforward again (in com-
bination with a perceived affordance) for another action that logically follows
the previous one.

Figure 5.8 illustrates these definitions and shows how perceived affordances, feed-
forward and feedback relate to each other and are linked to Hartson’s four types of
affordances (Hartson, 2003). Both perceived affordances and feedforward tell users
something about a particular action through a combination of a physical and func-
tional affordances. Perceived affordances and feedforward essentially provide dif-
ferent information about the action that users have to perform to achieve their goals.

5.5 reframing feedforward 91

While perceived affordances reveal the physical affordance, which tells users that there is
an physical action available and how to perform it, feedforward reveals the functional
affordance and tells users what will happen when they perform that action.

Figure 5.8: An overview of how (a) perceived affordances, (b) feedforward, and (c) feedback
(c) can be explained using Hartson’s four types of affordances. C, S, F and PH refer
to Hartson’s Cognitive, Sensory, Functional and Physical affordances respectively.
In (c), the functional and physical affordances together constitute an action pos-
sibility. While perceived affordances and feedforward provide information before
the user’s action (pre-action), feedback occurs after the user’s action.

An action here can be viewed at different levels of abstraction. In the provided ex-
amples, we mainly conceptualise an ‘action’ at an intermediate level of abstraction,
in line with Hartson (2003). Although clicking a button can be broken down further
in several precise motor movements (e.g., moving the mouse cursor to the button’s
position on the screen, pressing the mouse button and releasing it), we view this
as a single physical action (with a corresponding physical affordance). Similarly, in
Figure 5.1 on page 73, taking a picture is considered to be a single action. When
users know how to perform elementary user interface actions, which in the case of
WIMP interfaces would be actions like clicking, scrolling, or dragging, feedforward
is mainly useful for designers (and users) at this intermediate level of abstraction.
Nevertheless, feedforward could also assist users with lower level actions to accom-
modate users who are new to certain interaction styles. For example, feedforward
in OctoPocus (Bau and Mackay, 2008) helps users perform gestures by answering
the question “what happens if I make a gesture in this direction?”.

Feedback provided after performing an action might afterwards again serve as
feedforward for the action that logically follows the previous one (Figure 5.8c).
Wensveen refers to feedback that turns into feedforward as inherent traces of action.
In its simplest form, it is “nothing more than evidence for the user that he has acted
on the action possibilities, as if it were a trace of the bygone action” (Wensveen

92 the design principle feedforward

et al., 2004, pg. 183). An example of feedback turning into feedforward is a physical
light switch. When users flip the switch, feedback consists of the changed position
of the switch, and, of course, also the light that lights up—Wensveen’s notion of
functional feedback (Wensveen, 2005). However, the user’s action also changed the
possibilities for action, as the light cannot be turned on again, it can only be turned
off. In essence, the feedback of the light and the state of the switch, becomes feed-
forward indicating that flipping the switch again will reverse the state of the light
and thereby turn it off. Another example of feedback that turns into feedforward
can be found in marking menus (Kurtenbach et al., 1993). Once a function in the
marking menu is invoked, its label is changed to the corresponding inverse function.
This inverse function label, at first, serves as feedback to indicate that the previous
function has been invoked, and secondly, as feedforward for invoking the reverse
function (thereby undoing the earlier action again).

5.5.2 Hidden and False Feedforward

Gaver (1991) also discerns between affordances—as in Gibson’s original definition
(Gibson, 1977, 1979)—and the perceptual information available about them, so-
called apparent affordances. Apparent affordances correspond to what Norman de-
fined as perceived affordances (Norman, 1988). Based on this distinction, Gaver intro-
duces the concept of false and hidden affordances, where the apparent information
about the affordance is either incorrect or missing.

Similar reasoning could be applied to feedforward. We introduce false feedforward
and hidden feedforward and explain them using Hartson’s framework (Figure 5.9).
Feedforward is false when it conveys incorrect information about what system func-
tion the action performs. When feedforward is missing, it hides how the action is
related to the system function, i.e., there is no information that reveals the purpose
of the action. Although (usually) undesirable, false and hidden feedforward might
be useful notions to consider in interaction design.

An example of hidden feedforward is an incomprehensible bank of light switches,
where there is no information available about which switch controls which light5.
Even though the switch clearly communicates that there is an action possibility, but
there is no way of knowing what it will do. The only option for the user is often
to try them all. Note that we do not have to put labels on the light switch to solve
this problem. If Norman’s concept of natural mapping is used to lay out switches in
a similar spatial pattern as the room layout, then there is information that allows us
to determine which switch controls which light. Another possibility was provided
by Park et al. (2014). They integrated touch sensors in light switches to provide an
additional touch state, similar to the ‘hover’ state in GUIs. When touching the light
switch, the light that is controlled by that switch would light up, allowing the user
to make the connection between both.

A very basic example of false feedforward is a button with an incorrect label. Al-
though simple, this is an effective technique often employed by malicious software

5 For an example, see: Norman (2013b, Fig. 4.4.; pg. 136).

5.5 reframing feedforward 93

Figure 5.9: False and hidden feedforward. False feedforward provides incorrect information
about the functional affordance, while hidden feedforward provides no informa-
tion about the functional affordance that is coupled to the action.

to trick the user into invoking certain destructive actions. Figure 5.10 shows a UI
dialog for so-called scareware—software that scares users about viruses on their com-
puters and tricks them into installing malicious software that actually infects their
computers (BBC News, 2009). Instead of removing malware from the user’s com-
puter, clicking the ‘Fix Now!’ button will actually install it—an example of provid-
ing incorrect information about the functional affordance.

!
Spyware has been detected on your system!
Your computer is running slower than usual cause of a malware.

Fix Now!

Figure 5.10: An example of false feedforward: so-called ‘scareware’ that tricks users into in-
stalling malware, although it actually advertises to clean the user’s computer.

False or hidden feedforward (and affordances) relate to the notion of so-called
deceptive user interfaces. Designers that create interfaces that deliberately deceive can
either do so to benefit the user (Adar et al., 2013), or to trick them into doing
things they would otherwise not do (Brignull, 2011). An example of benevolent
deception is a progress bar that smooths the actual progress of the system, making
the system ‘feel faster’ (Harrison et al., 2010). On the other hand, Brignull (2011)
describes several dark patterns with less admirable goals. These patterns are used
by e-commerce websites to deliberately trick users, for example into signing up for

94 the design principle feedforward

monthly paying memberships when they were just interested in buying a single
item.

5.5.3 Nested and Sequential Feedforward

Gaver (1991) proposed the idea of sequential affordances and nested affordances for
complex actions. Similarly, we argue that feedforward can also be nested or se-
quential, which we illustrate next with a couple of examples. In his discussion of
sequential affordances, Gaver further mentions that affordances can be conveyed
through multiple modalities (e.g., visual, tactile, auditory information). Just like
affordances, feedforward can also be provided using different modalities, as con-
firmed by Wensveen (2005) and Djajadiningrat et al. (2002). However, some modal-
ities (e.g., tactile) will be better suited to exploratory actions as they cannot be
perceived through what Gaver (1991) calls “relatively passive perception”.

As previously discussed, functional feedforward (Wensveen, 2005) conveys the
general purpose of a system. A common way to inform the user of a product’s
general purpose is through its form (e.g., the voice recorder in Figure 5.4c). This
top-level function can be seen as the root of a nested feedforward hierarchy, and can be
combined with feedforward that is provided for lower-level or nested functionality
(e.g., the different buttons on the voice recorder).

Notable examples of sequential feedforward are systems that use feedforward to
make gestural interfaces easier to use, such as OctoPocus (Bau and Mackay, 2008),
ShadowGuides (Freeman et al., 2009). OctoPocus and ShadowGuides continuously is-
sue dynamic feedforward and gradual feedback during input. While performing a gesture,
users are provided with information about their current set of possible gestures (i.e.,
their action possibilities) and the expected result of performing those gestures, to-
gether with feedback about how well the current gesture has been recognized. Here,
feedforward is the information that conveys the result of performing a particular
gesture. Note that the level of detail of feedforward may vary. OctoPocus and Shad-
owGuides, for example, just use simple labels (e.g., ‘Cut’, ‘Copy’) to tell users what
a certain gesture will do, as shown in Figure 5.3b. Other gesture learning systems,
such as TouchGhosts (Vanacken et al., 2008), provide detailed animations of the ef-
fect of performing a gesture, such as resizing or removing an object. Feedforward
could also be made available at discrete points in time, instead of being updated
continuously. Updating feedforward over time is easily feasible in software, com-
pared to physical interfaces. Sequential feedforward in combination with feedback
could further blur the difference between the two concepts since feedback might
afterwards serve as feedforward for the user’s next actions.

5.5.4 Retrospect: Definitions and Examples

Table 5.1 on page 79 shows which aspects of feedforward are covered by the dif-
ferent definitions and clarifies how feedforward is used in a number of notable
examples. The table provides several dimensions:

5.5 reframing feedforward 95

• the modality that is used to convey feedforward

• the level of detail with which feedforward is provided

• whether there is a nested feedforward hierarchy

• how feedforward is provided over time

It is clear from the definitions by Djajadiningrat et al. (2002) and Wensveen (2005),
that feedforward can be provided using multiple modalities. However, designers
mostly rely on visual information to convey feedforward, apart from a few excep-
tions, such as the tangible programmable heating controller TempSticks (Djajadin-
ingrat et al., 2002).

Bau and Mackay (2008) have introduced the level of detail as a useful criterion
for classifying feedforward mechanisms. Usually, feedforward is provided in a low
to average amount of detail. An example of a low amount of detail would be a
simple label on a button. However, there are situations in which feedforward can
be provided with lots of details, for example when it is important that users are
reassured by exactly knowing the outcome of a certain action (e.g., when control-
ling a smart home). The TouchGhosts technique for learning multi-touch gestures
(Vanacken et al., 2008) is an example of feedforward that is provided at a high-level
of detail, as it essentially provides a live preview of what happens when performing
a gesture.

Feedforward can be nested in a hierarchy. Figure 5.11 shows two examples that use
nested feedforward: the Disney AppMATes iPad game6 (YouTube ID: VaNzbCtxtcY)
and the Tangible Video Editor (Zigelbaum et al., 2007) (YouTube ID: _auBtFb1WmE).
Nested feedforward tends to rely on the object’s shape to convey its general func-
tion (i.e., functional feedforward), combined with lower-level types of feedforward
information. Disney’s AppMATes is a children’s toy which uses tangible toy cars
that can be used on a tablet. In this case, the shape of the toy car serves as high-
level feedforward that explains its general purpose. When children pick the toy car
up and place it on the screen, the display will show small halos underneath the car
representing its head lights. This acts as additional feedforward information indicat-
ing that the car and display are linked. Children can move the car on the display to
play a racing game. In case of the Tangible Video Editor, the shape of the different
building blocks indicate their function (e.g., a movie clip, a transition, etc.).

Finally, feedforward can be either static or updated over time, similar to Gaver’s
idea of sequential affordances (Gaver, 1991). An example of static feedforward
would be a fixed label or the (static) shape of an object. Examples of sequential feed-
forward are the OctoPocus (Bau and Mackay, 2008) and ShadowGuides (Freeman
et al., 2009) dynamic guides, the Tangible Video Editor and SpeakCup (Zigelbaum
et al., 2008). When users connect different building blocks together in the Tangible
Video Editor, this arrangement of blocks provides new information that serves as
feedforward for knowing how the movie clips will be combined together. SpeakCup

6 Disney AppMATes: http://www.appmatestoys.com/

https://www.youtube.com/watch?v=VaNzbCtxtcY
https://www.youtube.com/watch?v=_auBtFb1WmE
http://www.appmatestoys.com/

96 the design principle feedforward

(a) Disney AppMATes (b) Tangible Video Editor

Figure 5.11: Two examples of nested feedforward: Disney AppMATes and The Tangible
Video Editor (image sources: YouTube).

is a digital voice recorder that is shaped like a small rubber disc with holes in its cen-
tre. When the holes are pressed in, forming a small cup, SpeakCup absorbs sound.
When the holes are pressed out, the stored sounds are released. SpeakCup uses its
shape to communicate to users what they can expect. As this shape changes over
time when the disc is pressed in or out, SpeakCup is another example of sequential
feedforward.

5.6 case study : the feedforward torch

5.6.1 Introduction

To conclude this chapter, we illustrate how feedforward can be used to help users
interact with complex systems, appliances or controls. We introduce the Feedforward
Torch, a mobile device that can be used to project information onto objects in the
user’s physical environment. The Feedforward Torch consists of a smartphone, mo-
bile pico projector and a laser pointer enclosed in a plastic case. There is a hole at
the bottom of the case that exposes the button of the laser pointer, which can be
used to aim at objects. Using a torch light metaphor (Rukzio et al., 2012), the Feed-
forward Torch can be pointed at existing objects to reveal additional information
about them. In particular, we focus on providing feedforward to reveal the purpose
of certain controls or objects. The Feedforward Torch can, for example, be pointed
at a light switch to know which light it controls, as shown in Figure 5.12.

In developing the idea for the Feedforward Torch, we were inspired by our ear-
lier explorations into providing in-situ information using mobile projectors (see
Section 4.3.3). Note that the Feedforward Torch is not a fully functional system. We
use the Wizard of Oz technique (Kelley, 1984) to decide what information is shown
and when it is shown. There is no location tracking or object recognition involved;
what is projected is fully controlled by the wizard.

Our main objective with the Feedforward Torch was to explore whether users
would appreciate in-place information about what would happen when interacting
with objects and appliances in their everyday environments. We provided feedfor-
ward in a number of ways: visualizations, animations, textual explanations and

5.6 case study : the feedforward torch 97

Figure 5.12: Using the Feedforward Torch to understand a bank of light switches. First, the
user aims for the right object by pressing a button on the bottom of the device
that activates the laser pointer. When he points at a particular light switch, a
visualization of the room is projected that shows which light(s) will turn on
when flipping that switch (call-out).

combinations thereof. Animations are used to better convey the effect an action will
have, such as when the effect of an action happens after a delay, when it occurs in
a different location or is invisible to the user, or when it takes place over a longer
period of time (see Section 5.6.4).

5.6.2 The Prototype: Hardware and Functionality

As mentioned before, the Feedforward Torch consists of the combination of a smart-
phone, mobile projector, and laser pointer. To allow for one-handed interaction,
these three components are enclosed in a custom-designed acrylic case, as shown
in Figure 5.13 (left). At the top of the case, there is a Samsung Galaxy S Android
smartphone with TV-out support. It is connected to a MicroVision SHOWWX+ laser
pico projector, which is located in the middle of the case. Below the pico projector,
there is a red laser pointer that is taped to the case to keep it at a fixed position. The
case has a small hole at the bottom to expose the laser pointer’s button. Finally, Fig-
ure 5.13 (right) shows the Wizard of Oz controller, a second Android smartphone
that runs a specific application to control what information is projected using the
Feedforward Torch. The two devices are connected to each other over 3G.

Figure 5.14 (right) shows the Wizard of Oz controller application. The controller
interface relies on configuration files that describe the different locations, objects of
interest at those locations, and available feedforward information for these objects.

98 the design principle feedforward

Figure 5.13: The Feedforward Torch encloses an Android smartphone, pico projector and a
laser pointer in a plastic case (left). It is connected to a Wizard of Oz controller
that runs on another Android smartphone (right).

The Feedforward Torch supports textual explanations, visuals, animations and com-
binations thereof.

The wizard stands in the back with the Wizard of Oz controller observing the par-
ticipant. She can turn off the projection when the user is not pointing at an object,
or select a specific room and a particular visualization from a list of preconfigured
systems that were explored in the preliminary user study (Section 5.6.4). Addition-
ally, a visualization can be shown that tells the user that there is no information
available about the selected object. Given a specific visualization that is currently
being shown, the wizard can easily show the visualization for the opposite action
(e.g., replacing “lights on” with “lights off” when the user flips a light switch). The
wizard can also set up the Feedforward Torch to only show textual explanations.
Finally, the Feedforward Torch supports a display-only mode, where the projection
functionality is disabled. Note that in this case the user can still point at an ob-
ject of interest using the laser pointer, but information will only be shown on the
smartphone display.

5.6.3 Related Work

The possibility of augmenting physical environments using mobile projectors was
first demonstrated by Raskar et al. (2003) with their iLamps project. Earlier work
by Pinhanez (2001) focused on steerable, ceiling-mounted projectors. Later, Raskar
et al. (2004) extended these mobile projectors with RFID readers and photosensing
capabilities to identify the physical objects that were being augmented. In the last

5.6 case study : the feedforward torch 99

Figure 5.14: The Wizard of Oz controller application (right) provides controls for showing
specific visualizations categorized in different rooms (see the drop-down menu
at the top). The wizard can also turn off the projection, indicate that no informa-
tion is available, or show a visualization for the opposite user action.

decade, advances in hardware have enabled compact prototypes that can be embed-
ded into smartphones, and different interaction possibilities have emerged (Rukzio
et al., 2012). According to the classification of applications for personal projectors by
Rukzio et al. (2012), the Feedforward Torch would be in the augmented reality cat-
egory. Indeed, the Feedforward Torch can be seen as an application of augmented
reality (Azuma, 1997), as it essentially superimposes virtual information (i.e., feed-
forward) upon the real world.

While the Feedforward Torch is inspired by existing work on portable projectors,
its contribution is not in producing high-quality projected graphics on (potentially
curved) surfaces (Raskar et al., 2003), sophisticated object recognition or tracking
technologies (Molyneaux et al., 2007), or interaction techniques (Cao et al., 2007;
Harrison et al., 2011; Molyneaux et al., 2012). Instead, we aimed to explore whether
users would appreciate the availability of in-place feedforward about complex de-
vices in their everyday environments. Providing in-place guidance and instructions
has been one of the pinnacle applications of augmented reality (Feiner et al., 1993).
Researchers have explored different types of guidance using personal projectors,
such as wayfinding (Wecker et al., 2011; Rasakatla and Krishna, 2013) showing
warning labels on physical objects (Molyneaux et al., 2007), and augmenting on-
screen instructions (Rosenthal et al., 2010). However, in contrast with these systems,
we specifically focus on providing feedforward.

In our own work (Vermeulen et al., 2009a; Section 6.3), we have used steerable
projectors to overlay an intelligent environment with real-time visualizations of ac-

100 the design principle feedforward

tions occurring in this environment (e.g., lights that are turned on or off based
on the presence of someone in the room). The Feedforward Torch serves a similar
goal, but focuses more specifically on revealing the purpose of controls and requires
less infrastructure. Moreover, with the Feedforward Torch, users are able to decide
about what object they require information about and when they need it. Although
the scenarios we describe for the Feedforward Torch do not involve context-aware
systems, we feel the technique would be useful in those situations. However, when
dealing with implicit input or autonomous system actions, the Feedforward Torch
would have to switch to a system-driven approach where it proactively provides
feedforward to show users what will happen. In Chapter 6, we present a general
technique for increasing awareness of system actions and providing users with op-
portunities to intervene: slow-motion feedback.

5.6.4 User Study

We conducted a small-scale user study to assess (1) whether the Feedforward Torch
helps users to better understand how to work with complex systems and (2) whether
visualizations and animations are preferred over textual explanations. During the
study, an experimenter (the wizard) was standing behind the user to observe their
actions and control the Feedforward Torch. Participants were not told that the de-
vice was operated by the experimenter.

5.6.4.1 Participants and Tasks

The Feedforward Torch was used by 7 participants (5 male, 2 female; 4 without and
3 with a technical background; ages ranging from 28 to 40, mean = 32.14) in three
different scenarios, as shown in Figure 5.15:

• Scenario (a): “The Television and the Timer”. Participants were asked to turn
on the TV in a classroom, and had to work around the timer that controls the
TV. The timer is used to provide power to the TV and VCR, and automatically
turns both devices off again after two hours.

• Scenario (b): “The PingPing NFC Terminal”. Participants were instructed to
recharge their contactless PingPing7 payment card for the amount of 10 EUR.
To do so, they had to use both their debit bank card as well as their PingPing
NFC card.

• Scenario (c): “The Lecture Hall”. In this scenario, the objective was to prepare
the lecture hall for a presentation. This means the projector should be turned
on, the projection screen should be lowered, and the lights should be dimmed.

7 https://www.pingping.be/

https://www.pingping.be/

5.6 case study : the feedforward torch 101

(a) The Television and the Timer (b) The PingPing NFC terminal (c) The Lecture Hall

Figure 5.15: The three scenarios participants encountered in the study of the Feedforward
Torch.

5.6.4.2 Procedure

After a five-minute introduction of the Feedforward Torch, participants were given
a specific goal they had to achieve in each of the three scenarios (e.g., turning on the
TV). None of the participants were familiar with the different devices used in these
scenarios. Each scenario took place in a different location around the university
campus.

Before participants started to explore how to complete the predefined goal, they
were asked to describe to the observers how they thought the devices in the scenar-
ios should be used for this purpose. Their assessment of the system was only based
on its appearance and labels or signs already present in the physical space. Next, the
participant was asked to use the Feedforward Torch to complete the assigned task.
Participants were alternately shown visualizations versus text-only information in
the different scenarios in randomized order. The Feedforward Torch was configured
to simultaneously project information and also show it on the smartphone display.
Participants were told to try out both display methods during the study, and were
later asked about their preferences.

After all three tasks had been performed, we conducted semi-structured inter-
views in which we inquired participants about the usefulness of the Feedforward
Torch, and their preferences with respect to visualizations versus textual explana-
tions. Moreover, they were asked in which situations mobile projection was pre-
ferred over showing information only on the phone display. The questionnaires
used for the study can be found in Appendix B.2.

5.6.4.3 Observations

useful for dealing with complex situations All participants were able
to complete the tasks using the Feedforward Torch. When asked about its useful-
ness, all participants mentioned they found the Feedforward Torch useful to guide
them through complex situations. Several participants mentioned they would have
been unable to complete the three scenarios without the Feedforward Torch or addi-
tional help from the experimenters. Two participants stated that the system would

102 the design principle feedforward

have come in handy when using the underground in a large city such as Paris or
London. One participant said: “When I had to use the London Underground for the
first time, it would have been useful to have a device like the Feedforward Torch to
help me figure out how to use the ticketing machine. Now, I had to observe other
passengers first before I knew how the system worked and what I had to do.”

visualizations preferred over textual explanations Participants had
a strong preference for visualizations over textual explanations in the encountered
scenarios, as they considered reading text to be more time-consuming. However, a
number of users suggested providing detailed textual descriptions as an secondary
source of information to complement the existing visualizations.

animations useful in complex situations As we expected, participants
appreciated the use of animations, especially when the result of a certain action
would happen over time or outside the user’s periphery. In scenario (c), we showed
for example an animation of the projection screen coming down when the partici-
pants selected the corresponding button.

mixed feelings about mobile projection The study revealed both advan-
tages and disadvantages of mobile projection technology. Participants liked the fact
that information was overlaid on the physical environment, so they did not have to
switch between the phone display and the device they had to operate. One of the
advantages of mobile projection brought up during the semi-structured interviews
was the fact that groups of people could explore the projection together. However,
participants were also concerned about potential privacy problems, in line with ear-
lier findings by Raskar et al. (2003) and Rukzio and Holleis (2010). A disadvantage
was the difficulty of using mobile projection in low light conditions and on curved
surfaces, which are common issues (Rukzio et al., 2012). There was no clear pref-
erence for mobile projection, although we do expect hardware advancements to
further improve the user experience. Based on our observations from the study, we
do feel that using an augmented reality approach for showing feedforward infor-
mation is valuable, due to the capability for displaying information exactly where it
is needed. Although our prototype used a mobile projector for this purpose, we can
imagine that other augmented reality technologies such as Google Glass8) could be
used as well.

5.6.5 Discussion

With the Feedforward Torch, we explored how feedforward could help users to
interact with devices or objects in complex situations. Although we did not explic-
itly evaluate the device in context-aware systems or environments, we feel that our
findings could apply to those situations as well. For example, animations could be
used in a smart home if the user’s actions would take effect in another location or

8 http://www.google.com/glass/

http://www.google.com/glass/

5.7 conclusions 103

after a certain period of time (e.g., when changing the home’s energy and temper-
ature control settings). To make this possible, the Feedforward Torch should not
only be able to automatically recognize the object the user is pointing at, but also
communicate with that object and retrieve a model of its behaviour. In Chapter 7,
we describe how a context-aware system’s behaviour model can be analysed to pro-
vide automatic explanations of ‘why’ the system acted in a certain way. There is
potential in using similar techniques to automatically provide feedforward as well
(i.e., answering ‘what will happen’).

One of the key features of the Feedforward Torch is its ability to provide on-
demand and in-situ information. Analysing the Feedforward Torch using the design
space introduced in Chapter 3, it can be categorized as a user-driven, embedded tech-
nique (see Table 3.7 on page 48). With respect to the timing dimension, the Feedfor-
ward Torch provides information before the user’s or system’s action. In Section 6.3,
we introduce another embedded technique, one that, unlike the Feedforward Torch,
is system-driven and mostly provides information during execution of actions.

5.7 conclusions

In this chapter, we introduced feedforward, an important design principle to bridge
Norman’s gulf of execution. Like affordances, feedforward is a concept that may
be interpreted in different ways, and may not be easy to define. However, although
feedforward is often used by designers—as is evident from the examples discussed
in this chapter—they tend to do so unknowingly and mostly based on their existing
experiences and skills. We addressed this problem by reframing feedforward in
terms of Hartson’s four types of affordances, and disambiguating it from the related
design principles feedback and perceived affordances. In addition, we identified
four new classes of feedforward: hidden, false, sequential and nested feedforward,
and analysed several existing examples of feedforward. Finally, we presented the
Feedforward Torch to illustrate how providing feedforward can help users bridge the
gulf of execution when interacting with complex devices or controls. In Chapter 6,
we describe slow-motion feedback, a technique to provide intelligibility and control
during actions.

6
S L O W- M O T I O N F E E D B A C K

6.1 introduction

When context-aware systems rely on implicit input and act autonomously, there is
considerable potential for miscommunication between the user and the system. As
discussed earlier (see Sections 2.3.2 and 2.3.4), interaction might take place beneath
the user’s radar (Bellotti et al., 2002), leading to unintended actions, undesirable
results and difficulties in detecting or correcting mistakes (Ju et al., 2008). We have
argued before that it is important for users to be able to intervene when the system
makes a mistake (see Figure 2.6 in Section 2.3.2). Yet, before users can do so, they
must first understand what the system is doing.

Understanding what the system is doing can be complicated by the misalignment
between the system’s time frame and that of its users, as argued by Bellotti et al.
(2002). After all, computers can take action in a fraction of a second, much faster
than we humans are able to notice. This only further complicates the challenge
of providing timely feedback, as the user’s implicit input could potentially trigger
thousands of system actions before being aware of having interacted with the sys-
tem. By the time the user realizes out what is going on, it might be too late to take
corrective action.

In this chapter, we introduce slow-motion feedback (Vermeulen et al., 2014), a design
concept that can be used to address these issues. Just as we would speak slowly
when we explain something to a small child, computer systems could slow down
when taking actions on the user’s behalf and provide intermediate feedback to
make sure that the user understands what is happening. Slow-motion feedback is a
way to provide users with sufficient time to (i) notice what the system is doing and
provides them with the opportunity to (ii) intervene if necessary.

To illustrate the idea of slow-motion feedback, we show an example in Figure 6.1.
In this case, the user is in a context-aware museum environment that reacts to
her movements and actions, such as showing additional information when she ap-
proaches artefacts in the museum. The environment’s context-aware behaviour is
driven by a set of context rules. One of those rules specifies that when movies are
being shown, the lights in the museum will be dimmed to increase viewing com-
fort. In Figure 6.1a, a movie just started playing, which will thus result in the lights
being dimmed. To make the user aware of this system action, lines are projected on
the walls of the museum that visualize the different rules that are being executed.
The lines connect different sensors and devices together to convey how they inter-
act (Vermeulen et al., 2009a). In this case, an animated line moves from where the
movie is playing and ends up at each of the four lights in the room. There is an
annotation on the line that indicates that the lights will be turned off, as shown

105

106 slow-motion feedback

(a) Before (b) After

Figure 6.1: An application of slow-motion feedback. Animations show that the system is
about to dim the lights (a). The system’s action is slowed down to allow users to
notice what is happening, and provide sufficient time to intervene, if necessary.
The lights are only dimmed when the animating line reaches them (b).

in Figure 6.1a(1). It is important to note that the lights are only dimmed when the
projected lines reach them. The system’s action is effectively delayed or slowed down
to give users sufficient time to intervene. Moreover, the visualizations provide users
with intermediate feedback and make them aware of what is happening. As shown
in Figure 6.1a(2), there is a ‘cancel’ command available to stop the system action
from being executed.

Slow-motion feedback essentially manipulates the time frame in which the sys-
tem executes actions to realign it with the time frame of the user (Bellotti et al., 2002).
Another example in which an action by the system is ‘slowed down’, is Gmail’s
‘undo send’ feature (Figure 6.2). This feature provides users with a configurable 5-
to 30-second window to undo sending out an email (which would technically be
impossible to do). While Gmail shows feedback to the user informing them about
the sent email, the actual sending of the email is delayed so that users have a chance
to undo this action in progress. The email is sent after the specified time-out, unless
the user clicks the ‘Undo’ button. This shows the wider applicability of slow-motion
feedback, which is not about implicit interaction or autonomous actions here, but
about providing an additional safety measure for users.

Figure 6.2: Another example of slowing down the system action: providing a specific time
window during which sent emails can be ‘undone’ (source: Gmail).

6.2 design space for the timing of feedback 107

Next, we introduce a design space to reason about the time at which feedback
is provided, and use this framework to better define slow-motion feedback. Next,
we delve deeper into the example shown in Figure 6.1, and discuss how we ap-
plied slow-motion feedback to provide real-time, in-place feedback using projected
visualizations in a context-aware environment. Finally, we position other notable ap-
plications of slow-motion feedback in the design space, and end with a discussion
of the potential of this technique for improving awareness and providing opportu-
nities for control in implicit interaction.

6.2 design space for the timing of feedback

6.2.1 Introduction

In order to define slow-motion feedback, we present a design space that allows us to
define the different possibilities for how and when information about the result of
an action can be provided. The design space consists of two dimensions: the time at
which information is provided about the result of an action, and the level of detail
of that information (Figure 6.3).

Figure 6.3: The design space for when and how information about the result of an action can
be provided. These axes (time and level of detail) also apply to the rest of the figures
in this chapter.

We can plot different feedback strategies in this space, defined by the following
features:

• Time (t): The time dimension represents the time at which events occur, such
as the start of an action, or when information is shown to the user. It consists
of all moments in time that are relevant to the interaction. We define two key
moments: at time t

0

, the action is started (either by the user or the system);
and at time t

1

, the action has been completed by the system.

• Level of detail (d): This dimension represents how much information the user
receives about the result of their action. While this dimension is hard to quan-
tify and tends to have discrete levels, we define two important values for this

108 slow-motion feedback

dimension: d
0

and d

1

. The level d
0

represents the situation in which the user
does not receive any information about the result of their action. At level d

1

,
the user receives fully detailed information about the result of the action.

• Origin and shape of the curve: We define the origin of the graph as (t
0

,d
0

);
when the action starts and no information is provided yet. The curve’s shape il-
lustrates how information is revealed (in discrete steps or continuously), when
and how much information is provided, and the amount of time the user has
to intervene.

From these definitions, we can then derive a number of key regions, as shown in
Figure 6.4:

• t < t

0

: the time period before the action

• t

0

6 t 6 t

1

: the time period during the action

• t > t

1

: the time period after the action

• t

1

- t

0

: the amount of time available to the user to intervene, e.g., to cancel an
unwanted action or correct the system. Note that the user must be aware that
the action is taking place, which means that the level of detail (d) should be
higher than level d

0

(or in other words: d > d

0

).

time period after the action

time period during the actionto ≤ t ≤ t1

time period before the actiont < to

t > t1

Figure 6.4: The three regions in the design space: before, during, and after the action.

6.2.2 Relation to the Design Space for Intelligibility and Control

This design space is a specialized subset of the overall design space for intelligibility
and control that was introduced in Chapter 3 (Figure 3.3 on page 36). As shown in
Figure 6.5, it provides a more fine-grained exploration of the timing dimension in

6.2 design space for the timing of feedback 109

the original design space combined with a second dimension that conveys the level
of detail at which information is provided. The combination of these two dimen-
sions provides opportunities for exploring the relations between moments in time
when actions begin or end, and when and how information about those actions is
presented. The design space allows us to more clearly conceptualize slow-motion
feedback as a specific strategy that slows down ongoing actions in order to increase
the time period during which information about those actions is available.

during afterbefore
Timing

Generality

Degree of co-location

general domain-specific

embedded external

duringbefore after

Le
ve

l o
f d

et
ai

l

none

full

…

Figure 6.5: The design space combining time and level of detail (Figure 6.3) allows for a more
fine-grained exploration of the timing dimension in the overall design space for
intelligibility and control (Figure 3.3).

Ubicomp designers, researchers and developers can combine this design space
with the overall design space presented in Chapter 3 to explore design decisions
with respect to intelligibility and control. In particular, this design space can be used
for fine-grained exploration of design decisions related to the timing dimension. It
can be used to investigate specific moments in time, relating when actions are being
executed to when and with what amount of detail information is being provided.
Like the overall design space, it can be used both to analyse existing designs (as
illustrated in Section 6.4) and to generate alternatives. The remainder of Section 6.2
uses this design space to analyse and differentiate between existing strategies such
as feedback, intermediate feedback and feedforward and to define slow-motion
feedback.

110 slow-motion feedback

6.2.3 Strategies Covered by the Design Space

We illustrate the different regions in the design space (Figure 6.4) with a number of
common strategies to provide information about the result of an action.

6.2.3.1 After the Action: Only Feedback

In graphical user interfaces (GUIs), information about the result of an action is
typically only provided after the action has been completed, or in other words
when t > t

1

, as shown in Figure 6.6a. In this specific situation, information is
provided in full detail (d = d

1

). Even though the action might take some time to
complete (i.e., t

1

- t

0

> 0), users can only intervene when they have information
about what is happening. If no information is provided before the action has been
completed (d = d

0

for t 2 [t
0

, t
1

]), users have no way to prevent the action from
occurring. A common way to address that problem is to allow users to revert back
to a previous state, e.g., via an undo command. This strategy is appropriate when
users explicitly trigger actions. However, it would be less desirable for systems that
act autonomously and/or rely on implicit interaction, in which users can become
frustrated about repeatedly attempting to revert unwanted behaviour.

(a) (b)

Figure 6.6: Feedback (a) and different options for the duration of feedback (b).

There are different options regarding the duration of feedback, as shown in Fig-
ure 6.6b. Feedback can be an inherent part of the user’s ongoing task, and will then
remain visible over time (e.g., text that has been added to a document), which is
the case in Figure 6.6a. Other kinds of feedback might be temporary and disappear
quite quickly, such as subtle notifications when a word processor has auto-corrected
a word. Note also that in the case of Figure 6.6a, the provided information is not
complete (d

0

6 d 6 d

1

), but can be sufficient for the user. Not all notifications
are temporary though, some might be important enough to remain visible until the
user deals with them (e.g., notifications about software security updates).

6.2 design space for the timing of feedback 111

6.2.3.2 During the Action: Intermediate Feedback

Another common pattern is showing information during the execution of the ac-
tion (t

0

6 t 6 t

1

). This allows users to keep an eye on what is happening and to
intervene if necessary. This type of feedback is often used for long-running tasks
to inform users about the current state of the system. While several curve shapes
are possible, the level of detail is usually increased incrementally, as shown in Fig-
ure 6.7a.

(a) Incremental (b) Continuous

Figure 6.7: Incremental and continuous intermediate feedback.

Typical examples of incremental feedback are applications that allow users to pre-
view results while they are being processed. When loading a website over a some-
what slower connection, for example, users can already see partial content coming
in before the website is fully loaded. Should the user suddenly realize that this
was not the website they were looking for, they can easily go back without having
to wait for the entire page to be loaded. As another example, some image editing
applications show incremental feedback while applying filters to an image. An ex-
ample of continuous intermediate feedback (Figure 6.7b) is the OctoPocus gesture
guide (Bau and Mackay, 2008). When users perform a gesture, the gesture guide
continually shows how the user’s input is interpreted by the system by updating
the possible remaining gesture paths.

6.2.3.3 Before the Action: Feedforward

Information about the result of an action can also be provided before the action has
been started (when t < t

0

), as shown in Figure 6.8. In Chapter 5, we called infor-
mation about the result of an action that is presented before the action feedforward.
Feedforward can also remain visible or disappear once the action is being executed.

An example of this is indicating that the camera flash will go off before taking
a picture, as shown in Figure 5.1 on page 73. It is also common to allow users
to preview a change before it takes effect. In Microsoft Word, for instance, when
changing the font colour of a text selection, the result is already visible on the
selected text when the user hovers over the different colour buttons. Although one

112 slow-motion feedback

Figure 6.8: Information about the result of an action can be shown before t

0

, in which case it
is feedforward (see Chapter 5).

can argue over when an action actually starts in this case (when the user hovers
over a button or when she clicks it?), the user still has to confirm the action before
it will be executed by the system. We consider any information that is provided
before executing the action, to be on the left side of the time axis (t < t

0

).

6.2.4 Defining Slow-Motion Feedback

We now define slow-motion feedback using the design space. Slow-motion feed-
back is a particular strategy for intermediate feedback, where the system’s actions are
deliberately slowed down to increase awareness of what is going on and to provide
opportunities for user intervention. Slow-motion feedback is less relevant for long
running tasks where users have no difficulty noticing that something is happening
and have sufficient time to intervene.

Slow-motion feedback is essentially about amplifying the time difference between
t

1

and t

0

(t
1

- t

0

), or in other words, the duration of an action in the user’s time
frame. Execution of the action is postponed by delaying t

1

to t

2

(with t

2

> t

1

). The
available time to notice that the action is happening thus increases to (t

2

- t

0

), as
shown in Figure 6.9. Designers can rely on animations (Chang and Ungar, 1993)
to transition between t

0

and t

2

, such as slow-in/slow-out in which the animation’s
speed is decreased at the beginning and at the end of the motion trajectory to
improve tracking and motion predictability (Dragicevic et al., 2011).

It is important to note that slow-motion feedback also depends on the provision
of information about what is happening. Consider the situation where there is no
information provided at time t

0

(d = d

0

). Suppose that information is only pro-
vided after a certain time t

x

. In other words, there is a point (t
x

,d
y

) in the design
space where t

0

6 t

x

6 t

1

and d

y

> d

0

(i.e., there is information available). In this
case, the available time to notice that the action is happening increases from t

1

- t

x

to t

2

- t

x

. A general definition of slow-motion feedback would thus be as follows:

Slow-motion feedback delays the system action from time t

1

to t

2

. By doing
so, it increases the time to notice what is going on and intervene from t

1

- t

x

to t

2

- t

x

for (t
x

,d
y

) where t
0

6 t

x

6 t

1

and d

y

> d

0

.

6.3 an application of slow-motion feedback : the visible computer 113

Figure 6.9: Slow-motion feedback amplifies the time to intervene by showing feedback until
t

2

instead of t
1

.

In the next section, we delve deeper into the example shown in Figure 6.1. We
discuss how slow-motion feedback can be used to make users aware of what is
happening in context-aware environments.

6.3 an application of slow-motion feedback : the visible computer

6.3.1 Introduction

As mentioned in Section 2.1, a key aspect of the vision of ubiquitous computing is
moving computers into the background, making them invisible to end-users. This
design ambition is present in Mark Weiser’s vision (Weiser, 1991), and also can be
found in related research efforts such as the EU-funded Disappearing Computer Ini-
tiative (Streitz et al., 2007). Weiser (1994) described the idea of invisible computing
as follows:

For thirty years most interface design, and most computer design, has
been headed down the path of the ‘dramatic’ machine. Its highest ideal
is to make a computer so exciting, so wonderful, so interesting, that we
never want to be without it. A less-travelled path I call the invisible; its
highest ideal is to make a computer so embedded, so fitting, so natural,
that we use it without even thinking about it.

If computers are to be so natural that they become invisible in use, they will fre-
quently need to function on the periphery of human awareness and react on implicit
input (see Section 2.2.1). However, we argued that there are inherent problems in
having systems act without user intervention, as it is difficult for computers to accu-
rately model and respond to our behaviour. Therefore, at certain times, the system
will have to involve their users, make them aware of what it is doing and allow
them to intervene. In other words, the system will have to make itself visible to the
user.

Following this argument, we explore the inverse: what if we turn the idea of the
invisible computer around (Vermeulen et al., 2009a)? What would a visible computer,

114 slow-motion feedback

that presents itself to the user and reveals in full detail how it works, look like?
As shown in Figure 6.10, to this end, we use projectors to overlay the environment
with a visualization of the different sensors and input or output devices in the
environment. We highlight generated events, and show animations revealing the
flow of events between sensors and devices, to illustrate what caused the system
to act and what effects that system action will have on the other devices in the
environment. By doing so, this technique reveals the underlying behaviour model
of the environment to the user. Note that we assume that the behaviour is driven by
a set of context rules. Additionally, we employ slow-motion feedback to make users
aware of actions that are happening. Actions in progress can be cancelled using a
simple voice command. We explored the usefulness of these visualizations in an
informal first-use study (Section 6.3.5).

Figure 6.10: A projected visual representation of the context-aware environment shows the
different devices and sensors that are present and how events trigger system
actions.

Of course, constant visualizations might be distracting and contrary to Weiser’s
idea of calm computing (Weiser, 1991). We therefore believe that these visualizations
are mainly useful as a debug mode for end-users. The visualizations could be hidden
when users have gained more experience with the system, and called upon again
whenever users have difficulties understanding the system’s behaviour. However,
it can be useful to always show a simplified version of the slow-motion feedback
animations whenever actions are triggered.

In what follows, we provide a brief overview of related work, explain our visual
behaviour representation, and present the observations from the first-use study.

6.3 an application of slow-motion feedback : the visible computer 115

6.3.2 Related Work

Since we overlay the physical room with additional virtual information, our system
can be seen as an application of augmented reality (Azuma, 1997). Researchers have
previously explored to use of projectors to realize augmented reality (AR) and a ma-
jor advantage of this approach is that it does not require additional hardware such
as head-mounted displays. For example, IBM’s “Everywhere Displays Projector”
is a steerable device that can project ubiquitous graphical interfaces on different
surfaces in the environment (Pinhanez, 2001). Others have combined several static
projectors that are stitched together in order to create a larger projection surface
(Raskar et al., 2003; Chen et al., 2002; Raskar et al., 1998). Mobile projector-based
systems allow the user to freely move around and control where the projector is
displaying information (e.g., Raskar et al., 2004; Cao et al., 2007; Willis et al., 2011),
similar to the Feedforward Torch technique presented in Chapter 5. Researchers
have also investigated how these systems can support interaction by recognizing
the geometry of the room and the people and objects in it (e.g., Molyneaux et al.,
2007, 2012; Wilson et al., 2012).

Due to the emphasis on invisibility in Weiser’s vision, ubiquitous computing
systems tend to have very little support for traditional user interface concerns such
as feedback, control, and indeed ‘visibility’ (Bellotti et al., 2002), as discussed in
Section 2.2.3. Increasing awareness of these issues and the suitability of augmented
reality for in-place guidance and instructions (e.g., Feiner et al., 1993), gave rise to a
number of AR techniques that try to address these issues. White et al. (2007) overlay
tangible objects with visual hints to allow users to quickly see what gestures can
be performed with an object. Tan et al. (2001) describe a tangible AR interface in
which users can get in-place help by placing special help cards next to other data
cards. Sandor et al. (2005) describe a graphical language similar to ours—with lines
connecting input devices to real or virtual objects that these devices manipulate—
to facilitate the configuration of mixed-reality environments. Rehman et al. (2005)
describe how a location-aware Ubicomp application was enhanced with augmented
reality visualizations to provide users with real-time feedback. An initial user study
compared Rehman et al.’s augmented version of the application with the original
one. Results suggested that the visual feedback made for a more pleasant user
experience, and allows users to form a better mental model, which is in line with
our findings (we will come back to this later in Section 6.3.5).

Earlier work investigated how to visualize context rules for end-users. For exam-
ple, iCAP (Dey et al., 2006), a design tool for end-user prototyping of context-aware
applications, also represented context-aware behaviour rules in a visual manner.
Similarly, Welbourne et al. (2010) specified complex location events in a visual way,
using a storyboard metaphor. With our technique, however, users can see a visu-
alization of the system’s behaviour in real-time and in-situ—when and where the
events take place. Although targeted towards developers, Marquardt et al. (2010)
presented an interactive event visualization that showed the location and status of
different sensors and devices, and events flowing between these distributed compo-

116 slow-motion feedback

nents. Moreover, Marquardt et al. (2010) also allowed developers to slow down the
visualization speed in their system to investigate device events in more detail.

6.3.3 A Visual Representation of Behaviour

Our technique was developed to improve understanding of context-aware features
in a smart museum environment. We developed a simple visual language to provide
an overview of the state of the environment at a glance. It represents relationships
between sensors or devices and the actions executed by the system. When an action
is executed by the system, an animation is shown to reveal links between this action
and the different devices or sensors in the environment.

6.3.3.1 Visualizing the Environment and Its Behaviour

Each sensor or input/output device (e.g., a camera, speaker or display) is visualized
at its physical location in the environment with an icon and a label. These icons
allow users to get a view of the devices that are present in their environment. Below
the icon of each input device or sensor, a separate label shows the possibilities of
the device using smaller icons, with its current state highlighted. On the other hand,
output devices have no separate label, they only display an icon that embeds their
current state. For example, Figure 6.11a shows an icon and label for a webcam (an
input device) on the left and an icon for a light (an output device) on the right.
In this example, the webcam can detect a ‘waving’ gesture and motion in general,
as indicated by the small icons in the label. The motion detection state is currently
active and therefore highlighted. The light’s state corresponds to its current intensity
and is displayed under the light as a horizontal bar.

We define a trajectory as a visualization between two or more objects in the en-
vironment. Trajectories visualize connections between different devices and system
actions, and consist of five parts:

1. a source device;

2. the event that occurred at this device;

3. (a possible condition necessary to trigger the action);

4. an action to be executed;

5. one or more target devices that are impacted by the action.

Executing one action can also result in an event that triggers another action, in
which case we would show a sequence of multiple actions in step 4 (see Figure 6.11b).
Between each of these parts, lines are drawn. Dotted lines are used between events
and actions, while connections between devices and other objects use solid lines.

Consider the trajectory shown in Figure 6.11a. Here the webcam detects motion,
which triggers an action that turns on the lights. This action, in turn, impacts the
light on the right side of the figure. Note that the small state icons are shown again,
together with a textual description. The ‘Waving’ state is shown semi-transparently

6.3 an application of slow-motion feedback : the visible computer 117

(a) Motion in front of the webcam (input) triggers the
light (output). The event ‘waving’ of the webcam is
now inactive, but could trigger another action.

(b) A chain of events: touching the screen results in a
movie being played (on the same screen). This, in
turn, results in the lights being dimmed.

(c) Conditions: the lights are turned on when motion
is detected (through a camera) and when it is dark
outside (between 9 PM and 9 AM).

Figure 6.11: Example trajectory visualizations.

to indicate that it is not active. A bit further to the right, a graphical representation
of the action is shown, connected to the light it turns on. The lines in a trajectory
will be animated from source to effect, thereby possibly spanning multiple surfaces.
Device icons and labels will always be shown, even if they are not active (non-
active icons are displayed semi-transparently). Other labels (e.g., action labels) only
become visible when the connecting line crosses them. With respect to the design
space introduced in Section 6.2, the projected visualizations thus show an increas-
ing level of detail over time. Animations will slowly fade out after they have been
completed.

As mentioned before, trajectories can also visualize multiple actions which are
triggered in sequence. Figure 6.11b shows a trajectory with two sequential actions.
In this situation, touching the screen causes a movie to be played on this screen.
The action of playing a movie will itself cause another action to be executed: one
that dims the lights for a better viewing experience. It is possible to visualize more
complex rules that combine multiple sensors using boolean operators (e.g., AND,
OR). Figure 6.11c shows a trajectory with an and condition that determines when

118 slow-motion feedback

the system will turn on the lights. This rule will only fire if it is between 9 PM
and 9 AM (i.e., when it is dark outside) and if the camera has detected motion. To
represent and and or conditions, we use the visual representation proposed by Pane
and Myers (2000), which is also used in iCAP (Dey et al., 2006): elements in and
conditions are split vertically, while elements in or conditions are split horizontally.

6.3.3.2 Overriding System Actions: The Cancel Command

Figure 6.12 shows a visualization of the cancel command in action. We decided
to implement a voice-controlled cancel command, although other ways to invoke
this command (with a suitable icon to represent that action) are possible. Since the
cancel command is voice-controlled, it is visualized using a microphone icon. The
only possible state is an invocation of the cancel command when the word “cancel”
is recognized, as indicated in the corresponding label. When an action is cancelled
the microphone will turn around and shoot at the icon corresponding to the effect
of the action, resulting in this icon being destroyed. The shooting animation can
again span different surfaces to reach its target. This kind of visual feedback shows
users in a playful way that the effect that the action had on the environment has
been undone. Note that explicitly visualizing the cancel command, reveals it as an
action possibility to users, since discoverability and visibility of possible actions are
common problems in speech interfaces (Norman, 2010).

Figure 6.12: When the action ‘light off’ is cancelled, the microphone destroys the light icon.

6.3.3.3 Expressiveness and Limitations

The visual notation was deliberately kept simple. It mainly targets systems that
encode their behaviour as a list of if-then rules, which is a common approach to
realizing context-awareness (Dey et al., 2006). Our behaviour representation has
two main shortcomings. First, we are currently unable to visualize the reasoning
behind machine learning algorithms, another frequently used approach to realize
context-aware systems. Secondly, as with any visual language, scalability is an issue.
When the notation would be used to visualize a very complex network of connected
sensors and devices, the result could become too complex to comprehend for users
and could require additional filtering mechanisms.

6.3.4 Implementation

We use several static and steerable projectors to overlay the physical environment
with our graphical representation. For details on how to set up this type of system,

6.3 an application of slow-motion feedback : the visible computer 119

we refer to the existing literature (e.g., Pinhanez, 2001; Raskar et al., 2003; Chen
et al., 2002; Sukthankar et al., 2001). An overview of our architecture is provided in
Figure 6.13.

Figure 6.13: Software applications in the context-aware environment can send requests to the
rendering engine to make their behaviour visible to end-users.

The most important software component in our system is the rendering engine. It
is implemented as a central service using the Windows Presentation Foundation
toolkit1. The engine is responsible for overlaying the environment with a visualiza-
tion of all devices and sensors, and for showing animated trajectories between these
elements when a software application executes an action. To do so, it relies on a 3D
model of the environment and an environment configuration file. The 3D model of
the environment is used to determine which of several steerable and static projec-
tors need to be used and what image corrections need to be applied to display the
annotations. The configuration file encodes the position of each device and sensor
in the environment, together with their icons, possible states and a number of pre-
defined trajectories. When software applications need to visualize a change of state
in a device or the execution of a certain action, they send a request to the rendering
engine containing an XML description of the required state change or trajectory.

Our current implementation was deliberately kept simple as we were mainly in-
terested in exploring the potential of this technique. For a realistic implementation,
the rendering engine needed to be extended in two ways. First, it should be able
to receive events from an underlying context-aware system, e.g., executed rules and
triggered sensor events (e.g., “motion detected”). This would be possible by inte-
grating the rendering engine with a ubicomp framework such as PervasiveCrystal,
which we describe later in Chapter 7. Secondly, the rendering engine should be able
to automatically find a path between different elements based on their position in
the environment, without causing too much visual clutter (e.g., crossing lines).

1 http://www.windowsclient.net/

http://www.windowsclient.net/

120 slow-motion feedback

6.3.5 Evaluation

6.3.5.1 Participants and Method

We ran an informal first-use study to investigate the suitability of our technique
for understanding the behaviour of a context-aware environment. The goal of the
study was to explore how in-situ visualizations could help users to understand con-
nections between different devices and sensors in the room. The experiment was
carried out in a realistic ubicomp environment: a room simulating a smart mu-
seum that featured different kinds of sensors and devices. We deployed a number
of sample applications on the room’s server that controlled other devices in the en-
vironment based on context changes (e.g., controlling the lights based on motion
detection using a camera). Applications were developed with Processing2 and com-
municated with each other and the rendering engine over the network using the
Web-to-Peer (W2P) messaging protocol (Vanderhulst et al., 2007). The intensity of
the lights in the environment could be changed by sending simple UDP messages to
a custom-built piece of control hardware. Two of the sensors used during the exper-
iment were implemented using the Wizard of Oz technique (Kelley, 1984) to avoid
recognition problems: the voice-controlled cancel feature and the webcam motion
detection sensor.

Five voluntary participants from our lab participated in the study, with ages rang-
ing from 24 to 31 (mean = 27.8); three were male, two female. All participants had
general experience with computers. Four out of five had experience in program-
ming, while the fifth participant had no experience with programming and was
a historian. Each individual study session lasted about 40 minutes. First, partici-
pants were asked to read a document that provided a brief overview of our visual
language and explained when visualizations would be projected in the room. The
document also explained that the goal of the projected visualizations was to help
people understand what was happening in a smart environment and allow them
to intervene if necessary. Afterwards, participants were presented with three sit-
uations in which they had to understand the environment’s behaviour using the
visualizations. All participants followed the same order of tasks. After completing
the experiment, participants were interviewed and asked to fill out a questionnaire,
which can be found in Appendix B.3. The three tasks participants had to perform
during the study were:

• Task 1: Participants were asked to press a play button on a touch screen, after
which a movie would start to play on one of the walls. This, in turn, triggered
an action that turned off the lights to provide a better viewing experience.

• Task 2: Participants were given the same instructions as in the first task, but
were also told to find a way to turn the lights back on afterwards. They were
expected to use the cancel functionality to achieve this effect, which was briefly
explained in the introductory document.

2 http://www.processing.org/

http://www.processing.org/

6.3 an application of slow-motion feedback : the visible computer 121

• Task 3: In the last task, participants were asked to walk up to a display case
and were told that they would notice a change in the environment. The display
case was equipped with a webcam for motion detection, which would turn the
lights on or off depending on the user’s presence.

Participants were allowed to explore the system and perform each task several
times until they felt that they had a good understanding of what was happening.
After completing a task, participants received a blank page on which they had to
explain how they thought that the different sensors and devices were connected.
This allowed us to get an idea of each participant’s mental model of the system.
Participants were free to use drawings or prose (or a combination of both). Two
examples of explanations that participants created during the study are shown in
Figure 6.14.

(a) (b)

Figure 6.14: Two examples of explanations that participants created during the study: (a)
explaining why the lights go out in task 1 and (b) explaining how the cancel
feature works in task 2.

6.3.5.2 Observations and Discussion

Participants were generally happy with our visualizations. One mentioned that he
found it “convenient to follow the lines to see what is happening”, while another
said: “it was clear to see which action had which effect”. In the post-experiment
questionnaire, participants ranked our technique highly for being useful to under-
stand and control what happens in a context-aware environment and for not being
confusing. In general, participants indicated that they understood how to use our
visualization technique, that they found the visualization easy to understand and
that it provided them with the information they wanted to know.

When asked to explain how the system worked in their own words, four out
of five participants (including the participant without a technical background) de-
scribed the system’s behaviour correctly for each of the three tasks. This could sug-
gest that explicitly visualizing the behaviour of a context-aware environment helps
users to form a correct mental model, which would be in line with the findings of
Rehman et al. (2005). However, further studies with a wider variety of tasks and a
larger group of participants are needed, to confirm these initial findings.

The study also revealed a few shortcomings in our current prototype. Three par-
ticipants reported problems with recognizing some features of devices or sensors
using their icons. Both the touch screen and cancel icons were found to be unclear.

122 slow-motion feedback

We observed that several participants experienced difficulties in invoking the can-
cel feature. In addition to the unclear icon, the fact that several participants were
unfamiliar with speech interaction could be another factor contributing to these
problems. One participant mentioned that he felt “uneasy using a voice-controlled
command”, because “he was used to clicking”. The one participant who did not
manage to correctly describe the system’s behaviour in all tasks, also failed in the
second task that used the cancel feature.

Additionally, we observed that some participants experienced difficulties with
keeping track of visualizations across multiple surfaces. Sometimes the visualiza-
tion would start outside participants’ field of view, which caused them to miss
parts of the visualization. A possible solution is to use spatial audio to guide users’
attention to the area of interest, which may help to guide users’ attention to the
area of interest (Butz and Krüger, 2006). One participant commented that she some-
times received too much information, which confused her. She referred to the first
task, in which a ‘click’ on the touch screen was visualized as causing the movie to
start playing. With respect to the level of detail (see Figure 6.3), it might be useful
to decrease or increase the level of detail based on the type of action visualized by
the system. For example, it might be useful to show less-detailed visualizations for
actions which occur often and are obvious to users.

6.4 applications of slow-motion feedback

In this section, we look into different applications of slow-motion feedback, and
analyse them further using the design space introduced in Section 6.2.

6.4.1 Visualizing Behaviour and Causality: The Visible Computer

The technique presented in Section 6.3 uses slow-motion feedback to improve aware-
ness of system actions and what causes these actions to occur. By slowing down the
visualizations, users are given the option to intervene. Consider again the scenario
where a motion sensor causes a light to be turned on (Figure 6.11a). The system’s
action (turning on the lights) is slowed down here and timed to exactly coincide
with the moment in time at which the animated line reaches the light (Figure 6.15).

6.4.2 System Demonstration

Ju et al. (2008) have applied slow-motion feedback to address interaction challenges
in implicit interaction. Their Range interactive whiteboard uses slow-motion feed-
back to transition between ambient display mode and whiteboard mode based on
the user’s proximity to the display. It shows an animation moving all content from
the centre of the board to the sides when a user steps closer. This happens slowly
enough so that users both notice it, and have sufficient time to react if it was not
what they wanted (Figure 6.16). Users can override the automatic action of making
space by grabbing content and pulling it back to the centre. When users notice the

6.4 applications of slow-motion feedback 123

(a) The Visible Computer (b) Design space

Figure 6.15: Using slow-motion feedback to visualize system behaviour.

contents of the whiteboard moving to the side of the display (Figure 6.16a), they
can predict what will happen and possibly override the system’s action.

(a) System demonstration (b) Design space

Figure 6.16: Ju et al. use slow-motion feedback in the Range whiteboard to provide users
with awareness of system actions and provide the opportunity to override these
actions.

6.4.3 Progressive Feedback

The gradual engagement design pattern for proxemic interactions (Marquardt et al.,
2012a) relies on proximity to facilitate information exchange between devices. It
is comprised of three stages in which more information is shown as the user’s
engagement with the system increases (e.g., by approaching a device). Marquardt
et al. assume that users will approach or orient themselves towards a device when
they are interested in interacting with it.

An interesting feature here is that users can control the speed at which informa-
tion is revealed. The faster users approach a device, the faster information is shown,
which realigns the system’s time frame with their own (Figure 6.17). In this case, the

124 slow-motion feedback

natural hesitation of novices and the rapid approach of experts might have exactly
the intended results.

(a) Gradual Engagement (source: Marquardt et al., 2012a) (b) Design space

Figure 6.17: Progressive feedback gives users control over the speed at which information is
revealed.

6.4.4 Postponed Feedback

Ju et al. (2008) have applied an additional strategy for slow-motion feedback. Their
electronic whiteboard performs automatic stroke clustering in the background while
the user is drawing. The system provides feedback about the clusters by surround-
ing strokes in dotted light-gray bounding boxes. However, to avoid interrupting
users while they are drawing, this feedback is only shown when the user steps
back. When users notice a misclustering, they can override the system’s action by
redrawing the outline. The interesting aspect of this approach is that the action and
feedback cycle is shifted into the future (Figure 6.18). Instead of increasing the time
between start and end of the action, users are only made aware of the action when
they can be interrupted (at time t

2

), similar to attentive interfaces (Vertegaal, 2003).

Figure 6.18: Postponed feedback is only shown after t

2

, even though the action was already
completed at t

1

.

6.5 discussion 125

6.4.5 Emphasizing Change

Finally, Phosphor by Baudisch et al. (2006) visually augments GUI widgets to em-
phasize changes in the interface and leave a trail to show users (in retrospect) what
just happened. Phosphor increases the already existing feedback’s level of detail
(an increase in d) and the time that it is shown to the user (an increase in t), as
illustrated in Figure 6.19b. Note, however, that Phosphor does not postpone the
action.

(a) Phosphor (source: Baudisch et al., 2006) (b) Design space

Figure 6.19: Phosphor increases both the level of detail and time.

6.5 discussion

In this chapter, we introduced slow-motion feedback, a technique to increase aware-
ness of system actions and simultaneously provide users with opportunities for
control. We defined slow-motion feedback using a simple design space, and used
that design space to understand traditional feedback strategies and analyse exist-
ing applications of slow-motion feedback. In particular, we discussed our visible
computer technique in which we explored a visual representation of the behaviour
of a context-aware environment. An informal first-use study suggested that these
visualizations might indeed improve understanding and support users in forming
a reliable mental model.

There are also a number of implications of applying slow-motion feedback. An
open issue is how slow-motion feedback can be applied to time-critical tasks, as it
might have a negative effect on the overall task completion time. While this will be
negligible in most cases, when applied to several sequential micro-interactions, the
cumulative effect over time might be too large to ignore. In addition, more work is
needed to take into account diverse groups of users. If the speed of slow-motion
feedback is fixed for all users, there will be situations in which the provisioning of
feedback will be either too slow (e.g., for experts) or too fast (e.g., for novice users).
We see the biggest potential in approaches that allow the user to control the speed
at which information is provided.

126 slow-motion feedback

Having covered techniques for intelligibility and control before actions (Chapter 5)
and during actions (this Chapter), we now turn our attention to techniques to pro-
vide intelligibility and control after an action has occurred. In Chapter 7, we further
explore the Timing dimension introduced in Chapter 3 with our work on providing
automatically generated answers to ‘why?’ and ‘why not?’ questions (Vermeulen
et al., 2010).

7
A N S W E R I N G W H Y A N D W H Y N O T Q U E S T I O N S A B O U T
C O N T E X T- AWA R E A P P L I C AT I O N S

7.1 introduction

7.1.1 Answering Why and Why Not Questions to Improve Understanding

According to Bellotti and Edwards’s original definition, intelligible context-aware
systems should be able to represent to their users “what they know, how they know
it, and what they are doing about it”. One approach to supporting intelligibility is
to provide textual explanations that inform users of what the system did, or why
it acted in a certain way (see Section 3.2.1). The use of explanations originated in
research on making intelligent systems understandable for end-users (e.g., Gregor
and Benbasat, 1999). In particular, explanations answering ‘why?’ and ‘why not?’
questions have been found to be useful for dealing with complexity in a range of
scenarios, including helping users understand complex end-user applications (My-
ers et al., 2006) and helping both end-user programmers and professional program-
mers debug their programs (Ko and Myers, 2004, 2009). Indeed, Norman notes that
“people are innately disposed to look for causes of events, to form explanations and
stories” (Norman, 2013b, pg. 59). By allowing users to pose ‘why?’ and ‘why not?’
questions, we can improve understanding by taking advantage of people’s natural
predisposition to find causes for events.

(a) Crystal (Myers et al., 2006) (b) The Whyline (Ko and Myers, 2009)

Figure 7.1: Two examples of the use of why questions to improve understanding: (a) in
complex end-user GUI applications, and (b) in debugging complex applications
(source: images extracted from the respective papers).

Figure 7.1a shows how Myers et al. (2006) provide answers to ‘why?’ and ‘why
not?’ questions in a word processor to help end-users understand complex be-
haviours and interdependencies among various of the application’s features. Users
can go into the why menu and select a question of interest, after which they will
receive an automatically generated answer to that question. For example, the user

127

128 answering why and why not questions about context-aware applications

could ask why ‘Teh’ wasn’t auto-corrected to ‘The’. Whenever users are confused,
they can pose questions about recent events that occurred, or can ask location-
specific questions (e.g., “Why is this text bold?”). As another example, Figure 7.1b
shows The Whyline (Ko and Myers, 2009), which allows programmers to directly
ask why questions about the program’s behaviour and view answers to those ques-
tions in terms of relevant runtime data. In developing this technique, Ko and Myers
were motivated by the tendency of programmers to naturally ask ‘why?’ and ‘why
not?’ questions during debugging. Developers can ask questions about runtime ob-
jects, such as what caused a visual object to have a specific background colour. The
Whyline then points the developer to the line of code responsible for that behaviour.

7.1.2 Scope and Chapter Outline

In this chapter, we describe a framework to support ‘why?’ and ‘why not?’ questions
in context-aware systems. A number of studies (Lim et al., 2009; Lim and Dey, 2009)
have reported that supporting these questions in context-aware systems would re-
sult in better understanding and stronger feelings of trust. By asking ‘why?’ and
‘why not?’ questions, arising respectively from unexpected events that occurred or ex-
pected events that did not occur, users can gain a better understanding of the internal
working of the system. However, supporting ‘why?’ and ‘why not?’ questions is
not trivial for complex context-aware systems with several distributed components.
Existing desktop implementations such as Crystal (Myers et al., 2006) cannot be
easily integrated into ubicomp frameworks, since the assumptions underlying these
implementations—such as having a single machine from which events originate—
rarely hold true in ubicomp environments. We explain here how we have extended
the existing ubicomp framework ReWiRe (Vanderhulst et al., 2008) with support for
answering why and why not questions. This resulted in PervasiveCrystal, a frame-
work to develop distributed context-aware applications that support asking and
answering ‘why?’ and ‘why not?’ questions.

Note that why questions are mostly useful for past actions. Regarding the timing
dimension that was introduced in Section 3.3, we can thus classify this technique as
providing intelligibility and control after the action. Why questions allow the user to
receive more detailed information about what caused that action to occur, and can
help users in forming a correct mental model of the system. When combined with
control mechanisms, users are not only able to understand the system’s reasoning
but also revert to a previous state if a certain action was undesired.

We start by illustrating how PervasiveCrystal works by means of a short usage
scenario. We then explain the basics of the ReWiRe framework and how its easy-
to-query behaviour model allows us to trace events across distributed components.
Next, we describe related work. We continue by explaining how we use the be-
haviour model to generate both why questions and answers to these questions
and provide users with different control mechanisms. Finally, we describe an ex-
ploratory user study and discuss limitations of our approach and possible exten-
sions.

7.2 usage scenario 129

7.2 usage scenario

In this walkthrough, we will follow Bob, a visitor to a context-aware smart museum
environment built using PervasiveCrystal. As Bob enters, he receives a mobile mu-
seum guide that provides information about artefacts in the museum, and can also
be used to interrogate and control the environment. We explain with a few simple
examples how Bob can make use of ‘why?’ and ‘why not?’ questions.

7.2.1 Posing Why Questions

Upon entering the museum, Bob was told that the museum features interactive
displays that react to motion. When Bob approaches one of these displays during his
visit, he waves in front of the screen to play a movie, as shown in Figure 7.2 (scene 1).
However, when he does that, the lights also go out. Bob does not understand why
this happens and is confused (scene 2). The museum relies on a rule-based system
to react to context changes (scene 3). One of these rules is configured to play a movie
when motion is detected by a camera. However, there is also another rule that turns
off the lights whenever a movie is playing to provide users with a better viewing
experience. After the first rule was executed, its effect (playing a movie) caused the
second rule to execute as well and as a result, turn off the lights.

B
B.4

A

Bob waves at a motion-aware display
to start a movie.

The movie starts playing, but the
lights also go out. Bob wonders why.

Two rules interacted with each other.

Bob poses a why question to figure
out what caused the lights to go out.

B.1

B.2 B.3

Figure 7.2: Posing a why question: PervasiveCrystal shows available questions, based on
events that recently took place in the environment (A). Answers are generated
by linking events to what caused them to happen (B.1). Additionally, users have
two means for correcting the environment’s behaviour: they can undo operations
(B.2) or invoke fine-grained control user interfaces (B.3), in this case: a light control
user interface (B.4).

130 answering why and why not questions about context-aware applications

Bob remembers he can use the why menu to ask questions about the smart mu-
seum’s behaviour. As seen in Figure 7.2 (A), the why menu shows a list of available
questions about events together with a representative icon. PervasiveCrystal auto-
matically generates the list of questions by tracking events that occurred (e.g., lights
that are switched off). The questions are presented in reverse chronological order
(questions about the most recent events come first). Bob then selects the question
“Why did the lights go out?”, and receives an answer that briefly explains what
caused both rules to fire (B). PervasiveCrystal can generate these answers by link-
ing events to what caused them to happen. In this case, the system knows that
the lights went out because a movie started playing. When sufficient information is
available, the system will explain the entire execution trace of the event (B.1). Here,
the system also includes an explanation of why the movie started playing in its
answer: “because motion was sensed”. Explanations for chains of interacting rules
can be of arbitrary length.

Besides helping Bob to understand why the system has taken a certain action, Per-
vasiveCrystal also allows Bob to intervene and correct unwanted behaviour. Within
answer dialogues, such as the one in Figure 7.2 (B), users have two ways of control-
ling the system. First, the left button allows users to undo unwanted actions (B.2).
In Bob’s case, clicking the button will turn the lights back on, thereby undoing the
action taken by the system. Secondly, PervasiveCrystal provides users with more
fine-grained control user interfaces to correct undesired behaviour. The second but-
ton from the left (B.3), allows users to invoke a task-specific control user interface.
Here, Bob can bring up the light control user interface, providing him with more
options such as the specific intensity of each of the lights in the museum (B.4).
PervasiveCrystal achieves this by annotating events with related user tasks (e.g.,
controlling lights, playing media) and their respective user interfaces.

7.2.2 Why Not Questions

Later, Bob returns to the display and tries to start the movie again, as shown in
Figure 7.3 (scene 1). However, this time, nothing happens. Bob does not understand
why the system acts differently now (scene 2). Behind the scenes, the camera motion
sensor never reported that it detected motion and as a result, the rule that is respon-
sible for playing the movie never got executed (scene 3). Bob then remembers that
he can also pose why not questions. For this, Bob uses the why not menu, as shown
in Figure 7.2 (A), which works in a similar way as the why menu that we discussed
before. Instead of listing questions about events that did occur, however, the why
not menu presents users with a list of questions about expected events that did not
occur.

When expected events do not take place, the cause is often an unexecuted rule
which was supposed to trigger the event. PervasiveCrystal keeps track of which
rules can trigger which events, and analyses unexecuted rules to fill the why not
menu with a list of questions about events could have taken place (but did not).
Based on the available information about a rule, it then tries to determine why
these rules did not execute.

7.3 related work 131

1 2

4

!

3

A

B C

D

Figure 7.3: Posing a why not question: This time, nothing happens when Bob moves in front of
the display. By asking a why not question, Bob is able to figure out that the system
did not sense motion (A). He then notices that the camera cable is unplugged. Bob
is again provided with different ways to control the environment. He can use the
do command to force the system to play the movie anyway (B), or bring up the
media control user interface (C-D).

Bob proceeds by selecting the appropriate question in the why not menu: “Why
didn’t the movie play?” (scene 4). The system responds by saying that no motion
was sensed, as shown in Figure 7.3 (A). Bob then figures that something must have
gone wrong with the motion detection. He notices the camera, and upon closer
investigation, figures out that the camera cable has been unplugged (scene 4).

The ‘why not?’ answer dialogues again provide users with two means for con-
trolling the system behaviour. Just like with why questions, users can invoke a
fine-grained control user interface (C-D). The undo command is replaced by a do
command that allows users to force the system to execute an action (B). Undo is
available for why questions, while do is available for why not questions. Bob decides
that he wants to see the movie anyway, and forces the system to do the action by
clicking the “Play movie” button (B).

7.3 related work

In this section, we provide an overview of related work. We mainly focus on the
use of explanations (including why questions) in context-aware systems, and other
frameworks to support why questions.

As mentioned before, the use of text-based explanations originated in research on
making systems that employed artificial intelligence (AI) techniques understandable
for end-users, such as expert systems (Gregor and Benbasat, 1999) or recommender

132 answering why and why not questions about context-aware applications

systems (e.g., Cramer et al., 2008). Given that context-aware systems employ simi-
lar adaptive and complex behaviour, researchers started applying explanations to
context-aware systems as well. One of the first explorations into the use of expla-
nations for context-aware systems was the ‘Intelligent Office System’ (IOS) (Chev-
erst et al., 2005). IOS learns the user’s behaviour in an office environment using
an underlying fuzzy decision-tree algorithm to support appropriate proactive be-
haviour. Cheverst et al. investigated a number of ways to improve comprehensibil-
ity, scrutability and control. In particular, whenever a rule is triggered, the system
pops up a dialogue showing its confidence level for that rule together with a ‘why’
button that allows users to receive an explanation for the system’s behaviour. The
explanations provided by IOS are of the form “if Temp = cold then Fan -> off (confi-
dence level: High)”. Users can also consult a context history which lead the system
to learning that rule. Compared to our explanations, the ones IOS provides are
more technical and detailed. Although more details might certainly be useful, we
observed in a first version of PervasiveCrystal that users had difficulties grasping
and differentiating between rules, events, conditions and actions.

Similarly, the PersonisAD framework (Assad et al., 2007) provides scrutable user
models that are able to provide explanations to help users understand and control
how their personal information is used in ubicomp environments. García Frey et al.
(2012) explored the integration of model-driven-engineering with explanations for
context-aware, adaptive user interfaces. Explanations are used to provide adaptive
help and assist users with issues such as where to find specific functionality. They
also provide why questions, but mostly use those to explain design decisions, e.g.,
“why is the list of engine types sorted by price” (García Frey et al., 2013). Panoramic
(Welbourne et al., 2010) is a design tool that enables end-users to specify and verify
complex location events for location-aware applications. Panoramic can also explain
why a certain location event did not occur, and additionally provides traces of his-
torical sensor data.

Tullio et al. (2007) studied explanations for inferences of a person’s interruptibil-
ity on door displays. The door displays showed the different sensors contributing
to the interruptibility estimates of the person in that office. Tullio et al. found that
lay users were able to understand in general how the door displays worked, al-
though some people had preconceived notions about the system’s behaviour that
were difficult to change (Tullio et al., 2007). Lim et al. (2009) investigated if why
questions could be used to improve understanding of context-aware systems. Their
results suggest that allowing users to pose ‘why?’ and ‘why not?’ questions about
the behaviour of a context-aware system would result in better understanding and
stronger feelings of trust. In the study, a comparison was made between different
types of questions users could ask about a context-aware system. Lim et al. found
‘why?’ and ‘why not?’ questions to be the most effective, as opposed to ‘what if’
and ‘how to’ questions that did not contribute much to users’ understanding of the
system or their perception of trust. Nevertheless, based on our own observations,
we feel that why questions should be combined with information that is provided
before and during system actions (see Chapters 5 and 6) to allow users to anticipate
what the system will do. This was also mentioned by one of the participants in our

7.4 the behaviour model 133

study (Section 7.6). In a later paper, Lim and Dey (2009) investigated the different
information demands users have for context-aware applications under various sit-
uations. They recommend that ‘why?’ questions should be made available for all
context-aware applications, while ‘why not?’ questions are more useful for specific
contexts such as goal-supportive or high risk tasks.

After we developed PervasiveCrystal, Lim and Dey (2010) introduced the intelli-
gibility toolkit, an extension to the Context Toolkit (Dey et al., 2001). Their toolkit
provides automatic generation of explanations for eight different types of questions,
including ‘why?’ and ‘why not?’ questions. In addition to rule-based context-aware
applications, the toolkit supports different machine learning algorithms, such as
decision trees, naïve Bayes and Hidden Markov Models. An interesting feature is
the use of reducer components that can simplify explanations for end-users. With
PervasiveCrystal, we kept explanations simple by design, but Lim and Dey’s toolkit
provides a more flexible architecture.

Finally, researchers have also explored the use of ‘why?’ and ‘why not?’ explana-
tions to aid end-users in understanding and modifying machine-learned systems
(Kulesza et al., 2009, 2013). For example, Kulesza et al. (2009) used ‘why?’ questions
in an email client with an automatic filing feature, which learned from the user’s
past email filing behaviour. They provided both text-based and visual explanations
that showed the weight of each word in the email contributing to the filing action.
What is especially interesting here is the use of explanations to aid in debugging
and modifying machine-learned programs. The insights obtained in this research
could also prove useful in employing explanations to help end-users modify and
personalize context-aware applications.

The next two sections provide details on PervasiveCrystal’s architecture and im-
plementation. First, we describe PervasiveCrystal’s annotated behaviour model, af-
ter which we explain how that model is analysed at runtime to generate questions
and answers.

7.4 the behaviour model

PervasiveCrystal relies on a behaviour model that captures and defines how differ-
ent applications react to context changes. This behaviour model is the core compo-
nent that makes posing and answering ‘why?’ and ‘why not?’ questions possible.
PervasiveCrystal was not built from scratch, but was developed as an extension to
the existing ReWiRe ubicomp framework (Vanderhulst et al., 2008). After provid-
ing a short introduction to ReWiRe, we describe how we modified and annotated
ReWiRe’s behaviour model to support why questions.

7.4.1 ReWiRe: A Framework for Rewiring Context-Aware Ubicomp Applications

ReWiRe is a framework for easily deploying multiple context-aware applications
in a smart environment, with user interfaces, applications and services that can
be distributed over multiple devices at runtime. An example of an application built

134 answering why and why not questions about context-aware applications

with ReWiRe is a painting application on an interactive whiteboard, where users can
select different painting tools in a tool palette on their mobile device (Vanderhulst,
2010).

Figure 7.4 shows one of the key components that ReWiRe uses to support this
kind of flexibility: a distributed environment model that represents the current state
of the environment and can be queried by all applications. The environment model
is an instance of the environment ontology, and is created and updated at runtime
as well as linked to software components and data objects. Changes at runtime that
influence the environment model include users or devices that join or leave, appli-
cations that are added or removed, and context or location updates. ReWiRe relies
on OSGi (OSGi Alliance, 2003) to provide a modular execution and deployment
environment for different context-aware applications and services.

Figure 7.4: ReWiRe’s environment ontology, of which an instance is created dynamically at
runtime to represent the context-aware environment (image source: Vanderhulst,
2010).

To react to context changes, ReWiRe relies on a dynamic behaviour model that
defines a set of context rules. Just like the environment model, ReWiRe’s behaviour
model is an instance of an ontology (Figure 7.5a). A behaviour rule is specified
in terms of an event, an optional condition, and an action. The action of an Event-
Condition-Action (ECA) rule (Act-Net Consortium, 1996) is triggered whenever
their event fires and their condition holds true. Additionally, ECA rules can have
an optional inverse action (ECAA-1). Rules with inverse actions can be undone, and
thus make it possible to return to a former state. This is achieved by caching the
execution context of a rule’s action (i.e. environment properties relevant for the rule)
and passing this context as input to a rule’s inverse action. Figure 7.5b shows an
instance of a specific behaviour rule.

7.4 the behaviour model 135

Rule

Event Condition Action Action-1

Resource Sensor

E C A A-1

from environment model

(a) ReWiRe’s behaviour model

Resource

Sensor

has

MotionSensor
isa

Rule

LightOnMotionRule
isa isaE

A A-1

TurnOnAction

TurnOffAction

Resource
isa

modifies

modifies

(b) A rule that connects a motion sensor to a
light

Figure 7.5: ReWiRe’s behaviour model: (a) the behaviour model consists of ECAA-1 rules
where an event is represented by a combination of a resource and a sensor; (b) an
instance of a rule that turns on the lights when motion is sensed. Note that this
specific rule has no condition associated with it (images based on Vanderhulst,
2010).

ReWiRe provides a JavaScript code editor to easily add rules at runtime, as shown
in Figure 7.6. In this specific example, the light sensor of a SunSPOT mote1 is used
to control one of the lights in the smart environment. When executed, the JavaScript
code inserts two ECAA-1 rules into the behaviour model at runtime. These rules are
then automatically triggered whenever the light sensor readings of the SunSPOT
mote change, and depending on their value, either turn the light on or off.

Figure 7.6: Script editor for adding behaviour rules using a few lines of JavaScript.

1 http://www.sunspotworld.com/

http://www.sunspotworld.com/

136 answering why and why not questions about context-aware applications

7.4.2 Annotating ReWiRe’s Behaviour Model

The way ReWiRe responds to context changes is encapsulated in its behaviour
model, which makes it our main source of information for generating ‘why?’ and
‘why not?’ not questions. Although ReWiRe allows us to easily track sensor events
and triggered behaviour rules, there is still some information missing to be able
to easily generate why questions. First, we need human-readable descriptions of
events, actions, and conditions that can be transformed both into statements (e.g.,
“the light turned off”) and questions (“Why did the light turn off?”). Secondly, to be
able to support ‘why not?’ questions, we need to know what would happen when
a rule executes (e.g., possibly change the state of a light). Finally, it is important
to take into account that users might themselves have an influence on the state of
the environment model. For example, in Figure 7.2 B.4, Bob might use the control
interface to turn on the light, and thus change that light’s state. When he would
later ask why the light was on, the system should be able to tell him that it was
because of his own action in the control interface.

7.4.2.1 Semantic Annotations

We extend ReWiRe’s behaviour model with a number of additional properties and
relations to be able to generate why questions and answers, as shown in Figure 7.7a.
All events, actions and conditions are expected to have short descriptive labels, and
events that directly affect end-users are enriched with what and why descriptions.
These are plain text strings in which grammatical constructs such as auxiliary verbs
are annotated to easily generate both negative and positive forms of a question or
answer (e.g., “Why did . . . ?” and “Why didn’t . . . ?”).

The behaviour model was further extended with the might trigger relation between
actions and events, which indicates what events can possibly be triggered when
executing a rule. By adding this relation we not only know what events trigger
a certain rule, but also what events (could) result from executing that rule. This
information is essential both for answering ‘why?’ questions and for generating a
list of ‘why not?’ questions (see Section 7.5). Figure 7.7b shows an annotated version
of the motion sensor rule in Figure 7.5b. Note that we add both ‘why’ and ‘what’
descriptions for the motion event that triggers the rule and for the ‘light on’ and
‘light off’ events. Both the action and inverse action are connected to their respective
light event using the ‘might trigger’ relation.

Developers can easily add annotations in the JavaScript behaviour rule editor
when creating new rules (both at design-time and at runtime), as shown in Fig-
ure 7.8. In this example, we add one of the rules from the scenario that turns off
the lights whenever a movie is playing (see Section 7.2). Note that by calling the
addMightTrigger method (line 7), we indicate that the rule’s action might cause the
LightOffSensor event to be fired.

7.4 the behaviour model 137

Rule

Event Condition Action Action-1

Resource Sensor

E C A A-1

from environment model

what?

why?

might trigger

label label label label

(a) Annotations to ECAA-1 rules

Resource

Sensor

has

MotionSensor
isa

Rule

LightOnMotionRule
isa isaE

A A-1

Resource

Sensor

has

OnSensor
isa

isa

might trigger
TurnOnAction

TurnOffAction
might trigger

“why {was} motion sensed?”

“motion {was} sensed”

“why {did} the lights turn on?”

“the lights {did} turn on”

Resource

Sensor

has

OffSensor
isa

isa

“why {did} the lights turn off?”

“the lights {did} turn off”

L1 L1

(b) An annotated version of a rule

Figure 7.7: Annotations added to ReWiRe’s behaviour model: (a) short descriptive labels for
each event, condition, and (inverse) action together with ‘what’ and ‘why’ descrip-
tions for events; (b) an annotated version of the rule from Figure 7.5b, including
the ‘might trigger’ relation.

Figure 7.8: Annotations can be easily added in the JavaScript behaviour editor.

138 answering why and why not questions about context-aware applications

7.4.2.2 Logging user actions

As mentioned before, context-aware ubicomp environments typically consist of a
mix of user-driven and system-driven behaviour. It is therefore important that we
can also explain when changes to the environment’s configuration were caused by
user input. To achieve this, control user interfaces (e.g., Figure 7.2 B.4) log every
user action. We track user actions by creating underlying behaviour rules whenever
the user interacts with a control interface, which, for example, allows us to explain
that the lights were turned off because the user did this in the lights control user
interface. Analogous explanations could be provided when users make changes in
other control user interfaces, such as the media control interface in Figure 7.3 (D) on
page 131. We can also define inverse actions for these rules to allow users to revert
to the previous state. Combining explanations for both system and user actions
provides insight into how the system reached its current state.

7.5 supporting why questions and providing control

7.5.1 Generating Questions

The why questions menu (Figure 7.9a) is available at runtime and lists questions
about events that are relevant to the user. It is not tied to any specific application,
making it an example of an external intelligibility and control user interface (see
Section 3.3.3). As shown in Figure 7.9a, questions are listed in a pop-up menu,
together with a representative icon and the time at which they occurred. Remember
that the list of questions includes both system and user actions and is sorted in
reverse chronological order (most recent first).

(a) The why menu. (b) An answer to a why question.

Figure 7.9: The why menu allows users to pose why and why not questions about events
that happened in the environment. Users receive answers to their questions, and
are offered a means to recover from undesired behaviour.

PervasiveCrystal automatically generates the ‘why?’ questions menu by monitor-
ing the behaviour model. Any triggered event with a ‘why’ and ‘what’ description
is transformed into a question string and added to the menu. Question strings are
created from their ‘why’ descriptions. As mentioned before, grammatical constructs
have been annotated in these descriptions to allow us to easily generate both ‘why?’
and ‘why not?’ forms of the question. Developers can exclude events from showing

7.5 supporting why questions and providing control 139

up in the menu by not adding ‘why’ and ‘what’ descriptions for these events, which
can be useful for internal events that are less relevant to end-users.

The ‘why not?’ menu includes questions about events that did not happen. To
generate a list of ‘why not?’ questions, PervasiveCrystal analyses the ‘might trigger’
annotations. Recall that these annotations provide information about which events
might possibly be triggered when a certain rule would be executed. There are two
situations for which PervasiveCrystal adds a ‘why not?’ question. First, we add a
question when an ECA rule is triggered but fails to execute because its condition
did not evaluate to true. Note that a ‘why not?’ question about this ECA rule asks
about the event that would be triggered as a result of executing its action. Secondly,
rules might also fail to execute because their triggering event (E) did not occur
regardless of the rule’s condition, as in Figure 7.3. PervasiveCrystal also provides
the option to list ‘why not?’ questions about those rules by analysing all rules and
their ‘might trigger’ annotations. We decided to keep the ‘why not?’ menu separate
from the ‘why?’ menu in order to avoid cluttering the menu with numerous ‘why
not?’ questions in case the system consists of a large number of rules.

7.5.2 Generating Answers

When a user selects one of the questions in the pop-up menu, an answer dialogue
is shown, as seen in Figure 7.9b. While we use ‘why’ descriptions to generate ques-
tions, ‘what’ descriptions are used for generating answers to questions (see Fig-
ure 7.7). Additionally, we use the ‘might trigger’ relation in the annotated behaviour
model to provide answers. In the scenario of Section 7.2, Bob poses the question
“Why did the lights go out?”, and is shown a corresponding answer dialog (Fig-
ure 7.9b). The what description of this particular event would then be “the lights did
go out”. This description is used by the system to provide the first part of the an-
swer, as shown in Figure 7.9b. The rest of the answer is automatically generated by
analysing the ECA rules. The event about which Bob asks a question is traced back
to the ECA rule that caused that event to happen using the ‘might trigger’ relation
(see Figure 7.2 scene 3) and the ‘what’ description of that rule’s triggering event is
added to the answer.

PervasiveCrystal looks for the responsible rule by querying the behaviour model
for recently executed actions that have a ‘might trigger’ annotation for the event
the user posed a question about (see Figure 7.7). It is important to note that to
ensure optimal performance and flexibility, ReWiRe’s architecture does not allow us
to trace these events across several distributed components. Consequently, there is
some uncertainty involved in determining which action caused the event to happen.
We currently use a 1-second time window to filter out subsequent similar events
that might have been caused by other rules.

When PervasiveCrystal finds a rule that could be responsible for the event, it
completes the answer by explaining what event caused that rule to execute. The
responsible event’s what description is added to the answer (in this case: “because a
movie started playing’), as seen in Figure 7.9b. When the responsible event resulted
from another rule, PervasiveCrystal repeats the process for that rule as well and

140 answering why and why not questions about context-aware applications

adds its corresponding answer below the previous one. In Figure 7.9b, the system
adds a new paragraph with the explanation of why the movie started playing. When
an executed rule required a condition to be true, this condition is also added to the
explanation using its short descriptive label. If the chain of ECA rules eventually
traces back to a user action that was performed in a control user interface, the
explanation would describe this with “because you did . . . ”.

Answers to why not questions are generated in a similar way, but require more
work as there is more uncertainty in answering these questions. Since a ‘why not?’
question asks about an event that never occurred, the system cannot rely on tracing
events and has to reason about what could happen. There are typically much more
possible answers to a ‘why not?’ question than to a ‘why?’ question.

As mentioned before, PervasiveCrystal supports ‘why not’ questions in two ways.
First, why not questions are possible about events resulting from rules which fired
but did not execute because their condition was false. The corresponding answer
will then explain that the event did not occur because the condition did not hold.
Secondly, we allow why not questions about events resulting from rules which never
executed because their triggering event never fired. In this case, the answer will
explain that the event did not occur because the event that should have triggered the
rule never occurred. We currently use a brute force approach to answer the second
type of ‘why not?’ questions, where PervasiveCrystal enumerates all possible causes.
As a next step, we would like to include a better estimation of timeliness (related to
the type of event) and the likelihood of the candidate answers.

7.5.3 Providing Control

Once users have understood why the system acted in a certain way, they can choose
to intervene and correct the system, if necessary. PervasiveCrystal supports two
control mechanisms: undo/do and control user interfaces.

The undo operation is supported by calling the inverse action (A-1) of an ECAA-1

rule (see Section 7.4 and Figure 7.5a). The do operation, on the other hand, will just
execute the action (A) of an ECAA-1 rule, regardless of its event or condition. Undo
is available in answer dialogues for ‘why?’ questions, while do is available in answer
dialogues for ‘why not?’ questions. In Figure 7.9b, Bob asked why the lights were
turned off. The button on the left allows Bob to turn the lights back on, thereby
undoing the action taken by the system (as indicated by the button’s icon).

Besides undo and do, we also provide more fine-grained control user interfaces to
intervene and correct the behaviour of the system. As shown in Figure 7.9b, there is
a second button on the right that invokes the light control user interface as seen in
Figure 7.2 (B.4). ReWiRe supports additional annotations for behaviour rules that
indicate the different goals those rules contribute to (e.g. controlling lights, playing
media). When generating answer dialogues, PervasiveCrystal analyses the annota-
tions for those rules, and creates a specific button that brings up the corresponding
control user interface for that goal.

As mentioned before, we log all user actions by creating underlying behaviour
rules for those actions. We also apply this technique to both control mechanisms:

7.6 user study 141

all undo and do actions are logged, as well as user actions that are performed in
control user interfaces.

7.6 user study

7.6.1 Participants and Method

We conducted a small, informal user study with PervasiveCrystal (Vermeulen et al.,
2009b) to get an initial idea of the suitability of the technique and ease of use of the
why questions interface. We asked five colleagues in our lab (4 male, 1 female) to
use our system to understand and control the behaviour of a ubicomp environment
in different situations. Four out of five participants were computer scientists, while
the fifth participant had a background in social sciences and no programming expe-
rience. The experiment was carried out in a realistic ubicomp environment: a demo
room for an interactive museum which next to museum artefacts also featured dif-
ferent kinds of sensors, as well as displays and speakers to provide visitors with
information. Subjects used a networked Ultra-Mobile PC (a Samsung Q1 Ultra run-
ning Windows XP and the PervasiveCrystal client software) to ask why questions
and view the corresponding answers, as shown in Figure 7.10.

Figure 7.10: The setup for the study: participants used PervasiveCrystal on an UMPC in a
smart museum environment.

Participants were presented with three situations in which something happened
that they had to explain and control using PervasiveCrystal. All participants fol-
lowed the same order of tasks. In the first task, participants were told to sign on
to the system after which medieval music started playing in the room. For the sec-
ond task, participants were asked to go and stand in front of a display that detected
the user’s presence using a webcam (and a very simple motion detection algorithm).
When subjects would walk up to the display, a movie would start playing. The third
and final task was similar to the second one, but here the movie would only play as

142 answering why and why not questions about context-aware applications

long as motion was being detected and would immediately stop otherwise. Partici-
pants were asked to try to understand what was different compared to the previous
situation. Once they figured out how the system worked, we asked to use one of our
control mechanisms to find a way to keep playing the movie without having to keep
moving in front of the display. Finally, we conducted a semi-structured interview
in which participants were asked to comment on the different features of Pervasive-
Crystal. The questionnaires used for the interview can be found in Appendix B.4.
The experiment took about 50 minutes in total for each participant (20 minutes for
the tasks, 30 minutes for the interview).

7.6.2 Observations

Each participant agreed strongly that ‘why?’ and ‘why not?’ questions are useful
to allow users to understand what happens in their environment and offer them
control over this behaviour. All subjects were able to use the questions interface
to find the cause of events in these three tasks. Overall, participants found that
the answers to the ‘why?’ and ‘why not?’ questions were what they wanted to
know, although most participants argued that the way they were presented could
be somewhat improved.

A problem that most users faced was the fact that the why-menu quickly became
cluttered when many events were firing in a short time span. This made it hard for
subjects to find the question they wanted to ask. Especially in the third task, users
would several times trigger the motion sensor, resulting in a large number of why
questions in the user interface. There are a couple of ways to overcome this problem.
First, users could be offered a way to filter events (e.g., only show questions about
music, video, or lights). Secondly, events that occur very often in a short period of
time could be clustered into a single why question (e.g., “Why did a movie stop
playing (10x in the last 20 seconds)”).

Participants experienced some more difficulties with the control mechanisms.
Three out of five subjects were able to successfully use our control mechanisms
without assistance, and achieved the desired effects . The remaining two partici-
pants had to be given a few cues, but did not require much assistance to complete
the tasks. Participants mostly preferred to use the fine-grained control user inter-
face, such as the light control user interface in Figure 7.2 (B.3–B.4). Subjects found
this mechanism useful and could quickly figure out how to use it to control the
environment. They were less positive about the ease of use of our undo and do com-
mands. In the first iteration of PervasiveCrystal that we used during the study, we
used generic labels (“undo” and “do”) for these commands, which made it hard
for users to predict their effect. We later changed our implementation to use more
specific labels for the undo and do buttons based on the label for the corresponding
action, such as “Stop video” and “Turn on lights”.

Finally, one participant mentioned that although he found it useful to pose why
questions, he felt they were mainly appropriate for understanding and controlling
the environment “after the facts”. He argued that there should be other mechanisms
that allow users to see what will happen before an action will be executed, and

7.7 limitations and possible extensions 143

offer them the means to prevent it from being executed. As discussed earlier, why
questions are indeed mostly useful to understand or revert past behaviour, while
techniques such as feedforward (Chapter 5) or slow-motion feedback (Chapter 6)
can be used to provide intelligibility and control before and during execution of
actions.

7.7 limitations and possible extensions

In this section, we provide a brief overview of the limitations of PervasiveCrystal
and possible extensions.

7.7.1 Scalability

It is yet unclear whether the system can scale to large and complex applications.
Especially ‘why not?’ questions can pose problems since the number of possibilities
that have to be examined for these questions increases rapidly with the complexity
of the system. It will be necessary to find a balance between reasonable memory
usage and performance on the one hand, and sufficiently detailed information on
the other hand. Nevertheless, we believe the biggest challenge in scaling Pervasive-
Crystal to large and complex applications lies not in optimizing CPU or memory
usage, but rather in providing users with detailed and complete information about
the system’s behaviour without leaving them overwhelmed.

7.7.2 Support for Machine Learning

PervasiveCrystal currently only supports rule-based context-aware systems. Unlike
the intelligibility toolkit (Lim and Dey, 2010), it was not designed to deal with ma-
chine learning algorithms such as decision trees, Hidden Markov Models, support
vector machines or neural networks. Next to being able to provide explanations for
machine learning algorithms, it would be useful to support learning from user’s
interactions with the system. When users repeatedly undo certain actions, for exam-
ple, PervasiveCrystal could then automatically suggest a modification to that rule
corresponding to the user’s desired behaviour, as done in the IOS system (Cheverst
et al., 2005).

7.7.3 Supporting Other Types of Questions

Although we currently only support ‘why?’ and ‘why not?’ questions, our behaviour
model could also be used to answer other types of questions. Lim and Dey (2009)
explored users’ demand for five types of questions (including ‘why?’ and ‘why not?’
questions). We feel that especially their ‘what if?’ and ‘how to?’ questions could be
useful additions to PervasiveCrystal. Both questions help to address the gulf of ex-
ecution: ‘what if?’ questions explain to users how the system will respond given a
certain event or condition—which is a way to support feedforward (Chapter 5)—

144 answering why and why not questions about context-aware applications

while ‘how to?’ questions help users to understand how they can achieve a certain
effect. The annotated behaviour model that we use for why questions such as the
‘might trigger’ relation (Figure 7.7), can also help us to answer these other two
questions. By linking the event (E) and condition (C) of all ECA rules to the events
that their actions might trigger, we could come up with a reasonable guess of what
events can result in a certain desired effect, and thus answer ‘how to?’ questions.
That same chain of events can be used to generate answers to ‘what if?’ questions,
although a filtering mechanism might be necessary as an event could have a mul-
titude of possible effects. Although Lim and Dey (2010) explored different expla-
nation strategies, more research is needed to determine a suitable user interface
for posing and answering these questions, since textual explanations might become
complex and hard to understand. For performance reasons, it might be necessary
to limit the nesting level while creating the chain of events, as the set of events that
can possibly be triggered will rapidly increase with each iteration.

7.8 conclusion

In this chapter, we explored allowing users to pose ‘why?’ and ‘why not?’ ques-
tions about the behaviour of context-aware applications and environments. With
respect to the timing dimension in our design space (Section 3.3.1), this is a way to
explain the system’s reasoning and provide intelligibility and control after the ac-
tion. We presented PervasiveCrystal, a framework to easily develop context-aware
applications that support asking and answering ‘why?’ and ‘why not?’ questions.
The foundation for our approach is a flexible behaviour model that can be easily
queried to automatically generate both questions and answers. We also explored
the suitability and ease of use of this technique in an initial user study.

8
I N T E L L I G I B I L I T Y A N D C O N T R O L F O R P R O X E M I C
I N T E R A C T I O N S

8.1 introduction

In this chapter, we describe a case study in supporting intelligibility and control
for proxemic interactions. Proxemic interactions feature people-aware ensembles of
devices that employ fine-grained knowledge of the identity, proximity, orientation
or location of their users, which is essentially a specific type of context information.
We discuss the design and implementation of dynamic peripheral floor visualizations to
address interaction challenges with proxemic-aware interactive surfaces. Our Prox-
emic Flow system uses a floor display that plays a secondary, assisting role to aid
users in interacting with the primary display. The floor informs users about the
tracking status, indicates action possibilities, and invites and guides users throughout
their interaction with the primary display. We believe this case study can serve as
inspiration to designers looking to support intelligibility and control in different
ubicomp applications.

In the remainder of this section, we introduce the idea of proxemic interactions,
clarify the relevance of interaction challenges with proxemic interactions to this
dissertation and provide an overview of our Proxemic Flow approach.

8.1.1 Proxemic Interactions

The notion of proxemic interactions was introduced by Greenberg et al. (2011) as
a new direction for the field of ubiquitous computing (Weiser, 1991). Proxemic
interactions features people-aware ensembles of devices that employ fine-grained
knowledge of the identity, proximity, orientation or location of their users, as shown
in Figure 8.1.

Figure 8.1: The five dimensions of proxemics (image source: Greenberg et al., 2011).

Proxemic interactions is based on anthropologist Edward T. Hall’s theory of prox-
emics (Hall, 1969), which investigated the use of distance in nonverbal communica-

145

146 intelligibility and control for proxemic interactions

tion. In particular, proxemics theory identified the culturally-specific ways in which
people use interpersonal distance to understand and mediate their interactions with
others. Proxemics is is not limited to interpersonal communication, but also extends
to “the organization of space in [our] houses and buildings, and ultimately the lay-
out of [our] towns” (Hall, 1963). Indeed, in the vision put forward by Marquardt,
Greenberg, and colleagues (Greenberg et al., 2011; Ballendat et al., 2010; Marquardt
et al., 2012a,b), proxemic relationships are used to mediate interaction between peo-
ple and ensembles of different digital devices, such as mobile devices or large in-
teractive surfaces. Additionally, they envision devices to take into account the non-
digital, semi-fixed or fixed objects in the user’s physical environment (Greenberg
et al., 2011).

One of the most commonly featured aspects of Hall’s theory in HCI is the use of
four proxemic zones that correspond to our interpretations of interpersonal distance:
the intimate, personal, social, and public zone (Greenberg et al., 2011). In earlier re-
search, these different interaction zones have been used to mediate interaction with
large interactive surfaces (Prante et al., 2003; Vogel and Balakrishnan, 2004; Ju et al.,
2008). The notion of proxemics has also been used before to facilitate cross-device
interaction (Hinckley et al., 2004; Hinckley, 2003; Gellersen et al., 2009; Kray et al.,
2008).

In recent years, large interactive surfaces such as vertical displays or tabletops,
are increasingly appearing in semi-public settings (Brignull and Rogers, 2003; Ojala
et al., 2012). With the availability of low-cost sensing technologies (e.g., IR range
finders, depth cameras) and toolkits such as the Proximity Toolkit (Marquardt et al.,
2011) or the Microsoft Kinect SDK1, it is fairly easy to make these large displays
react to the presence and proximity of people, which has been picked up both
by researchers (e.g., Müller et al., 2009a, 2012; Jurmu et al., 2013) and commercial
parties (see Greenberg et al., 2014 for several examples). Although these low-cost
sensing solutions tend to apply fairly crude measures of proxemics and only take
into account a few proxemic dimensions (see Figure 8.1), it does mean that proxemic
interactions is becoming more commonplace in our everyday environments.

8.1.2 Relation to Context-Aware Computing and Relevance to This Dissertation

Proxemic relationships between devices and people are essentially just a particular
type of context information (Dey et al., 2001) that applications can take into account.
In fact, early research in context-awareness already explored interaction with sys-
tems that are aware of the user’s location and identity. Indeed, Schilit et al. (1994)
describe context-aware systems as systems that adapt to “the collection of nearby
people, hosts and accessible devices” [emphasis added], and define three impor-
tant aspects of context: “where you are, who you are with, and what resources
are nearby”. Schilit et al. also describe a number of interaction techniques such as
proximate selection, where nearby objects are easier to select (e.g., nearby printers).

1 http://www.microsoft.com/en-us/kinectforwindows/

http://www.microsoft.com/en-us/kinectforwindows/

8.1 introduction 147

Since proxemic-aware systems are thus a particular type of context-aware sys-
tems, they can also suffer from interaction challenges similar to the ones that we
address in this dissertation—such as issues in dealing with systems that rely on im-
plicit interaction (see also Section 2.3). Greenberg et al. (2011) talk about a number
of open challenges for proxemic interactions such as designing suitable behaviour
rules that dictate how a proxemic entity responds to both implicit and explicit in-
put, and how it can be controlled. In fact, the use of implicit interaction can also
be deliberately exploited by designers to trick users into performing certain actions
that do not have their best interests in mind (Boring et al., 2014). Some people-aware
advertising displays in public spaces, for example, make it very difficult for users
to opt-out of the interaction. In addition, several studies have reported problems en-
countered by users when interacting with public displays, such as display blindness
(Müller et al., 2009b; Huang et al., 2008) when people fail to notice the display, or
interaction blindness (Ojala et al., 2012; Houben and Weichel, 2013) when people fail
to notice that the display is interactive. As stated by Müller et al. (2010), the com-
monly used interaction modalities for these displays—e.g., proximity, body posture,
mid-air gestures—are hard to understand at first glance. In another study, Jurmu
et al. (2013) reported that users had difficulties pinpointing the exact zone where
the display would react to their input, especially when the display was also reacting
to the input of other people.

In summary, we argue that—as with context-aware systems in general—proxemic
interactions need to support intelligibility and control. The complexity of proxemic
interactions—with its reliance on implicit interaction and heavy use of rich spatial
relationships between multiple people and devices—makes it an interesting appli-
cation domain for this dissertation research. The focus of this chapter will therefore
be on exploring how to provide support for intelligibility and control in systems
that make such heavy use of spatiality and implicit interaction.

8.1.3 Proxemic Flow: In-Situ Floor Visualizations to Mediate Large Surface Interactions

In this chapter, we present the design and implementation of dynamic, peripheral
floor visualizations as a means to address interaction challenges with large interac-
tive surfaces. The core aspect of our approach is the notion of combining a vertical
interactive display with a secondary, peripheral floor display. In contrast to existing
work on interactive illuminated floors (e.g., Augsten et al., 2010; Schmidt et al.,
2014), our LED floor display is not used as a primary interaction space, but plays
a secondary, assisting role to aid users in interacting with the main display. As
shown in Figure 8.2a, our Proxemic Flow system uses the floor to inform users about
the tracking status, to indicate action possibilities, and to invite and guide users
throughout their interaction with the primary interactive surface.

Proxemic Flow can be situated in the design space that was introduced in Chap-
ter 3, as shown in Figure 8.2b. With respect to timing, the in-situ floor visualizations
provide information to users that is relevant before, during and after actions. In
section Section 8.4, we explain in detail when visualizations are shown (see also
Table 8.1 for an overview). Since it is specifically oriented towards addressing inter-

148 intelligibility and control for proxemic interactions

(a)

Timing

Generality

Degree of co-location

Initiative

Modality

Level of Control

user

during afterbefore

general domain-specific

embedded external

system

visual hapticauditory

intelligibility programmabilitycounteract configuration

(b)

Figure 8.2: (a) Proxemic Flow provides awareness of tracking and fidelity, action possibilities,
and invitations for interaction; (b) the shaded region shows where Proxemic Flow
fits in the design space for intelligibility and control.

action challenges in proxemic interactions, Proxemic Flow is domain-specific (unlike
e.g., feedforward). The visualizations are integrated with the application on the
primary display and are shown in the space around the large interactive surface,
making Proxemic Flow an embedded technique. The floor display also allows for pro-
viding location-specific information, such as inviting users to specific interaction
zones using the footsteps visualization (as shown in Figure 8.2a). The initiative lies
with the system, as floor visualizations are shown automatically. The floor display
currently uses only visuals to convey information to users, although this could also
be combined with other modalities in the future. Finally, Proxemic Flow offers no
explicit control to users besides making them aware of e.g., tracking and opt-in and
opt-out areas. Based on this information, users can regulate their own behaviour
(e.g., move out of the tracking area). Regarding the level of control, Proxemic Flow
thus only offers intelligibility.

In the future, we imagine these floor displays to be integrated in public spaces
to accompany vertical public displays. Indeed, due to their relatively low cost, LED
floor displays are already fairly common in urban spaces (Figure 8.3). For example,
Figure 8.3a shows flashing LED lights that show arriving trains in Washington DC
metro stations.

In what follows, we first provide a brief overview of the different interaction chal-
lenges with proxemic interactions that we attempt to address with our technique,
followed by a discussion of related work. We then explain our in-situ floor visu-
alization strategies with a running example application, inspired by the design of

8.2 background and motivation 149

(a) LEDs show arriving metro
trains in Washington DC2

(b) Displays integrated into a
staircase at the Lincoln Cen-
ter, New York City3

Figure 8.3: Examples of the use of LED floor displays in urban spaces.

the Proxemic Media Player (Ballendat et al., 2010). Next, we discuss our floor visu-
alization architecture in detail. Finally, we discuss different design considerations
that are important for in-situ floor visualizations, summarize our contributions, and
conclude with opportunities for future work.

8.2 background and motivation

Previous studies have revealed several issues that users face when interacting with
large interactive surfaces. In this section, we provide an overview of the core inter-
action challenges that motivated our work.

8.2.1 Intelligible Sensing

A common problem users experience while interacting with public displays is a
lack of feedback about how the system is currently recognizing and interpreting in-
put from the user, and how reliably the user’s input is being sensed—which might
explain interaction problems. In addition, users might not realize that the display is
interactive (Ojala et al., 2012), and might be surprised when it suddenly starts react-
ing to their presence. Tracking feedback could inform users that they are recognized
by the display, and how it is interpreting their movements.

2 https://www.youtube.com/watch?v=DppgBi0ZMc8
3 https://www.youtube.com/watch?v=BzLicqgh3fQ

https://www.youtube.com/watch?v=DppgBi0ZMc8
https://www.youtube.com/watch?v=BzLicqgh3fQ

150 intelligibility and control for proxemic interactions

8.2.2 Implicit Interaction

One of the core reasons for interaction challenges with proxemic-aware interactive
surfaces is their reliance on implicit interaction. For example, the Proxemic Media
Player (Ballendat et al., 2010) automatically pauses videos when two people are
both oriented away from the display (e.g., when starting a conversation), which
might be very surprising and perhaps disturbing when users first encounter such
a system. Indeed, Ballendat et al. (2010) argue that defining the rules of behaviour
that indicate how systems using proxemic interactions interpret and react to users’
movements is a key question to be addressed. We argue that it is very important
to not only inform users of how they are being tracked by the system, but also
to indicate how the system is taking action (or about to take action) based on their
movements. For example, pausing the video in the previous example could be made
clear using slow-motion feedback (Chapter 6).

8.2.3 Invisibility of Action Possibilities and Lack of Guidance

Users typically have difficulties knowing how they can interact with a large dis-
play. As stated by Müller et al. (2010), the commonly used interaction modalities
for public displays (e.g., proximity, body posture, mid-air gestures) are often hard
to understand at first glance. For example, when the display reacts to the user’s lo-
cation in different interaction zones (Vogel and Balakrishnan, 2004), the invisibility
of these zones causes problems with identifying the exact zone where the display
reacts to their input, especially when the display is also reacting to the input of
other people (Jurmu et al., 2013). Next to showing the possible actions that users
can perform, feedforward (Chapter 5) might be useful to inform users of what will
happen, for example, when approaching the display.

8.2.4 Lack of Support for Opt-in and Opt-out Mechanisms

Another problem is the lack of explicit opt-in or opt-out mechanisms, which is es-
pecially important in (semi-)public spaces. Jurmu et al. (2013) and Brignull and
Rogers (2003) found that users sometimes want to avoid triggering and just pas-
sively observe the display. In addition, O’Hara (2010) reports that users sometimes
perform actions that were not meant to be interactive, but were merely social ges-
tures. Greenberg et al. (2014) further discuss how interactive surfaces in semi-public
settings typically lack opt-in and opt-out choices (either deliberately or unintention-
ally). They state that, at the very least, a way to opt-out should be provided when
people have no desire to interact with the surface. Furthermore, users might want
to know what will happen when they leave or opt-out. Will the surface be reset to
its original state, and what will happen to their personal information still shown on
the screen?

8.3 related work 151

8.3 related work

8.3.1 Feedback, Discoverability and Guidance for Large Interactive Surfaces

Existing work has explored techniques that aim to address the previously intro-
duced interaction challenges for large interactive surfaces. Here, we give a brief
overview of related techniques, categorized by the challenges that they address.

8.3.1.1 Attracting Attention to Overcome Display Blindness and Interaction Blindness

Existing work has explored how displays can attract attention to motivate users to
interact with a display, and thus overcome display blindness (Müller et al., 2009b)
and interaction blindness (Ojala et al., 2012). Researchers have identified different
barriers (Brignull and Rogers, 2003; Michelis and Müller, 2011; Cheung et al., 2014)
that prevent users to transition from merely passing by to actively interacting with
a public display. For example, the Audience Funnel (Michelis and Müller, 2011) cat-
egorizes interaction with public displays in six different interaction phases, where
barriers (or ‘tresholds’) prevent users from transitioning from one phase to the next.
Müller et al. (2010) describe a number of techniques that can be used to attract at-
tention, such as curiosity and exploration, fantasy and metaphor, or surprise. Seto
et al. (2012) and Cheung and Scott (2013) explored the use of animations to con-
vey interactivity and improve discoverability. Houben and Weichel (2013) found
that placing a curiosity object near the display that is visibly connected to it, sig-
nificantly increased interactivity with the display. Others have explored the use of
mobile devices to overcome interaction barriers with public displays (Holleis et al.,
2007; Cheung et al., 2014). As a more extreme example, the Proxemic Peddler (Wang
et al., 2012) continuously monitors the user’s distance and orientation and even at-
tempts to reacquire the attention of a passer-by when they turn or move away from
the display.

With a few exceptions (e.g., Houben and Weichel, 2013), most techniques attempt
to convey interactivity and attract users by using visualizations on the display itself.
In contrast, with Proxemic Flow, we rely primarily on the floor display to convey
interactivity. One of the advantages of providing visualizations on a secondary dis-
play, is that they do not occlude or distract from existing content on the primary
display. The floor can explicitly reveal the interaction area through borders and
zones, and shows halos whenever people are recognized by the display. In addition,
our focus lies not on drawing as many people in as possible and maximizing the
number of people that interact with the primary display. Rather, our floor visualiza-
tions are designed to make it clear that passers-by can interact, make them aware
that they are tracked, and also help people avoid interacting with the display, if they
wish to do so.

8.3.1.2 Revealing Action Possibilities and Providing Guidance

A number of systems for large interactive surfaces suggest action possibilities and
input mechanisms by visualizing sensor data, such as depth camera images, de-

152 intelligibility and control for proxemic interactions

tected user skeletons (Jurmu et al., 2013; Grace et al., 2013; Beyer et al., 2014) or
mirror images (Müller et al., 2012). Early work by Vogel and Balakrishnan (2004)
already included a self-revealing help feature using a mirror image video sequence
that demonstrates the available gestures. Walter et al. (2013) studied different on-
screen visualizations to reveal a ‘teapot’ gesture that allows users to indicate that
they would like to start interacting with the display using mid-air gestures. Grace
et al. (2013) investigated different visualizations to convey interactivity of a large
public display, including skeleton visualizations, and a combination of a skeleton
and a spotlight. In addition, a number of gesture guides have been developed for
horizontal tabletop surfaces (e.g., Freeman et al., 2009; Vanacken et al., 2008).

Although techniques such as these are useful for revealing action possibilities—
e.g., (mid-air) gestures and body postures—on the display itself, we feel that in-situ
techniques can be more appropriate for proxemic-aware surfaces. After all, prox-
emic interactions make extensive use of spatial movements around people and de-
vices, which can be difficult to visualize on a single 2D display. Techniques that
reveal these action possibilities on the primary display tend to focus mostly on one
or a few proxemic dimensions. For example, cross-device interaction techniques typ-
ically use orientation around the user’s device to show possible other target devices,
as with the Gradual Engagement pattern (Marquardt et al., 2012a) or the Relate
system (Gellersen et al., 2009).

8.3.1.3 Providing Tracking Feedback

A number of systems have explored showing tracking feedback for proxemic in-
teractions to convey what the system ‘sees’ of the user. As argued by Bellotti et al.
(2002), this information is essential to help users interact with sensing systems. As
mentioned before, several systems visualize detected skeletons (e.g., Beyer et al.,
2014) or show mirror images (e.g., Müller et al., 2012). With their interactive white-
board, Ju et al. (2008) showed a dot pattern visualization to indicate in which prox-
imity zone the user was recognized. In the Medusa proximity-aware tabletop (An-
nett et al., 2011), the user’s proximity is visualized using an orb visualization. Both
in the Proxemic Media Player (Ballendat et al., 2010) and with the Gradual Engage-
ment pattern (Marquardt et al., 2012a), tracked devices are visualized on the large
surface with their relative size mapped to their proximity to the large display.

Again, the main difference with Proxemic Flow, is that our visualizations pro-
vide in-place tracking feedback on the floor, in the space where users are tracked.
Earlier work also used halos to provide tracking feedback on floor displays. Hes-
panhol et al. (2014) describe the Solstice LAMP, an installation that uses a projected
floor display as a proxy for interacting with a large media facade for interactive
musical composition. Luminous shapes were projected around people, and would
be merged and grow when multiple people would stand close together. Proximity
Lab (Karatzas, 2005) is an installation that uses slippers equipped with RFID tags
to track people across a floor display. This installation played sounds when people
moved across the floor and when people’s halos touched. Each user is represented
by a different colour halo, whose colours get mixed when users interact. Although

8.3 related work 153

these examples use halos to provide feedback about the current state of tracked
entities (e.g., a person’s tracked location), they do not convey information about the
tracking accuracy.

8.3.1.4 In-Situ Feedback and Guidance

As mentioned before, proxemic-aware systems typically take different actions de-
pending on the interaction zone in which the user is located (Ballendat et al., 2010;
Ju et al., 2008; Vogel and Balakrishnan, 2004), which might be unintelligible to users.
In earlier work, Rehman et al. (2005) visualized interaction zones in-place using an
augmented reality technique. A disadvantage of their solution is that it requires
users to wear a head-mounted display.

In later work, researchers explored the possibilities of providing in-situ feedback
and guidance using a combination of projectors and (depth) cameras—thereby elim-
inating the need for users to wear additional apparel. For example, LightSpace
(Wilson and Benko, 2010) shows when users are tracked by the system by project-
ing coloured highlights on the user’s body, and can also indicate when users are
recognized as a group. LightGuide (Sodhi et al., 2012) uses a projector and depth
cameras to project visualizations on the user’s body and provide movement guid-
ance. Ozturk et al. (2012) explored people’s reactions to projections of their ‘future
footsteps’ in an airport terminal, a technique similar to our steps visualization (see
Section 8.4.3).

Although the use of projectors allows for high-resolution visualizations and more
flexibility, projectors still require low-lighting conditions, which makes these tech-
niques less suitable for large interactive surfaces in urban spaces (especially during
daytime). Regarding guidance using LED floors, Rogers et al. (2010) explored the
use of LED lights embedded in carpet tiles that aimed to motivate people to use
the staircase more often. Rogers et al. observed that the LED lights actually had a
significant effect on people’s behaviour, which illustrates that in-situ visualizations
and guidance can be quite powerful.

8.3.2 Interactive Illuminated Floors

With Proxemic Flow, we propose the use of graphical information shown directly
on the floor of the interactive space—all around the people interacting—for provid-
ing feedback about the system status or informing users of action possibilities and
consequences. In this section, we briefly review the major applications for illumi-
nated floors for interaction design and review technical implementations, before we
introduce our novel in-situ floor visualization strategies in the following section.

Interactive illuminated floors have been used for several purposes, such as inter-
active art (Hespanhol et al., 2014; Karatzas, 2005) or games (Grønbæk et al., 2007),
and have recently seen increasing exploration as a primary interaction space (Aug-
sten et al., 2010; Bränzel et al., 2013; Schmidt et al., 2014). A variety of input and
output technologies have been used for these interactive floors, such as tracking
users through computer vision techniques (e.g., Grønbæk et al., 2007) or pressure

154 intelligibility and control for proxemic interactions

sensing (e.g., Bränzel et al., 2013), and showing output using projectors (Bränzel
et al., 2013; Grønbæk et al., 2007), LED illumination (Dalton, 2013) or vibrotactile
feedback (Visell et al., 2009). Our work extends this earlier research in the domain
by (a) proposing the use of the floor as a peripheral/secondary output device that
can help to mediate interactions with a different primary interaction device, and (b)
providing a vocabulary of strategies to provide in-situ feedback about current and
future interactions with the system.

8.4 in-situ floor visualization strategies

An important design challenge is providing learnability and discoverability, with-
out overloading the UI. While additional feedback, such as showing the next pos-
sible actions, is necessary to guide users in the interaction, designers should avoid
overwhelming users with too much information. We see large potential for guid-
ing or inviting mechanisms that show users step-by-step which next actions are
possible. In the context of learning gestures—another type of interface with sim-
ilar challenges such as the invisibility of action possibilities—Wigdor and Wixon
(2011) argue for adding a minimum of extra on-screen graphics to make gestures
self-revealing, which they call ‘just-in-time chrome’. Just-in-time chrome shows on-
screen affordances to guide users to the next possible actions. We see similar tech-
niques being useful for proxemic interactions. When a person moves in the space
in front of the display, the system could, once the person is tracked and recognized,
show possible other locations where they can move to, and possibly use animations
to guide them towards these locations.

We introduce a series of in-situ visualizations on the floor that provide additional
feedback to end-users interacting with the primary vertical display. These visualiza-
tions are categorized into three phases, progressing from:

(1) in-situ tracking feedback, answering the questions: “What does the system see?
How well does the tracking work?”

(2) revealing interaction possibilities, answering: “What possible interactions are
available?”, and

(3) inviting for and guiding interactions, answering: “What can I do next?”

It is important to note that even though these floor visualizations bear some
resemblance to techniques that were discussed earlier such as feedforward, they
serve a different purpose. Rather than explaining what the result of an action will
be, these visualizations are primarily targeted towards improving discoverability
and conveying action possibilities, one of the important challenges that users face
when interacting with large interactive surfaces (see Section 8.2). Nevertheless, there
are a couple of subtle feedforward elements in the visualizations, such as the border
visualizations that indicate where to go to opt-out of the interaction.

As mentioned before, we will illustrate our in-situ visualization strategies with an
example application. Our photo gallery application (Figure 8.4) shows photo collec-
tions on a large public display. A series of interactions are possible with this gallery

8.4 in-situ floor visualization strategies 155

application: it shows photo thumbnails when in idle mode, reveals more content
when a person approaches the display, shows full screen photos when people stand
directly in front of the display (or move back and sit down), and allows mid-air
gestures to navigate the photo collection (e.g., waving with a hand left or right to
browse through the timeline of photos). The application uses slow-motion feedback
on the primary display (Chapter 6), as it continuously reveals more content when
users get closer to the display (Figure 8.4b). While limited in scope, we believe that
this example application captures the essence of many proxemic interactions appli-
cations (Greenberg et al., 2011) and is well suited to demonstrate our in-situ floor
visualization strategies. Throughout this section, we will also refer to the use of our
visualization strategies for other application contexts.

(a) from a distance (b) when moving closer

Figure 8.4: Our photo gallery application responds to the user’s proximity to the display.
When users approach the display, it will gradually reveal more thumbnails, a
behaviour that is identical to the Proxemic Media Player (Ballendat et al., 2010).

Our visualization strategies are used for different purposes and have different
properties. Table 8.1 shows an overview of our different strategies, indicates their
purpose and to which of the three phases they correspond.

Phase Purpose Perspective Position Temporal Relevance

Egocentric Exocentric Static Dynamic Past Present Future

Halos 1 Tracking feedback and quality ✔ ✔ ✔

Trails 1, 3 Historic traces of action ✔ ✔ ✔ ✔ ✔ (a) ✔ (b)

Zones 2 Interaction zones/action possibilities ✔ (c) ✔ ✔ ✔ ✔ (d)

Borders 2 Opt-in and opt-out indicators ✔ ✔ ✔ ✔ (e)

Waves 3 Inviting for interaction ✔ ✔ ✔

Steps 3 Guiding spatial movement ✔ ✔ ✔

Table 8.1: An overview of our different floor visualization strategies.

The table compares our floor visualization strategies based on three different as-
pects: perspective, position, and temporal relevance. Regarding perspective, we distin-
guish between egocentric and exocentric visualizations. For example, tracking halos
are targeted towards being viewed from the user’s own perspective (egocentric),

156 intelligibility and control for proxemic interactions

while zones and borders are mostly useful from an external perspective (exocen-
tric). Additionally, some visualizations have a static position on the floor, while oth-
ers can move dynamically (e.g., together with the user). Finally, visualizations can be
relevant to the user’s current interactions with the primary display (the present) (e.g.,
quality of tracking), or can alternatively provide clues about past or future actions.
We will now go over the three phases, and will later come back to these different
aspects while discussing our floor visualization strategies.

8.4.1 Phase 1. In-Situ Personal Tracking Feedback with Halos

As discussed before, a fundamental challenge for the interaction with large surfaces
is providing a person with immediate feedback about how the system is currently
recognizing and interpreting gestures or other input from the user. This tracking
feedback is an essential part of Bellotti and Edwards’s definition of intelligibility
(Bellotti and Edwards, 2001). In this section, we introduce visualization strategies
to provide this feedback directly in the physical space in front of the display where
the person is moving.

8.4.1.1 Personal Halos

The personal halo provides immediate feedback on the floor display about the track-
ing of a person in space. When the person enters the area in front of the public
display, a green halo (with an area of approximately 1 m2) appears underneath the
person’s feet (Figure 8.5a). The halo moves with them when moving in the tracking
area, and therefore gives continuous feedback about the fact that the person is being
recognized and tracked by the system.

Another important part of information (besides information about the fact that
a person is tracked) is the actual quality of tracking. Most computer vision based
tracking systems (RGB, depth, or other tracking) have situations where tracking
works well, where it does not work well, or where it does not work at all (e.g., due
to lighting conditions, occlusion, limited field of view). Therefore, our personal halo
visualization encodes the quality of tracking in the colour of the halo. To indicate
tracking quality, we use three different colours (Figure 8.5b–d). A green halo indi-
cates optimal tracking of the person in space. Its colour changes to yellow when the
quality of tracking decreases, for example when the person moves to the limits of
the field of view or when partially occluded by another person or furniture. Finally,
a red halo colour is shown when the tracking of the person is lost, such as when
moving too far away from the camera, or if the occlusion is hiding the person com-
pletely. For this last case, since the person is now not tracked anymore, the red halo
visualization remains static at the last known location of the person, fades in and
out twice, and then disappears (the duration of that animation is approximately 4

seconds). If the person moves back into the field of view of the camera and the
tracked region, the halo colour changes accordingly back to green or yellow.

The immediate feedback of tracking through halos can give a person the oppor-
tunity to intervene, e.g., to opt-out of interaction with the system. For example,

8.4 in-situ floor visualization strategies 157

Figure 8.5: Halos provide feedback about active tracking (a), and also reveal the tracking
quality: a green halo (b) indicates optimal tracking, a yellow halo (c) represents
reduced accuracy, and a briefly pulsating red halo (d) shows that tracking is lost.

when noticing that they are being tracked, people could move back out of the active
tracking area.

8.4.1.2 Alternative Halo Visualization Strategies

Although this is a crude mapping of tracking accuracy to different colours, we
found it to be sufficient for our photo gallery application. However, other appli-
cations might require different levels of granularity. For example, for interactive
proxemic game experiences (Mueller et al., 2014), tracking accuracy per body part
could be helpful information for players, which could be visualized using more
fine-grained halo visualization. Tracking accuracy of different body parts could be
mapped to different areas of the halo; e.g., front left corresponds to left arm, back
left to the left leg. Alternatively, halos could change their size depending on the area
covered by the player. Of course, there is only a limited amount of information that
can be conveyed using our low-resolution floor display. Revealing intricate details
about the tracking quality for different body parts would require higher-resolution
floor displays.

8.4.1.3 Multi-User Halos

Interaction around interactive surfaces is often not limited to a single person, but
can involve multiple people present in the space and interacting with the display.
With multiple people, information about active tracking and its fidelity becomes

158 intelligibility and control for proxemic interactions

even more important, because tracking problems increase with the likelihood for
partial or complete occlusion.

If multiple people are present in front of the screen, each person’s individual
position that the system currently tracks is shown with a coloured halo (Figure 8.6a).
Colour changes indicate a change in how well the user is tracked. For example, in
case another person walking in interrupts the tracking camera’s view of a person,
the changing colour of the halo from yellow to red tells the person that they are
not tracked anymore (Figure 8.6b). Similarly, if two people stand very close to one
another, making it difficult for the computer vision algorithm to separate the two,
the halo colour also changes to yellow.

(a) Both people tracked by the system (b) Tracking problem due to occlusion

Figure 8.6: Halos for multi-user interaction when (a) both people are visible to the system
and (b) when one person is occluding the other, indicated by the red halo.

8.4.1.4 Trails: Revealing Interaction History

As a variation of the halo technique, the spatial trail feedback visualizes the past
spatial movements of a person in the interaction area. The trails are shown as illu-
minated lines on the floor that light up when a person passes that particular area
(Figure 8.7). The illumination fades out after a given time (in our application after 5

seconds), thus giving the impression of a comet-like trail. The colours that are used
to light up the floor are identical to those of the person’s halo (e.g., green, yellow,
red), and therefore still provide information about the tracking quality. Because the
trail visualization remains visible for a longer time, it provides information about
the past movements of the people interacting with the system. Potentially, the trails
could help to amplify the honeypot effect (Brignull and Rogers, 2003) by showing the
past trails of other people moving towards the interactive display, and thus invit-
ing other bystanders and passers-by to approach the display as well—which is why
they are categorized in both phase 1 and 3 in Table 8.1.

8.4 in-situ floor visualization strategies 159

Figure 8.7: Trails visualize the history of spatial movements of a person.

8.4.1.5 Discussion

Halos are a prime example of an egocentric visualization. They are meant to be
viewed from the user’s perspective, providing feedback about the tracking status.
The trails variation, however, is a mostly exocentric technique—targeted towards be-
ing viewed from the perspective of other users—that shows information about past
interactions. However, since the trails are still shown underneath the user’s feet, and
change colour depending on the user’s tracking accuracy, they are simultaneously
egocentric, and inform the user about their present interactions (Table 8.1a). In addi-
tion, as it potentially invites bystanders to interact with the display, the trails can
serve as an invitation for future interactions (Table 8.1b). We can also imagine other
exocentric halo visualizations. For example, pulsating exocentric halos could indi-
cate open spots where users could move towards, e.g., to form teams in proxemic
gaming scenarios.

8.4.2 Phase 2. Zones and Borders: Entries and Exits for Interaction

As mentioned earlier, people often have difficulties knowing when and how they
can interact with a large public display (Jurmu et al., 2013; Müller et al., 2010). To
mitigate this problem and to make it easier to discover interaction possibilities, we
explicitly visualize the spatial zones for interaction and the borders of the interac-
tion space (Figure 8.8).

8.4.2.1 Opting-in: Proxemic Interaction Zones

Many recent designs of large interactive displays use spatial zones around the dis-
play to allow different kinds of interaction (similar to Vogel and Balakrishnan, 2004)
or change the displayed content depending on which zone a person is currently in.
These zones, however, are not always immediately understandable or perceivable
by a person interacting with the display. Our floor-visualizations explicitly reveal
zones of interaction, allowing a person to (a) see where interaction is possible, and

160 intelligibility and control for proxemic interactions

Figure 8.8: The interaction areas in front of the display represented as (a) red and (b) blue
rectangular zones; (c) borders indicate thresholds to cross for (d) leaving the in-
teraction space in front of the display.

(b) make deliberate decisions about opt-in for an interaction with the display by
entering any of the zones.

We demonstrate the use of zone visualizations with the Proxemic Flow photo
gallery application. Similar to earlier examples of proxemic-aware displays (Ballen-
dat et al., 2010; Greenberg et al., 2011; Vogel and Balakrishnan, 2004), our applica-
tion has discrete spatial zones around the display that are mapped to the interactive
behaviour of the application on the large display. When no person is currently inter-
acting with the system, a large red rectangular zone indicates the area furthest away
from the display that triggers the initial interaction with the display (Figure 8.8a).
This can be considered as the entry zone for interaction, or an area to opt-in for
interaction with the system. In our current implementation, we use a 3s pulsating
luminosity animation, fading the colour in and out, in our approach of balancing
the goal of attracting attention while not being too intrusive. While a static colour
would be possible, identifying it as part of an interactive system is potentially more
difficult. Once a person enters this zone, the large display recognizes the presence
of the person and tracks the person’s movement—and the person’s halo is shown.
The first zone now disappears and a second zone—an area to interact with with the
display when in front of it—appears (visible as the blue rectangle in Figure 8.8b).
As shown earlier in Figure 8.4, when the person begins approaching the display,
the content gradually reveals more of the photo collection on the display. The closer
the person gets, the more images become revealed, a behaviour that is identical to
the Proxemic Media Player (Ballendat et al., 2010). Once having entered the second
zone, the person can use hand gestures in front of the display to more precisely
navigate the temporally ordered photo gallery (e.g., grabbing photos, sliding left
or right to move forward or back in time). Again, once the person entered that
close-interaction zone in front of the display, the visualization disappears.

8.4.2.2 Opting-Out and Exit Interaction: Borders

While we envision zones primarily as explicit visualizations of the zones to interact,
and allowing a person to deliberately engage and ‘opt-in’ for an interaction with
the system, we can also consider visualizations that help a person leaving the in-

8.4 in-situ floor visualization strategies 161

teraction area (i.e., opting out). We illustrate this concept with borders shown in
the Proxemic Flow application. In continuation of the application example from
before, once the person entered the interaction zone (blue) directly in front of the
display and interacts with the display content through explicit gestures, a red border
around the actively tracked interaction area around the display is shown to make
the boundaries of that interaction space explicit and visible (Figure 8.8c). While we
decided to dynamically show the border only in situations when a person engaged
with the system, alternatively it could remain a static feature of the visualizations
shown on the floor. A reason for showing a static view of the interaction boundaries
with borders could be to always clearly indicate where a person can both enter but
also leave the interaction area (Figure 8.8d).

8.4.2.3 Using Zones and Borders with Multiple Users

We can consider alternative design aspects when using zones and border visualiza-
tions with multiple users. For example, we can consider whether area visualizations
are only shown to the first user entering the space and disappear once that person
entered the zone, or whether the visualizations remain persistent. Showing visual-
izations for the first person entering a space seems most critical, and hiding the
zone visualizations after the person enters a particular zone has the advantage of a
floor that is less visually cluttered and therefore can help emphasizing certain parts
of the visualizations (for example, make the halos stand out).

8.4.2.4 Discussion

In contrast to halos and trails, zones and borders are static visualizations. They are
fixed at a certain position, and although they might only be shown at certain times,
they do not follow the user. Zones and borders are also mostly exocentric, as they
are intended to be observed from an external point of view. Nevertheless, zones
can of course also be used from an egocentric perspective, when the user is inside
the interaction zone (Table 8.1c). Finally, they convey cues relevant to the user’s
current interactions (present), such as borders around the actively tracked interaction
area. However, zones and borders can also provide cues for future interactions,
such as possible next areas to move to, or where to go to opt-out of the interaction
(Table 8.1d–e).

8.4.3 Phase 3. Waves and Footsteps: Inviting for Approach, Spatial Movement or Next
Interaction Steps

The last set of floor visualization strategies we introduce is designed to invite for
approach, encourage a person’s movement to a new location, and suggest the user
possible next interaction steps. In particular, in this category of visualizations we
introduce two strategies: waves and footsteps.

162 intelligibility and control for proxemic interactions

Figure 8.9: Waves inviting for interaction (a) and footsteps suggesting action possibilities (b).

8.4.3.1 Waves: Encouraging Approach

Our first strategy is intended for inviting people to move closer to the large display
for interaction. Several strategies for encouraging approach of people have been
proposed in the past (e.g., Cheung and Scott, 2013), including showing text labels,
animations, graphic icon representations or using sound. With our waves technique,
we leverage the output capabilities of the illuminated floor for showing looped
animations of lights fading in and out, with the effect of a wave of light going
towards the large screen (Figure 8.9a). Alternatively, different visual designs of the
wave effect are possible, for example a circular wave effect with the large display at
the centre, starting with circles having a large radius and continuously decreasing
circle radius.

8.4.3.2 Footsteps: Suggesting Next Action Possibilities

The footsteps visualization is designed to offer a person clues about possible next
interaction steps, in particular for encouraging spatial movements in the environ-
ment. The visualization shows animated footsteps—in our case these are repre-
sented through glowing circles—beginning at one location on the floor and leading
to another location. This technique is inspired by earlier work of the Follow-the-light
design (Rogers et al., 2010) that uses animated patterns of lights embedded in a
carpet to encourage different movement behaviours by luring people away from an
elevator towards the stairs.

To illustrate this technique, we again revisit our Proxemic Flow example applica-
tion with the large display photo gallery viewer. When a person entered the inter-
active (i.e., tracked) space in front of the display and stands still for over 5 seconds,
the floor begins the footstep animation (Figure 8.9b) to invite the person to move
closer to the display. In particular, the person is invited to move to the interaction
zone in front of the display where they can use mid-air gestures to further explore
the image collection. The footstep animation begins directly in front of the person
and leads towards the blue rectangular area highlighted in front of the display

8.5 proxemic flow architecture 163

(Figure 8.9b). The footsteps visualization strategy can be used to reveal interaction
possibilities—specifically those involving spatial movements of the person. We can
see this strategy being used in other contexts too for guiding or directing a user
in the environment, and for encouraging movements in space, e.g., to distribute
people in front of a display (Beyer et al., 2014).

8.4.3.3 Discussion

The visualization strategies for phase three provide cues that invite users to future
interactions. The waves strategy is exocentric, as it invites bystanders to interact with
the primary display. The waves pattern could be shown across the full floor display
or be centralized around the primary display. Steps, on the other hand, are egocentric
visualizations that start from underneath the person’s feet, and guide them towards
a certain position.

8.4.4 Summary

To conclude, in this section we discussed and demonstrated a set of in-situ floor
visualizations that provide peripheral tracking and fidelity information with per-
sonal halos, make interaction zones and borders explicit for easy opt-in and opt-
out, and provide cues inviting for spatial movement or possible next interaction
steps through wave, trail, and footstep animations. This set of floor visualization
strategies targets important interaction issues with large interactive surfaces that
were identified in earlier research (see Section 8.2). We believe that these strategies
have the potential of being applied in many different contexts, such as for games,
advertisements, and other person-aware interactive systems. During informal ob-
servations of people interacting with our floor display, we noticed that essential
concepts such as halos and zones were easy to understand. Future research and
studies are necessary, however, to confirm these early observations. The strategies
we presented here are a starting point for a collection of building blocks for how to
provide in-situ visual feedback on the floor to mediate spatial interactions. In the
next section, we present the Proxemic Flow software architecture and explain how
we implemented the floor visualizations.

8.5 proxemic flow architecture

Our aim with the Proxemic Flow software architecture was to support (1) rapid pro-
totyping to allow for easy exploration of different alternative visualization strategies
(e.g., alternative halo visualizations) and (2) re-use of existing floor visualizations
for different applications and settings (i.e., integration of zones or halos with just a
few lines of code).

Proxemic Flow consists of four main technical components: (i) the hardware setup
of the illuminated floor, (ii) the user tracker and (iii) floor renderer that are con-
nected together using (iv) the floor toolkit, a modular API written in the C# pro-
gramming language. The existing hardware setup of the floor was developed by

164 intelligibility and control for proxemic interactions

Bird et al. (2013) in the foyer of the University College London’s computer science
department. I implemented the user tracker, floor renderer and floor toolkit and in-
tegrated it with the hardware setup by Bird et al.. The user tracker is responsible for
tracking users in the space in front of the display, and for mapping these positions
to positions on the floor. The floor renderer is a C# component that processes up-
dates to a floor scene and renders these to an offline floor bitmap. Every render cycle,
render updates are sent over the network to a Processing sketch, which interprets
these and sends update messages over a serial connection to the Arduino microcon-
troller that steers the different light units. The floor toolkit provides a number of
visual rendering primitives (static and dynamic visualizations) to build up the floor
scene. In addition, it allows floor applications to respond to user tracking events
(e.g., when a new user is detected or a user’s position has changed). We will now
explain these different components in more detail.

8.5.1 Hardware Setup of the Interactive Floor Display

The floor that we use for our setup consists of 288 light wells set in concrete, of
which 216 wells are fitted with a custom LED light unit, as shown in Figure 8.10. As
described by Bird et al. (2013), each custom light unit consists of four RGB LEDs cut
from an LPD8806 LED strip, joined together and mounted onto a plastic cap which
fits into the concrete surface from the floor below. The light units are connected
in series and powered by three modified ATX power supplies. An Arduino Mega
controls the floor display. Each of the light units can be set to one of around 2

million colours and the whole array can be updated at a rate of up to 25 fps. This
effectively turns the floor into a large display with a resolution of 12x18 pixels.

Figure 8.10: The floor displays consists of the 216 light wells as indicated by the shaded area.

8.5 proxemic flow architecture 165

8.5.2 Tracking Users

Users are currently tracked across the floor using a single Microsoft Kinect depth
camera (version 1.0) and the Microsoft Kinect SDK, which allows us to track up to
six simultaneous users (with skeleton data available for two users).

As the position of a user can be represented in the 2D (x, z) plane (the user’s ver-
tical position is ignored), a simple affine matrix transformation suffices to map the
(x, z) coordinates as given by the Kinect camera to a (i, j) position in the floor grid.
To set up the system, a four-point calibration is performed to map positions seen
by the Kinect to the corresponding floor positions, after which the corresponding
transformation matrix is calculated. Calibration settings can be saved and reused
for future sessions.

We currently represent the tracking accuracy for a specific user—as used for de-
termining the colour of the personal halos (Section 8.4.1)—as a value in the range
[0, 1]. For the Kinect sensor, this value is obtained by calculating an arithmetic aver-
age over the accuracy of the skeleton joints, which have one of three states: tracked,
inferred, or not tracked. We currently assign the value 1.0 to tracked joints, 0.3 to in-
ferred joints and 0.0 to joints that are not tracked. Green halos are shown for average
accuracies over 0.7; halos turn red when the accuracy drops below 0.3; and yellow
halos are shown for accuracies between 0.3 and 0.7. These specific tresholds have
been selected based on empirical observations, but can be easily changed.

Every time an update is received from the Kinect skeleton stream, we create a
TrackingUpdate object that encapsulates all necessary information for the floor, such
as the user’s position on the floor grid and the tracking accuracy. Floor applications
can subscribe to these events and respond accordingly, for example by showing ha-
los indicating the current position and tracking accuracy of all users, or by updating
the floor display when users cross borders or enter zones.

8.5.3 Rendering Pipeline: Updating the Floor Display

The rendering pipeline is the core part of the architecture and handles all updates to
the floor display (Figure 8.11).

The floor scene (Figure 8.11a) is the logical representation of the graphics on the
floor and consists of an ordered set of layers (e.g., halos, zones, borders, inviting
animations) that are rendered on top of each other, each of which can be enabled
or disabled. There is a logical priority of layers: low level primitives (Figure 8.11a

1

)
such as zones and borders are rendered first, followed by dynamic content such
as the steps or wave animations, and finally the personal halos which are always
visible, even when they collide with other visuals. Animations consist of a set of
frames (Figure 8.11a

2

), which are rendered in each update (one after the other).
Animations can be looped, in which case they return to the first frame after the last
frame has been rendered.

The floor renderer (Figure 8.11b) uses a timer to allow sending update messages
to the floor at a fixed rate. A floor update message is represented by a FloorBitmap
object (Figure 8.11c), which is an 18⇥ 12 grid of colour values for each of the light

166 intelligibility and control for proxemic interactions

Floor BitmapFloor Scene

Floor
Renderer

static layers

animation layers

animation frames

z-
or

de
r

rendering!
primitives

IFloor

IFloor

Dra
wBi

tma
p

a

a2

b

c

d

DrawBitmap

ea1

f

Figure 8.11: The Proxemic Flow rendering pipeline. Visualizations on the floor display are
abstracted in a floor scene (a). This floor scene is processed by the floor renderer
(b), resulting in (c) a floor bitmap (an abstraction of a floor display update) that is
send over the network to the connected floor displays that implement the IFloor
interface (d). We also implemented a projected floor display (f).

wells in the grid. Every tick, the rendering pipeline sends a floor update message
to the connected IFloor instance by calling its DrawBitmap methodb (Figure 8.11d).
The default IFloor instance forwards messages to the Processing sketch, which is
connected to the Arduino microcontroller that controls the light units in the LED
floor display (Figure 8.11e).

8.5.4 Proxemic Flow Toolkit

The Proxemic Flow toolkit is event-driven and abstracts from the underlying floor
display and tracking solutions to allow for rapid exploration of visualization strate-
gies. It provides a set of reusable visualizations (e.g., halos, zones, guiding ani-
mations) to easily modify the visualizations for different settings and applications.
These rendering primitives are connected to tracking updates in floor applications.
All graphics and animations implement IRenderPrimitive and IAnimationPrimitive
interfaces respectively, both of which can be translated into a floor bitmap. Applica-
tion developers may add new visuals by simply providing new classes that imple-
ment these interfaces. This allows the rendering pipeline to be agnostic to the specifics
of the graphics being shown on the floor. All that is required is that graphics and
animations can be transformed into a floor bitmap.

For example, Listing 8.1 shows the code that is necessary to implement a pulsating
dot animation that cycles through a list of colours. It forms the basis for implement-
ing the trails visualization, which essentially continuously renders slowly pulsating
dots at the user’s current position. The toolkit also makes it easy to respond to
tracking updates and perform basic operations such as checking whether the user
is within a certain zone. Listing 8.2 shows an excerpt that renders a steps animation

8.5 proxemic flow architecture 167

towards a specific interaction zone if the user is not in that zone and has not moved
for 5 seconds (as indicated by the dwell time).

Listing 8.1: Code to implement a pulsating dot animation at a specific location.

class PulsatingDot : AbstractAnimationPrimitive
{

private FloorPosition position;
private List<FloorColor> colors;

public PulsatingDot(FloorPosition position, List<FloorColor> colors)
{

this.position = position;
this.colors = colors;

// Create frames
foreach (FloorColor color in this.colors)
{

RenderLayer layer = new RenderLayer();
layer.Add(new Dot(this.position, color));
this.animation.AddFrame(layer);

}
}

} ⇧
Listing 8.2: Code that shows a steps animation towards ‘frontZone’, if the user is currently

not in that zone and has been standing still for more than 5 seconds.

public override void OnTrackingUpdate(List<TrackingUpdate> updates)
{

base.OnTrackingUpdate(updates);
foreach (TrackingUpdate u in updates)
{

if (u.Tracked)
{

if (!stepsShownAlready && !this.frontZone.Contains(u.Position) &&
u.DwellTime > 5000)

{
// Steps animation
StepsAnimation steps = new StepsAnimation(

u.Position,
this.frontZone.LowerRight.Row,
FloorColor.White);

stepsLayer.AddAnimation(steps);
}

}
}

} ⇧

168 intelligibility and control for proxemic interactions

8.5.5 Generalizability

The Proxemic Flow architecture and toolkit enabled us to rapidly prototype dif-
ferent floor visualizations for mediating surface interactions. We believe our floor
visualizations are a starting point for exploring alternative strategies, applying them
in different application contexts, and evaluating their use in practice—and in partic-
ular with in-the-wild deployments (Rogers, 2011) and testing of floor visualizations
supporting interactions in public settings.

In future work, we would like to extend Proxemic Flow further beyond the
specifics of our current floor setup. Ideally, the floor visualizations should be sup-
ported on different floor displays (e.g., using projectors or FTIR as described by
Bränzel et al., 2013), and also be able to use a variety of other tracking solutions
(e.g., 2D cameras with markers, other depth cameras, or optical trackers such as
VICON4). Here, we briefly explain how our current architecture was already built
with this flexibility in mind, and what changes need to be made to be able to extend
it further.

8.5.5.1 Alternative Floor Display Implementations

Figure 8.12 shows an alternative rendering solution we implemented in order to
show visuals on arbitrary surfaces, based on an overhead projector mounted to
the ceiling. It uses the same floor toolkit as described earlier, so that applications
written once run without modification. We have successfully verified this by first
implementing visuals using the projector setup in the lab at Hasselt University,
which were afterwards tested on the LED floor display at University College Lon-
don where they ran without changes.

Figure 8.12: Alternative floor display using a ceiling-mounted short-throw projector.

For the projector-based implementation, a separate Windows Presentation Foun-
dation (WPF)5 window that renders the floor grid that is projected onto the floor.

4 http://www.vicon.com/
5 http://www.windowsclient.net/

http://www.vicon.com/
http://www.windowsclient.net/

8.6 discussion 169

As mentioned before, the toolkit’s rendering pipeline sends updates to connected
objects that implement the IFloor interface. All that is needed for an alternative floor
display is changing this object to another IFloor instance. Our projection-based floor
responds to floor update messages by changing an internal model of the floor grid,
which is then also updated in the WPF view.

Although this approach makes it easy to run applications developed with the
projector setup unmodified on the 18x12 LED floor (and vice-versa), supporting
higher-resolution floor displays would require some additional changes. Especially
the floor scene model and the floor renderer would be impacted. Our toolkit as-
sumes that all rendering primitives can be transformed into an off-screen floor
bitmap (which is currently 18x12 pixels). However, a minor modification to sup-
port higher-resolution displays would be to support floor bitmaps of arbitrary sizes
(e.g., 1024x768). Rendering primitives should then be able to render to different
floor bitmap formats, depending on which IFloor instance it is rendering for. To
render high-resolution floor bitmaps using a projector, they could be converted into
offline bitmaps (images), that are then rendered as a widget inside the WPF win-
dow and projected onto the floor. Although we have not verified this, we believe it
would not severely impact performance for a projector-based setup6. Although our
current architecture does not explicitly support vector graphics, vector rendering
primitives can be used as long as they are transformed into a bitmap in the final
step.

8.5.5.2 Alternative User Tracking Implementations

Our toolkit is reasonably decoupled from the specifics of the tracking technology
we use. The TrackingUpdate object abstracts from the underlying tracking hardware;
the same information could be produced by another tracking solution (e.g., a VI-
CON motion tracker) and passed to the rendering pipeline. Although this is a fairly
simplistic approach, a more sophisticated mechanism using the decorator pattern
(Gamma et al., 1995) could be integrated in order to allow each tracking technology
to specify what kind of data it provides (e.g., as in Marquardt et al., 2011).

8.6 discussion

In this section, we briefly discuss a number of design considerations we feel are
important for peripheral floor visualizations. We elaborate on what visualizations
can be used, when these visualizations are revealed to users, and finally where they
are shown.

8.6.1 What to Show?

Our approach is minimalistic on purpose: we reduced the visualizations to essential
cues that are easy to read and require minimal visual bandwidth. These can be fur-

6 A 1024x768 LED floor display, on the other hand, will probably need to be engineered in a different way
to achieve similar performance.

170 intelligibility and control for proxemic interactions

ther enriched (e.g., finer grained spatial movement cues), but it is important to avoid
a visually cluttered floor with—perhaps even animated—visualizations that distract
the user. As mentioned earlier in Section 8.3, it is not our intention with Proxemic
Flow to build an attention-grabbing floor display with the goal of maximizing the
number of people interacting with the primary display. The visualizations should
be there when needed, but not unnecessarily draw the user’s attention. Moreover,
the floor visualizations should not detract from interacting with the primary display,
as the floor plays a secondary, assisting role.

Nevertheless, at times it can be necessary to move to the foreground and inform
the user about what is happening (similar to Ju et al.’s system demonstration). One
possible future direction is to combine the floor visualizations with other modalities
to improve the users’ awareness. While audio feedback tends to be inappropriate
in public spaces, vibrotactile feedback on the floor (Visell et al., 2009) would allow
users to ‘feel’ when they are crossing a border or entering a zone without having
to direct their gaze to the floor. Another interesting direction for future work is to
investigate how users cannot only be provided with information about action possi-
bilities, but also information about the purpose of those actions (i.e., feedforward).

8.6.2 When to Show Information?

An important design consideration is balancing the timing when information needs
to be shown to the user. Several of our introduced visualizations appear ahead
of time to inform users (e.g., triggering zones, borders) while others appear only
when the users are in the tracking area (e.g., halos). Trails remain visible for a
certain period to provide historic action traces to other users (see Table 8.1 on page
155). This difference in information needs depends on the situation. In summary, we
believe the following aspects contribute to when information needs to be shown:

• Single versus multi-user interaction: it can be useful to provide visualizations
that provide information to others, either for people who are interacting with
the display at another location, or for bystanders or passers-by who might
be able to use the floor visualizations to approach the display as well. This
corresponds to the egocentric versus exocentric perspective in Table 8.1. As
mentioned before, we can imagine that the trails visualization could amplify
the honeypot effect (Brignull and Rogers, 2003) even more.

• Avoid clutter: information should appear only for a limited time, since it might
otherwise result in a cluttered floor display. We believe there is also a lot of
value in avoiding clutter by relying on ‘just-in-time’ visualizations (Wigdor
and Wixon, 2011) that are only shown when the user has indicated interest in
performing a certain action.

• Application type: applications that aim for a high throughput of users (e.g.,
information displays in crowded places), might want to employ snappier floor
visualizations, stimulating people to only use the system for a limited time
and then move on. We can imagine our floor visualizations to be used for

8.7 conclusion 171

audience shaping as well (e.g., similar to techniques used by Beyer et al., 2014).
On the other hand, applications that aim to involve the user for a longer period
of time, might want to relax these time constraints and allow users to gain a
deeper understanding of the system.

8.6.3 Where to Show Information?

It is important to think about where visualizations are shown, as users might not
always be paying attention (e.g., they might not look at the floor much when they
are directly in front of the display), or might be unaware of certain visualizations
because they are outside their field of view (e.g., imagine a zone that appears behind
the user). While inviting and guiding strategies can direct the user’s attention, care
should be taken to not design floor visualizations that require users to always pay
attention to the floor. An interesting opportunity for future work is to investigate
how users’ peripheral view—which is very sensitive to motion (Heun et al., 2012)—
can be used (sparingly) to draw their attention.

One could argue that users might not notice halos, since these are visualized
directly underneath their feet. However, as mentioned before, during initial obser-
vations, we noticed that people became aware that the floor was actually a display
as they entered the tracking area (e.g., by first noticing the border visualizations,
and then their personal halo). A quick glance at the visualizations should suffice.
Moreover, they are only meant to be used when users are unsure about interacting
in the space in front of the display. Especially the egocentric visualizations should
be easy to locate. Finally, for multi-user scenarios, it can be useful to design floor
visualizations that make it easier to learn how to interact with the display by observ-
ing others, a concept known as external legibility (Zigelbaum, 2008). Earlier studies
have indeed found that very visible ways of interacting with displays (e.g., mid-air
gestures) increase the honeypot effect (Müller et al., 2012, 2014) and result in users
copying each other’s behaviour (Walter et al., 2013).

8.7 conclusion

We presented dynamic in-situ floor visualizations for revealing and mediating large
surface interactions. With Proxemic Flow, we demonstrated three categories of visu-
alizations: (1) personal halos and trails that provide peripheral information about
current tracking and tracking fidelity; (2) interaction zones and borders for easy
opt-in and opt-out; and (3) wave and footstep cues that invite users for movement
across the space or possible next interaction steps. We believe that leveraging the
floor as a peripheral, secondary output device for showing such in-situ feedback can
help to mediate interactions with large surfaces. Our proposed floor visualization
strategies aim target several important interaction problems with large interactive
surfaces that were identified in earlier work (see Section 8.2). We feel these three cat-
egories of in-situ floor visualization strategies have the potential to improve walk-

172 intelligibility and control for proxemic interactions

up-and-use interaction with future large surface applications in different contexts,
such as gaming, or for entertainment or advertisement purposes.

During informal observations of people interacting with our floor display, we
noticed that essential concepts such as halos and zones were easy to understand.
We believe this is due to their visual simplicity and the fact that users only need
to pay attention to the floor occasionally—which would not be the case for more
complex visuals or text. Further studies and long-term deployments, however, are
necessary to confirm our early observations. In future work, we would also like to
improve the extensibility of our architecture to support a wider variety of different
floor displays, including ones that support higher resolutions.

9
C O N C L U S I O N S

This dissertation has shown how to design for intelligibility and control in ubiq-
uitous computing applications—and context-aware systems in particular. This final
chapter recapitulates the contributions made by the presented design principles and
techniques, and concludes with an outlook on future work.

9.1 restatement of contributions

In this dissertation, I have conducted a design space exploration to inform the de-
sign of future ubicomp systems that provide support for intelligibility and control.
I introduced (1) a design space that can guide designers in exploring various ways
to support intelligibility and control, presented (2) general design principles and tech-
niques that can be applied in a wide range of ubicomp scenarios, and described (3)
an in-depth case study of supporting intelligibility and control in proxemic interac-
tions that can serve as inspiration for designers looking to support intelligibility
and control in different ubicomp scenarios.

In particular, I made the following major contributions:

1. A design space for intelligibility and control (Chapter 3) that captures different de-
cisions that designers face when adding support for intelligibility and control.
This design space can be used as an analytical tool and can help designers
explore alternative designs.

2. An in-depth exploration of the timing dimension in the previous design space.
In particular, I contribute three general techniques that can be used at three
different times during the interaction: before, during, and after actions.

a) Before—The design principle feedforward (Chapter 5), which informs users
of the results of their actions. I provide a new definition of feedforward,
further disambiguate it from feedback and affordances. In addition to
discuss several existing examples of feedforward, I describe the Feedfor-
ward Torch technique. Finally, I identify four new classes of feedforward:
hidden, false, sequential, and nested feedforward.

b) During—The design principle slow-motion feedback (Chapter 6), which is
aimed at allowing users to intervene during system actions by having the
system slow down when taking action and provide intermediate feed-
back. I illustrate the application of slow-motion feedback in our Visible
Computer system to provide real-time, in-place feedback in context-aware
environments using projected visualizations. Furthermore, I introduce a
design space to reason about when and how feedback is provided, and
use it to analyse notable existing applications of slow-motion feedback.

173

174 conclusions

c) After—The ability to pose why questions about the behaviour of a context-
aware system (Chapter 7). This allows users to gain an understanding
of how the system works by receiving intelligible explanations of why
it acted in a certain way. I introduce PervasiveCrystal, a framework for
building context-aware applications that can provide answers to ‘why?’
and ‘why not?’ questions about their behaviour.

3. A case study (Chapter 8) in supporting intelligibility and control for proxemic
interactions, a subdomain of context-aware computing. I discuss the design
and implementation of dynamic peripheral floor visualizations to address in-
teraction challenges with proxemic-aware interactive surfaces. The Proxemic
Flow system uses a floor display that plays a secondary, assisting role to aid
users in interacting with the primary display. The floor informs users about
the tracking status, indicates action possibilities, and invites and guides users
throughout their interaction with the primary display.

9.2 future work

Important limitations and possible extensions were discussed in each preceding
chapter. This chapter briefly discusses some larger future research directions.

9.2.1 Intelligibility and Control “In the Wild”

I conducted initial informal evaluations of the proposed techniques, which are de-
scribed in Sections 5.6.4 (Feedforward Torch, pg. 100), 6.3.5 (The Visible Computer,
pg. 120), and 7.6 (why questions, pg. 141). However, to fully understand the ben-
efits of different techniques, we believe an important direction for future work is
to study intelligibility and control “in the wild” (Rogers, 2011). In-the-wild studies
could help us gain detailed insights about the impact of intelligibility and control
with respect to real-world concerns in different settings, and could also reveal how
intelligibility and control features are used over time (e.g., whether or not there is a
novelty effect).

There have been several studies on the effectiveness of intelligibility and control
techniques, such as the work by Lim and Dey, which contributed valuable insights
into the effectiveness of different types of explanations (e.g., Lim et al., 2009; Lim
and Dey, 2009, 2011b,a). Most of these studies, however, were conducted in lab
settings, simulated using questionnaires, or have only been deployed over a short
period of time. Rogers (2011) stresses that human-computer interaction in the real
world is more messy than in the lab, as people tend to be much more unpredictable.
As a first step, researchers have started to explore intelligibility concerns in real-
world products. A recent example is the work by Yang and Newman (2013), that
studied users’ experiences with the Nest smart thermostat in several households.
An interesting observation was that users had little interest in learning about the
thermostat’s workings as an independent activity. In the ‘messiness’ of their daily
lives, home-owners had little motivation to go through the effort of understanding

9.2 future work 175

the thermostat’s behaviour. Yang and Newman (2013) therefore suggest to provide
what they call incidental intelligibility, which is integrated into the tasks users are
trying to accomplish, which corresponds to embedded techniques in our design space
(see also Section 3.3.3).

We took a similar approach of ‘just-in-time’ intelligibility with our floor visual-
izations in the Proxemic Flow system (Chapter 8). This work was also informed
by several interaction challenges that were observed in earlier in-the-wild studies of
large interactive surfaces in semi-public settings (e.g., Ojala et al., 2012; Müller et al.,
2009b, 2012). Due to its characteristics as a multi-user context-aware application that
relies on implicit interaction and needs to support walk-up-and-use interaction, our
Proxemic Flow setup provides interesting opportunities for studying intelligibility
and control in real-world settings. Furthermore, additional floor visualizations and
techniques such as feedforward could be integrated, compared and studied. An “in
the wild” study would also open up opportunities to investigate multi-user intelli-
gibility and control in a natural setting, leading to the next opportunity for future
work.

9.2.2 Multi-User Intelligibility

Most existing research on intelligibility, the work in this dissertation included, pri-
marily targets intelligibility for single-user scenarios. Future research should broad-
en the scope to investigate intelligibility in social settings and for multi-user ubi-
comp applications. There are several issues that need to be addressed when provid-
ing intelligibility in ubicomp scenarios involving multiple users. First, for multi-user
systems that act autonomously based on the sensed context, it will also be neces-
sary to provide awareness about the actions of other users and of who the system
is responding to, which is also known as accountability (Bellotti and Edwards, 2001).
Bellotti and Edwards argue that, next to intelligibility, accountability is an impor-
tant principle to support in multi-user context-aware systems that seek to mediate
user actions that impact others. In addition to the need for awareness of the actions
of others and accountability of one’s actions, privacy (Bellotti and Sellen, 1993) is an
important open issue for multi-user intelligibility. As a consequence of being intel-
ligible, systems might reveal sensitive personal information. Care should be taken
to ensure that other users do not have access to that information, both for remote
users and nearby users (e.g., when designing intelligibility for co-located multi-user
ubicomp environments).

In particular, in the context of large interactive surfaces, there are a few future
research avenues worth exploring to address privacy challenges with intelligibility.
First of all, researchers could build on existing work on using proxemics to control
privacy by when showing sensitive information to the user. For example, Vogel and
Balakrishnan (2004) relied on the user’s body being able to shield information from
bystanders. Their display revealed increasingly detailed and personal information
when moving closer, and created a split-screen setup when other users approached.
Similarly, intelligibility could be provided on the user’s personal device, to maintain
the user’s privacy and avoid disturbing other users in their activities (e.g., Cheung

176 conclusions

et al., 2014). Another interesting opportunity is to provide awareness of possible
privacy intrusions, as explored by Brudy et al. (2014) by tracking other people in
the area surrounding a public display. In fact, this particular type of awareness
can be seen as an example of accountability, in which the system amplifies users’
shoulder surfing behaviour and makes them accountable for their actions.

In Chapter 8, we briefly touched upon multi-user intelligibility. When intelligibil-
ity does not reveal sensitive information, I feel that it can be useful to assist users
in working around sensing limitations together. For example, by providing tracking
feedback with our personal halo visualizations, users are able to regulate their own
behaviour and move aside when they notice that they are occluding another user
(Figure 8.6b, pg. 158). An interesting possibility for future work is to build upon
this and further investigate how we can leverage floor visualizations to make users
explicitly aware of how they are impacting each others experiences.

9.2.3 Further Exploring and Extending the Design Space

A clear direction for future research is to further explore the design space for intelli-
gibility and control (Chapter 3, pg. 36). Figure 9.1 situates the presented prototypes
and case study in the design space for intelligibility and control (see also Table 3.7
on page 48). The prototypes correspond to different alternatives for the timing di-
mension, and also explore several other dimensions in the design space. In the Prox-
emic Flow case study, we provide an example of a domain-specific technique that
spans across the timing dimension. Figure 9.2 illustrates the main sub-areas of the
design space that were explored in this dissertation. The lighter areas in Figure 9.2
reveal some limitations and additional areas of exploration I have not investigated
in-depth. Based on this overview, I provide a few suggestions for future work.

9.2.3.1 Providing Intelligibility Using Other Modalities

As is apparent from Figure 9.2, the research in this dissertation mostly relies on pro-
viding intelligibility using visual information. The visual channel has a number of
important advantages, such as being able to easily convey detailed information. It
will therefore likely remain the dominant modality that designers will target to sup-
port intelligibility. Nevertheless, there are some disadvantages of visual information,
such as the need for users’ visual attention or the problem of information overload.
Consequently, there are interesting opportunities for future research to combine
multiple modalities. In particular, other modalities could draw users’ attention, or
provide necessary cues when users’ visual attention is needed elsewhere. For exam-
ple, as explained in Chapter 8, borders and zones could be revealed using additional
haptic feedback integrated in the floor surface. To further explore multimodal user
interfaces for intelligibility and control, the design space can be refined in terms
of existing design spaces for multimodal interaction. For example, the modality di-
mension could be refined in terms of the CARE properties (Coutaz et al., 1995) to
capture how different modalities are combined. Finally, future research could also
investigate how the techniques explored in this dissertation could be mapped to

9.2 future work 177

ProxemicFlowPervasiveCrystal

Feedforward Torch Visible Computer
Timing

Generality

Degree of co-location

Initiative

Modality

Level of Control

user

during afterbefore

general domain-specific

embedded external

system

visual hapticauditory

intelligibility programmabilitycounteract configuration

user

during afterbefore

general domain-specific

embedded external

system

visual hapticauditory

intelligibility programmabilitycounteract configuration

Timing

Generality

Degree of co-location

Initiative

Modality

Level of Control

user

during afterbefore

general domain-specific

embedded external

system

visual hapticauditory

intelligibility programmabilitycounteract configuration

user

during afterbefore

general domain-specific

embedded external

system

visual hapticauditory

intelligibility programmabilitycounteract configuration

Figure 9.1: The different prototypes and case study situated in the design space for intelligi-
bility and control.

178 conclusions

Figure 9.2: The combination of dark areas shows the subspace within the design space that
was covered in this dissertation, while lighter areas indicate additional open areas
for exploration.

other modalities (e.g., slow-motion feedback could rely on haptic or audio cues that
slowly increase in intensity or speed).

9.2.3.2 End-User Programmability of Ubicomp Environments

This dissertation primarily focuses on providing users with opportunities for control.
An active area of research explores how non-technical end-users can define and
reprogram the behaviour of their ubicomp environments (e.g., Rodden et al., 2004;
Dey et al., 2006; Kawsar et al., 2008). This challenge is gaining importance with the
increasing availability of Do-It-Yourself (DIY) smart home technologies (Mennicken
et al., 2014; Coutaz et al., 2014).

There are a couple of possible extensions to my work that might increase the level
of control (Figure 9.2). For example, PervasiveCrystal (see Chapter 7) could be ex-
tended to not only explain how different context rules influence the environment’s
behaviour, but also allow users to modify and reprogram these rules. As a basic
first step, PervasiveCrystal could learn from users’ interactions with the system,
and suggest modification of certain rules. For example, when the user always re-
verts the effect of a particular rule, PervasiveCrystal could suggest to change (or
even remove) it.

There is potential for techniques that allow users to demonstrate what they want
to achieve, an approach which has been successfully applied for automating web-
based processes (Leshed et al., 2008) and in design tools for non-technical users
(Hartmann et al., 2007a,b). Additionally, researchers are also exploring how to fa-
cilitate end-users to understand and modify their machine-learned systems (e.g.,

9.2 future work 179

Kulesza et al., 2009, 2011), which might also provide useful insights for ubicomp
systems.

9.2.3.3 Broadening the Design Space with Additional Dimensions

The design space for intelligibility and control is, of course, not exhaustive. More
dimensions could be added to extend the design space and provide additional in-
sights. Possible dimensions that could be relevant for intelligibility techniques, and
might be interesting to explore in future research are the level of detail at which in-
formation is provided, and whether information is provided at discrete intervals or
continuously. These dimensions were briefly discussed in Chapter 5 (see Table 5.1,
pg. 79) and the level of detail was also considered in Chapter 6 (see Figure 6.3, pg.
107).

9.2.4 Beyond Context-Aware and Ubiquitous Computing Applications

A number of techniques that were presented in this dissertation extend beyond
context-aware and ubicomp applications. An interesting area for future research is
to investigate how these techniques can be applied in other domains.

For example, there is an increasing body of work on improving the learnability of
complex, specialized desktop applications such as Adobe Photoshop or Autodesk
AutoCAD (e.g., Grossman et al., 2009; Matejka et al., 2009; Lafreniere et al., 2013).
Grossman et al. (2009) provide an overview of learnability problems and ‘Under-
standing’ is particularly relevant to the work presented in this dissertation: “This
problem means that users were aware of a single, specific, tool or function, able
to locate it, but could not figure out how to use it.” Grossman et al. argue that
the most promising techniques describe how to use a specific function, and addi-
tionally provide an (in-context) demonstration. An example of this type of technique
is the integration of video toolclips into tool palettes and toolbars (Grossman and
Fitzmaurice, 2010). There are opportunities for feedforward in this domain, specif-
ically to help users understand what exactly happens when performing certain
operations. One promising direction is contextualizing such previews to the user’s
current document, and providing an exploration mode in which users can quickly
understand different commands. This shares similarities with the work by Vanacken
et al. (2008) for multi-touch tabletops, in which interactive gesture demonstrations
provide a live preview of how gestures affect the objects in the current application.
In addition, slow-motion feedback could help to ease the transition from novice to
expert in complex desktop applications. While most applications do provide feed-
back about background actions, slow-motion feedback could increase awareness of
these actions for novice users. Example of such background actions are automatic
corrections to typed words in a word processor, or automatic conversion of num-
bers to dates in a spreadsheet application. These actions could be performed more
slowly for novice users to highlight what the system did, improving user awareness.

In addition to complex desktop applications, other research areas in HCI that
share similar issues regarding understanding, visibility, discoverability and implicit

180 conclusions

interaction could also potentially benefit from the techniques presented in this work.
In particular, interaction styles that rely heavily on sensing are obvious candidates
(Bellotti et al., 2002), such as tangible computing, mid-air gestural interaction and
multimodal interaction.

9.3 closing remarks

With an increasing number of domestic, mobile and wearable context-aware de-
vices available, it is important to be able to smoothly integrate these technologies
into our lives. This dissertation asserts that ubicomp environments and context-
aware systems should provide support for intelligibility and control and investigates
how we can design for these concerns. My research empowers interaction design-
ers, researchers and developers to envision and realize a broader range of solutions
to support intelligibility and control. I hope that the work presented here will in-
spire designers to build applications for the post-desktop computing age that are
predictable, understandable, and leave the user in control.

A
L I S T O F P U B L I C AT I O N S

journal articles

• Sebastian Boring, Saul Greenberg, Jo Vermeulen, Jakub Dostal, and Nicolai
Marquardt. The Dark Patterns of Proxemic Sensing. Computer, 47(8):56–60,
Aug 2014. ISSN 0018-9162.

conference papers

• Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. From Today’s Aug-
mented Houses to Tomorrow’s Smart Homes: New Directions for Home Au-
tomation Research. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’14, 2014. ACM. ISBN 978-1-
4503-2968-2.

• Jo Vermeulen, Kris Luyten, Karin Coninx, and Nicolai Marquardt. The Design
of Slow-Motion Feedback. In Proceedings of the 2014 Conference on Designing
Interactive Systems, DIS ’14, pages 267–270, 2014. ACM. ISBN 978-1-4503-2902-
6.

• Saul Greenberg, Sebastian Boring, Jo Vermeulen, and Jakub Dostal. Dark Pat-
terns in Proxemic Interactions. In Proceedings of the 2014 Conference on Designing
Interactive Systems, DIS ’14, pages 523–532. 2014. ACM. ISBN 978-1-4503-2902-
6.

• Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. Crossing
the Bridge over Norman’s Gulf of Execution: Revealing Feedforward’s True
Identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 1931–1940, 2013. ACM. ISBN 978-1-4503-1899-0.

• Steven Houben, Jakob Bardram, Jo Vermeulen, Kris Luyten, and Karin Con-
inx. Activity-Centric Support for Ad Hoc Knowledge Work – A Case Study of
co-Activity Manager. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’13, pages 2263–2272, 2013. ACM. ISBN 978-1-4503-
1899-0.

• Jo Vermeulen, Kris Luyten, and Karin Coninx. Intelligibility Required: How
to Make us Look Smart Again. In Proceedings of the 10th Romanian Conference
on Human-Computer Interaction, ROCHI ’13, 2013.

• Jo Vermeulen, Kris Luyten, and Karin Coninx. Understanding Complex Envi-
ronments with the Feedforward Torch. In Ambient Intelligence, volume 7683 of

181

182 list of publications

Lecture Notes in Computer Science, pages 312–319. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-34897-6.

• Jo Vermeulen, Fahim Kawsar, Adalberto L. Simeone, Gerd Kortuem, Kris
Luyten, and Karin Coninx. Informing the Design of Situated Glyphs for a
Care Facility. In Visual Languages and Human-Centric Computing (VL/HCC), 2012
IEEE Symposium on, VLHCC ’12, pages 89–96, 2012.

• Steven Houben, Jo Vermeulen, Kris Luyten, and Karin Coninx. co-Activity
Manager: Integrating Activity-Based Collaboration into the Desktop Interface.
In Proceedings of the International Working Conference on Advanced Visual Inter-
faces, AVI ’12, pages 398–401, 2012. ACM. ISBN 978-1-4503-1287-5.

• Fahim Kawsar, Jo Vermeulen, Kevin Smith, Kris Luyten, and Gerd Kortuem.
Exploring the Design Space for Situated Glyphs to Support Dynamic Work En-
vironments. In Pervasive Computing, volume 6696 of Lecture Notes in Computer
Science, pages 70–78. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21725-
8.

• Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Pervasive-
Crystal: Asking and Answering Why and Why Not Questions about Pervasive
Computing Applications. In Intelligent Environments (IE), 2010 Sixth Interna-
tional Conference on, pages 271–276, 2010. IEEE.

• Jo Vermeulen, Jonathan Slenders, Kris Luyten, and Karin Coninx. I Bet You
Look Good on the Wall: Making the Invisible Computer Visible. In Ambient
Intelligence, volume 5859 of Lecture Notes in Computer Science, pages 196–205.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-05407-5.

• Nasim Mahmud, Jo Vermeulen, Kris Luyten, and Karin Coninx. The Five
Commandments of Activity-aware Ubiquitous Computing Applications. In
Digital Human Modeling, volume 5620 of Lecture Notes in Computer Science,
pages 257–264. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02808-3.

• Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin Coninx. Gummy for
Multi-Platform User Interface Designs: Shape me, Multiply me, Fix me, Use
me. In Proceedings of the International Working Conference on Advanced Visual
Interfaces, AVI ’08, pages pp. 233–240. ACM

• Jo Vermeulen, Yves Vandriessche, Tim Clerckx, Kris Luyten, and Karin Con-
inx. Service-interaction Descriptions: Augmenting Services with User Inter-
face Models. In Engineering Interactive System, volume 4940 of Lecture Notes
in Computer Science, pages 447–464. Springer Berlin Heidelberg, 2008. ISBN
978-3-540-92697-9.

• Kris Luyten, Kristof Thys, Jo Vermeulen, and Karin Coninx. A Generic Ap-
proach for Multi-Device User Interface Rendering with UIML. In Computer-
Aided Design of User Interfaces V, pages 175–182. Springer Netherlands, 2007.
ISBN 978-1-4020-5819-6.

list of publications 183

book chapters

• James Helms, Kris Luyten, Robbie Schaefer, Jo Vermeulen, Marc Abrams,
Adrien Coyette, and Jean Vanderdonckt. Human-Centered Engineering of In-
teractive Systems with the User Interface Markup Language. In Human-Centered
Software Engineering, pages 139–171, 2009. Springer-Verlag, Berlin. ISBN 978-1-
84800-906-6.

extended abstracts

• Victor Cheung, Diane Watson, Jo Vermeulen, Mark Hancock, and Stacey D.
Scott. Overcoming Interaction Barriers in Large Public Displays Using Per-
sonal Devices. In Adjunct Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’14 Adjunct, 6 pages, 2014. ACM.

• Yannick Bernaerts, Matthias Druwé, Sebastiaan Steensels, Jo Vermeulen, and
Johannes Schöning. The Office Smartwatch – Development and Design of a
Smartwatch App to Digitally Augment Interactions in an Office Environment.
In Adjunct Proceedings of the 2014 Conference on Designing Interactive Systems,
DIS ’14 Adjunct, pages 41–44, 2014. ACM. ISBN 978-1-4503-2903-3.

• Linsey Raymaekers, Jo Vermeulen, Kris Luyten, and Karin Coninx. Game of
Tones: Learning to Play Songs on a Piano Using Projected Instructions and
Games. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’14, pages 411–414, 2014. ACM. ISBN 978-1-4503-2474-8.

• Jo Vermeulen. Improving Intelligibility and Control in Ubicomp. In Adjunct
Proceedings of the 12th ACM International Conference on Ubiquitous Computing,
Ubicomp ’10 Adjunct, pages 485–488, 2010. ACM. ISBN 978-1-4503-0283-8.

• Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Answering
Why and Why Not Questions in Ubiquitous Computing. In Proceedings of the
11th ACM International Conference on Ubiquitous Computing – Adjunct Papers,
Ubicomp ’09 Adjunct, pages 210–213, 2009.

• Kris Luyten, Jan Meskens, Jo Vermeulen, and Karin Coninx. Meta-GUI-Builders:
Generating Domain-Specific Interface Builders for Multi-Device User Interface
Creation. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’08, pages 3189–3194, 2014. ACM. ISBN 978-1-60558-012-8.

workshop papers

• Jo Vermeulen, Kris Luyten, Karin Coninx and Nicolai Marquardt. Address-
ing Challenges in Crowded Proxemics-Aware Installations. In Proceedings of
the Workshop on SocialNUI: Social Perspectives in Natural User Interfaces, DIS ’14

workshop. 4 pages.

184 list of publications

• Jo Vermeulen, Kris Luyten, and Karin Coninx. The Feedforward Torch. In
Proceedings of the Second Workshop on Intelligibility and Control in Pervasive Com-
puting, Pervasive ’12 workshop. 2 pages.

• Johanna Renny Octavia, Kris Luyten, Jo Vermeulen, Benji Mommen, and
Karin Coninx. Exploring Psycho-physiological Measures for the Design and
Behavior of Intelligent, Socially-Aware Avatars in Ubicomp Environments. In
Proceedings of Brain, Body and Bytes: Psychophysiological User Interaction, CHI ’10

workshop. 4 pages.

• Jo Vermeulen, Ruben Thys, Kris Luyten and Karin Coninx. Making Bits and
Atoms Talk Today: A Practical Architecture for Smart Object Interaction. In
Proceedings DIPSO 2007: 1st International Workshop on Design and Integration
Principles for Smart Objects, Ubicomp ’07 workshop. pp. 331–336.

• Jo Vermeulen, Kris Luyten, Karin Coninx, and Ruben Thys. Tangible Mashups:
Exploiting Links between the Physical and Virtual World. In Proceedings of
WoSSIoT’07: 1st International Workshop on System Support for the Internet of Things,
EuroSys ’07 workshop. 4 pages.

• Kris Luyten, Jo Vermeulen, and Karin Coninx. Constraint Adaptability of
Multi-Device User Interfaces. In Proceedings of The Many Faces of Consistency in
Cross-Platform Design, CHI ’06 workshop. pp. 40–45.

• Kris Luyten, Karin Coninx, Jo Vermeulen, Mieke Haesen, and Luk Vloemans.
ImogI: Take control over a context-aware electronic mobile guide for museums.
In Workshop on HCI in Mobile Guides, MobileHCI ’04 workshop, 2004.

B
U S E R S T U D I E S

This appendix lists the different documents that were used during user studies.

b.1 situated glyphs

This section lists the questionnaires used for the user study of Situated Glyphs, as
described in Section 4.3.4.

185

186 user studies

Participant No:
Situation: Embedded – System (EmS)

S
tro

ng
ly

ag

re
e

A
gr

ee

N
ei

th
er

 a
gr

ee

no
r d

is
ag

re
e

D
is

ag
re

e

S
tro

ng
ly

di

sa
gr

ee

1. It was simple to use this system. 1 2 3 4 5

2. I was able to complete the navigation tasks quickly
using this system. 1 2 3 4 5

3. I felt comfortable using this system. 1 2 3 4 5

4. It was easy to learn to use this system. 1 2 3 4 5

5. The interface of this system is pleasant. 1 2 3 4 5

6. I liked using the interface of this system. 1 2 3 4 5

7. Overall, I am satisfied with this system. 1 2 3 4 5

V
er

y
lo

w

 Lo
w

 U

nd
ec

id
ed

H
ig

h

V
er

y
H

ig
h

A. Mental demand. How mentally demanding was the task? 1 2 3 4 5

B. Physical Demand. How physically demanding was the task? 1 2 3 4 5

B. Effort. How hard did you have to work to accomplish
your level of performance? 1 2 3 4 5

C. Frustration level. How insecure, discouraged, irritated, stressed,
and annoyed were you? 1 2 3 4 5

B.1 situated glyphs 187

Positive Aspects: ___

Negative Aspects: __

Comments: ___

188 user studies

Interview

1. Age

2. Sex

3. How would you define your experience with computers?

a. None
b. Poor
c. Medium
d. High
e. Expert

4. How would you define your experience with mobile phones?
a. None
b. Poor
c. Medium
d. High
e. Expert

5. Do you own a mobile phone (iPhone/Others) ?

6. Please rank your preference between having the information

projected in the environment, and between having the
information available on the mobile phone (iPhone).

Interaction technique Preference (1st, 2nd)
iPhone
Projection

7. Please rank your preference between having information being

provided automatically, and having to explicitly ask for
information.

Interaction technique Preference (1st, 2nd)
System-initiated
User-initiated

B.1 situated glyphs 189

8. Discussion on the four different interaction techniques.

9. When an activity is finished, do you think it is useful to show a

confirmation after the activity has been completed?
x Yes / No
x Comments: _____________________________________

10. To you think it is useful to get information about the next

activity to be performed before you start it?
x Yes / No
x Comments: _____________________________________

11. Did you notice information about the current activity was

sometimes shown during the time you were performing the
activity? Do you think this is useful?
x Noticed? Yes / No
x Useful? Yes / No
x Comments: _____________________________________

190 user studies

12. What would you do differently regarding when to show

information about an activity?

13. When would you like to present different types of
information?

Information type When
Identity Before – During – After
Relationship Before – During – After
Instructions Before – During – After
Explanations Before – During – After
Confirmations Before – During – After

x Comments: _____________________________________

14. Something you liked from the experiment?

15. Something that you dislike from the experiment?

16. Any further comments or suggestions?

B.2 the feedforward torch 191

b.2 the feedforward torch

This section lists the questionnaires used for the user study of the Feedforward Torch,
as described in Section 5.6.4.

192 user studies

Gebruikersstudie:
Vragenlijst

Hartelijk dank voor uw deelname aan de gebruikersstudie van de Feedforward Torch. Omdat uw
bevindingen van dit systeem van uiterst belang zijn voorhet onderzoek zouden we u willen vragen
onderstaande vragenlijst in tevullen. De vragenlijst bestaat uit drie delen, waar u bij het eerste
deelbeperkte persoonlijke informatie dient op te geven. Het tweede deel bestaat uit gestructureerde
vragen op een 5-punt schaal. Er dient een score gegeven te worden per vraag die varieert tussen 1 en
5, waarbij score 1 betekent dat u het volledig eens bent met de stelling, en score 5 dat u het helemaal
niet eens bent met de opgegeven stelling. Tot slot is er nog een deel 3 dat bestaat uit een aantal open
vragen eventueel aangevuld met een 5-punt schaal. Bij zowel de open vragen als de eventuele
opmerkingen bij de gestructureerde vragen zouden wij u willen vragen om uw eerlijke mening neer te
schrijven. Op basis van zowel uw positieve als uw negatieve bevindingen kunnen we afleiden wat de
sterke en zwakke eigenschappen zijn van het systeem en kan er bepaald worden of dit systeem een
potentiële toekomst heeft.

A. Persoonlijke vragen

Leeftijd:

Geslacht: Man/Vrouw

Opleiding:

Beroep:

B. Gestructureerde vragen

1. Het was eenvoudig om dit systeem te gebruiken.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

2. Ik was, dankzij het systeem, in staat om de taken en scenario’s snel te voltooien.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

3. Ik voelde me comfortabel met dit systeem.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

B.2 the feedforward torch 193

4. Het was gemakkelijk om dit systeem aan te leren.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

5. De informatie (zoals tekst, iconen, afbeeldingen, ...) aangeboden door dit systeem is duidelijk.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

 6. De informatie, aangeboden om mij te begeleiden met het uitvoeren van de taken en
 scenario’s, is effectief.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

7. De weergave van de informatie op het scherm van het systeem is duidelijk.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

8. Het systeem is een hulpmiddel in onbekende situaties.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

9. Ik geef de voorkeur aan grafische visualisaties boven tekstuele verklaringen.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

10. Over het algemeen ben ik tevreden over dit systeem.

 Volledig mee eens 1 2 3 4 5 Helemaal niet mee eens

 Opmerkingen:

194 user studies

C. Open vragen

1. Vindt u de gebruikte animaties (bv: projectiescherm dat naar beneden komt) een
 meerwaarde bij acties die zich afspelen over de tijd?
 Motiveer uw antwoord.

 Uw mening gesitueerd in een 5-punt schaal:

 Zeer positief 1 2 3 4 5 Zeer negatief

 2. Wanneer verkiest u om gebruik te maken van de projectie en wanneer niet?

 3. Zou u het een meerwaarde vinden dat de getoonde informatie rechtstreeks
 weergegeven werd op het camerabeeld van de smartphone (zie figuur D.1)?
 Motiveer uw antwoord.

 Uw mening gesitueerd in een 5-punt schaal:
 Zeer positief 1 2 3 4 5 Zeer negatief

 4. Zou u het systeem in de praktijk gebruiken?
 Motiveer uw antwoord.

 5. Positieve aspecten van het systeem?

 6. Negatieve aspecten van het systeem?

B.2 the feedforward torch 195

 7. Andere opmerkingen?

Camerabeeld van de smartphone uitgebreid met extra informatie

196 user studies

b.3 the visible computer

This section lists the questionnaires used for the user study of The Visible Computer,
as described in Section 6.3.5.

B.3 the visible computer 197

Gebruikerstest: The Visible Computer

Schrijf extra uitleg bij je antwoord wanneer mogelijk.

Q1: Ik begrijp hoe ik de visualisatie van de omgeving kan gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q2: Ik vind de visualisatie van de omgeving gemakkelijk te gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q3: De visualisatie van de omgeving was eenvoudig te begrijpen.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q4: De visualisatie was wat ik wilde weten.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q5: Ik begrijp hoe ik de cancel functionaliteit moet gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

198 user studies

Q6: Ik vond de cancel functionaliteit gemakkelijk te gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q7: Ik vind dat deze technieken nuttig zijn om gebruikers te laten
begrijpen wat er gebeurt in een “slimme” omgeving, en hun erover
controle te laten uitoefenen.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q8: Ik was verward door de visualisaties.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

B.4 pervasivecrystal 199

b.4 pervasivecrystal

This section lists the questionnaires used for the user study of PervasiveCrystal, as
described in Section 7.6.

200 user studies

Gebruikerstest Why en Why Not vragen

Q1: Ik begrijp hoe ik de Why en Why Not vragen moet gebruiken

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q2: Ik vond de Why en Why Not vragen gemakkelijk te gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q3: De antwoorden van de Why en Why Not vragen waren eenvoudig
te begrijpen.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q4: De antwoorden van de Why en Why Not vragen waren wat ik wilde
weten.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q5: Ik begrijp hoe ik de controle functionaliteit (undo, do en “how can
I …”) moet gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q6: Ik vond de controle functionaliteit (undo, do en “how can I …”)
gemakkelijk te gebruiken.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

B.4 pervasivecrystal 201

Q7: Ik vind dat deze technieken nuttig zijn om gebruikers te laten
begrijpen wat er gebeurt in een intelligente omgeving, en hun erover
controle te laten uitoefenen.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

Q8: Ik was niet verward door de vragen of het tabel.

Helemaal akkoord 1 2 3 4 5 Helemaal niet akkoord

C
N E D E R L A N D S TA L I G E S A M E N VAT T I N G

In dit doctoraatsproefschrift, bestudeer ik het ontwerp van gebruikersinterfaces
voor ubiquitous computing (ubicomp) omgevingen die ondersteuning bieden voor
intelligibility en control. In de literatuur werden reeds een aantal veel voorkomende
moeilijkheden geïdentificeerd omtrent interactie met ubicomp systemen, en in het
bijzonder contextgevoelige systemen, waaronder het gebrek aan begrip over waarom
het systeem op een bepaalde manier reageert en het gebrek aan mogelijkheden tot
interventie wanneer het systeem fouten maakt. Deze problemen kunnen het vertrou-
wen van gebruikers in het systeem beïnvloeden alsook hun gevoel van controle over
dat systeem. Uiteindelijk kan dit zelfs leiden tot gebruikers die volledig afzien van
interactie met het computersysteem. Het is noodzakelijk om deze problemen op te
lossen om ubicomp technologie op een naadloze manier in ons dagelijks leven te
kunnen integreren.

In de literatuur werden twee algemene principes voorgesteld die contextgevoe-
lige systemen dienen te ondersteunen om deze problemen aan te pakken: intelli-
gibility en control. Intelligibility is de mogelijkheid van een systeem om zichzelf
en zijn gedrag op een begrijpbare manier aan zijn gebruikers voor te stellen. Con-
trol daarentegen gaat over het bieden van de mogelijkheid om gebruikers te laten
tussenkomen en het systeem te corrigeren. Hoewel een aantal technieken om intel-
ligibility en control te voorzien reeds onderzocht werden, is het nog niet duidelijk
op welke manier ubicomp onderzoekers, ontwikkelaars en interaction designers ge-
bruikersinterfaces kunnen ontwerpen die ondersteuning bieden voor intelligibility
en control.

Dit doctoraatsproefschrift is een design space exploration van mogelijke technieken
om intelligibility en control te ondersteunen. Het doel van deze design space explo-
ration is tweevoudig: (1) het voorstellen van algemene principes voor intelligibility
en control die gebruikt kunnen worden in een breed spectrum van ubicomp appli-
caties, en (2) het gidsen van designers om verschillende manieren te verkennen om
intelligibility en control te ondersteunen. In het bijzonder stelt dit proefschrift de
volgende drie originele bijdragen voor.

Ten eerste, stel ik een design space voor die verschillende ontwerpbeslissingen
voorstelt waarmee designers geconfronteerd worden bij het ontwerp van interfaces
om intelligibility en control te ondersteunen. Deze design space omvat zes dimen-
sies en kan gebruikt worden als een analytisch instrument om verschillende technie-
ken te classificeren en te vergelijken. Tevens ondersteunt de design space designers
in het verkennen van alternatieve designs.

Ten tweede, introduceer ik algemene principes en interactietechnieken die toege-
past kunnen worden in een breed scala aan ubicomp applicaties. In dit doctoraats-
proefschrift, verken ik de timing dimensie uit bovenstaande design space in detail.

203

204 nederlandstalige samenvatting

Ik stel drie algemene technieken voor die gebruikt kunnen worden op verschillende
momenten tijdens de interactie: feedforward (vóór acties), slow-motion feedback (tijdens
acties) en why questions (na acties).

Als derde en laatste bijdrage, bespreek ik een gedetailleerde case study omtrent
het ondersteunen van intelligibility en control voor proxemic interactions. Proxemic
interactions stelt een specifieke soort van contextgevoelige applicaties voor, waarbij
apparaten rekening houden met factoren zoals de afstand, locatie en identiteit van
personen en apparaten in de buurt. Deze case study kan dienen als inspiratie voor
designers en onderzoekers die intelligibility en control willen voorzien voor hun ei-
gen ubicomp applicaties. In het bijzonder, stellen we in deze case study het gebruik
van een secundaire ondersteunende floor display voor die gebruikers helpt tijdens
het interageren met het primaire display. Dit floor display informeert gebruikers
over de tracking status, geeft interactiemogelijkheden aan, en nodigt gebruikers uit
voor en gidst hen doorheen interactie met het primaire display.

B I B L I O G R A P H Y

Gregory D. Abowd. Classroom 2000: An experiment with the instrumentation of a
living educational environment. IBM Syst. J., 38(4):508–530, December 1999. ISSN
0018-8670. (Cited on page 12.)

Gregory D. Abowd. What next, ubicomp?: Celebrating an intellectual disappearing
act. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp
’12, pages 31–40, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1224-0. (Cited
on page 8.)

Gregory D. Abowd and Elizabeth D. Mynatt. Charting past, present, and future
research in ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(1):29–58,
March 2000. ISSN 1073-0516. (Cited on pages 9 and 17.)

Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper,
and Mike Pinkerton. Cyberguide: A mobile context-aware tour guide. Wirel.
Netw., 3(5):421–433, October 1997. ISSN 1022-0038. (Cited on page 10.)

Corporate Act-Net Consortium. The active database management system manifesto:
a rulebase of adbms features. SIGMOD Rec., 25(3):40–49, 1996. ISSN 0163-5808.
(Cited on page 134.)

Eytan Adar, Desney S. Tan, and Jaime Teevan. Benevolent deception in human
computer interaction. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, pages 1863–1872, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1899-0. (Cited on page 93.)

Petr Aksenov, Kris Luyten, and Karin Coninx. O brother, where art thou located?:
raising awareness of variability in location tracking for users of location-based
pervasive applications. Journal of Location Based Services, 6(4):211–233, 2012. (Cited
on page 32.)

Bashar Altakouri, Gerd Kortuem, Agnes Grunerbl, Kai Kunze, and Paul Lukowicz.
The benefit of activity recognition for mobile phone based nursing documenta-
tion: A wizard-of-oz study. In Wearable Computers (ISWC), 2010 International Sym-
posium on, pages 1–4, Oct 2010. (Cited on pages 51 and 56.)

Michelle Annett, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. Medusa:
A proximity-aware multi-touch tabletop. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11, pages 337–346, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0716-1. (Cited on page 152.)

Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. Towards
improving trust in context-aware systems by displaying system confidence. In
Proceedings of the 7th International Conference on Human Computer Interaction with

205

206 bibliography

Mobile Devices & Services, MobileHCI ’05, pages 9–14, New York, NY, USA, 2005.
ACM. ISBN 1-59593-089-2. (Cited on page 33.)

Mark Assad, David J. Carmichael, Judy Kay, and Bob Kummerfeld. PersonisAD:
Distributed, active, scrutable model framework for context-aware services. In Pro-
ceedings of the 5th International Conference on Pervasive Computing (Pervasive 2007),
volume 4480 of Lecture Notes in Comput. Sci., pages 55–72. Springer, 2007. ISBN
978-3-540-72036-2. (Cited on pages 17, 20, and 132.)

Takenori Atsumi. Feedforward control using sampled-data polynomial for track
seeking in hard disk drives. Industrial Electronics, IEEE Transactions on, 56(5):1338–
1346, May 2009. ISSN 0278-0046. (Cited on page 74.)

Thomas Augsten, Konstantin Kaefer, René Meusel, Caroline Fetzer, Dorian Kanitz,
Thomas Stoff, Torsten Becker, Christian Holz, and Patrick Baudisch. Multitoe:
High-precision interaction with back-projected floors based on high-resolution
multi-touch input. In Proceedings of the 23nd Annual ACM Symposium on User
Interface Software and Technology, UIST ’10, pages 209–218, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0271-5. (Cited on pages 147 and 153.)

Ronald Azuma. A survey of augmented reality. Presence, 6(4):355–385, 1997. (Cited
on pages 99 and 115.)

Till Ballendat, Nicolai Marquardt, and Saul Greenberg. Proxemic interaction: De-
signing for a proximity and orientation-aware environment. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS ’10, pages 121–130, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0399-6. (Cited on pages xxii, 146, 149, 150,
152, 153, 155, and 160.)

Jakob E. Bardram. A novel approach for creating activity-aware applications in a
hospital environment. In Proceedings of the 12th IFIP TC 13 International Confer-
ence on Human-Computer Interaction: Part II, INTERACT ’09, pages 731–744, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03657-6. (Cited on pages 52

and 70.)

Jakob E. Bardram, Thomas R. Hansen, Martin Mogensen, and Mads Soegaard. Ex-
periences from real-world deployment of context-aware technologies in a hospital
environment. In Proceedings of the 8th International Conference on Ubiquitous Comput-
ing, UbiComp’06, pages 369–386, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN
3-540-39634-9, 978-3-540-39634-5. (Cited on page 51.)

Louise Barkhuus and Anind K. Dey. Is context-aware computing taking control
away from the user? three levels of interactivity examined. In Proceedings of the
5th International Conference on Ubiquitous Computing, volume 2864 of Lecture Notes
in Comput. Sci., pages 149–156. Springer, 2003. ISBN 3-540-20301-X. (Cited on
pages 18 and 19.)

Olivier Bau and Wendy E. Mackay. OctoPocus: a dynamic guide for learning
gesture-based command sets. In Proceedings of the 21st annual ACM symposium

bibliography 207

on User interface software and technology, pages 37–46, Monterey, CA, USA, 2008.
ACM. ISBN 978-1-59593-975-3. (Cited on pages xix, 34, 38, 41, 44, 77, 78, 91, 94,
95, and 111.)

Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken Hinckley, Ma-
neesh Agrawala, Shengdong Zhao, and Gonzalo Ramos. Phosphor: Explaining
transitions in the user interface using afterglow effects. In Proceedings of the
19th Annual ACM Symposium on User Interface Software and Technology, UIST ’06,
pages 169–178, New York, NY, USA, 2006. ACM. ISBN 1-59593-313-1. (Cited on
page 125.)

BBC News. Millions tricked by ‘scareware’. http://news.bbc.co.uk/2/hi/
technology/8313678.stm, October 2009. [Online; accessed 07-August-2014].
(Cited on page 93.)

Michel Beaudouin-Lafon. Designing interaction, not interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI ’04, pages 15–22, New York,
NY, USA, 2004. ACM. ISBN 1-58113-867-9. (Cited on page 2.)

Genevieve Bell and Paul Dourish. Yesterday’s tomorrows: Notes on ubiquitous
computing’s dominant vision. Personal Ubiquitous Comput., 11(2):133–143, January
2007. ISSN 1617-4909. (Cited on page 7.)

Victoria Bellotti and Keith Edwards. Intelligibility and accountability: human con-
siderations in context-aware systems. Hum.-Comput. Interact., 16(2):193–212, 2001.
ISSN 0737-0024. (Cited on pages 1, 2, 14, 16, 19, 20, 25, 26, 27, 31, 34, 74, 75, 77,
78, 127, 156, and 175.)

Victoria Bellotti and Abigail Sellen. Design for privacy in ubiquitous computing
environments. In Proceedings of the Third Conference on European Conference on
Computer-Supported Cooperative Work, ECSCW’93, pages 77–92, Norwell, MA, USA,
1993. Kluwer Academic Publishers. ISBN 0-7923-2447-1. (Cited on page 175.)

Victoria Bellotti, Maribeth Back, W. Keith Edwards, Rebecca E. Grinter, Austin Hen-
derson, and Cristina Lopes. Making sense of sensing systems: five questions for
designers and researchers. In Proceedings of the SIGCHI conference on Human fac-
tors in computing systems: Changing our world, changing ourselves, CHI ’02, pages
415–422, Minneapolis, Minnesota, USA, 2002. ACM. ISBN 1-58113-453-3. (Cited
on pages 1, 12, 13, 18, 105, 106, 115, 152, and 180.)

Jacques Bertin. Semiology of graphics: diagrams, networks, maps. University of Wiscon-
sin Press, 1983. (Cited on page 52.)

Gilbert Beyer, Vincent Binder, Nina Jäger, and Andreas Butz. The puppeteer display:
Attracting and actively shaping the audience with an interactive public banner
display. In Proceedings of the 2014 Conference on Designing Interactive Systems, DIS
’14, pages 935–944, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2902-6.
(Cited on pages 152, 163, and 171.)

http://news.bbc.co.uk/2/hi/technology/8313678.stm
http://news.bbc.co.uk/2/hi/technology/8313678.stm

208 bibliography

Hugh Beyer. Contextual Design: Defining Customer-Centered Systems. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1558604111. (Cited on
page 56.)

Jon Bird, Daniel Harrison, and Paul Marshall. The challenge of maintaining interest
in a large-scale public floor display. In Proceedings of the Experiencing Interactivity
in Public Spaces Workshop, EIPS ’13, 2013. (Cited on page 164.)

Jan Borchers, Meredith Ringel, Joshua Tyler, and Armando Fox. Stanford interactive
workspaces: a framework for physical and graphical user interface prototyping.
Wireless Communications, IEEE, 9(6):64–69, Dec 2002. ISSN 1536-1284. (Cited on
page 11.)

S. Boring, S. Greenberg, J. Vermeulen, J. Dostal, and N. Marquardt. The dark pat-
terns of proxemic sensing. Computer, 47(8):56–60, Aug 2014. ISSN 0018-9162.
(Cited on page 147.)

Alan Bränzel, Christian Holz, Daniel Hoffmann, Dominik Schmidt, Marius Knaust,
Patrick Lühne, René Meusel, Stephan Richter, and Patrick Baudisch. Gravityspace:
Tracking users and their poses in a smart room using a pressure-sensing floor. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pages 725–734, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1899-0.
(Cited on pages 153, 154, and 168.)

Harry Brignull. Dark patterns: Deception vs. honesty in ui de-
sign. http://alistapart.com/article/dark-patterns-deception-vs.
-honesty-in-ui-design, November 2011. [Online; accessed 07-August-2014].
(Cited on page 93.)

Harry Brignull and Yvonne Rogers. Enticing people to interact with large pub-
lic displays in public spaces. In Human-Computer Interaction INTERACT ’03:
IFIP TC13 International Conference on Human-Computer Interaction, 1st-5th Septem-
ber 2003, Zurich, Switzerland, INTERACT ’03. IOS Press, 2003. ISBN 1-58603-363-8.
(Cited on pages 146, 150, 151, 158, and 170.)

John Seely Brown and Susan E. Newman. Issues in cognitive and social ergonomics:
from our house to bauhaus. Hum.-Comput. Interact., 1(4):359–391, 1985. (Cited on
page 16.)

Frederik Brudy, David Ledo, Saul Greenberg, and Andreas Butz. Is anyone looking?
mitigating shoulder surfing on public displays through awareness and protec-
tion. In Proceedings of The International Symposium on Pervasive Displays, PerDis ’14,
pages 1:1–1:6, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2952-1. (Cited
on page 176.)

Andrea Bunt, Matthew Lount, and Catherine Lauzon. Are explanations always
important?: A study of deployed, low-cost intelligent interactive systems. In Pro-
ceedings of the 2012 ACM International Conference on Intelligent User Interfaces, IUI

http://alistapart.com/article/dark-patterns-deception-vs.-honesty-in-ui-design
http://alistapart.com/article/dark-patterns-deception-vs.-honesty-in-ui-design

bibliography 209

’12, pages 169–178, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1048-2.
(Cited on page 21.)

Stefano Burigat and Luca Chittaro. Pedestrian navigation with degraded gps signal:
Investigating the effects of visualizing position uncertainty. In Proceedings of the
13th International Conference on Human Computer Interaction with Mobile Devices and
Services, MobileHCI ’11, pages 221–230, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0541-9. (Cited on page 32.)

Andreas Butz and Antonio Krüger. Applying the peephole metaphor in a mixed-
reality room. IEEE Comput. Graph. Appl., 26(1):56–63, 2006. ISSN 0272-1716. (Cited
on page 122.)

Bill Buxton. Integrating the periphery and context: A new taxonomy of telemat-
ics. In Proceedings of Graphics Interface, GI ’95, pages 239–246, 1995a. (Cited on
pages xvii and 11.)

Bill Buxton. Proximal sensing: Supporting context sensitive. In Proceedings of the
8th Annual ACM Symposium on User Interface and Software Technology, UIST ’95,
pages 169–170, New York, NY, USA, 1995b. ACM. ISBN 0-89791-709-X. (Cited on
pages 10 and 17.)

Xiang Cao, Clifton Forlines, and Ravin Balakrishnan. Multi-user interaction using
handheld projectors. In Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology, UIST ’07, pages 43–52, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-679-0. (Cited on pages 99 and 115.)

Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. A morphological
analysis of the design space of input devices. ACM Trans. Inf. Syst., 9(2):99–122,
April 1991. ISSN 1046-8188. (Cited on page 37.)

Bay-Wei Chang and David Ungar. Animation: From cartoons to the user interface.
In Proceedings of the 6th Annual ACM Symposium on User Interface Software and
Technology, UIST ’93, pages 45–55, New York, NY, USA, 1993. ACM. ISBN 0-
89791-628-X. (Cited on page 112.)

Han Chen, Rahul Sukthankar, Grant Wallace, and Kai Li. Scalable alignment of
large-format multi-projector displays using camera homography trees. In Proc.
VIS ’02, pages 339–346. IEEE Computer Society, 2002. ISBN 0-7803-7498-3. (Cited
on pages 115 and 119.)

Herman Chernoff. The use of faces to represent points in k-dimensional space
graphically. Journal of the American Statistical Association, 68(342):361–368, 1973.
(Cited on page 52.)

Victor Cheung and Stacey D. Scott. Investigating attraction and engagement of
animation on large interactive walls in public settings. In Proceedings of the 2013
ACM International Conference on Interactive Tabletops and Surfaces, ITS ’13, pages
381–384, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2271-3. (Cited on
pages 151 and 162.)

210 bibliography

Victor Cheung, Diane Watson, Jo Vermeulen, Mark Hancock, and Stacey D. Scott.
Overcoming interaction barriers in large public displays using personal devices.
In Proceedings of the 2014 ACM International Conference on Interactive Tabletops and
Surfaces, ITS ’14, New York, NY, USA, 2014. ACM. (Cited on pages 151 and 175.)

Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Efstratiou.
Developing a context-aware electronic tourist guide: Some issues and experiences.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’00, pages 17–24, New York, NY, USA, 2000. ACM. ISBN 1-58113-216-6.
(Cited on page 10.)

Keith Cheverst, Nigel Davies, Keith Mitchell, and Christos Efstratiou. Using context
as a crystal ball: Rewards and pitfalls. Personal Ubiquitous Comput., 5(1):8–11, 2001.
ISSN 1617-4909. (Cited on pages 1, 15, and 16.)

Keith Cheverst, Keith Mitchell, and Nigel Davies. Exploring context-aware infor-
mation push. Personal Ubiquitous Comput., 6(4):276–281, January 2002. ISSN 1617-
4909. (Cited on page 19.)

Keith Cheverst, Hee Eon Byun, Dan Fitton, Corina Sas, Chris Kray, and Nicolas
Villar. Exploring issues of user model transparency and proactive behaviour in
an office environment control system. User Modeling and User-Adapted Interaction,
15(3-4):235–273, 2005. ISSN 0924-1868. (Cited on pages 17, 20, 26, 32, 33, 35, 39,
47, 49, 132, and 143.)

Mei C. Chuah and Stephen G. Eick. Information rich glyphs for software manage-
ment data. IEEE Comput. Graph. Appl., 18(4):24–29, July 1998. ISSN 0272-1716.
(Cited on page 52.)

Herbert H. Clark and Susan E. Brennan. Grounding in communication. Perspectives
on socially shared cognition, 13(1991):127–149, 1991. (Cited on page 25.)

Marcelo Coelho and Jamie Zigelbaum. Shape-changing interfaces. Personal and
Ubiquitous Computing, 15(2):161–173, 2011. ISSN 1617-4909. (Cited on page 82.)

Diane J. Cook, Michael Youngblood, Edwin O. Heierman, III, Karthik Gopalratnam,
Sira Rao, Andrey Litvin, and Farhan Khawaja. Mavhome: An agent-based smart
home. In Proceedings of the First IEEE International Conference on Pervasive Comput-
ing and Communications, PERCOM ’03, pages 521–, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1893-1. (Cited on pages 12 and 19.)

Jeremy R. Cooperstock, Sidney S. Fels, William Buxton, and Kenneth C. Smith. Reac-
tive environments. Commun. ACM, 40(9):65–73, September 1997. ISSN 0001-0782.
(Cited on pages 9, 10, 12, 13, 16, 17, and 19.)

Joëlle Coutaz. Meta-user interfaces for ambient spaces. In Proceedings of the 5th
International Conference on Task Models and Diagrams for Users Interface Design, TA-
MODIA’06, pages 1–15, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-
540-70815-5. (Cited on pages 18, 20, 37, and 41.)

bibliography 211

Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford, Jon May, and
Richard M. Young. Four easy pieces for assessing the usability of multimodal
interaction: the CARE properties. In Human-Computer Interaction, INTERACT ’95,
IFIP TC13 Interantional Conference on Human-Computer Interaction, INTERACT ’95,
pages 115–120. Chapman & Hall, 1995. ISBN 0-412-71790-5. (Cited on page 176.)

Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is key.
Commun. ACM, 48(3):49–53, March 2005. ISSN 0001-0782. (Cited on page 17.)

Joëlle Coutaz, Sybille Caffiau, Alexandre Demeure, and James L. Crowley. Early
lessons from the development of spok, an end-user development environment
for smart homes. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Adjunct,
pages 895–902, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3047-3. (Cited
on page 178.)

Henriette Cramer, Vanessa Evers, Satyan Ramlal, Maarten Someren, Lloyd Rutledge,
Natalia Stash, Lora Aroyo, and Bob Wielinga. The effects of transparency on trust
in and acceptance of a content-based art recommender. User Modeling and User-
Adapted Interaction, 18(5):455–496, November 2008. ISSN 0924-1868. (Cited on
pages 32 and 132.)

Allen Cypher. Eager: Programming repetitive tasks by example. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, pages 33–39,
New York, NY, USA, 1991. ACM. ISBN 0-89791-383-3. (Cited on page 75.)

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David
Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch What I Do: Pro-
gramming by Demonstration. MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-
03213-9. (Cited on page 36.)

Nicholas Sheep Dalton. TapTiles: LED-based Floor Interaction. In Proceedings of
the 2013 ACM International Conference on Interactive Tabletops and Surfaces, ITS ’13,
pages 165–174, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2271-3. (Cited
on page 154.)

Scott Davidoff. Ubicomp 2012. IEEE Pervasive Computing, 11(3):84–88, July 2012.
ISSN 1536-1268. (Cited on page 8.)

David Dearman, Alex Varshavsky, Eyal De Lara, and Khai N. Truong. An explo-
ration of location error estimation. In Proceedings of the 9th International Conference
on Ubiquitous Computing, UbiComp ’07, pages 181–198, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-74852-6. (Cited on page 32.)

Anind K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):
4–7, 2001. ISSN 1617-4909. (Cited on page 9.)

Anind K. Dey and Jennifer Mankoff. Designing mediation for context-aware appli-
cations. ACM Trans. Comput.-Hum. Interact., 12(1):53–80, 2005. ISSN 1073-0516.
(Cited on page 35.)

212 bibliography

Anind K. Dey and Alan Newberger. Support for context-aware intelligibility and
control. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 859–868, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-246-7. (Cited on pages 13, 25, 34, 35, and 47.)

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware applications.
Hum.-Comput. Interact., 16(2):97–166, December 2001. ISSN 0737-0024. (Cited on
pages 14, 34, 133, and 146.)

Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. A CAPpella:
Programming by demonstration of context-aware applications. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages 33–
40, New York, NY, USA, 2004. ACM. ISBN 1-58113-702-8. (Cited on pages 36, 42,
47, and 49.)

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: Interactive
Prototyping of Context-Aware Applications. In Pervasive Computing, volume 3968

of Lecture Notes in Computer Science, pages 254–271. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-33894-9. (Cited on pages 35, 42, 47, 115, 118, and 178.)

Tom Djajadiningrat, Kees Overbeeke, and Stephan Wensveen. But How, Donald,
Tell Us How?: On the Creation of Meaning in Interaction Design Through Feed-
forward and Inherent Feedback. In Proceedings of the 4th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques, DIS ’02, pages 285–
291, New York, NY, USA, 2002. ACM. ISBN 1-58113-515-7. (Cited on pages 18,
75, 76, 77, 78, 79, 81, 83, 84, 85, 87, 94, and 95.)

Tom Djajadiningrat, Stephan Wensveen, Joep Frens, and Kees Overbeeke. Tangi-
ble products: redressing the balance between appearance and action. Personal
Ubiquitous Comput., 8(5):294–309, 2004. (Cited on page 87.)

Paul Dourish. Developing a reflective model of collaborative systems. ACM
Trans. Comput.-Hum. Interact., 2(1):40–63, March 1995. ISSN 1073-0516. (Cited
on pages 17, 20, and 21.)

Paul Dourish. What we talk about when we talk about context. Personal and Ubiqui-
tous Computing, 8(1):19–30, 2004. ISSN 1617-4909. (Cited on pages 15, 17, and 25.)

Paul Dourish and Sara Bly. Portholes: Supporting awareness in a distributed work
group. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’92, pages 541–547, New York, NY, USA, 1992. ACM. ISBN 0-89791-
513-5. (Cited on pages xvii, 10, and 11.)

Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist, and Jean-
Daniel Fekete. Temporal distortion for animated transitions. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages
2009–2018, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0228-9. (Cited on
page 112.)

bibliography 213

W. Keith Edwards and Rebecca E. Grinter. At home with ubiquitous comput-
ing: Seven challenges. In Proceedings of the 3rd International Conference on Ubiqui-
tous Computing, UbiComp ’01, pages 256–272, London, UK, 2001. Springer-Verlag.
ISBN 3-540-42614-0. (Cited on page 18.)

Thomas Erickson. Some problems with the notion of context-aware computing.
Commun. ACM, 45(2):102–104, 2002. ISSN 0001-0782. (Cited on pages 1, 14,
and 19.)

Jesus Favela, Monica Tentori, Luis A. Castro, Victor M. Gonzalez, Elisa B. Moran,
and Ana I. Martínez-García. Activity recognition for context-aware hospital appli-
cations: Issues and opportunities for the deployment of pervasive networks. Mob.
Netw. Appl., 12(2-3):155–171, March 2007. ISSN 1383-469X. (Cited on pages 51

and 70.)

Steven Feiner, Blair Macintyre, and Dorée Seligmann. Knowledge-based augmented
reality. Commun. ACM, 36(7):53–62, July 1993. ISSN 0001-0782. (Cited on pages 99

and 115.)

George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton. Bricks: Laying
the foundations for graspable user interfaces. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’95, pages 442–449, New York,
NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co. ISBN 0-201-84705-1.
(Cited on page 37.)

Dustin Freeman, Hrvoje Benko, Meredith Ringel Morris, and Daniel Wigdor. Shad-
owguides: visualizations for in-situ learning of multi-touch and whole-hand ges-
tures. In Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, ITS ’09, pages 165–172, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-733-2. (Cited on pages 38, 41, 77, 94, 95, and 152.)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2. (Cited on page 169.)

Alfonso García Frey, Gaëlle Calvary, and Sophie Dupuy-Chessa. Users need your
models!: Exploiting design models for explanations. In Proceedings of the 26th
Annual BCS Interaction Specialist Group Conference on People and Computers, BCS-
HCI ’12, pages 79–88, Swinton, UK, UK, 2012. British Computer Society. (Cited
on page 132.)

Alfonso García Frey, Gaëlle Calvary, Sophie Dupuy-Chessa, and Nadine Mandran.
Model-Based Self-explanatory UIs for Free, but Are They Valuable? In Paula
Kotzé, Gary Marsden, Gitte Lindgaard, Janet Wesson, and Marco Winckler, edi-
tors, Human-Computer Interaction – INTERACT 2013, volume 8119 of Lecture Notes
in Computer Science, pages 144–161. Springer Berlin Heidelberg, 2013. ISBN 978-3-
642-40476-4. (Cited on page 132.)

214 bibliography

William W. Gaver. Technology affordances. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching through technology, CHI ’91, pages
79–84, New Orleans, Louisiana, United States, 1991. ACM. ISBN 0-89791-383-3.
(Cited on pages 81, 82, 83, 85, 92, 94, and 95.)

Hans Gellersen, Carl Fischer, Dominique Guinard, Roswitha Gostner, Gerd Ko-
rtuem, Christian Kray, Enrico Rukzio, and Sara Streng. Supporting device dis-
covery and spontaneous interaction with spatial references. Personal Ubiquitous
Comput., 13(4):255–264, May 2009. ISSN 1617-4909. (Cited on pages 146 and 152.)

James J. Gibson. The theory of affordances. In Robert E. Shaw and John Bransford,
editors, Perceiving, acting and knowing: toward an ecological psychology, pages 67–
82. Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1977. ISBN 0-470-99014-7.
(Cited on pages 75, 79, 80, 83, 85, 89, and 92.)

James J. Gibson. The Ecological Approach to Visual Perception. Houghton, Mifflin and
Company, Boston, MA, USA, 1979. ISBN 0-89859-959-8. (Cited on pages 75, 79,
82, 83, 85, 89, and 92.)

Kazjon Grace, Rainer Wasinger, Christopher Ackad, Anthony Collins, Oliver Daw-
son, Richard Gluga, Judy Kay, and Martin Tomitsch. Conveying interactivity at
an interactive public information display. In Proceedings of the 2nd ACM Interna-
tional Symposium on Pervasive Displays, PerDis ’13, pages 19–24, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2096-2. (Cited on page 152.)

Saul Greenberg. Context as a dynamic construct. Hum.-Comput. Interact., 16(2):
257–268, December 2001. ISSN 0737-0024. (Cited on pages 1, 14, 15, 16, 17, 18,
and 19.)

Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen
Wang. Proxemic interactions: The new ubicomp? interactions, 18(1):42–50, January
2011. ISSN 1072-5520. (Cited on pages xxii, 145, 146, 147, 155, and 160.)

Saul Greenberg, Sebastian Boring, Jo Vermeulen, and Jakub Dostal. Dark patterns in
proxemic interactions: A critical perspective. In Proceedings of the 2014 Conference
on Designing Interactive Systems, DIS ’14, pages 523–532, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2902-6. (Cited on pages 50, 146, and 150.)

Shirley Gregor and Izak Benbasat. Explanations from intelligent systems: Theoret-
ical foundations and implications for practice. MIS Q., 23(4):497–530, December
1999. ISSN 0276-7783. (Cited on pages 32, 127, and 131.)

Kaj Grønbæk, Ole S. Iversen, Karen Johanne Kortbek, Kaspar Rosengreen Nielsen,
and Louise Aagaard. Igamefloor: A platform for co-located collaborative games.
In Proceedings of the International Conference on Advances in Computer Entertainment
Technology, ACE ’07, pages 64–71, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-640-0. (Cited on pages 153 and 154.)

bibliography 215

Tovi Grossman and George Fitzmaurice. Toolclips: An investigation of contextual
video assistance for functionality understanding. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 1515–1524, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. (Cited on page 179.)

Tovi Grossman, George Fitzmaurice, and Ramtin Attar. A survey of software learn-
ability: Metrics, methodologies and guidelines. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’09, pages 649–658, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-246-7. (Cited on page 179.)

Edward T. Hall. A system for the notation of proxemic behavior. American Anthro-
pologist, 65(5):1003–1026, 1963. ISSN 1548-1433. (Cited on page 146.)

Edward T. Hall. The hidden dimension, volume 1990. Anchor Books New York, 1969.
(Cited on page 145.)

Chris Harrison, Zhiquan Yeo, and Scott E. Hudson. Faster progress bars: Manipu-
lating perceived duration with visual augmentations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 1545–1548, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. (Cited on page 93.)

Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. Omnitouch: Wearable mul-
titouch interaction everywhere. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST ’11, pages 441–450, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0716-1. (Cited on page 99.)

Sandra G. Hart and Lowell E. Staveland. Development of NASA-TLX (task load
index): Results of empirical and theoretical research. In Peter A. Hancock and
Najmedin Meshkati, editors, Human Mental Workload, volume 52 of Advances in
Psychology, pages 139–183. North-Holland, 1988. (Cited on page 63.)

Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. Authoring
sensor-based interactions by demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 145–154, New York, NY, USA, 2007a. ACM. ISBN 978-1-
59593-593-9. (Cited on page 178.)

Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. Programming by
a sample: Rapidly creating web applications with d.mix. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology, UIST ’07, pages
241–250, New York, NY, USA, 2007b. ACM. ISBN 978-1-59593-679-0. (Cited on
page 178.)

Rex Hartson. Cognitive, physical, sensory, and functional affordances in interaction
design. Behaviour & Information Technology, 22(5):315, 2003. ISSN 0144-929X. (Cited
on pages xix, 81, 83, 84, 85, 86, 87, 88, 89, 90, and 91.)

Rex Hartson. personal email communication, 2010. (Cited on pages 84 and 90.)

216 bibliography

Luke Hespanhol, Martin Tomitsch, Oliver Bown, and Miriama Young. Using Em-
bodied Audio-visual Interaction to Promote Social Encounters Around Large Me-
dia Façades. In Proceedings of the 2014 Conference on Designing Interactive Systems,
DIS ’14, pages 945–954, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2902-6.
(Cited on pages 152 and 153.)

Valentin Heun, Anette von Kapri, and Pattie Maes. Perifoveal display: Combining
foveal and peripheral vision in one visualization. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pages 1150–1155, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1224-0. (Cited on page 171.)

Clint Heyer. Investigations of ubicomp in the oil and gas industry. In Proceedings
of the 12th ACM International Conference on Ubiquitous Computing, Ubicomp ’10,
pages 61–64, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-843-8. (Cited on
page 52.)

Ken Hinckley. Synchronous gestures for multiple persons and computers. In Pro-
ceedings of the 16th Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’03, pages 149–158, New York, NY, USA, 2003. ACM. ISBN 1-58113-636-
6. (Cited on page 146.)

Ken Hinckley, Jeff Pierce, Mike Sinclair, and Eric Horvitz. Sensing techniques for
mobile interaction. In Proceedings of the 13th Annual ACM Symposium on User
Interface Software and Technology, UIST ’00, pages 91–100, New York, NY, USA,
2000. ACM. ISBN 1-58113-212-3. (Cited on pages 11 and 16.)

Ken Hinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baudisch, and Marc
Smith. Stitching: Pen gestures that span multiple displays. In Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI ’04, pages 23–31, New York,
NY, USA, 2004. ACM. ISBN 1-58113-867-9. (Cited on page 146.)

Paul Holleis, Enrico Rukzio, Friderike Otto, and Albrecht Schmidt. Privacy and
curiosity in mobile interactions with public displays. In Proceedings of the CHI
2007 Workshop on Mobile Spatial Interaction, 2007. (Cited on page 151.)

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989. (Cited
on page 74.)

Steven Houben and Christian Weichel. Overcoming interaction blindness through
curiosity objects. In CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’13, pages 1539–1544, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1952-2. (Cited on pages 147 and 151.)

Elaine M. Huang, Anna Koster, and Jan Borchers. Overcoming assumptions and
uncovering practices: When does the public really look at public displays? In
Proceedings of the 6th International Conference on Pervasive Computing, Pervasive ’08,
pages 228–243, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-79575-9.
(Cited on page 147.)

bibliography 217

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation
interfaces. Hum.-Comput. Interact., 1(4):311–338, December 1985. ISSN 0737-0024.
(Cited on page 12.)

M. Iwasaki and N. Matusi. Robust speed control of IM with torque feedforward
control. Industrial Electronics, IEEE Transactions on, 40(6):553–560, Dec 1993. ISSN
0278-0046. (Cited on page 74.)

Robert J. K. Jacob. What you look at is what you get: Eye movement-based inter-
action techniques. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’90, pages 11–18, New York, NY, USA, 1990. ACM. ISBN
0-201-50932-6. (Cited on page 13.)

Wendy Ju. The design of implicit interactions. PhD thesis, Stanford University, June
2008. (Cited on pages 10, 13, 24, and 28.)

Wendy Ju and Larry Leifer. The design of implicit interactions: Making interactive
systems less obnoxious. Design Issues, 24(3):72–84, 2008. (Cited on page 28.)

Wendy Ju, Brian A. Lee, and Scott R. Klemmer. Range: Exploring implicit interaction
through electronic whiteboard design. In Proceedings of the 2008 ACM Conference
on Computer Supported Cooperative Work, CSCW ’08, pages 17–26, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-007-4. (Cited on pages 28, 34, 35, 38, 40, 42,
46, 47, 105, 122, 124, 146, 152, 153, and 170.)

Marko Jurmu, Masaki Ogawa, Sebastian Boring, Jukka Riekki, and Hideyuki
Tokuda. Waving to a touch interface: Descriptive field study of a multipurpose
multimodal public display. In Proceedings of the 2nd ACM International Symposium
on Pervasive Displays, PerDis ’13, pages 7–12, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2096-2. (Cited on pages 33, 146, 147, 150, 152, and 159.)

Victor Kaptelinin and Bonnie Nardi. Affordances in HCI: toward a mediated action
perspective. In Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems, CHI ’12, pages 967–976, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1015-4. (Cited on pages 81, 82, and 83.)

Evan Karatzas. Proximity lab: Studies in physical-computational interface and self-
directed user experience. Master’s thesis, Massachusetts College of Art, 2005.
http://www.proximity-lab.com/work.php?id=11. (Cited on pages 152 and 153.)

Fahim Kawsar, Tatsuo Nakajima, and Kaori Fujinami. Deploy spontaneously: Sup-
porting end-users in building and enhancing a smart home. In Proceedings of the
10th International Conference on Ubiquitous Computing, UbiComp ’08, pages 282–
291, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-136-1. (Cited on pages 36

and 178.)

Fahim Kawsar, Jo Vermeulen, Kevin Smith, Kris Luyten, and Gerd Kortuem. Explor-
ing the design space for situated glyphs to support dynamic work environments.

http://www.proximity-lab.com/work.php?id=11

218 bibliography

In Pervasive Computing, volume 6696 of Lecture Notes in Computer Science, pages 70–
78. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21725-8. (Cited on pages xi,
51, 52, and 56.)

Judy Kay, Bob Kummerfeld, and Piers Lauder. Managing private user models and
shared personas. In UM03 Workshop on User Modeling for Ubiquitous Computing,
pages 1–11, 2003. (Cited on pages 17 and 20.)

John F. Kelley. An iterative design methodology for user-friendly natural language
office information applications. ACM Trans. Inf. Syst., 2(1):26–41, January 1984.
ISSN 1046-8188. (Cited on pages 58, 96, and 120.)

Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A.
Essa, Blair MacIntyre, Elizabeth D. Mynatt, Thad Starner, and Wendy Newstet-
ter. The aware home: A living laboratory for ubiquitous computing research. In
Proceedings of the Second International Workshop on Cooperative Buildings, Integrating
Information, Organization, and Architecture, CoBuild ’99, pages 191–198, London,
UK, UK, 1999. Springer-Verlag. ISBN 3-540-66596-X. (Cited on page 12.)

Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe
Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schet-
tino, Bill Serra, and Mirjana Spasojevic. People, places, things: web presence for
the real world. Mob. Netw. Appl., 7(5):365–376, 2002. ISSN 1383-469X. (Cited on
page 11.)

Mikkel Baun Kjærgaard and Kay Weckemann. Posq: Unsupervised fingerprinting
and visualization of gps positioning quality. In Martin Gris and Guang Yang, ed-
itors, Mobile Computing, Applications, and Services, volume 76 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 176–194. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-29335-1. (Cited
on page 32.)

Andrew J. Ko and Brad A. Myers. Designing the whyline: A debugging interface for
asking questions about program behavior. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, pages 151–158, New York, NY,
USA, 2004. ACM. ISBN 1-58113-702-8. (Cited on page 127.)

Andrew J. Ko and Brad A. Myers. Finding causes of program output with the java
whyline. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1569–1578, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-246-7. (Cited on pages 127 and 128.)

Gerd Kortuem, Fahim Kawsar, Phil Scholl, Michael Beigl, Adalberto L. Simeone,
and Kevin Smith. A miniaturized display network for situated glyphs. In Adjunct
Proceedings of the 9th International Conference on Pervasive Computing, 2011. Demo.
(Cited on page 54.)

Christian Kray, Michael Rohs, Jonathan Hook, and Sven Kratz. Group coordina-
tion and negotiation through spatial proximity regions around mobile devices

bibliography 219

on augmented tabletops. In Horizontal Interactive Human Computer Systems, 2008.
TABLETOP 2008. 3rd IEEE International Workshop on, IEEE Tabletop ’08, pages 1–8,
Oct 2008. (Cited on page 146.)

Todd Kulesza, Weng-Keen Wong, Simone Stumpf, Stephen Perona, Rachel White,
Margaret M. Burnett, Ian Oberst, and Andrew J. Ko. Fixing the program my com-
puter learned: Barriers for end users, challenges for the machine. In Proceedings of
the 14th International Conference on Intelligent User Interfaces, IUI ’09, pages 187–196,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-168-2. (Cited on pages 27, 32,
36, 39, 133, and 179.)

Todd Kulesza, Simone Stumpf, Weng-Keen Wong, Margaret M. Burnett, Stephen
Perona, Andrew Ko, and Ian Oberst. Why-oriented end-user debugging of naive
bayes text classification. ACM Trans. Interact. Intell. Syst., 1(1):2:1–2:31, October
2011. ISSN 2160-6455. (Cited on page 179.)

Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and
Weng-Keen Wong. Too much, too little, or just right? ways explanations im-
pact end users’ mental models. In Visual Languages and Human-Centric Computing
(VL/HCC), 2013 IEEE Symposium on, pages 3–10, Sept 2013. (Cited on pages 20, 36,
and 133.)

Gordon Kurtenbach and William Buxton. User learning and performance with
marking menus. In Proceedings of the SIGCHI conference on Human factors in com-
puting systems: celebrating interdependence, CHI ’94, pages 258–264, New York, NY,
USA, 1994. ACM. ISBN 0-89791-650-6. (Cited on page 77.)

Gordon P. Kurtenbach, Abigail J. Sellen, and William A. S. Buxton. An empirical
evaluation of some articulatory and cognitive aspects of marking menus. Hum.-
Comput. Interact., 8(1):1–23, 1993. (Cited on pages xix, 44, 76, 77, and 92.)

Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. Community en-
hanced tutorials: Improving tutorials with multiple demonstrations. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13,
pages 1779–1788, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1899-0.
(Cited on page 179.)

Samuel Lapkin, Tracy Levett-Jones, Helen Bellchambers, and Ritin Fernandez. Ef-
fectiveness of patient simulation manikins in teaching clinical reasoning skills
to undergraduate nursing students: A systematic review. Clinical Simulation in
Nursing, 6(6):e207–e222, 2010. ISSN 1876-1399. (Cited on page 60.)

Diana Laurillard. Rethinking university teaching: a framework for the effective use of
educational technologies. Routledge, 1993. (Cited on page 80.)

Hendrik Lemelson, Thomas King, and Wolfgang Effelsberg. A study on user accep-
tance of error visualization techniques. In Proceedings of the 5th Annual Interna-
tional Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Ser-
vices, Mobiquitous ’08, pages 53:1–53:6, ICST, Brussels, Belgium, Belgium, 2008.

220 bibliography

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering). ISBN 978-963-9799-27-1. (Cited on pages 32 and 33.)

Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. Coscripter: Automat-
ing & sharing how-to knowledge in the enterprise. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pages 1719–1728, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. (Cited on page 178.)

James R. Lewis. IBM computer usability satisfaction questionnaires: Psychomet-
ric evaluation and instructions for use. Int. J. Hum.-Comput. Interact., 7(1):57–78,
January 1995. ISSN 1044-7318. (Cited on page 63.)

Brian Y. Lim and Anind K. Dey. Assessing demand for intelligibility in context-
aware applications. In Proceedings of the 11th International Conference on Ubiquitous
Computing, Ubicomp ’09, pages 195–204, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-431-7. (Cited on pages 32, 38, 128, 133, 143, and 174.)

Brian Y. Lim and Anind K. Dey. Toolkit to support intelligibility in context-aware
applications. In Proceedings of the 12th ACM International Conference on Ubiquitous
Computing, Ubicomp ’10, pages 13–22, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-843-8. (Cited on pages 2, 26, 27, 32, 38, 39, 78, 133, 143, and 144.)

Brian Y. Lim and Anind K. Dey. Design of an intelligible mobile context-aware
application. In Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services, MobileHCI ’11, pages 157–166, New
York, NY, USA, 2011a. ACM. ISBN 978-1-4503-0541-9. (Cited on pages 32, 33,
and 174.)

Brian Y. Lim and Anind K. Dey. Investigating intelligibility for uncertain context-
aware applications. In Proceedings of the 13th International Conference on Ubiquitous
Computing, UbiComp ’11, pages 415–424, New York, NY, USA, 2011b. ACM. ISBN
978-1-4503-0630-0. (Cited on pages 20 and 174.)

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. Why and why not explanations
improve the intelligibility of context-aware intelligent systems. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages
2119–2128, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-246-7. (Cited on
pages 26, 32, 128, 132, and 174.)

Kris Luyten, Karin Coninx, Jo Vermeulen, Mieke Haesen, and Luk Vloemans. ImogI:
Take control over a context-aware electronic mobile guide for museums. In Work-
shop on HCI in Mobile Guides, in conjunction with the 6th International Conference
on Human Computer Interaction with Mobile Devices and Services, 2004. (Cited on
page 10.)

Thomas M. Mann. Visualization of www-search results. In Proceedings of the 10th
International Workshop on Database & Expert Systems Applications, DEXA ’99, pages
264–, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0281-4.
(Cited on page 52.)

bibliography 221

Nicolai Marquardt, Tom Gross, Sheelagh Carpendale, and Saul Greenberg. Reveal-
ing the invisible: Visualizing the location and event flow of distributed physical
devices. In Proceedings of the Fourth International Conference on Tangible, Embedded,
and Embodied Interaction, TEI ’10, pages 41–48, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-841-4. (Cited on pages 115 and 116.)

Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. The
proximity toolkit: Prototyping proxemic interactions in ubiquitous computing
ecologies. In Proceedings of the 24th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’11, pages 315–326, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0716-1. (Cited on pages 146 and 169.)

Nicolai Marquardt, Till Ballendat, Sebastian Boring, Saul Greenberg, and Ken Hinck-
ley. Gradual engagement: Facilitating information exchange between digital de-
vices as a function of proximity. In Proceedings of the 2012 ACM International
Conference on Interactive Tabletops and Surfaces, ITS ’12, pages 31–40, New York,
NY, USA, 2012a. ACM. ISBN 978-1-4503-1209-7. (Cited on pages 123, 124, 146,
and 152.)

Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. Cross-device interaction via
micro-mobility and f-formations. In Proceedings of the 25th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’12, pages 13–22, New York,
NY, USA, 2012b. ACM. ISBN 978-1-4503-1580-7. (Cited on page 146.)

Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. Community-
commands: Command recommendations for software applications. In Proceedings
of the 22nd Annual ACM Symposium on User Interface Software and Technology, UIST
’09, pages 193–202, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-745-5.
(Cited on page 179.)

Joseph F. McCarthy, David W. McDonald, Suzanne Soroczak, David H. Nguyen,
and Al M. Rashid. Augmenting the social space of an academic conference. In
Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work,
CSCW ’04, pages 39–48, New York, NY, USA, 2004. ACM. ISBN 1-58113-810-5.
(Cited on page 11.)

Joanna McGrenere and Wayne Ho. Affordances: Clarifying and evolving a concept.
In Proceedings of the Graphics Interface 2000 Conference, pages 179—186, 2000. (Cited
on pages 81, 82, 83, 84, and 85.)

Peter H. Meckl and Warren P. Seering. Feedforward control techniques to achieve
fast settling time in robots. In American Control Conference, 1986, pages 1913 –1918,
june 1986. (Cited on page 74.)

Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. From today’s augmented
houses to tomorrow’s smart homes: New directions for home automation re-
search. In Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp ’14, pages 105–115, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2968-2. (Cited on pages 12, 19, 49, and 178.)

222 bibliography

Daniel Michelis and Jörg Müller. The audience funnel: Observations of gesture
based interaction with multiple large displays in a city center. International Journal
of Human-Computer Interaction, 27(6):562–579, 2011. (Cited on page 151.)

David Molyneaux, Hans Gellersen, Gerd Kortuem, and Bernt Schiele. Cooperative
augmentation of smart objects with projector-camera systems. In Proceedings of
the 9th International Conference on Ubiquitous Computing, UbiComp ’07, pages 501–
518, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-74852-6. (Cited on
pages 99 and 115.)

David Molyneaux, Shahram Izadi, David Kim, Otmar Hilliges, Steve Hodges, Xiang
Cao, Alex Butler, and Hans Gellersen. Interactive environment-aware handheld
projectors for pervasive computing spaces. In Proceedings of the 10th International
Conference on Pervasive Computing, Pervasive’12, pages 197–215, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-31204-5. (Cited on pages 99 and 115.)

Michael Mozer. The neural network house: An environment that adapts to its in-
habitants. In Proceedings of the AAAI Spring Symposium on Intelligent Environments,
pages 110–114, 1998. (Cited on page 12.)

Florian Mueller, Sophie Stellmach, Saul Greenberg, Andreas Dippon, Susanne Boll,
Jayden Garner, Rohit Khot, Amani Naseem, and David Altimira. Proxemics play:
Understanding proxemics for designing digital play experiences. In Proceedings of
the 2014 Conference on Designing Interactive Systems, DIS ’14, pages 533–542, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2902-6. (Cited on page 157.)

Jörg Müller, Juliane Exeler, Markus Buzeck, and Antonio Krüger. Reflectivesigns:
Digital signs that adapt to audience attention. In Proceedings of the 7th International
Conference on Pervasive Computing, Pervasive ’09, pages 17–24, Berlin, Heidelberg,
2009a. Springer-Verlag. ISBN 978-3-642-01515-1. (Cited on page 146.)

Jörg Müller, Dennis Wilmsmann, Juliane Exeler, Markus Buzeck, Albrecht Schmidt,
Tim Jay, and Antonio Krüger. Display blindness: The effect of expectations on
attention towards digital signage. In Proceedings of the 7th International Confer-
ence on Pervasive Computing, Pervasive ’09, pages 1–8, Berlin, Heidelberg, 2009b.
Springer-Verlag. ISBN 978-3-642-01515-1. (Cited on pages 147, 151, and 175.)

Jörg Müller, Florian Alt, Daniel Michelis, and Albrecht Schmidt. Requirements and
design space for interactive public displays. In Proceedings of the International
Conference on Multimedia, MM ’10, pages 1285–1294, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-933-6. (Cited on pages 147, 150, 151, and 159.)

Jörg Müller, Robert Walter, Gilles Bailly, Michael Nischt, and Florian Alt. Looking
glass: A field study on noticing interactivity of a shop window. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pages
297–306, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1015-4. (Cited on
pages 146, 152, 171, and 175.)

bibliography 223

Jörg Müller, Gilles Bailly, Thor Bossuyt, and Niklas Hillgren. Mirrortouch: Com-
bining touch and mid-air gestures for public displays. In Proceedings of the 16th
International Conference on Human-computer Interaction with Mobile Devices & Ser-
vices, MobileHCI ’14, pages 319–328, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-3004-6. (Cited on page 171.)

Brad A. Myers, David A. Weitzman, Andrew J. Ko, and Duen H. Chau. Answering
why and why not questions in user interfaces. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’06, pages 397–406, New York,
NY, USA, 2006. ACM. ISBN 1-59593-372-7. (Cited on pages 32, 39, 127, and 128.)

Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
computer Interaction. Massachusetts Institute of Technology, Cambridge, MA, USA,
1995. ISBN 0-262-14058-6. (Cited on page 15.)

Mark W. Newman, Shahram Izadi, W. Keith Edwards, Jana Z. Sedivy, and Trevor F.
Smith. User interfaces when and where they are needed: An infrastructure for
recombinant computing. In Proceedings of the 15th Annual ACM Symposium on
User Interface Software and Technology, UIST ’02, pages 171–180, New York, NY,
USA, 2002. ACM. ISBN 1-58113-488-6. (Cited on page 12.)

Jakob Nielsen. Noncommand user interfaces. Commun. ACM, 36(4):83–99, April
1993. ISSN 0001-0782. (Cited on pages 10, 11, 12, 41, 42, and 75.)

Donald A. Norman. The Psychology Of Everyday Things. Basic Books, New York,
USA, June 1988. ISBN 0465067093. (Cited on pages xix, 21, 74, 75, 76, 79, 81, 83,
84, 85, 87, 88, 89, 90, and 92.)

Donald A. Norman. The ’problem’ with automation: Inappropriate feedback and
interaction, not ’over-automation’. Philosophical Transactions of the Royal Society
of London. B, Biological Sciences, 327(1241):585–593, 1990. (Cited on pages 19, 21,
and 23.)

Donald A. Norman. Affordance, conventions, and design. interactions, 6(3):38–43,
1999. (Cited on pages 75 and 82.)

Donald A. Norman. The Design of Everyday Things. Basic Books, September 2002.
ISBN 0465067107. (Cited on page 21.)

Donald A. Norman. The way I see it: Signifiers, not affordances. interactions, 15(6):
18–19, November 2008. ISSN 1072-5520. (Cited on pages xix, 74, and 76.)

Donald A. Norman. The Design of Future Things. Basic Books, New York, first trade
paper edition edition edition, May 2009. ISBN 9780465002283. (Cited on pages 1,
24, and 25.)

Donald A. Norman. Natural user interfaces are not natural. interactions, 17(3):6–10,
May 2010. ISSN 1072-5520. (Cited on pages 13 and 118.)

224 bibliography

Donald A. Norman. Living With Complexity. MIT Press, 2011. ISBN 9780262014861.
(Cited on page 73.)

Donald A. Norman. personal email communication, July 2013a. (Cited on page 89.)

Donald A. Norman. The Design of Everyday Things: Revised and Expanded Edition.
Basic Books, New York, revised edition, November 2013b. ISBN 9780465050659.
(Cited on pages xvii, xix, 4, 13, 17, 18, 21, 22, 23, 25, 26, 27, 73, 74, 75, 78, 88, 89,
92, and 127.)

Kenton O’Hara. Interactivity and non-interactivity on tabletops. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages
2611–2614, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. (Cited on
page 150.)

Timo Ojala, Vassilis Kostakos, Hannu Kukka, Tommi Heikkinen, Tomas Linden,
Marko Jurmu, Simo Hosio, Fabio Kruger, and Daniele Zanni. Multipurpose inter-
active public displays in the wild: Three years later. Computer, 45(5):42–49, May
2012. ISSN 0018-9162. (Cited on pages 146, 147, 149, 151, and 175.)

OSGi Alliance. OSGi service platform, release 3. IOS Press, Inc., 2003. (Cited on
page 134.)

Ovgu Ozturk, Tomoaki Matsunami, Yasuhiro Suzuki, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Real-time tracking of humans and visualization of their future
footsteps in public indoor environments. Multimedia Tools Appl., 59(1):65–88, July
2012. ISSN 1380-7501. (Cited on page 153.)

Susan Palmiter and Jay Elkerton. Animated demonstrations for learning procedu-
ral computer-based tasks. Hum.-Comput. Interact., 8(3):193–216, September 1993.
ISSN 0737-0024. (Cited on page 45.)

John F. Pane and Brad A. Myers. Tabular and textual methods for selecting objects
from a group. In Proceedings of the 2000 IEEE International Symposium on Visual Lan-
guages (VL’00), VL ’00, pages 157–, Washington, DC, USA, 2000. IEEE Computer
Society. ISBN 0-7695-0840-5. (Cited on page 118.)

Richard Chulwoo Park, Hyunjae Lee, Hwan Kim, and Woohun Lee. The preview-
able switch: A light switch with feedforward. In Proceedings of the 2014 Conference
on Designing Interactive Systems, DIS ’14, pages 191–194, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2902-6. (Cited on page 92.)

Thomas Pederson. From Conceptual Links to Causal Relations – Physical-Virtual Arte-
facts in Mixed-Reality Space. PhD thesis, Umeå University, Faculty of Science and
Technology, Computing Science, 2003. (Cited on page 54.)

Claudio S. Pinhanez. The everywhere displays projector: A device to create ubiq-
uitous graphical interfaces. In Proceedings of the 3rd International Conference on
Ubiquitous Computing, UbiComp ’01, pages 315–331, London, UK, 2001. Springer-
Verlag. ISBN 3-540-42614-0. (Cited on pages 98, 115, and 119.)

bibliography 225

Zachary Pousman and John Stasko. A taxonomy of ambient information systems:
Four patterns of design. In Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’06, pages 67–74, New York, NY, USA, 2006. ACM. ISBN 1-59593-
353-0. (Cited on page 53.)

Thorsten Prante, Carsten Röcker, Norbert Streitz, Richard Stenzel, Carsten
Magerkurth, Daniel Van Alphen, and Daniela Plewe. Hello. Wall–beyond ambient
displays. In Adjunct Proceedings of the Fifth International Conference on Ubiquitous
Computing, Ubicomp ’03 Adjunct, pages 277–278, 2003. (Cited on page 146.)

Sriranjan Rasakatla and K. Madhava Krishna. Way-go torch: An intelligent flash
light. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on,
pages 1765–1771, Dec 2013. (Cited on page 99.)

Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry Fuchs.
The office of the future: A unified approach to image-based modeling and spa-
tially immersive displays. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’98, pages 179–188, New York, NY,
USA, 1998. ACM. ISBN 0-89791-999-8. (Cited on page 115.)

Ramesh Raskar, Jeroen van Baar, Paul Beardsley, Thomas Willwacher, Srinivas Rao,
and Clifton Forlines. ilamps: Geometrically aware and self-configuring projectors.
In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 809–818, New York, NY,
USA, 2003. ACM. ISBN 1-58113-709-5. (Cited on pages 98, 99, 102, 115, and 119.)

Ramesh Raskar, Paul Beardsley, Jeroen van Baar, Yao Wang, Paul Dietz, Johnny
Lee, Darren Leigh, and Thomas Willwacher. Rfig lamps: Interacting with a self-
describing world via photosensing wireless tags and projectors. In ACM SIG-
GRAPH 2004 Papers, SIGGRAPH ’04, pages 406–415, New York, NY, USA, 2004.
ACM. (Cited on pages 98 and 115.)

Kasim Rehman, Frank Stajano, and George Coulouris. Interfacing with the invis-
ible computer. In Proceedings of the Second Nordic Conference on Human-computer
Interaction, NordiCHI ’02, pages 213–216, New York, NY, USA, 2002. ACM. ISBN
1-58113-616-1. (Cited on pages 17 and 74.)

Kasim Rehman, Frank Stajano, and George Coulouris. Visually interactive location-
aware computing. In Proceedings of the 7th International Conference on Ubiqui-
tous Computing, volume 3660 of Lecture Notes in Computer Science, pages 177–194.
Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28760-5. (Cited on pages 33, 38,
42, 115, 121, and 153.)

Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Koleva, Jan Humble, Karl-
Petter Åkesson, and Pär Hansson. Configuring the ubiquitous home. In Coopera-
tive Systems Design, Scenario-Based Design of Collaborative Systems, COOP ’04, pages
227–242. IOS, 2004. ISBN 1-58603-422-7. (Cited on pages 35, 47, 49, and 178.)

226 bibliography

Matt Rogers. 4.0 software update for the Nest Thermostat and app. https://nest.
com/blog/2013/11/15/4-software-update-for-nest-thermostat-and-app/,
November 2013. [Online; accessed 25-July-2014]. (Cited on page 34.)

Yvonne Rogers. New theoretical approaches for human-computer interaction. An-
nual Review of Information Science and Technology, 38(1):87–143, 2004. ISSN 1550-
8382. (Cited on page 2.)

Yvonne Rogers. Moving on from weiser’s vision of calm computing: Engaging
ubicomp experiences. In Proceedings of the 8th International Conference on Ubiquitous
Computing, UbiComp’06, pages 404–421, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-39634-9, 978-3-540-39634-5. (Cited on pages 1 and 14.)

Yvonne Rogers. Interaction design gone wild: Striving for wild theory. interactions,
18(4):58–62, July 2011. ISSN 1072-5520. (Cited on pages 168 and 174.)

Yvonne Rogers, William R. Hazlewood, Paul Marshall, Nick Dalton, and Susanna
Hertrich. Ambient influence: Can twinkly lights lure and abstract representations
trigger behavioral change? In Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, Ubicomp ’10, pages 261–270, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-843-8. (Cited on pages 153 and 162.)

Stephanie Rosenthal, Shaun K. Kane, Jacob O. Wobbrock, and Daniel Avrahami.
Augmenting on-screen instructions with micro-projected guides: When it works,
and when it fails. In Proceedings of the 12th ACM International Conference on Ubiq-
uitous Computing, Ubicomp ’10, pages 203–212, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-843-8. (Cited on page 99.)

Enrico Rukzio and Paul Holleis. Projector phone interactions: Design space and
survey. In Proceedings of the Workshop on Coupled Display Visual Interfaces (PPD ’10),
in conjunction with AVI 2010, 2010. (Cited on page 102.)

Enrico Rukzio, John Hamard, Chie Noda, and Alexander De Luca. Visualization
of uncertainty in context aware mobile applications. In Proceedings of the 8th Con-
ference on Human-computer Interaction with Mobile Devices and Services, MobileHCI
’06, pages 247–250, New York, NY, USA, 2006. ACM. ISBN 1-59593-390-5. (Cited
on page 33.)

Enrico Rukzio, Paul Holleis, and Hans Gellersen. Personal projectors for pervasive
computing. IEEE Pervasive Computing, 11(2):30–37, April 2012. ISSN 1536-1268.
(Cited on pages 68, 96, 99, and 102.)

Dan Saffer. Designing for Interaction: Creating Innovative Applications and Devices (2nd
Edition). New Riders Press, 2 edition, August 2009. ISBN 0321643399. (Cited on
page 78.)

Dan Saffer. Microinteractions: Full Color Edition: Designing with Details. O’Reilly Me-
dia, Sebastopol, CA, November 2013. ISBN 9781491945926. (Cited on page 16.)

https://nest.com/blog/2013/11/15/4-software-update-for-nest-thermostat-and-app/
https://nest.com/blog/2013/11/15/4-software-update-for-nest-thermostat-and-app/

bibliography 227

Christian Sandor, Alex Olwal, Blaine Bell, and Steven Feiner. Immersive mixed-
reality configuration of hybrid user interfaces. In Proceedings of the 4th IEEE/ACM
International Symposium on Mixed and Augmented Reality, ISMAR ’05, pages 110–
113, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2459-1.
(Cited on page 115.)

Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications.
In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop
on, pages 85–90. IEEE Computer Society, Dec 1994. ISBN 978-0-7695-3451-0. (Cited
on pages 8, 9, 10, and 146.)

Albrecht Schmidt. Implicit human computer interaction through context. Personal
Technologies, 4(2-3):191–199, 2000. ISSN 0949-2054. (Cited on page 10.)

Dominik Schmidt, Raf Ramakers, Esben W. Pedersen, Johannes Jasper, Sven Köhler,
Aileen Pohl, Hannes Rantzsch, Andreas Rau, Patrick Schmidt, Christoph Sterz,
Yanina Yurchenko, and Patrick Baudisch. Kickables: Tangibles for feet. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’14, pages 3143–3152, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2473-1.
(Cited on pages 147 and 153.)

Mindy Seto, Stacey Scott, and Mark Hancock. Investigating menu discoverability on
a digital tabletop in a public setting. In Proceedings of the 2012 ACM International
Conference on Interactive Tabletops and Surfaces, ITS ’12, pages 71–80, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1209-7. (Cited on page 151.)

Mary Shaw. The role of design spaces. Software, IEEE, 29(1):46–50, Jan 2012. ISSN
0740-7459. (Cited on page 37.)

Thomas B Sheridan and Raja Parasuraman. Human-automation interaction. Reviews
of human factors and ergonomics, 1(1):89–129, 2005. (Cited on page 19.)

Ben Shneiderman. A second path to hci innovation: Generative theories tied to user
needs. In Proceedings of the CHI 2006 Workshop: “What is the Next Generation of
Human-Computer Interaction”, 2006. (Cited on page 2.)

Rajinder Sodhi, Hrvoje Benko, and Andrew Wilson. Lightguide: Projected visual-
izations for hand movement guidance. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’12, pages 179–188, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1015-4. (Cited on page 153.)

Norbert Streitz, Achilles Kameas, and Irene Mavrommati. The Disappearing Com-
puter: Interaction Design, System Infrastructures and Applications for Smart Environ-
ments. Springer-Verlag, 2007. ISBN 3540727256. (Cited on page 113.)

Lucy A. Suchman. Plans and situated actions: the problem of human-machine communica-
tion. Cambridge University Press, 1987. ISBN 0-521-33137-4. (Cited on page 15.)

228 bibliography

Rahul Sukthankar, Robert G. Stockton, and Matthew D. Mullin. Smarter presenta-
tions: exploiting homography in camera-projector systems. In Proceedings of the
Eight IEEE International Conference on Computer Vision, volume 1 of ICCV ’01, pages
247–253, 2001. (Cited on page 119.)

Desney S. Tan, Ivan Poupyrev, Mark Billinghurst, Hirokazu Kato, Holger Regen-
brecht, and Nobuji Tetsutani. On-demand, in-place help for augmented reality
environments. In Proceedings of the 3rd International Conference on Ubiquitous Com-
puting, Ubicomp ’01, 2001. (Cited on page 115.)

Alex S. Taylor. Intelligence in context. In Proceedings of the International Symposium
on Intelligent Environments, April 2006. (Cited on pages 14, 15, and 17.)

Joe Tullio, Anind K. Dey, Jason Chalecki, and James Fogarty. How it works: A field
study of non-technical users interacting with an intelligent system. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’07, pages 31–
40, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-593-9. (Cited on pages 13,
20, and 132.)

Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Animation: Can it
facilitate? Int. J. Hum.-Comput. Stud., 57(4):247–262, October 2002. ISSN 1071-5819.
(Cited on page 45.)

Davy Vanacken, Alexandre Demeure, Kris Luyten, and Karin Coninx. Ghosts in the
interface: Meta-user interface visualizations as guides for multi-touch interaction.
In Horizontal Interactive Human Computer Systems, 2008. TABLETOP 2008. 3rd IEEE
International Workshop on, pages 81–84, Oct 2008. (Cited on pages 41, 77, 94, 95,
152, and 179.)

Geert Vanderhulst. Development and Deployment of Interactive Pervasive Applications
for Ambient Intelligent Environments. PhD thesis, Hasselt University, 2010. (Cited
on pages xxi, 134, and 135.)

Geert Vanderhulst, Kris Luyten, and Karin Coninx. Middleware for ubiquitous
service-oriented spaces on the web. In Proceedings of the 21st International Confer-
ence on Advanced Information Networking and Applications Workshops, AINAW ’07,
pages 1001–1006, 2007. (Cited on page 120.)

Geert Vanderhulst, Kris Luyten, and Karin Coninx. ReWiRe: Creating interactive
pervasive systems that cope with changing environments by rewiring. In Intel-
ligent Environments, 2008 IET 4th International Conference on, pages 1–8, July 2008.
(Cited on pages 128 and 133.)

Jo Vermeulen. Improving intelligibility and control in ubicomp. In Proceedings of
the 12th ACM International Conference on Ubiquitous Computing – Adjunct Papers,
Ubicomp ’10 Adjunct, pages 485–488, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0283-8. (Cited on page 36.)

bibliography 229

Jo Vermeulen, Jonathan Slenders, Kris Luyten, and Karin Coninx. I Bet You Look
Good on the Wall: Making the Invisible Computer Visible. In Ambient Intelligence,
volume 5859 of Lecture Notes in Computer Science, pages 196–205. Springer Berlin
Heidelberg, 2009a. ISBN 978-3-642-05407-5. (Cited on pages xi, 33, 42, 43, 45, 99,
105, and 113.)

Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. Answering why
and why not questions in ubiquitous computing. In Proceedings of the 11th ACM
International Conference on Ubiquitous Computing – Adjunct Papers, Ubicomp ’09

Adjunct, pages 210–213, 2009b. (Cited on pages 27, 32, and 141.)

Jo Vermeulen, Geert Vanderhulst, Kris Luyten, and Karin Coninx. PervasiveCrystal:
Asking and Answering Why and Why Not Questions about Pervasive Computing
Applications. In Intelligent Environments (IE), 2010 Sixth International Conference on,
pages 271–276, July 2010. (Cited on pages xi, 27, 32, 35, 39, 40, 42, 46, and 126.)

Jo Vermeulen, Fahim Kawsar, Adalberto L. Simeone, Gerd Kortuem, Kris Luyten,
and Karin Coninx. Informing the design of situated glyphs for a care facility. In
Visual Languages and Human-Centric Computing (VL/HCC), 2012 IEEE Symposium
on, VLHCC ’12, pages 89–96, Sept 2012a. (Cited on pages xi, 51, and 71.)

Jo Vermeulen, Kris Luyten, and Karin Coninx. Understanding complex environ-
ments with the feedforward torch. In Ambient Intelligence, volume 7683 of Lecture
Notes in Computer Science, pages 312–319. Springer Berlin Heidelberg, 2012b. ISBN
978-3-642-34897-6. (Cited on pages xi, 42, and 46.)

Jo Vermeulen, Kris Luyten, and Karin Coninx. Intelligibility required: How to make
us look smart again. In Proceedings of the 10th Romanian Conference on Human-
Computer Interaction, ROCHI ’13, 2013a. (Cited on page 36.)

Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. Crossing the
Bridge over Norman’s Gulf of Execution: Revealing Feedforward’s True Identity.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pages 1931–1940, New York, NY, USA, 2013b. ACM. ISBN 978-1-4503-
1899-0. (Cited on pages xi, 18, 27, 34, 78, and 88.)

Jo Vermeulen, Kris Luyten, Karin Coninx, and Nicolai Marquardt. The design of
slow-motion feedback. In Proceedings of the 2014 Conference on Designing Interactive
Systems, DIS ’14, pages 267–270, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2902-6. (Cited on pages xi, 24, 34, and 105.)

Roel Vertegaal. Attentive user interfaces. Commun. ACM, 46(3):30–33, March 2003.
ISSN 0001-0782. (Cited on page 124.)

Sami Vihavainen, Antti Oulasvirta, and Risto Sarvas. “I can’t lie anymore!”: The
implications of location automation for mobile social applications. In Mobile and
Ubiquitous Systems: Networking Services, MobiQuitous, 2009. MobiQuitous ’09. 6th
Annual International, pages 1–10, July 2009. (Cited on pages 16, 18, and 19.)

230 bibliography

Yon Visell, Alvin Law, and Jeremy R. Cooperstock. Touch is everywhere: Floor
surfaces as ambient haptic interfaces. EEE Trans. Haptics, 2(3):148–159, July 2009.
ISSN 1939-1412. (Cited on pages 154 and 170.)

Daniel Vogel and Ravin Balakrishnan. Interactive public ambient displays: Tran-
sitioning from implicit to explicit, public to personal, interaction with multiple
users. In Proceedings of the 17th Annual ACM Symposium on User Interface Software
and Technology, UIST ’04, pages 137–146, New York, NY, USA, 2004. ACM. ISBN
1-58113-957-8. (Cited on pages 146, 150, 152, 153, 159, 160, and 175.)

Robert Walter, Gilles Bailly, and Jörg Müller. Strikeapose: Revealing mid-air gestures
on public displays. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, pages 841–850, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1899-0. (Cited on pages 152 and 171.)

Miaosen Wang, Sebastian Boring, and Saul Greenberg. Proxemic peddler: A public
advertising display that captures and preserves the attention of a passerby. In
Proceedings of the 2012 International Symposium on Pervasive Displays, PerDis ’12,
pages 3:1–3:6, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1414-5. (Cited
on page 151.)

Roy Want. Introduction to ubiquitous computing. In John Krumm, editor, Ubiqui-
tous Computing Fundamentals, chapter 1. Chapman & Hall/CRC, 1st edition, 2009.
ISBN 1420093606, 9781420093605. (Cited on page 8.)

Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active badge
location system. ACM Trans. Inf. Syst., 10(1):91–102, January 1992. ISSN 1046-8188.
(Cited on page 10.)

Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. Bridging physi-
cal and virtual worlds with electronic tags. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’99, pages 370–377, New York, NY,
USA, 1999. ACM. ISBN 0-201-48559-1. (Cited on page 11.)

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3 edition, 2012. ISBN 9780123814647,
9780123814654. (Cited on page 52.)

Alan J. Wecker, Joel Lanir, Tsvi Kuflik, and Oliviero Stock. Pathlight: Supporting
navigation of small groups in the museum context. In Proceedings of the 13th Inter-
national Conference on Human Computer Interaction with Mobile Devices and Services,
MobileHCI ’11, pages 569–574, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0541-9. (Cited on page 99.)

Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–75,
September 1991. (Cited on pages xvii, 1, 7, 8, 9, 113, 114, and 145.)

Mark Weiser. Creating the invisible interface: (invited talk). In Proc. UIST ’94, page 1.
ACM, 1994. ISBN 0-89791-657-3. (Cited on page 113.)

bibliography 231

Mark Weiser and John Seely Brown. Designing calm technology. http://www.
ubiq.com/hypertext/weiser/calmtech/calmtech.htm, December 1995. [Online;
accessed 14-July-2014]. (Cited on pages 1 and 8.)

Mark Weiser and John Seely Brown. The coming age of calm technolgy. In Pe-
ter J. Denning and Robert M. Metcalfe, editors, Beyond Calculation, pages 75–85.
Copernicus, New York, NY, USA, 1997. ISBN 0-38794932-1. (Cited on page 8.)

Mark Weiser, Rich Gold, and John Seely Brown. The origins of ubiquitous comput-
ing research at parc in the late 1980s. IBM Syst. J., 38(4):693–696, December 1999.
ISSN 0018-8670. (Cited on pages 7 and 8.)

Evan Welbourne, Magdalena Balazinska, Gaetano Borriello, and James Fogarty.
Specification and verification of complex location events with panoramic. In Pro-
ceedings of the 8th International Conference on Pervasive Computing, Pervasive ’10,
pages 57–75, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12653-7, 978-
3-642-12653-6. (Cited on pages 115 and 132.)

S. A. G. Wensveen, J. P. Djajadiningrat, and C. J. Overbeeke. Interaction frogger: a
design framework to couple action and function through feedback and feedfor-
ward. In Proceedings of the 5th Conference on Designing Interactive Systems: Processes,
Practices, Methods, and Techniques, DIS ’04, pages 177–184, Cambridge, MA, USA,
2004. ACM. ISBN 1-58113-787-7. (Cited on pages 79, 84, 85, and 91.)

Stephan Wensveen. A Tangibility Approach to Affective Interaction. PhD thesis, TU
Delft, 2005. (Cited on pages xix, 18, 73, 79, 80, 81, 82, 83, 84, 85, 92, 94, and 95.)

Stephan Wensveen. personal email communication, 2010. (Cited on page 81.)

Sean White, Levi Lister, and Steven Feiner. Visual hints for tangible gestures in
augmented reality. In Proceedings of the 2007 6th IEEE and ACM International Sym-
posium on Mixed and Augmented Reality, ISMAR ’07, pages 1–4, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 978-1-4244-1749-0. (Cited on page 115.)

Daniel Wigdor and Dennis Wixon. Brave NUI World: Designing Natural User Inter-
faces for Touch and Gesture. Morgan Kaufmann, San Francisco, April 2011. ISBN
9780123822314. (Cited on pages 38, 42, 44, 154, and 170.)

Karl D.D. Willis, Ivan Poupyrev, Scott E. Hudson, and Moshe Mahler. Sidebyside:
Ad-hoc multi-user interaction with handheld projectors. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages
431–440, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0716-1. (Cited on
page 115.)

Andrew Wilson, Hrvoje Benko, Shahram Izadi, and Otmar Hilliges. Steerable aug-
mented reality with the beamatron. In Proceedings of the 25th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’12, pages 413–422, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1580-7. (Cited on page 115.)

http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm
http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm

232 bibliography

Andrew D. Wilson and Hrvoje Benko. Combining multiple depth cameras and
projectors for interactions on, above and between surfaces. In Proceedings of the
23nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10,
pages 273–282, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0271-5. (Cited
on page 153.)

Anna Wong, Nadine Marcus, Paul Ayres, Lee Smith, Graham A. Cooper, Fred Paas,
and John Sweller. Instructional animations can be superior to statics when learn-
ing human motor skills. Computers in Human Behavior, 25(2):339 – 347, 2009. ISSN
0747-5632. Including the Special Issue: State of the Art Research into Cognitive
Load Theory. (Cited on page 45.)

Rayoung Yang and Mark W. Newman. Learning from a learning thermostat:
Lessons for intelligent systems for the home. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13,
pages 93–102, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1770-2. (Cited
on pages 14, 20, 26, 42, 47, 174, and 175.)

G. Michael Youngblood, Diane J. Cook, and Lawrence B. Holder. Managing adap-
tive versatile environments. Pervasive Mob. Comput., 1(4):373–403, December 2005.
ISSN 1574-1192. (Cited on page 19.)

Jamie Zigelbaum, Michael S. Horn, Orit Shaer, and Robert J. K. Jacob. The tangible
video editor: collaborative video editing with active tokens. In Proceedings of the
1st international conference on Tangible and embedded interaction, TEI ’07, pages 43–46,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-619-6. (Cited on page 95.)

Jamie Zigelbaum, Angela Chang, James Gouldstone, Joshua Jen Monzen, and Hi-
roshi Ishii. SpeakCup: simplicity, BABL, and shape change. In Proceedings of
the 2nd international conference on Tangible and embedded interaction, TEI ’08, pages
145–146, 2008. ISBN 978-1-60558-004-3. (Cited on page 95.)

Jamie B Zigelbaum. Mending fractured spaces: external legibility and seamlessness
in interface design. Master’s thesis, Massachusetts Institute of Technology, 2008.
(Cited on page 171.)

	Abstract
	Acknowledgments
	Publications
	Research Collaboration Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Approach and Methodology
	1.3 Contributions
	1.4 Dissertation Outline

	2 The Problem: Interaction Challenges in Ubiquitous Computing
	2.1 Ubiquitous computing – The Dawn of Context-Aware Computing
	2.2 Interaction Challenges within Context-Aware Computing
	2.2.1 What Changed with Context-Aware Computing
	2.2.2 Fundamental Problems with the Notion of Context-Aware Computing
	2.2.3 The Need for Intelligibility and Control

	2.3 Intelligibility and Control in Norman's Stages of Action
	2.3.1 Norman's Seven Stages of Action
	2.3.2 Interaction with Autonomous Systems
	2.3.3 Coping with the Complexity and Dynamic Behaviour of Context-Aware Systems
	2.3.4 Dealing with Implicit Input
	2.3.5 Mapping the Dissertation Chapters to the Seven Stages of Action Model

	2.4 Conclusion

	3 A Design Space for Intelligibility and Control
	3.1 Introduction
	3.2 Techniques to Support Intelligibility and Control
	3.2.1 Support for Intelligibility: Improving Understanding
	3.2.2 Support for Control: Allowing Users to Intervene

	3.3 Design Space
	3.3.1 Timing
	3.3.2 Generality
	3.3.3 Co-location
	3.3.4 Initiative
	3.3.5 Modality
	3.3.6 Level of Control

	3.4 Insights from Mapping the Design Space
	3.5 Conclusion

	4 Exploratory Study of a Context-Aware Guidance System for Nurses
	4.1 Introduction
	4.2 Situated Glyphs: Providing Activity-Aware Visual Instructions
	4.3 User Study
	4.3.1 Objectives and Motivation
	4.3.2 Results from Formative Study at District Hospital Mainkofen
	4.3.3 System Description
	4.3.4 Study Methodology

	4.4 Quantitative Results
	4.5 Qualitative Results
	4.5.1 Use Attachable Displays to Present Real-time, Activity-centric Information
	4.5.2 Allow Nurses to Switch to User-driven Interaction
	4.5.3 Task Overviews and Completion Confirmations are Key Information

	4.6 Discussion
	4.7 Conclusion

	5 The Design Principle Feedforward
	5.1 Introduction
	5.2 Background
	5.3 Use of Feedforward
	5.4 Feedforward Definitions
	5.4.1 Djajadiningrat: Going Beyond Affordances
	5.4.2 Wensveen: Inherent, Augmented & Functional Feedforward
	5.4.3 Gaver: Technology Affordances
	5.4.4 Kaptelinin and Nardi: Mediated Action & Affordances
	5.4.5 Hartson: Feedforward as a Cognitive Affordance
	5.4.6 Norman: Natural Mapping, Conceptual Models, Symbols and Constraints

	5.5 Reframing Feedforward
	5.5.1 Disambiguation: Affordances, Feedforward & Feedback
	5.5.2 Hidden and False Feedforward
	5.5.3 Nested and Sequential Feedforward
	5.5.4 Retrospect: Definitions and Examples

	5.6 Case Study: The Feedforward Torch
	5.6.1 Introduction
	5.6.2 The Prototype: Hardware and Functionality
	5.6.3 Related Work
	5.6.4 User Study
	5.6.5 Discussion

	5.7 Conclusions

	6 Slow-Motion Feedback
	6.1 Introduction
	6.2 Design Space for the Timing of Feedback
	6.2.1 Introduction
	6.2.2 Relation to the Design Space for Intelligibility and Control
	6.2.3 Strategies Covered by the Design Space
	6.2.4 Defining Slow-Motion Feedback

	6.3 An Application of Slow-Motion Feedback: The Visible Computer
	6.3.1 Introduction
	6.3.2 Related Work
	6.3.3 A Visual Representation of Behaviour
	6.3.4 Implementation
	6.3.5 Evaluation

	6.4 Applications of Slow-Motion Feedback
	6.4.1 Visualizing Behaviour and Causality: The Visible Computer
	6.4.2 System Demonstration
	6.4.3 Progressive Feedback
	6.4.4 Postponed Feedback
	6.4.5 Emphasizing Change

	6.5 Discussion

	7 Answering Why and Why Not Questions about Context-Aware Applications
	7.1 Introduction
	7.1.1 Answering Why and Why Not Questions to Improve Understanding
	7.1.2 Scope and Chapter Outline

	7.2 Usage Scenario
	7.2.1 Posing Why Questions
	7.2.2 Why Not Questions

	7.3 Related Work
	7.4 The Behaviour Model
	7.4.1 ReWiRe: A Framework for Rewiring Context-Aware Ubicomp Applications
	7.4.2 Annotating ReWiRe's Behaviour Model

	7.5 Supporting Why Questions and Providing Control
	7.5.1 Generating Questions
	7.5.2 Generating Answers
	7.5.3 Providing Control

	7.6 User Study
	7.6.1 Participants and Method
	7.6.2 Observations

	7.7 Limitations and Possible Extensions
	7.7.1 Scalability
	7.7.2 Support for Machine Learning
	7.7.3 Supporting Other Types of Questions

	7.8 Conclusion

	8 Intelligibility and Control for Proxemic Interactions
	8.1 Introduction
	8.1.1 Proxemic Interactions
	8.1.2 Relation to Context-Aware Computing and Relevance to This Dissertation
	8.1.3 Proxemic Flow: In-Situ Floor Visualizations to Mediate Large Surface Interactions

	8.2 Background and Motivation
	8.2.1 Intelligible Sensing
	8.2.2 Implicit Interaction
	8.2.3 Invisibility of Action Possibilities and Lack of Guidance
	8.2.4 Lack of Support for Opt-in and Opt-out Mechanisms

	8.3 Related Work
	8.3.1 Feedback, Discoverability and Guidance for Large Interactive Surfaces
	8.3.2 Interactive Illuminated Floors

	8.4 In-Situ Floor Visualization Strategies
	8.4.1 Phase 1. In-Situ Personal Tracking Feedback with Halos
	8.4.2 Phase 2. Zones and Borders: Entries and Exits for Interaction
	8.4.3 Phase 3. Waves and Footsteps: Inviting for Approach, Spatial Movement or Next Interaction Steps
	8.4.4 Summary

	8.5 Proxemic Flow Architecture
	8.5.1 Hardware Setup of the Interactive Floor Display
	8.5.2 Tracking Users
	8.5.3 Rendering Pipeline: Updating the Floor Display
	8.5.4 Proxemic Flow Toolkit
	8.5.5 Generalizability

	8.6 Discussion
	8.6.1 What to Show?
	8.6.2 When to Show Information?
	8.6.3 Where to Show Information?

	8.7 Conclusion

	9 Conclusions
	9.1 Restatement of Contributions
	9.2 Future Work
	9.2.1 Intelligibility and Control ``In the Wild''
	9.2.2 Multi-User Intelligibility
	9.2.3 Further Exploring and Extending the Design Space
	9.2.4 Beyond Context-Aware and Ubiquitous Computing Applications

	9.3 Closing Remarks

	A List of Publications
	B User Studies
	B.1 Situated Glyphs
	B.2 The Feedforward Torch
	B.3 The Visible Computer
	B.4 PervasiveCrystal

	C Nederlandstalige samenvatting
	Bibliography

