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Abstract. The spectrum of a first-order logic sentence is the set of natural numbers that
are cardinalities of its finite models. In this paper we show that when restricted to using only
two variables, but allowing counting quantifiers, the class of spectra of first-order logic sentences
is exactly the class of semilinear sets, and hence, closed under complement. At the heart of our
proof are semilinear characterisations for the existence of regular and biregular graphs, the class of
graphs in which there are a priori bounds on the degrees of the vertices. Our proof also provides a
simple characterisation of models of two-variable logic with counting – that is, up to renaming and
extending the relation names, they are simply a collection of regular and biregular graphs.
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1. Introduction. The spectrum of a first-order sentence φ, denoted by Spec(φ),
is the set of natural numbers that are cardinalities of finite models of φ. Or, more
formally, Spec(φ) = {n | there is a model of φ with universe of cardinality n}. A set
is a spectrum, if it is the spectrum of a first-order sentence.

In this paper we consider the logic C2, the class of first-order sentences using only
two variables and allowing counting quantifiers ∃kz φ(z), where k ≥ 1. Semantically
∃kz φ(z) means there exist at least k number of z’s such that φ(z) holds. We prove
that the spectra of C2 are precisely semilinear sets. In fact, our proof also shows that
the family of models of a C2 formula can be viewed as a collection of regular graphs.

Related works. The notion of spectrum was introduced by Scholz [36] where he
also asked whether there exists a necessary and sufficient condition for a set to be a
spectrum. Since its publication, Scholz’s question and many of its variants have been
investigated by many researchers for the past 60 years. One of the arguably main
open problems in this area is the one asked by Asser [1], formally known as Asser’s
conjecture, whether the complement of a spectrum is also a spectrum.

The notion of spectrum has a deep connection with complexity theory as shown
by Jones and Selman [22], as well as Fagin [5] independently that a set of integers is a
spectrum if and only if its binary representation is in NE. Hence, Asser’s conjecture
is equivalent to asking whether NE = co-NE. It also immediately implies that
if Asser’s conjecture is false, i.e., there is a spectrum whose complement is not a
spectrum, then NP 6= co-NP, hence P 6= NP. The converse implication is still open.
An interesting result by Woods [40] states that if spectra are precisely rudimentary
sets, then NE = co-NE and NP 6= co-NP.∗ There are a number of interesting
connections between spectrum and various models of computation such as RAM as
well as intrinsic computational behavior [9, 10, 11, 28, 35]. We refer the reader to a

∗The same manuscript has been published in ArXiv and available online in
http://arxiv.org/abs/1304.0829.
†University of Warsaw, erykk@mimuw.edu.pl
‡Hasselt University and Transnational University of Limburg, ptony.tan@gmail.com
∗It should be noted that the class of rudimentary sets corresponds precisely to linear time hier-

archy – the linear time analog of polynomial time hierarchy [41].
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2 E. Kopczyński and T. Tan

recent survey by Durand, Jones, Makowsky and More [3] for a more comprehensive
treatment on the spectra problem and its history.

The logic C2 is not the first logic known to have semilinear spectra. A well known
Parikh theorem states the spectra of context-free languages are semilinear, and closed
under complementation. Using the celebrated composition method, Gurevich and
Shelah [17] showed that the spectra of monadic second order logic with one unary
function are semilinear. Fischer and Makowsky [7] showed that the many-sorted
spectra of the monadic second-order logic with modulo counting over structures with
bounded tree-width are semilinear.†

These two results are orthogonal to ours here. Structures expressible in C2 do
not have bounded tree-width. An example is d-regular graphs for d ≥ 3. Hence, it
is very unlikely that one can apply some sort of “pumping” or automata theoretic
argument as used by Fischer and Makowsky [7] to obtain the semilinearity of C2

spectra. Moreover, it should also be noted that in C2 one can express a few unary
functions, hence our result does not follow from the result of Gurevich and Shelah [17],
and neither theirs from ours since we are restricted to using only two variables. As far
as we know, C2 is the first logic known to have its spectra closed under complement
without any restriction on the vocabulary nor in the interpretation.

The result closest to ours is the one by Grandjean [11] where he considers the spec-
tra of first-order sentences using only one variable. A similar result due to Grohe [3]
says that for every Turing machine M , there exists a first-order sentence φM using only
three variables such that Spec(φM ) = {t2 | t is the length of an accepting run of M}.

To end our study of related work, we should mention that the two-variable logic
and many of its variants have been extensively studied, with the focus mainly being
on the satisfiability problem [31, 39, 32, 15, 14, 12, 19, 33, 26, 37, 34]. Some other
works by van den Broeck, Meert and Darwiche [2] consider the problem of counting
the number of models of a given size on two-variable logic.

Sketch of our proof. Consider the following instances of structures expressible
in C2.‡

(Ex.1) (c, d)-biregular graphs: the bipartite graphs on the vertices U ∪ V , where the
degree of each vertex in U and V is c and d, respectively.

(Ex.2) (c, d)-regular digraphs: the directed graphs in which the in-degree and the
out-degree of each vertex are c and d, respectively.

An observation from basic graph theory tells us that for “big enough” M and N ,§

(C1) there is a (c, d)-biregular graph in which M vertices are of degree c and N
vertices are of degree d if and only if Mc = Nd;

(C2) there is a (c, d)-regular digraph of N vertices if and only if Nc = Nd, and hence,
c = d.

These characterisations immediately imply that the spectra of the C2 sentences that
describe (c, d)-biregular graphs and (c, d)-regular digraphs are linear sets. It is from
these observations that we draw our inspiration to prove the semilinearity of the
spectra of C2.

†Intuitively, the many-sorted spectrum of a formula is the spectrum that not only counts the
sizes of the models, but also the cardinality of the unary predicates in the models of the formula.
‡Though the result in this paper holds for arbitrary structures, it helps to assume that the

structures of C2 are graphs in which the vertices and the edges are labelled with a finite number of
colours.
§“Big enough” means M and N are greater than a constant K which depends only on c and d.
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More precisely, we show that given a C2 sentence ϕ, one can construct a Presburger
formula ψ that expresses precisely the spectrum of ϕ. Presburger formulas are first-
order formulas with the relation symbols + and ≤ and constants 0 and 1 interpreted
over the domain N in the natural way. It is shown by Ginsburg and Spanier in [8] that
Presburger formulas express precisely the class of semilinear sets. That is, if ψ(X̄) is
a Presburger formula with free variables X̄ = (X1, . . . , Xk), the set of the solutions
of ψ(X̄), i.e. N̄ such that ψ(N̄) holds, is semilinear.

The crux of our construction of the Presburger formula is a generalisation of the
characterisations (C1) and (C2) above to the following setting. Let C be a set of
` colors, denoted by col1, col2, . . . , col`, and let C and D be (` × m)- and (` × n)-
matrices whose entries are all non-negative integers. We say that a bipartite graph
G = (U, V,E) is (C,D)-biregular, if we can color its edges with colors from C such
that there are a partition U1 ∪ · · · ∪Um of U and a partition V1 ∪ · · · ∪ Vn of V where

• for every integer 1 ≤ i ≤ m, for every vertex u ∈ Ui, for every 1 ≤ j ≤ `, the
number of edges with color colj adjacent to u is precisely Cj,i; and

• for every integer 1 ≤ i ≤ n, for every vertex v ∈ Vi, for every 1 ≤ j ≤ `, the
number of edges with color colj adjacent to v is precisely Dj,i.

Our setting also allows us to say that the number of edges with color colj adjacent to
v is at least Dj,i. In Theorem 5.1 we effectively construct a Presburger formula that
characterises the set {N | there is a (C,D)-biregular graph of N vertices}.

In a similar manner, we can define (C,D)-regular digraphs, where C and D
control the number of incoming and outgoing edges of each vertex, respectively.
Likewise, we obtain a similar Presburger formula that characterises the set {N |
there is a (C,D)-regular digraph of N vertices}.¶ We then proceed to observe that
the relations in every model of a C2 formula can be partitioned in such a way that
every part forms a (C,D)-regular digraph, and every two parts a (C,D)-biregular
graph. In a sense this shows that each model of a C2 sentence is simply a collection
of regular graphs. Applying the Presburger formula that characterises the existence
of these regular graphs, we obtain the semilinearity of the spectra of C2 sentences.

For the converse direction, it is not that difficult to show that every semilinear set
is a spectrum of a C2 sentence. Since semilinear sets are closed under complement,
this establishes the fact that the class of spectra of C2 sentences are closed under
complement. It can also be deduced immediately from our proof that the many-
sorted spectra of C2 are also semilinear. Moreover, our result extends trivially to the
class ∃SOC2, the class of sentences of the form: ∃R1 · · · ∃Rm φ, where R1, . . . , Rm are
second-order variables and φ is a C2 formula. We simply regard R1, . . . , Rm as part
of the signature.

Outline of the paper. This paper is organised as follows. In Section 2 we
review the logic C2 and state our main result: Theorem 2.1 which states that every
C2 spectrum can be expressed as the set of solutions of an effectively constructed
Presburger formula. The proof of Theorem 2.1 is rather complex. So we present its
outline in Section 3, before its details in Sections 4–8. Finally we conclude with a few
observations and future directions in Section 9.

¶Closely related to our result is the work by S. L. Hakimi [18] which deals with the question:
given a vector (d1, . . . , dm), is there a graph with vertices v1, . . . , vm whose degrees are precisely
d1, . . . , dm, respectively? Another related result concerns the notion of score sequence obtained by
H. G. Landau [23] which deals with the question: given a vector (d1, . . . , dm), is there a tournament
with vertices v1, . . . , vm whose outdegrees are precisely d1, . . . , dm, respectively? These questions
are evidently different from our characterisations provided in Section 5.
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2. The logic C2. We fix P = {P1, P2, . . .} to be the set of predicate symbols of
arity 1; and R = {R1, R2, . . .} the set of predicate symbols of arity 2. Two-variable
logic with counting, denoted by C2, is defined by the following syntax.

φ ::= z = z R(z, z) P (z) ¬φ φ ∧ φ ∃kz φ,

where the variable z ranges over x, y, and the symbols R and P over R and P,
respectively.

The quantifier ∃kz φ means there are at least k elements z such that φ holds.
Note that ∃1z φ is the standard ∃z φ, and ∀z φ is equivalent to ¬∃1z ¬φ. By default,
we assume that ∃0z φ always holds.

As usual, we write A |= φ to denote that the structure A is a model of φ and
Spec(φ) to denote the spectrum of φ. Theorem 2.1 below is the main result in this
paper. Its proof spans over Sections 4–8.

Theorem 2.1. For every φ ∈ C2, there exists a Presburger formula PREB(x)
such that Spec(φ) = {n | PREB(n) holds}. Moreover, the formula PREB(x) can be
constructed effectively.

We should remark that Theorem 2.1 also holds for arbitrary vocabulary. Since
C2 uses only two variables, relations of greater arity can be viewed as unary or binary
relations [13].

An immediate consequence of Theorem 2.1 is that the spectrum of a C2 sentence
is a semilinear set.

Corollary 2.2. For every sentence φ ∈ C2, the spectrum Spec(φ) is semilin-
ear.

On the other hand, it is not that difficult to show that every semilinear set is a
spectrum of a C2 sentence, as formally stated below.

Proposition 2.3. For every semilinear set Λ ⊆ N, there exists a sentence φ ∈ C2

such that Spec(φ) = Λ.
Proof. For a linear set Γm,n = {m+ in | i = 0, 1, 2, . . .}, consider the vocabulary

τm,n = {A,B0, B1, . . . , Bn−1, E}, where A,B0, . . . , Bn−1 are unary and E binary.
Consider the C2 sentence φm,n which states that A ∪ B0 ∪ · · · ∪ Bn−1 partition the
whole universe, the predicate A contains exactly m elements, and for every x, if Bi(x)
holds,

• there is exactly one y such that x 6= y and Bi+1 mod n(y) and E(x, y) hold;
• there is exactly one y such that x 6= y and Bi−1 mod n(y) and E(y, x) hold.

It is straightforward that Spec(φm,n) = Γm,n. For a semilinear set, we simply takes
the finite disjunction of such φm,n’s. This completes our proof of Proposition 2.3.

Now, take Corollary 2.2, apply the fact that the class of semilinear sets is closed
under complement, and then Proposition 2.3, we obtain the following corollary.

Corollary 2.4. The class of spectra of C2 sentences is closed under comple-
ment.

3. The plan for the proof of Theorem 2.1. As mentioned earlier, the proof
of Theorem 2.1 is rather complex and spans over Sections 4–8. We give its outline
here.

• In Section 4 we define the logic QMLC (Quantified Modal Logic with Count-
ing), which for our purpose, will be easier to work with. In particular, we will
show that C2 and QMLC are equivalent in terms of spectra.

• In Section 5 we define the class of biregular graphs and regular digraphs. The
main theorems in this section are Theorems 5.2 and 5.4. Theorem 5.2 gives
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Section 6

[Proof of Theorem 2.1]
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[QMLC =spec C2]
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Section 5

[Theorems 5.2 and 5.4]
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Section 7

[Proof of Theorem 5.2]
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Section 8

[Sketch of proof of Theorem 5.4]

Fig. 3.1. The skeleton for the proof of Theorem 2.1. Theorem 5.2 gives us the Presburger
characterisations for the existence of biregular graphs, while Theorem 5.4 for regular digraphs.

us the Presburger characterisations of the existence of biregular graphs, while
Theorem 5.4 the same characterisations for regular digraphs.

• Equipped with Theorems 5.2 and 5.4, we construct the formula PREB(x) as
required in Theorem 2.1 in Section 6.

• However, the proofs of Theorems 5.2 and 5.4 themselves are rather long and
involved. So we postpone their proofs until Sections 7 and 8.

Figure 3.1 illustrates the interdependence among Sections 4–8.

4. Quantified modal logic with counting. In this section we present quan-
tified modal logic with counting (QMLC), which for our purpose, will be easier to
work with. We are going to show that C2 and QMLC are equivalent in terms of
spectra. In fact, our proof shows that C2 and QMLC are equivalent up to renam-
ing/deleting/adding relational symbols, when QMLC are restricted to “complete”
structures defined as follows. A structure A is a complete structure, if it satisfies
the following properties.

(N1) A is a clique over A. That is, for every a, b ∈ A, either a = b or R(a, b) for some
R ∈ R.

(N2) Every binary relation in R does not intersect identity relation. That is, for
every R ∈ R, if R(a, b) holds, a 6= b.

(N3) R is closed under inverse. That is, for every R ∈ R, there exists
←−
R ∈ R such

that
←−
R 6= R and for every a, b ∈ A, R(a, b) if and only if

←−
R (b, a).

(N4) The binary predicates in R are pairwise disjoint.

Our proof is an adaptation of the proof by Lutz, Sattler and Wolter [29] which shows
that similar equivalence holds between two-variable logic and modal logic.

The class MLC of modal logic with counting is defined with the following syntax.

φ ::= ¬φ α φ ∧ φ ♦kβφ

where α ranges over P and β over R.
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The semantics of MLC is as follows. Let A be a structure of τ and a ∈ A and φ
be an MLC formula. That A satisfies φ from a, denoted by A, a |= φ, is defined as
follows.

• A, a |= P , where P ∈ P, if P (a) holds in A.
• A, a |= ¬φ, if A, a 6|= φ.
• A, a |= φ1 ∧ φ2, if A, a |= φ1 and A, a |= φ2.
• A, a |= ♦kRφ, if there exist at least k elements b1, . . . , bk ∈ A such that R(a, bi)

holds in A and A, bi |= φ for i = 1, . . . , k.
We define the class of quantified modal logic with counting, denoted by QMLC

with the following syntax.

ψ ::= ¬ψ ψ1 ∧ ψ2 ∃kφ

where the formula φ ∈ MLC. A QMLC formula ψ is called a basic QMLC, if it is of
the form ∃k φ, where φ ∈ MLC.

The semantics of QMLC is as follows. Let A be a structure of τ and ψ ∈ QMLC.
That A satisfies ψ, denoted by A |= ψ, is defined as follows.

• A |= ¬ψ, if it is not the case that A |= ψ.
• A |= ψ1 ∧ ψ2, if A |= ψ1 and A |= ψ2.
• A |= ∃kφ, if there exist at least k elements a1, . . . , ak ∈ A such that A, ai |= φ

for i = 1, . . . , k.
We denote by Spec(ψ) the set of the cardinalities of the universes of complete struc-
tures of ψ. Note that for QMLC, the notion of spectrum is restricted to complete
structures.

In the following we are going to show that from spectral point of view, C2 and
QMLC are equivalent. The intuitive explanation for the requirement of complete
structure is as follows. Notice that in QMLC we cannot express the negation of a
binary relation ¬R(x, y). Rather, to “express” ¬R(x, y) in QMLC, we introduce a
new relation symbol to capture ¬R(x, y), hence, the requirement (N1) and (N4) in
the complete structure. Similarly, in QMLC from an element x, we cannot express
the “inverse” direction R(y, x). So we introduce a new relation

←−
R that captures

the “inverse” of R, and R(y, x) will be simulated by
←−
R (x, y), instead, hence the

requirement (N3). We require (N2) simply for technical convenience.
Theorem 4.1 below states the spectral equivalence between C2 and QMLC, when

QMLC is restricted to complete structures.
Theorem 4.1. For every ϕ ∈ C2, there is a QMLC formula φ such that
• for every structure A |= ϕ, there is a complete structure B |= φ where |A| =
|B|;

• for every complete structure B |= φ, there is a structure A |= ϕ and |A| = |B|.
Proof. Let ϕ ∈ C2. By extending/renaming/deleting the relations, and by modi-

fying the sentence ϕ, if necessary, we can obtain another C2 sentence ϕ′ such that
• for every structure A |= ϕ, there is a complete structure A′ |= ϕ′ where
|A| = |A′|;

• for every complete structure A′ |= ϕ′, there is a structure A |= ϕ and |A| =
|A′|.

The details of the construction of ϕ′ is straightforward, hence, omitted. For example,
to achieve (N1) and (N4) we can introduce a new binary relation for each Boolean
combination of relations in ϕ. We can do similar trick to achieve (N2) and (N3).

From this formula ϕ′, we are going to construct the desired QMLC formula φ. It
consists of the following two steps.
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1. Convert the sentence ϕ′ into its “normal form” ψ such that for every complete
structure A, we have A |= ϕ′ if and only if A |= ψ.‖

2. Convert the sentence ψ into a “quantified modal logic” (QMLC) sentence φ
such that for every complete structure A, we have A |= ψ if and only if A |= φ.

In the following paragraphs we are going to describe formally these two steps.
A C2 sentence is in normal form, if all the quantifiers are either of form

∃ky
(
R(x, y) ∧ θ(y)

)
, or ∃kx θ(x)

and all other applications of variables are of form P (x), where P is a unary predicate.
The C2 sentence ϕ′ can be converted into its equivalent sentence ψ in normal form

as follows.
• First, we rewrite every subformula of the form ∃ky θ(x, y) with one free

variable x into the following form:

θ(x, x) ∧ ∃k−1y
(

(x 6= y) ∧ θ(x, y)
)

∨
∃ky

(
(x 6= y) ∧ θ(x, y)

)
After such rewriting, we can assume that every quantifier in ϕ is of the form
∃ky ((x 6= y) ∧ θ(x, y)).

• Second, every quantification ∃ky ((x 6= y)∧ θ(x, y)), in which θ(x, y) contains
a subformula α(x) depending only on x, can be rewritten into the form:

¬α(x) ∧ ∃ky
(

(x 6= y) ∧ θ0(x, y)
)

∨
α(x) ∧ ∃ky

(
(x 6= y) ∧ θ1(x, y)

)
where θ0(x, y) and θ1(x, y) are obtained from θ by replacing α(x) with false
and true, respectively. We can repeat this until θ(x, y) no longer has a sub-
formula depending only on x.
After such rewriting we can assume that every quantifier in ϕ is of the form

∃ky ((x 6= y) ∧ θ(x, y)),

where θ(x, y) does not contain any subformula depending only on x.

• Third, every quantification ∃ky
(

(x 6= y)∧ θ(x, y)
)

can be rewritten into the

form: ∨
f∈∆k

R

∧
R∈R

∃f(R)y
(
R(x, y) ∧ θR(y)

)

where ∆k
R is the set of all functions f : R → N such that

∑
R∈R f(R) = k,

and θR(y) is obtained from θ(x, y) by replacing each R′(x, y) with true if
R = R′, and false otherwise.

‖We would like to remark that the normal form here is different from the standard Scott’s normal
form.
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By performing these three steps, we get the C2 sentence ψ in the normal form. Par-
ticularly, for every complete structure A, we have A |= ϕ′ if and only if A |= ψ.

Now from this C2 sentence ψ in normal form, the construction of its QMLC sen-
tence φ = F (ψ) can be done inductively as follows. There are two cases.

1. ϑ has no free variable.
• If ϑ is ¬ϑ1, then F (ϑ) = ¬F (ϑ1).
• If ϑ is ϑ1 ∧ ϑ2, then F (ϑ) = F (ϑ1) ∧ F (ϑ2).
• If ϑ is ∃kx ϑ1(x), then F (ϑ) = ∃kF (ϑ1(x)).

2. ϑ has one free variable x.
• If ϑ(x) is P (x), then F (ϑ(x)) = P .
• If ϑ(x) is ϑ1(x) ∧ ϑ2(x), then F (ϑ(x)) = F (ϑ1(x)) ∧ F (ϑ2(x)).
• If ϑ(x) is ¬ϑ1(x), then F (ϑ(x)) = ¬F (ϑ1(x)).
• If ϑ(x) is ∃ky R(x, y) ∧ ϑ1(x, y), then F (ϑ(x)) = ♦kRF (ϑ1(x, y)).

The case when ϑ has one free variable y can be handled in a symmetrical way.

By a straightforward induction, we can show that for every complete structure A,
A |= ϑ if and only if A |= F (ϑ). In particular, from the equivalences between ϕ and
ϕ′, between ϕ′ and ψ as well as between ψ and φ = F (ψ), we obtain that

• for every structure A |= ϕ, there is a complete structure B |= φ such that
|A| = |B|;

• for every complete structure B |= φ, there is a structure A |= ϕ such that
|A| = |B|.

This concludes our proof of Theorem 4.1.

5. Regular graphs. In this section we are going to introduce two types of
regular graphs: biregular graphs (bipartite regular graphs) and regular digraphs. The
main results in this section are Theorems 5.2 and 5.4. For the sake of readability, we
postpone their proofs until Sections 7 and 8.

5.1. Biregular graphs. An `-type bipartite graph is G = (U, V,E1, . . . , E`),
where E1, . . . , E` are pairwise disjoint subsets of U × V . Elements in Ei are called
Ei-edges. It helps to think of G as a bipartite graph in which the edges are coloured
with ` colours.

For a vertex u ∈ U ∪ V , degEi(u) denotes the number of Ei-edges adjacent to it,

and deg(u) =
∑`
i=1 degEi(u). We write deg(G) = max{deg(u) | u is a vertex in G}.

For an integer d ∈ N, we write degEi(u) = Id, to denote degEi(u) ≥ d.

Let N denote the set of natural numbers {0, 1, 2, . . .} and IN = {I0,I1,I2, . . .}
and B = N∪IN. We write B`×m to denote the set of `×m matrices whose entries are
elements from B. The entry in row i and column j of a matrix D ∈ B`×m is denoted
by Di,j .

Let C ∈ B`×m and D ∈ B`×n. An `-type bipartite graph G = (U, V,E1, . . . , E`)
is (C,D)-biregular, if there is a partition U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn
such that the following holds.

• For every i = 1, . . . , `, for every j = 1, . . . ,m, for every vertex u ∈ Uj ,
degEi(u) = Ci,j .

• For every i = 1, . . . , `, for every j = 1, . . . , n, for every vertex v ∈ Vj ,
degEi(v) = Di,j .

We call the partitions U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn the witness of the
(C,D)-biregularity of G. We say that the (C,D)-biregular graph G is of size (M̄, N̄),
if M̄ = (|U1|, . . . , |Um|) and N̄ = (|V1|, . . . , |Vn|).

Theorem 5.1. For every two matrices C ∈ B`×m and D ∈ B`×n, there is a
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Presburger formula BiREGC,D(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ = (Y1, . . . , Yn)
such that the following holds. There exists an `-type (C,D)-biregular graph of size
(M̄, N̄) if and only if BiREGC,D(M̄, N̄) holds.

Theorem 5.1 is then generalised to the case of complete bipartite graphs. An
`-type bipartite graph G = (U, V,E1, . . . , E`) is complete, if U × V = E1 ∪ · · · ∪E`. If
G is also a (C,D)-biregular graph, then we call it a (C,D)-complete-biregular graph.

The following theorem is the main result in this subsection that will be used in
the proof in Section 6.

Theorem 5.2. For every two matrices C ∈ B`×m and D ∈ B`×n, there is
a Presburger formula COMP-BiREGC,D(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ =
(Y1, . . . , Yn) such that the following holds. There exists a (C,D)-complete-biregular
graph of size (M̄, N̄) if and only if COMP-BiREGC,D(M̄, N̄) holds.

5.2. Regular digraphs. An `-type directed graph (or, digraph for short) is a
tuple G = (V,E1, . . . , E`), where E1, . . . , E` are pairwise disjoint irreflexive relations
on V and for every u, v ∈ V , if (u, v) ∈ E1 ∪ · · · ∪ E`, then the inverse direction
(v, u) /∈ E1 ∪ · · · ∪ E`. Edges in Ei are called Ei-edges.

We will write in-degEi(u) to denote the number of incoming Ei-edges toward the
vertex u, and out-degEi(u) the number of outgoing Ei-edges from the vertex u. As
before, for an integer d ∈ N, we write in-degEi(u) = Id and out-degEi(u) = Id, to
indicate that in-degEi(u) ≥ d and in-degEi(u) ≥ d, respectively.

Let C,D ∈ B`×m. An `-type digraph G = (V,E1, . . . , E`) is (C,D)-regular-
digraph, if there exists a partition V = V1 ∪ · · · ∪ Vm such that for each i = 1, . . . , `,
for each j = 1, . . . ,m, for each vertex v ∈ Vj ,

in-degEi(v) = Ci,j and out-degEi(v) = Di,j .

We call V1 ∪ · · · ∪ Vm a witness of the (C,D)-regularity of G and the graph G is of
size N̄ , if N̄ = (|V1|, . . . , |Vm|).

Theorem 5.3. For every C,D ∈ B`×m, there exists a Presburger formula
REGC,D(X̄), where X̄ = (X1, . . . , Xm) such that the following holds. There exists
a (C,D)-regular-digraph of size N̄ if and only if REGC,D(N̄) holds.

Similar to Section 5.1, Theorem 5.3 will be generalised to the case of complete
regular digraph. An `-type graph G = (V,E1, . . . , E`) is a complete digraph, if for
every two different vertices u, v, either (u, v) or (v, u) is in E1 ∪ · · · ∪ E`. Note that
here we still insist that if (u, v) ∈ E1 ∪ · · · ∪ E`, the inverse (v, u) /∈ E1 ∪ · · · ∪ E`. If
G is also a (C,D)-regular, then we call G a (C,D)-complete-regular digraph.

The following theorem is the main result in this subsection that will be used in
the proof in Section 6.

Theorem 5.4. For every C,D ∈ B`×m, there exists a Presburger formula
COMP-REGC,D(X̄), where X̄ = (X1, . . . , Xm) such that the following holds. There
exists a (C,D)-complete-regular digraph of size N̄ if and only if COMP-REGC,D(N̄)
holds.

6. Proof of Theorem 2.1. Now we are ready to prove Theorem 2.1. Let φ
be a QMLC sentence. Recall that a basic QMLC formula is of the form ∃k ϕ, where
ϕ ∈ MLC. We also assume that in φ we have “pushed” all the negations inside so
that they are applied only to basic QMLC. We are going to construct a Presburger
formula PREBφ(x) such that Spec(φ) = {n | PREBφ(n) holds}.

Before we proceed, we need a few auxiliary notations. Let P be the set of unary
predicates used in φ and R = {R1, . . . , R`,

←−
R 1, . . . ,

←−
R `} the set of binary relations
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used in φ, where
←−
R i is the inverse relation of Ri. Let K be the integer such that for

all subformulae ♦lRψ in φ, we have l ≤ K.

We denote by Mφ the set of all MLC subformulae of φ and their negations. A
type in φ is a subset T ⊆Mφ such that

• if ϕ1 ∧ ϕ2 ∈ T , then both ϕ1, ϕ2 ∈ T ;
• ϕ ∈ T if and only if ¬ϕ /∈ T ;
• if ¬(ϕ1 ∧ ϕ2) ∈ T , then at least one of ¬ϕ1,¬ϕ2 ∈ T .

For a structure A (not necessarily a model of φ) and an element a ∈ A, we define
the type of a in A, denoted by typeA(a) ⊆ Mφ, where ϕ ∈ typeA(a) if and only if
A, a |= ϕ. For a type T , we write T (A) to denote the set of elements in A with type
T . Note that the sets T (A)’s are pairwise disjoint. We let Tφ to be the set of all types
in φ.

We say that a function f : Tφ ×R× Tφ → {0, 1, . . . ,K} ∪ {IK} is consistent,
if for every T ∈ Tφ the following holds.

• If ♦lR µ ∈ T , then
∑
T ′ s.t. T ′3µ f(T,R, T ′) ≥ l.

• If ¬(♦lR µ) ∈ T , then
∑
T ′ s.t. T ′3µ f(T,R, T ′) ≤ l − 1, and f(T,R, T ′) ∈ N,

for every R ∈ R and for every type T ′ 3 µ.

In the following we enumerate the set of all consistent functions F = {f1, . . . , fm}, the
set of all types in Tφ = {T1, . . . , Tn}, and the set Tφ ×F = {(T1, f1), . . . , (Tn, fm)}.

The desired Presburger formula PREBφ(x) is defined as the formula:

∃X(T1,f1) · · · ∃X(Tn,fm)

(
x =

∑
1≤i≤n

∑
1≤j≤m

XTi,fj

)
∧ PREB-Atomφ(X̄) ∧ CON(X̄)

where X̄ = (X(T1,f1), . . . , X(Tn,fm)) is the vector of all the variables X(T,f)’s.

We will formally define the formulae PREB-Atomφ(X̄) and CON(X̄) in the fol-
lowing paragraphs. The intended meaning of the variable XTi,fj and the formulas
PREB-Atomφ(x) and CON(X̄) is as follows. The variable XTi,fj is to represent the
number of elements of type Ti and for each binary relation R ∈ R and a type S ∈ Tφ,
there is f(Ti, R, S) number of outgoing R-edges towards the elements of type S.

Naturally, the total number of all elements in the universe will be the sum of all
XTi,fj ’s, hence, the sum:

x =
∑

1≤i≤n

∑
1≤j≤m

XTi,fj

The formula PREB-Atomφ(x) is to make sure that the satisfiability of the QMLC
sentence is preserved. Intuitively, if φ is ∃kϕ, the formula PREB-Atomφ(x) states that
there are at least k elements in which ϕ holds. Formally, it is defined inductively as
follows. (Recall that all the negations have been “pushed” inside so that they are
applied only to basic QMLC.)

• If φ := ∃kϕ, then PREB-Atomφ :=
∑

(T,f) s.t. ϕ∈T X(T,f) ≥ k.

• If φ := ¬∃kϕ, then PREB-Atomφ :=
∑

(T,f) s.t. ϕ∈T X(T,f) ≤ k − 1.
• If φ := φ1 ∧ φ2, then PREB-Atomφ := PREB-Atomφ1 ∧ PREB-Atomφ2 .
• If φ := φ1 ∨ φ2, then PREB-Atomφ := PREB-Atomφ1

∨ PREB-Atomφ2
.

Finally, the formula CON(X̄) is to make sure that the solution to each variable
XTi,fj is “consistent” to the intended meaning of the type Ti and function fj . That
is, for every types S, T ∈ Tφ the following holds.
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• Every solution M̄T to the variables X̄T = (XT,f1
, . . . , XT,fm) in the formula

CON(X̄) corresponds to a (DT ,
←−
DT )-complete-regular digraph of size M̄T ,

where the matrices DT ,
←−
DT ∈ B`×m are as follows.

DT :=


f1(T,R1, T ) f2(T,R1, T ) · · · fm(T,R1, T )
f1(T,R2, T ) f2(T,R2, T ) · · · fm(T,R2, T )

...
...

. . .
...

f1(T,R`, T ) f2(T,R`, T ) · · · fm(T,R`, T )


and

←−
DT :=


f1(T,

←−
R 1, T ) f2(T,

←−
R 1, T ) · · · fm(T,

←−
R 1, T )

f1(T,
←−
R 2, T ) f2(T,

←−
R 2, T ) · · · fm(T,

←−
R 2, T )

...
...

. . .
...

f1(T,
←−
R `, T ) f2(T,

←−
R `, T ) · · · fm(T,

←−
R `, T )


Notice that the matrix DT contains only the information on the degree of
R1, . . . , R`, while

←−
DT the information on the degree of

←−
R 1, . . . ,

←−
R `. This is

because the incoming Ri edges to an element v are precisely the outgoing
←−
R i

edges from v, and vice versa, the incoming
←−
R i edges from an element v are

precisely the outgoing Ri edges to v.
• Every solution M̄S , M̄T to the variables X̄S = (XS,f1

, . . . , XS,fm) and X̄T =

(XT,f1
, . . . , XT,fm) in the formula CON(X̄) corresponds to a (DS→T ,

←−
DS→T )-

complete-biregular digraph of size (M̄S , M̄T ), where DS→T ,
←−
DS→T ∈ B`×m

are the following matrices.

DS→T :=



f1(S,R1, T ) f2(S,R1, T ) · · · fm(S,R1, T )
f1(S,R2, T ) f2(S,R2, T ) · · · fm(S,R2, T )

...
...

. . .
...

f1(S,R`, T ) f2(S,R`, T ) · · · fm(S,R`, T )

f1(S,
←−
R 1, T ) f2(S,

←−
R 1, T ) · · · fm(S,

←−
R 1, T )

f1(S,
←−
R 2, T ) f2(S,

←−
R 2, T ) · · · fm(S,

←−
R 2, T )

...
...

. . .
...

f1(S,
←−
R `, T ) f2(S,

←−
R `, T ) · · · fm(S,

←−
R `, T )



←−
DS→T :=



f1(T,
←−
R 1, S) f2(T,

←−
R 1, S) · · · fm(T,

←−
R 1, S)

f1(T,
←−
R 2, S) f2(T,

←−
R 2, S) · · · fm(T,

←−
R 2, S)

...
...

. . .
...

f1(T,
←−
R `, S) f2(T,

←−
R `, S) · · · fm(T,

←−
R `, S)

f1(T,R1, S) f2(T,R1, S) · · · fm(T,R1, S)
f1(T,R2, S) f2(T,R2, S) · · · fm(T,R2, S)

...
...

. . .
...

f1(T,R`, S) f2(T,R`, S) · · · fm(T,R`, S)


Notice that in the matrix DS→T the first ` rows contains the information on
the degree of R1, . . . , R`, and the last ` rows the information on the degree
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of
←−
R 1, . . . ,

←−
R ` from the type S to the type T ; while in the matrix

←−
DS→T it is

the opposite and the direction is from the type T to the type S. Similar as in
the DT ,

←−
D t case above, this is because the incoming Ri edges to an element

v are precisely the outgoing
←−
R i edges from v, and vice versa, the outgoing

Ri edges from an element v are precisely the incoming
←−
R i edges to v.

Now the formula CON(X̄) is simply the conjunction:

CON(X̄) :=
∧

1≤i≤n

COMP-REGDTi ,
←−
DTi

(X̄T )

∧
∧

1≤j<i≤n

COMP-BiREGDTi→Tj
,
←−
DTi→Tj

(X̄Ti , X̄Tj )

where X̄Ti = (X(Ti,f1), . . . , X(Ti,fm)) is the vector of variables associated with the
type Ti, and the formulae COMP-REGDTi ,

←−
DTi

and COMP-BiREGDTi→Tj
,
←−
DTi→Tj

are

the formulae given by Theorems 5.2 and 5.4, respectively.
We are going to show that the set of solutions to PREBφ(x) is precisely the

spectrum of φ, as stated in the claim below. Abusing the notation, we let PREBφ
itself to denote the set {n | PREBφ(n) holds}. Recall also that as defined in Section 4,
the spectrum of a QMLC sentence φ is restricted to the complete structures.

Claim 1. For every QMLC sentence φ, PREBφ = Spec(φ), where PREBφ(x) is
the formula

∃X(T1,f1) · · · ∃X(Tn,fm)

(
x =

∑
1≤i≤n

∑
1≤j≤m

XTi,fj

)
∧ PREB-Atomφ(X̄) ∧ CON(X̄)

and X̄ = (X(T1,f1), . . . , X(Tn,fm)) is the vector of all the variables X(T,f)’s.
The proof is by induction on φ. The base case is when φ is a basic QMLC sentence

or the negation of a basic QMLC sentence. We consider first the case when φ is a
basic QMLC formula of the form ∃k ϕ, where ϕ ∈ MLC. In this case PREB-Atomφ(X̄)
is
∑

(T,f) s.t. ϕ∈T X(T,f) ≥ k.

We first show the direction PREBφ ⊆ Spec(φ). Let N ∈ PREBφ. Let M̄ =
(MT1,f1 , . . . ,MTn,fm) be an assignment to X̄ such that PREBφ(N) holds. That is, the
following holds.(

N =
∑

1≤i≤n

∑
1≤j≤m

MTi,fj

)
∧ PREB-Atomφ(M̄) ∧ CON(M̄)

In the following we are going to write M̄T to denote (MT,f1 , . . . ,MT,fm) for every
type T ∈ Tφ.

Since x =
∑

(T,f)XT,f , we have N =
∑

(T,f)M(T,f). We take a set V of N

vertices and we partition V = V(T1,f1) ∪ · · · ∪ V(Tn,fm) such that |V(T,f)| = M(T,f) for
each T ∈ Tφ and f ∈ F . We denote by VT = V(T,f1) ∪ · · · ∪ V(T,fm) for each T ∈ Tφ.

Since CON(M̄) holds, by Theorems 5.4, for each T ∈ Tφ, there exists a (DT ,
←−
DT )-

complete-regular digraph GT = (VT , RT,1, . . . , RT,`) of size M̄T , with VT = V(T,f1) ∪
· · · ∪ V(T,fm) being the witness of the (DT ,

←−
DT )-regularity. This means that for every

vertex v ∈ VT,fi , for every R ∈ {R1, . . . , R`},
• out-degR(v) in the graph GT is fi(T,R, T );

• in-degR(v) in the graph GT is fi(T,
←−
R, T ).
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Now let G̃T = (VT , RT,1, . . . , RT,`,
←−
RT,1, . . . ,

←−
RT,`) be the graph obtained from GT

by taking
←−
R i as the inverse of Ri. Then for each vertex v ∈ VT ,

• out-degR(v) = in-deg←−R (v) in the graph G̃T ;

• in-degR(v) = out-deg←−R (v) in the graph G̃T .
Similarly, by Theorem 5.2 for each Ti, Tj ∈ Tφ, where j ≤ i − 1, there exists a

(DTi→Tj ,
←−
DTi→Tj )-biregular-complete graph

GTi,Tj = (VTi , VTj , RTi,Tj ,1, . . . , RTi,Tj ,`,
←−
RTi,Tj ,1, . . . ,

←−
RTi,Tj ,`)

of size (M̄Ti , M̄Tj ), with VTi = V(Ti,f1)∪· · ·∪V(Ti,fm) and VTj = V(Tj ,f1)∪· · ·∪V(Tj ,fm)

being the witness of the (DTi→Tj ,
←−
DTi→Tj )-biregularity. This means that for every

R ∈ {R1, . . . , R`,
←−
R 1, . . . ,

←−
R `},

• for every vertex v ∈ VTi,f , out-degR(v) in the graph GTi,Tj is f(Ti, R, Tj);

• for every vertex v ∈ VTj ,f , out-degR(v) in the graph GTi,Tj is f(Ti,
←−
R, Tj).

We put the orientation in every the edges in the graph GTi,Tj going from VTi to VTj .

Now let G̃Ti,Tj be the graph obtained by adding (u, v) into
←−
R in the graph GTi,Tj

whenever (v, u) is an R-edge in GTi,Tj .
Hence, we have for each vertex v ∈ VTi ∪ VTj , for each R ∈ R
• out-degR(v) = in-deg←−R (v) in the graph G̃Ti,Tj ;

• in-degR(v) = out-deg←−R (v) in the graph G̃Ti,Tj .

Let G = (V,R1, . . . , R`,
←−
R 1, . . . ,

←−
R `) be the combination of all the graphs G̃Ti ’s and

G̃Ti,Tj ’s. Formally,

V =
⋃
T

V (G̃T )

R =
⋃
T

R(G̃T ) ∪
⋃
Ti,Tj

R(G̃Ti,Tj ) for each R ∈ {R1, . . . , R`,
←−
R 1, . . . ,

←−
R `},

where V (G̃T ) is the set of vertices in G̃T and R(G̃T ) is the set of R-edges in G̃T .
Moreover, we also label each vertex v ∈ V with a subset of P as follows. For each

T ∈ Tφ, for each v ∈ VT , we “declare” that v is labeled with a unary predicate P ∈ P
if and only if P ∈ T .

We claim that G |= φ. For that, it is sufficient to show that for each T ∈ Tφ, for
each v ∈ VT , typeG(v) = T . The proof is divided into three cases.

• For each unary predicate P ∈ P, it is by our labelling of the vertices of G
that P (v) holds in G if and only if P ∈ T .

• For each ♦lR µ ∈ T , we have∑
T ′ s.t. T ′3µ

f(T,R, T ′) ≥ l

number of outgoing R-edges from v. Since every function f ∈ F is consistent,
♦lR µ ∈ typeG(v).

• Similary, for each ♦lR µ /∈ T , and hence ¬(♦lR µ) ∈ T , we have∑
T ′ s.t. T ′3µ

f(T,R, T ′) ≤ l − 1

number of outgoing R-edges from v. Since every function f ∈ F is consistent,
♦lR µ /∈ typeG(v).
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Therefore the graph G |= φ, and hence N ∈ Spec(φ).
Now we prove the direction PREBφ ⊇ Spec(φ). Suppose A |= φ and |A| = N .

Let M̄ = (M(T1,f1), . . . ,M(Tn,fm,)) where M(T,f) be the number of elements of type T
from which there exist f(T,R, S) outgoing R-edges towards the elements of type S.
Assign the variable X(T,f) with M(T,f), for each T ∈ Tφ and f ∈ F . It immediately
follows from Theorems 5.2 and 5.4 that CON(M̄) holds. Moreover, PREB-Atomφ(M̄)
holds, since A |= φ. This completes the proof that PREBφ = Spec(φ), when φ is a
basic QMLC sentence.

When φ ∈ QMLC is the negation of a basic QMLC sentence, say ¬∃kϕ, the formula
PREB-Atomφ is ∑

(T,f) s.t. ϕ∈T

X(T,f) ≤ k − 1

which is the negation of ∑
(T,f) s.t. ϕ∈T

X(T,f) ≥ k

Then PREBφ = Spec(φ) follows immediately from above.
The correctness for the case when φ is φ1 ∧ φ2 or φ1 ∨ φ2, can be established

via straightforward inductive argument. This completes our proof that PREBφ =
Spec(φ), and hence, Theorem 2.1.

7. Proof of Theorem 5.2. The proof of Theorem 5.2 is rather long. As a
warm-up, we prove the following easy Proposition 7.1 first.

Proposition 7.1. Let c, d ≥ 0. For every M,N ∈ N, the following holds.
(a) There exists a (c, d)-biregular graph of size (M,N) if and only if N ≥ c, M ≥ d

and Mc = Nd.
(b) There exists a (c,Id)-biregular graph of size (M,N) if and only if M ≥ d, N ≥ c

and Mc ≥ Nd.
(c) There exists a (Ic,Id)-biregular graph of size (M,N) if and only if M ≥ d, N ≥ c.

Proof. Let c, d ≥ 0, and let M,N ∈ N. We first prove part (a). The “only if”
direction follows from the fact that in (c, d)-biregular graph the number of edges is
precisely Mc = Nd. That M ≥ d and N ≥ c is straightforward.

The “if” direction is as follows. Let K = Mc = Nd. Suppose also M ≥ d and
N ≥ c. First, we construct the following graph.


M vertices

Each of degree c

u1 r((((((((((rv1
...hhhhhhhhhhrvc

...
...

uM r((((((((((rvK−c+1

...hhhhhhhhhhrvK



K vertices

Each of degree 1

On the left side, we have M vertices, and each has degree c. On the right side,
we have K = Nd vertices, and each has degree 1. We are going to merge every d
vertices on the right side into one vertex of degree d. The merging is as follows. We
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merge every d vertices vi, vi+N , . . . , vi+(d−1)N into one vertex for every i = 1, . . . , N .
Since K = Nd, it is possible to do such merging. Moreover, N ≥ c, hence we do not
have multiple edges between two vertices. Thus, we obtain the desired (c, d)-biregular
graph of size (M,N).∗∗

Now we consider part (b). The “only if” direction follows from the fact that in
(c,Id)-biregular graph the number of edges is precisely Mc, which should be greater
than Nd. That M ≥ d and N ≥ c is straightforward.

For the “if” direction, the proof is almost the same as above. Suppose M ≥ d,
N ≥ c and Mc ≥ Nd. Let K = Mc. We first construct the bipartite graph, in which
on the left side, we have M vertices, each of which has degree c; and on the right side
we have K = Mc vertices, each of which has degree 1.

For every i ∈ {1, . . . , N}, we set the set Ii ⊆ {1, . . . ,K} as follows.

Ii := {i+ kN | 1 ≤ i+ kN ≤ K}.

Since K = Mc ≥ Nd, the cardinality |Ii| ≥ d for every 1 ≤ i ≤ N . Now for every
1 ≤ i ≤ N , we merge the vertices {vj | j ∈ Ii} into one vertex. Hence, we obtain the
desired (c,Id)-biregular graph of size (M,N).

Now we prove part (c). The “only if” direction is straightforward. The “if”
direction is as follows. Suppose M ≥ d and N ≥ c. There are two cases: either
Mc ≥ Nd, or Mc < Nd. In the former case, we construct a (c,Id)-biregular graph
of size (M,N), while in the latter case, we construct a (Ic, d)-biregular graph of size
(M,N). In either case, we obtain a (Ic,Id)-biregular graph of size (M,N). This
completes our proof of Proposition 7.1.

The proof of Theorem 5.2 is a generalisation of Proposition 7.1 above. It is divided
into five successive steps presented in Subsections 7.1– 7.6.

• Subsection 7.1.
It contains the generalisation of Proposition 7.1 to the case of (c̄, d̄)-biregular,
where c̄ and d̄ are vectors over N. (That is, we consider the 1-type biregular
graphs.)

• Subsection 7.2.
In this subsection we use the Presburger characterisation for (c̄, d̄)-biregular
graphs to obtain a similar characterisation for `-type (C,D)-biregular graphs,
where C,D are matrices over N.

• Subsection 7.3.
In this subsection we obtain the characterisation for (C,D)-biregular graphs
when C,D contain elements from IN assuming that the number of vertices
whose degrees specified with Id is “big enough.” It is obtained by using the
characterisation obtained in Subsection 7.2.

• Subsection 7.4.
This subsection is the generalisation of Subsection 7.3, where the graphs may
contain a “small” number of vertices whose degree is specified with Id. The
idea is to encode directly those vertices in the Presburger formula. This is
presented formally by our notion of partial graphs.

• Subsection 7.5.

∗∗Note that Mc = Nd, hence, N ≥ c already implies M ≥ d. So it is not necessary to use the fact
that M ≥ d. Of course, by symmetry, we can first build a bipartite graph in which the left side has
N vertices of degree d and the right side has K = Mc vertices of degree 1. Then to build the desired
(c, d)-biregular graph, we make use of the fact M ≥ d.
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In this subsection we present the construction of the formula required in
Theorem 5.1. It is built from the formula obtained in Subsection 7.4.

• Subsection 7.6.
Finally in this subsection we present the construction of the formula required
in Theorem 5.2, which is built from the formula obtained in Subsection 7.5.

In the following we write 1̄ to denote the vector (1, . . . , 1) ∈ Nm, for an appropriate
m ≥ 1. That is, 1̄ is a vector whose components are all one. For two vectors c̄ =
(c1, . . . , cm) ∈ Nm and d̄ = (d1, . . . , dm) ∈ Nm, the dot product between c̄ and d̄ is
c̄ · d̄ = c1d1 + · · ·+ cmdm.

7.1. When C = c̄ ∈ N1×m and D = d̄ ∈ N1×n. In this subsection we con-
sider the case when C and D consist of only one vector each. In this case, we are
going to write (c̄, d̄)-biregular graph, where c̄ and d̄ are the only vectors in C and D,
respectively.

Lemma 7.2. Let c̄ ∈ Nm and d̄ ∈ Nn and both do not contain zero entry. For
each M̄ ∈ Nm and N̄ ∈ Nn such that M̄ · 1̄ + N̄ · 1̄ ≥ 2(c̄ · 1̄)(d̄ · 1̄) + 3, the following
holds. There exists a (c̄, d̄)-biregular graph of size (M̄, N̄) if and only if M̄ · c̄ = N̄ · d̄.

Proof. Let c̄ ∈ Nm and d̄ ∈ Nn and both do not contain zero entry. Let M̄ ∈ Nm,
N̄ ∈ Nn such that M̄ · 1̄ + N̄ · 1̄ ≥ 2(c̄ · 1̄)(d̄ · 1̄) + 3.

The “only if” direction is straightforward. If G is a (c̄, d̄)-biregular graph of size
(M̄, N̄), then the number of edges in G is precisely M̄ · c̄ = N̄ · d̄.

Now we prove the “if” part. Suppose M̄ ∈ Nm, N̄ ∈ Nn such that M̄ ·c̄ = N̄ ·d̄. Let
c̄ = (c1, . . . , cm) and d̄ = (d1, . . . , dn), and M̄ = (M1, . . . ,Mm) and N̄ = (N1, . . . , Nn).

We are going to construct a (c̄, d̄)-biregular graph of size (M̄, N̄). We first con-
struct a preliminary bipartite graph G pictured in Figure 7.1. That is, the left side
has M̄ · 1̄ vertices, and there are M1 vertices of degree c1, M2 nodes of degree c2, etc.
The right side has M̄ · c̄ number of vertices, each of degree one.

We are going to do some merging of the vertices on the right side so that there are
exactly N1 vertices of degree d1, N2 vertices of degree d2, etc. We do the following.
We “group” the vertices on the right side into V1, . . . , Vn where V1 has N1d1 vertices,
V2 has N2d2 vertices, etc. Such grouping is possible because M̄ · c̄ = N̄ · d̄.

For each i ∈ {1, . . . , n}, we do the following. We merge di vertices in Vi into one
vertex, so that each vertex in Vi has degree di as follows. Let Vi = {vi,1, . . . , vi,Ki}
where Ki = Nidi. We merge the vertices v1, vNi+1, v2Ni+1, . . . , v(di−1)Ni+1 into one
vertex; the vertices v2, vNi+2, v2Ni+2, . . . , v(di−1)Ni+2 into one vertex; and so on.

After such merging, each vertex in Vi has degree di. However, it is possible that
after we do the merging, we have “parallel” edges, i.e. more than one edges between
two vertices. We are going to “remove” such parallel edges one by one until there are
no more parallel edges.

Suppose we have parallel edges between the vertices u and v. We pick an edge
(u′, v′) such that u′ is not adjacent to v and v′ is not adjacent to u. See the left side
of the illustration in Figure 7.2.

Such an edge (u′, v′) exists since the number of vertices reachable in distance
2 from the vertices u and v is ≤ 2(c̄ · 1̄)(d̄ · 1̄) + 2 and the number of vertices is
M̄ · 1̄ + N̄ · 1̄ ≥ 2(c̄ · 1̄)(d̄ · 1̄) + 3 and the fact that none of the vertices are of zero
degree. (Here we make use of the fact that neither c̄ nor d̄ contain zero entry.)

Now we delete the edges (u′, v′) and one of the parallel edge (u, v), replace it
with the edges (u, v′) and (u′, v), as illustrated on the right side of the illustration in
Figure 7.2. We perform such operation until there are no more parallel edges. This
completes the proof of Lemma 7.2.



Regular graphs and the spectra of two-variable logic with counting 17


M1 number of vertices

of degree c1

u1,1r((((((((((r
...hhhhhhhhhhr

 c1

...
...

u1,M1r((((((((((r
...hhhhhhhhhhr

 c1

....

..

....

..


Mm number of vertices

of degree cm

um,1r((((((((((r
...hhhhhhhhhhr

 cm

...
...

um,Mmr((((((((((r
...hhhhhhhhhhr

 cm
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Fig. 7.1. The preliminary graph constructed in the proof of Lemma 7.2.
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Fig. 7.2. Eliminating the parallel edges in the proof of Lemma 7.2.

The following theorem is a straightforward application of Lemma 7.2.

Theorem 7.3. For every c̄ ∈ Nm and d̄ ∈ Nn, there exists a Presburger formula
BiREG(c̄,d̄)(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ = (Y1, . . . , Yn) such that the fol-

lowing holds. There exists a (c̄, d̄)-biregular graph of size (M̄, N̄) if and only if the
sentence BiREG(c̄,d̄)(M̄, N̄) holds.

Proof. The proof is a direct application of Lemma 7.2. We assume that all
the entries in c̄ and d̄ are not zero. Otherwise, we do the following. Suppose c̄ =
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(c1, . . . , cm), d̄ = (d1, . . . , dn) and let I = {i | ci = 0} and J = {j | dj = 0}. We define

BiREGc̄,d̄(X̄, Ȳ ) :=
∧
i∈I

Xi ≥ 0 ∧
∧
j∈J

Yj ≥ 0 ∧ BiREGc̄′,d̄′(X̄
′, Ȳ ′),

where c̄′ and X̄ ′ are the vectors c̄ and X̄ without the entries in I, respectively, and d̄′

and Ȳ ′ are the vectors d̄ and Ȳ without the entries in J , respectively.

For c̄ ∈ Nm and d̄ ∈ Nn which do not contain zero entry, we define the following
set Hc̄,d̄.

Hc̄,d̄ :=

{
(M̄, N̄)

∣∣∣∣ M̄ · 1̄ + N̄ · 1̄ ≤ 2(c̄ · 1̄)(d̄ · 1̄) + 2 and
there exists a (c̄, d̄)-biregular graph of size (M̄, N̄)

}
Such set can be computed greedily since the number of (M̄, N̄) such that M̄ ·1̄+N̄ ·1̄ ≤
2(c̄ · 1̄)(d̄ · 1̄) + 2 is bounded.

Now we define the formula BiREGc̄,d̄(X̄, Ȳ ) as follows.(
M̄ · 1̄ + N̄ · 1̄ ≥ 2(c̄ · 1̄)(d̄ · 1̄) + 3 ∧ (X̄ · c̄ = Ȳ · d̄)

)
∨

∨
(M̄,N̄)∈Hc̄,d̄

X̄ = M̄ ∧ Ȳ = N̄

The formula is a Presburger formula since c̄ and d̄ are constants. Since c̄, d̄ do not con-
tain zero entry, we can apply Lemma 7.2 to obtain the correctness of BiREGc̄,d̄(X̄, Ȳ ).
This completes our proof of Theorem 7.3.

7.2. When C ∈ N`×m and D ∈ N`×n. Theorem 7.4 below is the generalisation
of Theorem 7.3 to the case where ` ≥ 1. In the following, for a matrix C ∈ N`×m, we
write C · 1̄ to denote the sum of all the entries in C.

Theorem 7.4. For every C ∈ N`×m and D ∈ N`×n, there exists a Presburger
formula BiREGC,D(X̄, Ȳ ), where X̄ = (X1, . . . , Xm) and Ȳ = (Y1, . . . , Yn) such that
the following holds. There exists a (C,D)-biregular `-type graph of size (M̄, N̄) if and
only if the sentence BiREGC,D(M̄, N̄) holds.

Proof. Let C ∈ N`×m and D ∈ N`×n be the given matrices. For simplicity, we
assume that both C and D do not contain zero column. If column i in matrix C
(or, D, respectively) is zero column, then we add the constraint Xi ≥ 0 (or, Yi ≥ 0,
respectively) and ignore that column.

Let c̄1, . . . , c̄` and d̄1, . . . , d̄` be the row vectors of C and D, respectively. For
a vector t̄ = (t1, . . . , tm) ∈ Nm, we define the characteristic vector of t̄ as χ(t̄) :=
(b1, . . . , bm) ∈ {0, 1}m where bi = 0 if ti = 0, and bi = 1 if ti 6= 0.

We first define the following set.

HC,D :=

{
(M̄, N̄)

M̄ · 1̄ + N̄ · 1̄ < 2`(C · 1̄)(D · 1̄) + 3` and
there exists a (C,D)-biregular graph of size (M̄, N̄)

}
Again, such set can be computed greedily since the number of (M̄, N̄) such that
M̄ · 1̄ + N̄ · 1̄ < 2`(C · 1̄)(D · 1̄) + 3` is bounded.

Then, the formula BiREGC,D(X̄, Ȳ ) can be defined inductively as follows. When
` = 1,

BiREGC,D(X̄, Ȳ ) := BiREGc̄1,d̄1
(X̄, Ȳ )
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When ` ≥ 2,

BiREGC,D(X̄, Ȳ ) :=
∨

(M̄,N̄)∈HC,D

X̄ = M̄ ∧ Ȳ = N̄

∨
∨

1≤j≤`

(
X̄ · χ(c̄j) + Ȳ · χ(d̄j) ≥ 2(C · 1̄)(D · 1̄) + 3

∧ BiREGC−c̄j ,D−d̄j (X̄, Ȳ )

∧ BiREGc̄j ,d̄j (X̄, Ȳ )
)

where C − c̄j , D − d̄j denote the matrices C and D without row j, respectively.
We are going to prove that there exists a (C,D)-biregular graph of size (M̄, N̄)

if and only if the statement BiREGC,D(M̄, N̄) holds. The proof is by induction on
`. The basis ` = 1 has been established in Theorem 7.3. For the induction step, we
assume that it holds for the case of `− 1 and we are going to prove the case `.

We first prove the “only if” direction. Suppose G = (U, V,E1, . . . , E`) is (C,D)-
biregular of size (M̄, N̄). If (M̄, N̄) ∈ HC,D, then BiREGC,D(M̄, N̄) holds. So suppose
(M̄, N̄) /∈ HC,D and M̄ · 1̄ + N̄ · 1̄ ≥ 2`(C · 1̄)(D · 1̄) + 3`.

It is not difficult to see that since C and D do not contain zero column, there
exists j ∈ {1, . . . , `} such that M̄ · χ(c̄j) + N̄ · χ(d̄j) ≥ 2(C · 1̄)(D · 1̄) + 3. More-
over, if G = (U, V,E1, . . . , E`) is (C,D)-biregular of size (M̄, N̄), then G is also
(C − c̄j , D − d̄j)-biregular and (c̄j , d̄j)-biregular. By the induction hypothesis, both
BiREGC−c̄j ,D−d̄j (M̄, N̄) and BiREGc̄j ,d̄j (M̄, N̄) hold.

We now prove the “if” direction. Suppose BiREGC,D(M̄, N̄) holds. If (M̄, N̄) ∈
HC,D, then there exists a (C,D)-biregular graph of size (M̄, N̄) and we are done. So
suppose (M̄, N̄) /∈ HC,D. Hence there exists j ∈ {1, . . . , `} such that

M̄ · χ(c̄j) + N̄ · χ(d̄j) ≥ 2(C · 1̄)(D · 1̄) + 3

∧ BiREGC−c̄j ,D−d̄j (M̄, N̄) ∧ BiREGc̄j ,d̄j (M̄, N̄)

For simplicity, we assume that j = `. By the induction hypothesis, there exists a
(C − c̄`, D − d̄`)-biregular graph G1 = (U1, V1, E1, . . . , E`−1) of size (M̄, N̄), and by
definition, E1, . . . , E`−1 are pairwise disjoint. By Theorem 7.3, there exists a (c̄`, d̄`)-
biregular graph G2 = (U2, V2, E`) of size (M̄, N̄). We can assume that U1 = U2 = U
and V1 = V2 = V since G1 and G2 are of the same size (M̄, N̄).

We are going to combine G1 and G2 into one graph to get an `-type (C,D)-
biregular graph G = (U, V,E1, . . . , E`) of size (M̄, N̄). If E` ∩ (E1 ∪ · · · ∪ E`−1) = ∅,
then the graph G = (U, V,E1, . . . , E`) is the desired (C,D)-biregular `-type graph of
size (M̄, N̄), and we are done.

Now suppose E`∩ (E1∪· · ·∪E`−1) 6= ∅. We are going to construct another graph
G′2 = (U, V,E′`) such that

|E′` ∩ (E1 ∪ · · · ∪ E`−1)| < |E` ∩ (E1 ∪ · · · ∪ E`−1)|

We do this repeatedly until at the end we obtain a graph G′′2 = (V,E′′` ) such that
E′′` ∩ (E1 ∪ · · · ∪ E`−1) = ∅.

Let (u, v) ∈ E` ∩ (E1 ∪ · · · ∪ E`−1). The number of vertices reachable in from
u and v within distance 2 (by any of edges in E1, . . . , E`) is ≤ 2(C · 1̄)(D · 1̄) + 2.
Since M̄ · χ(c̄`) + N̄ · χ(d̄`) ≥ 2(C · 1̄)(D · 1̄) + 3, there exists (u′, v′) ∈ E` such that
(u, u′), (v, v′) /∈ E1 ∪ · · · ∪ E`. See the left side of the illustration below.
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Now we define E′` by deleting the edges (u, v), (u′, v′) from E`, while adding the

edges (u, v′), (u′, v) into E`. Formally,

E′` := (E` − {(u, v), (u′, v′)}) ∪ {(u, u′), (v, v′)}

See the right side of the illustration above.
Now it is straightforward that G′ = (U, V,E′`) is still a d̄`-regular graph of size

N̄ , while

|E′` ∩ (E1 ∪ · · · ∪ E`−1)| < |E` ∩ (E1 ∪ · · · ∪ E`−1)|

We perform this operation until E`+1 ∩ (E1 ∪ · · · ∪E`) = ∅. This completes the proof
of Theorem 7.4.

7.3. For C ∈ B`×n and D ∈ B`×m when the number of vertices is “big
enough”. Let C ∈ B`×m and D ∈ B`×n, where c̄1, . . . , c̄` and d̄1, . . . , d̄` are the row
vectors of C and D, respectively.

We define the following. Two vectors M̄ = (M1, . . . ,Mm) ∈ Nm and N̄ =
(N1, . . . , Nn) ∈ Nn are “big enough” with respect to C,D, if the following inequalities
hold.

∧
1≤i≤`

(
M̄ · χ(c̄i) + N̄ · χ(d̄i) ≥ 2(C · 1̄)(D · 1̄) + 3

)
(7.1)

∧
∧

1≤i≤`

(( ∑
j such that Di,j∈IN

Nj

)
≥ max

1≤j≤m
(Ci,j)

)
(7.2)

∧
∧

1≤i≤`

(( ∑
j such that Ci,j∈IN

Mj

)
≥ max

1≤j≤m
(Di,j)

)
(7.3)

We also need a few auxiliary notations. In the following for a positive integer `, I`
denotes the (`× `) identity matrix. For Id ∈ IN, we write bIdc to denote the number
d. By default, we set bdc = d. We define the + operations on B as follows.

d1 + d2 = (d1 + d2)
Id1 + d2 = d1 + Id2 = Id1 + Id2 = I(d1 + d2)

We extend b·c and + to vectors and matrices over B in the natural way, where they are
applied componentwise. For two vectors t̄1, t̄2 ∈ Bm, we define the dot product t̄1 · t̄2
as bt̄1c · bt̄2c. For a matrix D ∈ B`×m, we write D · 1̄ to denote the sum

∑
i,jbDi,jc.
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The lemma below characterises the existence of (C,D)-biregular graph of size
(M̄, N̄), where M̄, N̄ are big enough with respect to (C,D) and that for every row i,
either the row-i of C or of D contains only elements from N.

Lemma 7.5. Let C ∈

 C(1)

C(2)

C(3)

 ∈ B`×m and D ∈

 D(1)

D(2)

D(3)

 ∈ B`×n where

` = `1 + `2 + `3 and
• C(1) ∈ N`1×m and D(1) ∈ N`1×n;
• C(2) ∈ N`2×m and D(2) ∈ B`2×n and every row in D(2) contains an element

of IN;
• C(3) ∈ B`3×m and D(3) ∈ N`3×n and every row in C(3) contains an element

of IN.
Let M̄ ∈ Nm and N̄ ∈ Nn be big enough with respect to C and D. Then, the following
holds. There exists a (C,D)-biregular graph of size (M̄, N̄) if and only if the statement
BiREGC′,D′((M̄,K1, . . . ,K`3), (N̄ , L1, . . . , L`2)) holds, where

• C ′ =

 C(1) 0

C(2) 0

bC(3)c I`3

 ∈ N`×(m+`3) and D′ =

 D(1) 0

bD(2)c I`2
D(3) 0

 ∈ N`×(n+`2)

• each Ki = d̄`1+`2+i · N̄ − bc̄`1+`2+ic · M̄ ,
• each Li = c̄`1+i · M̄ − bd̄`1+ic · N̄ .

Proof. Let C ∈

 C(1)

C(2)

C(3)

 ∈ B`×m and D ∈

 D(1)

D(2)

D(3)

 ∈ B`×n and `1, `2, `3,

M̄ ∈ Nm and N̄ ∈ Nn be as in the premises. We also assume that c̄1, . . . , c̄` and
d̄1, . . . , d̄` are the row vectors of C and D, respectively.

Before we present our proof, we have to remark here that we do not need the
condition that M̄ and N̄ are big enough to establish the “only if” direction. For the
“if” direction, we only need Inequalities 7.2 and 7.3. Inequality 7.1 is needed only to
established Theorem 7.6.

We start with the “only if” direction. Suppose G = (U, V,E1, . . . , E`) is a (C,D)-
biregular graph of size (M̄, N̄). This means there exist a partition U = U1 ∪ · · · ∪Um
and a partition V = V1 ∪ · · · ∪ Vn such that for each i = 1, . . . , `,

• for each j = 1, . . . ,m, for each u ∈ Uj , degEi(u) = Ci,j ;
• for each j = 1, . . . , n, for each v ∈ Vj , degEi(v) = Di,j .

Now, the following holds.
• For each i = `1 + 1, . . . , `1 + `2, the number of Ei-edges in G is c̄i · M̄ , which

should be greater than bd̄ic · N̄ . We set Li−`1 = c̄i · M̄ − bd̄ic · N̄ .
• For each i = `1 +`2 +1, . . . , `1 +`2 +`3, the number of Ei-edges in G is d̄i · N̄ ,

which should be greater than bc̄ic · M̄ . We set Ki−`1−`2 = d̄i · N̄ − bc̄ic · M̄ .
Let C ′, D′ be as defined in the lemma, and K̄ = (K1, . . . ,K`3) and L̄ = (L1, . . . , L`2).
We construct a (C ′, D′)-biregular graph of size ((M̄, K̄), (N̄ , L̄)) as follows.

• For each i = `1 + 1, . . . , `1 + `2, for each j = 1, . . . , n, for each vertex v ∈ Vj ,
if degEi(v) > bDi,jc, then we “split” v into v0, v1, . . . , vk vertices, where

– k = degEi(v)− bDi,jc,
– degEi(v0) = bDi,jc, and for each i′ 6= i, degEi′ (v0) = degEi′ (v),
– degEi(v1) = degEi(v2) = · · · = degEi(vk) = 1, and for each i′ 6= i,

degEi′ (v1) = degEi′ (v2) = · · · = degEi′ (vk) = 0.
• Similarly, for each i = `1 + `2 + 1, . . . , `1 + `2 + `3, for each j = 1, . . . ,m, for

each vertex u ∈ Uj , if degEi(u) > bCi,jc, then we “split” u into u0, u1, . . . , uk
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vertices, where
– k = degEi(u)− bDi,jc,
– degEi(u0) = bDi,jc, and for each i′ 6= i, degEi′ (u0) = degEi′ (u),
– degEi(u1) = degEi(u2) = · · · = degEi(uk) = 1, and for each i′ 6= i,

degEi′ (u1) = degEi′ (u2) = · · · = degEi′ (uk) = 0.
It should be obvious that the resulting graph is a (C ′, D′)-biregular graph of size
((M̄, K̄), (N̄ , L̄)).

Now we prove the “if” direction. Suppose BiREGC′,D′((M̄, K̄), (N̄ , L̄)) holds,
where each Li = c̄i · M̄ − bd̄ic · N̄ and Ki = d̄i · N̄ − bc̄ic · M̄ .

By Theorem 7.4, there exists a (C ′, D′)-biregular graphG of size ((M̄, K̄), (N̄ , L̄)).
Let G = (U ∪A, V ∪B,E1, . . . , E`), where U ∪A = U1 ∪ · · · ∪Um ∪A1 ∪ · · · ∪A`3 and
V ∪B = V1 · · · · · · ∪ Vn ∪B1 ∪ · · · ∪B`2 are the witness of the (C ′, D′)-biregularity.

To construct a (C,D)-biregular graph of size (M̄, N̄), we do the following. For
each vertex u ∈ U adjacent by Ei-edges to, say, s vertices in B, we pick s vertices
v1, . . . , vs from the set ⋃

j such that di,j∈IN

Vj

Such s vertices exist since by Inequality 7.2,
∑
j such that di,j∈IN Nj is ≥ max(c̄i) ≥

deg(u). We delete those s vertices in B, and connect u to each of v1, . . . , vs by Ei-
edges. We do this until the set B is empty. Similarly, by Inequality 7.3, we can perform
similar operations until the set A is empty. The resulting graph is a (C,D)-biregular
graph of size (M̄, N̄). This completes the proof of Lemma 7.5.

Now Lemma 7.5 tells us the Presburger formula BiREGC,D for a pair of matrices

satisfying the assumption given in Lemma 7.5. More formally, let C ∈

 C(1)

C(2)

C(3)

 ∈
B`×m and D ∈

 D(1)

D(2)

D(3)

 ∈ B`×n where ` = `1 + `2 + `3 and

• C(1) ∈ N`1×m and D(1) ∈ N`1×n;
• C(2) ∈ N`2×m and D(2) ∈ B`2×n and every row in D(2) contains an element

of IN;
• C(3) ∈ B`3×m and D(3) ∈ N`3×n and every row in C(3) contains an element

of IN.
That is, for such C,D, we define BiREGC,D(X̄, Ȳ ) as follows.

BiREGC,D(X̄, Ȳ ) := ∃Z1 · · · ∃Z`3 ∃Z ′1 · · · ∃Z ′`2(7.4)

BiREGC′,D′(X̄, Z1, . . . , Z`3 , Ȳ , Z
′
1, . . . , Z

′
`2)

where C ′ =

 C(1) 0

C(2) 0

bC(3)c I`3

 ∈ N`×(m+`3) and D′ =

 D(1) 0

bD(2)c I`2
D(3) 0

 ∈ N`×(n+`2).

Since C ′, D′ consist of entirely N entries, BiREGC′,D′ is defined as in Theorem 7.4. In-
tuitively, the variables Z1, . . . , Z`3 are to capture the valuesK1, . . . ,K`3 and Z ′1, . . . , Z`2
the values L1, . . . , L`2 , as stated in Lemma 7.5.

Using this, we can prove the following theorem.
Theorem 7.6. For every C ∈ B`×m and D ∈ B`×n, there exists a Presburger

formula B̃iREGC,D(X̄, Ȳ ) such that for every M̄, N̄ big enough with respect to C,D,
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the following holds. There exists a (C,D)-biregular graph of size (M̄, N̄) if and only

if the statement B̃iREGC,D(M̄, N̄) holds.
Proof. Let C ∈ B`×m and D ∈ B`×n, where c̄1, . . . , c̄` and d̄1, . . . , d̄` are the row

vectors of C and D, respectively.
We need an additional notation. For a set I ⊆ {1, . . . , `}, we write C(I) be the

matrix C ′, in which each row vector c̄′i is defined as c̄′i = bc̄ic, if i ∈ I, and c̄′i = c̄i, if
i 6∈ I. We can define D(I) similarly.

We define the formula BiREGC,D(X̄, Ȳ ) as follows.

B̃iREGC,D(X̄, Ȳ ) :=
∨

I0,I1,I2


∧
i∈I0 X̄ · bc̄ic = Ȳ · bd̄ic ∧∧
i∈I1 X̄ · bc̄ic > Ȳ · bd̄ic ∧∧
i∈I2 X̄ · bc̄ic < Ȳ · bd̄ic ∧

BiREGC(I0∪I2),D(I0∪I1)(X̄, Ȳ )


where each BiREGC(I0∪I2),D(I0∪I1)(X̄, Ȳ ) is as defined in Equation 7.4 and I0, I1, I2
range over the partition I0 ∪ I1 ∪ I2 = {1, 2, . . . , `}. Obviously, for every partition
I0 ∪ I1 ∪ I2 = {1, . . . , `}, on each row i = 1, . . . , `, either row-i from C(I0 ∪ I2), or
row-i from D(I0 ∪ I1), or row-i from both consists entirely of N. (Our intention is the
application of Lemma 7.5 later on.)

We are going to prove that the formula B̃iREGC,D(X̄, Ȳ ) is the desired formula.
The “if” direction follows from Lemma 7.5 and that every C(I0 ∪ I2), D(I0 ∪ I1)-
biregular graph is obviously also a (C,D)-biregular graph.

Now we prove the “only if” direction. Suppose M̄, N̄ are big enough for C,D.
Let G = (U, V,E1, . . . , E`) be a (C,D)-biregular graph of size (M̄, N̄), where U =
U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn are the witnesses of the C,D-biregularity.

We pick the following paritition I0 ∪ I1 ∪ I2 = {1, . . . , `}.

I0 = {i | M̄ · bc̄ic = M̄ · bd̄ic}
I1 = {i | M̄ · bc̄ic > M̄ · bd̄ic}
I2 = {i | M̄ · bc̄ic < M̄ · bd̄ic}

We are going to convert the graph G into (C(I0 ∪ I1), D(I0, I2))-biregular graph
in which U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn are also the witness of the
(C(I0 ∪ I1), D(I0, I2))-biregularity. This, together with Lemma 7.5, implies that
BiREGC(I0∪I1),D(I0,I2)(M̄, N̄) holds, and hence, our theorem.

If G is already a (C(I0∪I1), D(I0, I2))-biregular graph, then we are done. Suppose
that G is not. We do the following three stages.
Stage 1. We assume that the following holds for the graph G. For every edge (u, v) ∈
Ei in G, either

degEi(u) = bCi,jc or degEi(v) = bDi,kc.(7.5)

This can be achieved by doing the following. Suppose there is an edge (u, v) ∈ Ei
such that degEi(u) > bCi,jc and degEi(v) > bDi,kc. Since G is (C,D)-biregular, this
means that Ci,j , Di,k ∈ IN.

Deleting the edge (u, v), we still have degEi(u) ≥ bCi,jc and degEi(v) ≥ bDi,kc,
and hence G is still (C,D)-biregular with U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn
being the witness of the (C,D)-biregularity. We repeatedly do this until the graph G
satisfies condition (7.5).
Stage 2. We construct a graph G′ = (U ∪ S, V ∪ T,E′1, . . . , E′`), where for every
i = 1, . . . , `,
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• for every j = 1, . . . ,m, for each u ∈ Uj , degE′
i
(u) = bCi,jc,

• for every s ∈ S, deg(s) = 1,††

• for every k = 1, . . . , n, for each v ∈ Vj , degE′
i
(v) = bDi,jc,

• for every t ∈ T , deg(t) = 1.
The graph G′ can be obtained by doing the same trick as in the proof of Lemma 7.5.
For every vertex u ∈ Uj , if degEi(u) − bCi,jc = z > 0, then we “split” u into z + 1
vertices u′, s1, . . . , sz, where

• degEi(u
′) = bCi,jc, for all other h 6= i, degEh(u′) = degEh(u);

• degEi(s1) = · · · = degEi(sz) = 1, and for all other h 6= i, degEh(s1) = · · · =
degEh(sz) = 0.

We can do similar operation to the vertices in Vk. Since G satisfies condition 7.5, there
is no edge between vertices in S and T . We also further partition S = S1 ∪ · · · ∪ S`
and T = T1 ∪ · · · ∪ T`, where each Si and Ti contains the vertices whose degEi = 1.
Stage 3. Stage 3 is as follows. For each i = 1, . . . , `, if there are an edge (s, v) ∈ Ei
and an edge (u, t) ∈ Ei, for some s ∈ Si, v ∈ Vk, u ∈ Uj , t ∈ Ti, we do the following.

• We delete the two edges (s, v) and (u, t) from Ei, as well as the vertices s and
t.

• We add an edge (u, v) into Ei.
• If there is already an existing edge (u, v) ∈ E1 ∪ · · · ∪ E`, adding another

(u, v) may result in “parallel” edges. However, since M̄, N̄ is big enough with
respect to C,D, and in particular, Inequality 7.1 holds, we can apply the
same trick as in the proof of Theorem 7.4 to get rid of the parallel edge, while
preserving the degree of the vertices.

We repeatedly do this until for each i = 1, . . . , ` either Si = ∅, or Ti = ∅. In particular,
the following holds.

• If i ∈ I0, then Si = Ti = 0.
Recall that i ∈ I0 means that M̄ · bc̄ic = N̄ · bd̄ic, which implies that the
initial sets Si, Ti have the same cardinality. Since we always delete a pair of
vertices s, t from Si, Ti, respectively, we have at the end Si = Ti = ∅.

• Likewise, if i ∈ I1, then Si = 0.
This is because M̄ · bc̄ic > N̄ · bd̄ic, implies that initially |Ti| > |Si|, which
further implies that at the end Si = ∅.
By symmetrical reasoning, if i ∈ I2, then Ti = 0.

From here, we will “merge” back the vertices in T with vertices in V . This is done as
follows. For each vertex u ∈ U adjacent by Ei-edges to, say, z vertices in T , we pick
z vertices v1, . . . , vz from the set ⋃

j such that di,j∈IN

Vj

Such z vertices exist by Inequality 7.2 (because M̄, N̄ are big enough w.r.t. C,D).
We delete those z vertices in T , and connect u to each of v1, . . . , vz by Ei-edges. We
do this until the set T is empty. In a similar manner, we can merge back the vertices
in S with vertices in U , where the existence of the vertices v1, . . . , vz is guaranteed by
Inequality 7.3.

The resulting graph is (C(I0∪I1), D(I0, I2))-biregular graph, which by Lemma 7.5
the formula implies that BiREGC(I0∪I2),D(I0∪I1)(M̄, N̄) holds. This completes our

††Recall that deg(s) = degE′
1
(s) + · · · degE′

`
(s). Hence, deg(s) = 1 means that there is only one

edge adjacent to s.
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proof of Theorem 7.6.

7.4. The notion of partial bipartite graphs. In this subsection we are going
to generalise Theorem 7.6 to the case when it is possible that one of the inequalities 7.1
and 7.2 does not hold. The idea is that those numbers (for which the inequalities do
not hold) are encoded into the Presburger formula. For this, we introduce the notion
of partial graph.

An `-type partial bipartite graph is a tuple P = (C,D, S, T, f, g), where

• C ∈ B`×m and D ∈ B`×n,
• S is a finite set of vertices (possibly empty),
• T is a finite set of vertices (possibly empty),
• f : S × {E1, . . . , E`} → B,
• g : T × {E1, . . . , E`} → B.

Obviously, if S or T is empty, then f or g, respectively, is also an “empty” function.
In the following the term partial graph always means partial bipartite graph.

A completion of the partial graph P = (C,D, S, T, f, g) is a bipartite graph G =
(U ∪ S, V ∪ T,E1, . . . , E`) such that there is a partition U1 ∪ · · · ∪ Um of U and a
partition V1 ∪ · · · ∪ Vn of V such that

• for every u ∈ Uj , degEi(u) = Ci,j ,
• for every v ∈ Vj , degEi(v) = Di,j ,
• for every s ∈ S, degEi(s) = f(s, Ei),
• for every t ∈ T , degEi(t) = g(t, Ei).

When it is clear from the context, we also call U = U1∪· · ·∪Um and V = V1∪· · ·∪Vn
the witness of the (C,D)-biregularity. Note that when both S and T are empty, then
the completions of the partial graph P are simply (C,D)-biregular graphs.

We need a few additional notations.

(Ic)− d =

{
I(c− d) if c ≥ d
I0 otherwise

Let C ∈ B`×m. We define a matrix ξ(C) ∈ B`×(`+1)m as follows.

ξ(C) :=
(
C |M1 | · · · |Mm

)
where each Mi is the matrix obtained by repeating the ith column vector of C for `
number of times, and substracting the identity matrix I`. Formally,

Mi :=


C1,i C1,i · · · C1,i

C2,i C2,i · · · C2,i

...
...

. . .
...

C`,i C`,i · · · C`,i

− I`

Lemma 7.7 below essentially states that every partial graph can be reduced into
a “smaller” partial graph with the addition of some linear equalities.

Lemma 7.7. Let P = (C,D, S, T, f, g) be a partial graph, where T 6= ∅. Let t ∈ T .
Then the following holds.

(1) For every completion graph G = (U ∪S, V ∪ T,E1, . . . , E`) of the partial graph P
with U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn being the witness of the (C,D)-
biregularity, there exists a completion graph G′ = (U ∪S, (V ∪T )\{t}, E′1, . . . , E′`)
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of the partial graph P ′ = (ξ(C), D, S, T \ {t}, f, g′), with the witness of the
(ξ(C), D)-biregularity being

U = U ′1 ∪ · · · ∪ U ′m ∪
(U ′1,1 ∪ · · · ∪ U ′`,1) ∪ (U ′1,2 ∪ · · · ∪ U ′`,2) ∪ · · · ∪ (U ′1,m ∪ · · · ∪ U ′`,m)

V = V1 ∪ · · · ∪ Vn

and

|Uj | = |U ′j |+ |U ′1,j |+ · · ·+ |U ′`,j | for each j = 1, . . . ,m∑
1≤j≤m

|U ′i,j | = g(t, Ei) for each i = 1, . . . , `.

(2) Vice versa, for every completion graph G′ = (U ∪ S, (V ∪ T ) \ {t}, E′1, . . . , E′`) of
the partial graph P ′ = (ξ(C), D, S, T \{t}, f, g′), with the witness of the (ξ(C), D)-
biregularity being

U = U ′1 ∪ · · · ∪ U ′m ∪
(U ′1,1 ∪ · · · ∪ U ′`,1) ∪ (U ′1,2 ∪ · · · ∪ U ′`,2) ∪ · · · ∪ (U ′1,m ∪ · · · ∪ U ′`,m)

V = V1 ∪ · · · ∪ Vn

and for each i = 1, . . . , `,
∑

1≤j≤m |U ′i,j | = g(t, Ei), there exists a completion
graph G = (U ∪S, V ∪T,E1, . . . , E`) of the partial graph P with U = U1∪· · ·∪Um
and V = V1 ∪ · · · ∪ Vn being the witness of the (C,D)-biregularity, and

|Uj | = |U ′j |+ |U ′1,j |+ · · ·+ |U ′`,j | for each j = 1, . . . ,m.

Proof. Let P = (C,D, S, T, f, g) be a partial graph, where T 6= ∅ and t ∈ T . First,
we prove part (1). Let G = (U ∪S, V ∪T,E1, . . . , E`) be a completion graph of P with
U = U1 ∪ · · · ∪Um and V = V1 ∪ · · · ∪ Vn being the witness of the (C,D)-biregularity.

For each j = 1, . . . ,m, we partition Uj into

Uj = U ′j ∪ (U ′1,j ∪ · · · ∪ U ′`,j),

where
• U ′j be the set of vertices in Uj that are not adjacent to the vertex t,
• for each i = 1, . . . , `, U ′i,j is the set of vertices in Uj adjacent to t via Ei-edges.

Now deleting the vertex t and all its adjacent edges, we obtain the desired completion
graph G′ = (U ∪ S, (V ∪ T ) \ {t}, E′1, . . . , E′`) of P ′ = (ξ(C), D, S, T \ {t}, f, g′).

Now we prove part (2). Let G′ = (U ∪S, (V ∪T )\{t}, E′1, . . . , E′`) be a completion
of the partial graph P ′ = (ξ(C), D, S, T \{t}, f, g′), with the witness of the (ξ(C), D)-
biregularity being

U = U ′1 ∪ · · · ∪ U ′m ∪
(U ′1,1 ∪ · · · ∪ U ′`,1) ∪ (U ′1,2 ∪ · · · ∪ U ′`,2) ∪ · · · ∪ (U ′1,m ∪ · · · ∪ U ′`,m)

V = V1 ∪ · · · ∪ Vn

and for each i = 1, . . . , `,
∑

1≤j≤m |U ′i,j | = g(t, Ei).
The desired completion graph G = (U ∪S, V ∪T,E1, . . . , E`) of the partial graph

P can be obtained as follows. We put the vertex t back inside T . Then, for each
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i = 1, . . . , ` and for each j = 1, . . . ,m, we connect t with every vertex u ∈ U ′i,j with
Ei-edge. This way we obtain the completion graph G with U = U1 ∪ · · · ∪ Um and
V = V1 ∪ · · · ∪ Vn being the witness of the (C,D)-biregularity, and

|Ui| = |U ′i |+ |U ′1,i|+ · · ·+ |U ′`,i| for each i = 1, . . . ,m.

This completes our proof of Lemma 7.7.

Following Lemma 7.7 above, we show that every partial graph can be translated
into a Presburger formula that captures any of its completion, as stated in the follow-
ing theorem.

Theorem 7.8. For every partial graph P = (C,D, S, T, f, g), we can construct a
Presburger formula ΨP(X̄, Ȳ ) such that for every M̄ and N̄ big enough w.r.t. C,D,
the following holds. There exists a completion graph G = (U ∪ S, V ∪ T,E1, . . . , E`),
such that U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn and M̄ = (|U1|, . . . , |Um|) and
N̄ = (|V1|, . . . , |Vn|) if and only if ΨP(M̄, N̄) holds.

Proof. Let P = (C,D, S, T, f, g) be a partial graph. If the matrix C is empty,
there are only finitely many completion of P. In this case ΨP simply contains the
enumeration of the sizes of all possible completions of P. We can define ΨP in a
similar manner when D is empty.

Now suppose both the matrices C and D are not empty. The construction of ΨP
is done inductively as follows. The base case is S∪T = ∅, in which case ΨP is defined
as follows.

ΨP(X̄, Ȳ ) := B̃iREGC,D(X̄, Ȳ ),

where B̃iREGC,D(X̄, Ȳ ) is as defined in Theorem 7.6.

Towards the induction step, let S ∪ T 6= ∅. Suppose T 6= ∅ and t ∈ T . (The case
when S 6= ∅ can handled in a symmetrical manner.)

We define ΨP(X̄, Ȳ ) as follows.

ΨP(X̄, Ȳ ) := ∃Z1 · · · ∃Zm ∃Z1,1 · · · ∃Z`,1 ∃Z1,2 · · · ∃Z`,2 · · · ∃Z1,m · · · ∃Z`,m
∧

∧
1≤i≤m

Xi = Zi + Z1,i + · · ·+ Z`,i

∧
∧

1≤i≤`

∑
1≤j≤m

Zi,j = g(t, Ei)

∧ ΨP′((Z1, . . . , Zm, Z1,1, . . . , Z`,1, . . . , Z1,m, . . . , Z`,m), Ȳ )

where P ′ = (ξ(C), D, S, T \ {t}, f, g′) and g′ is the function g restricted to T \ {t}.
By Theorem 7.6 in the previous section, the correctness of the base case is es-

tablished. The induction step follows from Lemma 7.7, and hence, shows that the
formula ΨP is the desired formula. This completes our proof of Theorem 7.8.

7.5. Constructing the formula BiREGC,D(X̄, Ȳ ) for Theorem 5.1. We
need the following notions. Let C ∈ B`×m and D ∈ B`×n. We say that a par-
tial graph P = (C ′, D′, S, T, f, g) is compatible with (C,D) with respect to a subset
I ⊆ {1, . . . ,m} and a subset J ⊆ {1, . . . , n}, and the partitions S = S1 ∪ · · · ∪ Sm′′

and T = T1 ∪ · · · ∪ Tn′′ , if the following four conditions hold.

• C ′ ∈ B`×m′
is obtained by deleting the columns I in C.

• D′ ∈ B`×n′
is obtained by deleting the columns J in D.
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• Let C ′′ ∈ B`×m′′
be the matrix whose columns are the columns I in C where

m′′ = m −m′. The matrix C ′′ is simply the matrix form of the function f .
That is, for each k = 1, . . . ,m′′, for every vertex s ∈ Sk, for every i = 1, . . . , `,
f(s, Ei) = C ′′i,k.

• Let D′′ ∈ B`×n′′
be the matrix whose columns are the columns J in D where

n′′ = n − n′. The matrix D′′ is simply the matrix form of the function g.
That is, for each k = 1, . . . , n′′, for every vertex t ∈ Tk, for every i = 1, . . . , `,
g(t, Ei) = D′′i,k.

For a subset I ⊆ {1, . . . ,m}, and a variable vector X̄ = (X1, . . . , X`), we write
X̄I to denote the variables obtained by deleting Xi whenever i ∈ I. We can define ȲJ
similarly when J ⊆ {1, . . . , n} and Ȳ = (Y1, . . . , Yn).

The formula BiREGC,D(X̄, Ȳ ) as required in Theorem 5.1 is as follows.

BiREGC,D(X̄, Ȳ ) :=
∨
P

 ΨP(X̄I , ȲJ) ∧ ϕ
∧ Xi1 = |S1| ∧ Xi2 = |S2| ∧ · · · ∧ ∧ Xim′′ = |Sm′′ |
∧ Yj1 = |T1| ∧ Yj2 = |t2| ∧ · · · ∧ ∧ Yjn′′ = |Tn′′ |


where

• the disjunction ranges over all partial graphs P = (C ′, D′, S, T, f, g) compat-
ible with (C,D) w.r.t. I = {i1, . . . , im′′} and J = {j1, . . . , jn′′}, as well as the
partitions S = S1 ∪ · · · ∪ Sm′′ and T = T1 ∪ · · · ∪ Tn′′ ,
• the formula ψP is as defined in Theorem 7.8,
• ϕ states that X̄I , ȲJ are big enough w.r.t. (C ′, D′), as defined in the Inequal-

ities (7.1), (7.2) and (7.3).
The correctness of the formula BiREGC,D follows immediately from the correctness of
the formula ΨP in Theorem 7.8. This completes our proof of Theorem 5.1.

7.6. Constructing the formula COMP-BiREGC,D(X̄, Ȳ ) for Theorem 5.2.
We start with Lemma 7.9 which essentially states that if there exists a (C,D)-
biregular-complete graph of “big enough” size, then for every column i in C and
every column j in D, there is a row l such that both Cl,i, Dl,j ∈ IN. This means
that a (C,D)-biregular-complete graph G = (U, V,E1, . . . , E`) of “big enough” size
(M̄, N̄), then we can connect every pair of vertices u ∈ U and v ∈ V with one of the
edges without violating the (C,D)-biregularity.

Lemma 7.9. Let G = (U, V,E1, . . . , E`) be an `-type (C,D)-biregular graph and
U = U1 ∪ · · · ∪ Um and V = V1 ∪ · · · ∪ Vn be the witness of the (C,D)-biregularity.
Suppose that for each i, j, we have

|Ui|, |Vj | ≥ bCc · 1̄ + bDc · 1̄ + 1.

If G is a complete bipartite graph, then for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
there exists l ∈ {1, . . . , `} such that both Cl,i, Dl,j ∈ IN.

Proof. Let C ∈ B`×m and D ∈ B`×n, and G = (U, V,E1, . . . , E`) be a (C,D)-
biregular-complete graph, where U = U1 ∪ · · · ∪ Un and V = V1 ∪ · · · ∪ Vn are the
witness of the (C,D)-biregularity. Suppose each |Ui| and |Vj | satisfy the inequality
above.

For the sake of contradiction, we assume that that there exist i, j ∈ {1, . . . ,m}
such that for all l ∈ {1, . . . , `}, either Cl,i ∈ N or Dl,j ∈ N. This means that for each
l ∈ {1, . . . , `}, the number of El-edges between Ui and Vj is |Ui|Cl,i, if Cl,i ∈ N, or
|Vj |Dl,j , if Dl,j ∈ N. For each l = 1, . . . , `,

Kl =

{
|Ui|Cl,i if Cl,i ∈ N,
|Vj |Dl,j if Dl,j ∈ N.
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Now the total number of edges between Ui and Vj must be
∑

1≤l≤`Kl, which must
be equal to |Ui| × |Vj | since G is a complete bipartite graph.

However, from the inequality

|Ui|, |Vj | ≥ bCc · 1̄ + bDc · 1̄ + 1,

a straightforward calculation shows that K is strictly less than |Ui|×|Vj |, a contradic-
tion. Therefore, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, there exists l ∈ {1, . . . , `}
such that both Cl,i, Dl,j ∈ IN. This completes the proof of our lemma.

We say that a pair of matrices (C,D) ∈ B`×m ×B`×n is an easy pair of matrices,
if for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} there exists l ∈ {1, . . . , `} such that both
Cl,i, Dl,j ∈ IN.

Lemma 7.10 says that if (C,D) is an easy pair of matrices, then the formula
BiREGC,D(X̄, Ȳ ) as defined in Subsection 7.5 is sufficient as the required formula
COMP-BiREGC,D(X̄, Ȳ ) in Theorem 5.2.

Lemma 7.10. Let (C,D) be an easy pair of matrices, where C ∈ B`×m and
D ∈ B`×n. Then the following holds. There exists a (C,D)-biregular-complete graph
of size (M̄, N̄) if and only if BiREGC,D(M̄, N̄) holds.

Proof. The “only if” direction follows directly from Theorem 5.1. Now we prove
the “if” direction. Suppose BiREGC,D(M̄, N̄) holds. By Theorem 5.1, there exists a
(C,D)-biregular graph G = (U, V,E1, . . . , E`) of size (M̄, N̄). This graph G is not
necessarily complete. So suppose U = U1∪· · ·∪Um and V = V1∪· · ·∪Vn is the witness
of the (C,D)-biregularity. If G is not complete, then we perform the following. For
every u ∈ U and v ∈ V such that (u, v) /∈ E1 ∪ · · · ∪ E`, we do the following.

• Let u ∈ Ui and v ∈ Vj .
• Pick an index l ∈ {1, . . . , k} such that Cl,i, Dl,j ∈ IN.

(Such an index l exists since (C,D) is an easy pair.)
• Connect u and v with an El-edge.

The resulting graph is now complete and still (C,D)-biregular. This completes our
proof of Lemma 7.10.

If (C,D) is not an easy pair, then by Lemma 7.9, the values in the entries (in X̄
and Ȳ ) corresponding to the columns in C and D that make them not an easy pair
must be bounded. These values can be encoded as partial graphs as described in the
previous section. This completes our proof of Theorem 5.2.

8. Proof of Theorem 5.4. The proof is by observing that the existence of a
(C,D)-directed-regular graph of size N̄ is equivalent to the existence of a (C,D)-
biregular graph of size (N̄ , N̄). We explain it more precisely below.

• Suppose G = (V,E1, . . . , E`) is a (C,D)-directed-regular graph of size N̄ .
Then, for every vertex v ∈ V , we “split” it into two vertices u and w such
that u is only adjacent to the incoming edges of v and w to the outgoing
edges of v. See the illustration below. The left-hand side shows the vertex v
before the splitting, and the right-hand side shows the vertices u and w after
the splitting.
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Let U be the set of vertices u’s and W the set of vertices w’s after splitting all
the vertices in V . Ignoring the orientation of the edges, the resulting graph
is a bipartite graph with vertices U ∪W and it is a (C,D)-biregular graph of
size (N̄ , N̄).

• Suppose G = (U,W,E1, . . . , E`) is a (C,D)-biregular graph of size (N̄ , N̄).
Let U = U1 ∪ · · · ∪Um and W = W1 ∪ · · · ∪Wm be the witness of the (C,D)-
biregularity. We denote by Ui = {ui,1, . . . , ui,Ki} and Wi = {wi,1, . . . , wi,Ki}
for each i = 1, . . . ,m.
Now we put the orientation on all the edges from U to W . Then we merge
every two vertices ui,j and wi,j into one vertex vi,j . This way, we obtain
a (C,D)-directed-regular graph G = (V,E1, . . . , E`) with V = V1 ∪ · · · ∪ Vm
being the witness of the (C,D)-regularity where Vi = {vi,1, . . . , vi,Ki} for each
i = 1, . . . ,m.
However, with such merging it is possible that there is a self-loop (v, v) in G
or a pair of edges (v, v′), (v′, v) ∈ E1∪· · ·∪E`. We can get rid of the self-loop
(v, v) without violating the (C,D)-directed-regularity as follows. The trick is
similar to the one used before. Assuming that the size of each |V1|, . . . , |Vm|
is big enough and there are enough edges in each E1, . . . , E`, there is an edge
(v′, v′′) of the same type such that both v′, v′′ are not adjacent to v. Deleting
the edge (v, v) and (v′, v′′), and adding the edges (v′, v) and (v, v′′), we obtain
a (C,D)-directed-regular graph with one less self-loop. We do this repeatedly
until there is no more self-loop. See the illustration below.
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Similarly, we can get rid of a pair of edges (v, v′), (v′, v) ∈ E1 ∪ · · · ∪ E`
without violating the (C,D)-directed-regularity as follows. Again, the trick
is similar to the one used before. Assuming that the size of each |V1|, . . . , |Vm|
is big enough and there are enough edges in each E1, . . . , E`, there is an edge
(w,w′) of the same type such that both w,w′ are not adjacent to either v
or v′. Deleting the edge (v, v′) and (w,w′), and adding the edges (v, w′)
and (w, v′), we obtain a (C,D)-directed-regular graph with one less parallel
edges. We do this repeatedly until there are no more parallel edges. See the
illustration below.
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If some sets Vi or |Ei| are of a fixed size, they can be encoded in a partial
graph in the same manner as discussed in Subsection 7.4.

We omit the technical details since we essentially run through the same arguments
used in the previous section.

9. Concluding remarks. In this paper we have shown that the spectra of C2

formulae are semilinear sets. The proof is by constructing the Presburger formulae
that express precisely the spectra. As far as our knowledge is concerned, the logic C2

is the first logic whose spectra is closed under complement without any restriction on
the vocabulary nor in the interpretation.

Furthermore, from our proof we can easily deduce a few easy corollaries. The
first is that the family of models of a QMLC formula can be viewed as a collection of
biregular graphs and regular digaphs in the following sense. Let φ be a QMLC formula
and R = {R1, . . . , R`,

←−
R 1, . . . ,

←−
R `} be the set of binary relations used in φ and that

←−
R i is the inversed relation of Ri. Let K be the integer such that for all subformulae
♦lRψ in φ, we have l ≤ K.

Let Tφ be the set of all types in φ. For a model A |= φ, we partition A =⋃
T∈Tφ AT , where AT = {a ∈ A | a is of type T}. Then the model A can be seen as a

collection of regular graphs in the following sense. Recall the matrices DT ,
←−
DT , DS→T

and DT→S as defined in Section 6. For a type T , by restricting the relations R1, . . . , R`
on the elements in AT , we obtain a (DT ,

←−
DT )-regular digraph GT = (AT , E1, . . . , E`),

where for each Ei,

Ei = Ri ∩ (AT ×AT )

For two different types S, T , by restricting the relations on AS × AT , we obtain a
(DS→T ,

←−
DS→T )-biregular graph GS,T = (AS , AT , E1, . . . , E`, E

′
1, . . . , E

′
`), where each

Ei, E
′
i are

Ei = Ri ∩ (AS ×AT ) and E′i =
←−
R i ∩ (AS ×AT )

Theorem 2.1 can be further generalised as follows. Let P = (P1, . . . , Pl), where
P1, P2, . . . , Pl are unary predicates. Define the image of a structure A as ImageP(A) =
(|PA

1 |, . . . , |PA
l |). We also define the image of a formula ϕ with predicates from P as

ImageP(ϕ) = {ImageP(A)|A |= ϕ}. It must be noted here that PA
1 , . . . , P

A
l are not

necessarily disjoint, and that they may not cover the whole domain A. For this rea-
son, the notion of image is more general than the notion of many-sorted spectrum
which requires the unary predicates to partition the whole domain. With a slight
adjustment in our proof in Section 6, we can obtain the following two corollaries.
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Corollary 9.1. Let φ ∈ C2 and P = (P1, . . . , Pl), where P1, . . . , Pl be a set of
unary predicates in φ. The set {ImageP(A) | A |= φ} is semilinear.

Corollary 9.2. Let P = (P1, . . . , Pl). The following problem is decidable.
Given a C2 formula φ and a Presburger formula Ψ(x1, . . . , xl), determine whether
there exists a structure A |= φ such that Ψ(ImageP(A)) holds.

There are still a few more questions that we would like to investigate for future
work. The first natural question is: how can C2 be extended while keeping decidability
for the satisfiability and image membership problems? Using three variables (FO3) one
can easily encode a grid; therefore, the satisfiability problem is no longer decidable
(and thus also the image membership problem). However, we could extend C2 by
giving access to a relation having a property which is undefinable in C2, such as
transitivity. In particular, C2(<), that is, the logic C2 with access to a total order
on the universe, seems powerful: Petri net reachability [30, 24, 25] reduces to image
membership for C2(<) formulae. We do not know whether a reduction exists in the
other direction. Another possible extension is to add an equivalence relation to C2.
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[12] E. Grädel. Why are Modal Logics so Robustly Decidable? Current Trends in Theoretical
Computer Science 2001.
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