
ITERATIVE REFINEMENT FOR REAL-TIME LOCAL STEREO MATCHING

Maarten Dumont, Patrik Goorts, Steven Maesen, Donald Degraen, Philippe Bekaert, Gauthier Lafruit

Hasselt University - tUL - iMinds
Expertise Centre for Digital Media

Wetenschapspark 2
3590 Diepenbeek, Belgium

firstname.lastname@uhasselt.be

Université Libre de Bruxelles / Brussels University
LISA department

Av. F.D. Roosevelt 50 CP165/57
1050 Brussels, Belgium

gauthier.lafruit@ulb.ac.be

ABSTRACT
We present a novel iterative refinement process to apply to
any stereo matching algorithm. The quality of its disparity
map output is increased using four rigorously defined refine-
ment modules, which can be iterated multiple times: a dis-
parity cross check, bitwise fast voting, invalid disparity han-
dling, and median filtering. We apply our refinement pro-
cess to our recently developed aggregation window method
for stereo matching that combines two adaptive windows per
pixel region [2]; one following the horizontal edges in the
image, the other the vertical edges. Their combination de-
fines the final aggregation window shape that closely follows
all object edges and thereby achieves increased hypothesis
confidence. We demonstrate that the iterative disparity re-
finement has a large effect on the overall quality, especially
around occluded areas, and tends to converge to a final solu-
tion. We perform a quantitative evaluation on various Mid-
dlebury datasets. Our whole disparity estimation process sup-
ports efficient GPU implementation to facilitate scalability
and real-time performance.

Index Terms— Local Stereo Matching, Disparity Esti-
mation, Iterative Disparity Refinement, Adaptive Aggrega-
tion Windows, Real-Time

1. INTRODUCTION

Stereo matching uses a pair of images to estimate the ap-
parent movement of each pixel from one image to the next.
This apparent movement is more commonly know as the par-
allax effect, and is expressed in a disparity map for the image
under consideration. Local disparity estimation algorithms
commonly consist of four stages as defined by Scharstein and
Szeliski [6], namely cost calculation, cost aggregation, dis-
parity selection, and refinement.

This paper’s main contribution is situated in the refine-
ment stage. In section 4 we present an iterative refinement
method to significantly improve the quality of an initially es-
timated disparity map. One iteration of the refinement con-
sists itself again of four strictly defined stages: a disparity

I I ′

Fig. 1: The left (I) and right (I ′) images of the Middlebury
Teddy scene. Some axis quadruplets from Eq. 1 are drawn as
yellow crosses of their horizontal and vertical axes.

cross-check (section 4.1), bitwise fast voting (section 4.2),
invalid disparity handling (section 4.3), and median filtering
(section 4.4).

Our refinement (and more specifically the bitwise fast vot-
ing) depends heavily on local support windows that we first
define in section 2. Unlike the method of Zhang et al. [11],
we propose two edge-aware windows, one for the horizontal
and one for the vertical edge directions. The windows are
constructed to cover image patches of similar color, where
we assume that pixels with similar color belong to the same
object, and therefore should have the same disparity value.

Although applicable to a disparity map that was computed
using any disparity estimation algorithm, the ultimate success
of our refinement still depends on the quality of the initial
disparity map. We therefore use our previously developed ap-
proach to estimate an initial disparity map [2]. It is summa-
rized in section 3 and covers the other three stages previously
mentioned: cost calculation, cost aggregation (which relies
again on the support windows from section 2), and disparity
selection.

We demonstrate the strength of our method on various
standard Middlebury datasets [6] in section 5, where we quan-
titatively and qualitatively compare our iteratively refined dis-
parity maps with their ground truth.

Because pixel-wise algorithms map very well to parallel
hardware, our implementation in CUDA achieves real-time
performance. This is harder to achieve when using global
estimation methods such as graph cuts (and similar energy
minimization techniques) [4, 8, 9], segmented patches [13],
and spatiotemporal consistency approaches [1].

The full algorithmic chain is quite extensive, but the left I
and right I ′ images of the Middlebury Teddy [6] scene (see
Fig. 1) serve as a running example throughout this paper.
More details can also be found in [2].

2. LOCAL SUPPORT WINDOWS

We first describe how to construct two suitable local support
windows that will be used to both estimate the initial dispar-
ity map in section 3, and during the iterative refinement in
section 4.

For every pixel p of the left image I , we first determine
a horizontal axis H(p) and vertical axis V(p) crossing in p.
These two axes can be represented as a quadruplet A(p):

A(p) = (h−p , h
+
p , v

−
p , v

+
p) (1)

where the component h−p represents how many pixels the hor-
izontal axis extends to the left of p, v+p represents how many
pixels the vertical axis extends above p, and so forth. Also see
Fig. 1.

To determine each component, we keep extending an axis
until the difference between p and the outermost pixel q be-
comes too large:

max
c∈{r,g,b}

|Ic(p)− Ic(q)| ≤ τ (2)

where Ic(p) is the red, green or blue color channel of pixel
p, and τ is the threshold for color consistency. We also stop
extending if the size exceeds a maximum predefined length.

Using these four components, we define two local support
windows for pixel p, referred to respectively as the horizontal
local support window WH(p) and the vertical local support
window WV (p) (illustrated in Fig. 2).

To construct the horizontal window WH(p), we first need
to create its vertical axis based on the values of v−p and v+p .
We call this the primary vertical axis V(p). Next, we consider
the values of h−q , and h+q for each pixel q on the primary ver-
tical axis. These define a horizontal axis per pixel q on the
primary vertical axis. These axes are called the subordinate
horizontal axes H(q). In short, this results in the orthogonal
decomposition:

WH(p) =
⋃

q∈V(p)

H(q) (3)

Completely analogous, but in the other direction, we de-
fine the vertical local support window WV (p) by creating a

WH(p) WV (p)

Fig. 2: Derivation of the horizontal (WH(p), Eq. 3) and ver-
tical (WV (p), Eq. 4) local support windows for pixel p, using
its axis-defining quadruplet (h−p , h

+
p , v

−
p , v

+
p) of Eq. 1.

primary horizontal axis H(p) using h−p , and h+p , and on this
axis create the subordinate vertical axes V(q):

WV (p) =
⋃

q∈H(p)

V(q) (4)

By requiring only the single quadruplet (h−p , h
+
p , v

−
p , v

+
p)

to define both windows, we reduce memory usage and access,
which is a serious consideration when using GPU computing.

Constructed this way, our windows are sensitive to edges
in the image. The horizontal window WH(p) will fold nicely
around vertical edges, because the width of each subordinate
horizontal axis is variable. Horizontal edges are not followed
as accurately, as the height of the window is fixed and only
determined by its primary vertical axis. This situation, how-
ever, is reversed for the vertical window WV (p).

The notation W ′H(p′) and W ′V (p′) represents the local
support windows for each pixel p′ in the right image I ′.

3. INITIAL DISPARITY ESTIMATION

In this section, our goal is to first estimate an initial dispar-
ity map [2] that will serve as input to our iterative refinement
process in section 4. First, we consider each disparity and
calculate (in section 3.1) for each pixel in the left image the
difference (i.e. matching cost) between that pixel and the cor-
responding pixel in the right image, based on the disparity
under consideration. Next, the costs of neighboring pixels are
aggregated (in section 3.2) to obtain a more confident match-
ing cost. Typically for this stage, variable window sizes [3, 7]
or variable weights inside the windows [5, 10] are used to
increase aggregation quality. Instead, we combine the hori-
zontal and vertical local support windows from section 2 into
a global support window. Opposite to the method of Zhang
et al. [11], which uses only a horizontal window, we combine
two directions, so that vertical edges are not favored. Once

the costs are aggregated per pixel and per disparity value, the
most suitable disparity with the lowest cost is selected (in sec-
tion 3.3).

3.1. Per-Pixel Matching Cost

For a disparity hypothesis d ∈ [dmin, dmax] and pixel p of the
left image I , consider the raw per-pixel matching cost Ed(p),
defined as the Sum of Absolute Differences (SAD):

Ed(p) =

∑
c∈{r,g,b} |Ic(p)− I ′c(p′)|

emax
(5)

where pixel p in the left image I is compared with pixel p′ in
the right image I ′, and the coordinates of p = (xp, yp) and
p′ = (xp′ , yp′) relate to the disparity hypothesis d as xp′ =
xp − d, yp′ = yp. The constant emax normalizes the cost
Ed(p) to the floating point range [0, 1].

We calculate Ed(p) for each pixel p and refer to Ed as the
per-pixel left confidence (or cost) map for disparity d. Simi-
larly the per-pixel right confidence mapE′d can be constructed
by calculating E′d(p

′) for each pixel p′ analogously to Eq. 5,
with the x-coordinates of p and p′ now related as xp = xp′+d.

3.2. Cost Aggregation over Global Support Windows

To reliably aggregate costs, we must simultaneously consider
both local support windows W (p) for pixel p in the left im-
age and W ′(p′) for pixel p′ in the right image. If we only
consider the local support window W (p), the matching cost
aggregation will be polluted by outliers in the right image,
and vice versa. Therefore, while processing for disparity hy-
pothesis d, the two local support windows are combined into
what we call a global support window Ud(p). Distinguishing
again between horizontal and vertical support windows, they
are defined as:

UH
d (p) =WH(p) ∩W ′H(p′) (6)

UV
d (p) =WV (p) ∩W ′V (p′) (7)

where the coordinates of p = (xp, yp) and p′ = (xp′ , yp′) are
again related to the disparity hypothesis d as xp′ = xp − d,
yp′ = yp. In practice, this simplifies beautifully to taking
the component-wise minimum of their axis quadruplets from
Eq. 1:

Ad(p) = min (A(p),A′(p′)) (8)

Two more confident matching costs εHd (p) and εVd (p) can
now be aggregated over each pixel s of the horizontal and ver-
tical global support windows UH

d (p) and UV
d (p) respectively:

εHd (p) =
1∥∥UH

d (p)
∥∥ ∑

s∈UH
d (p)

Ed(s) (9)

εVd (p) =
1∥∥UV

d (p)
∥∥ ∑

s∈UV
d (p)

Ed(s) (10)

where the number of pixels ‖Ud(p)‖ in the support window
acts as a normalizer.

To combine εHd (p) and εVd (p) into the final aggregated
cost εd(p), we use a weighted sum:

εd(p) = α εHd (p) + (1− α) εVd (p) (11)

where α is a weighting parameter between 0 and 1 to steer the
algorithm between horizontal and vertical windows.

The aggregation is repeated over the right image, which
means computing A′d(p′) = min (A(p),A′(p′)), with p and
p′ now related as xp = xp′ + d and from there setting up an
analogous reasoning to end up at the right aggregated confi-
dence map ε′d.

The global support windows UH
d (p) and UV

d (p) can be
orthogonally decomposed analogously to Eq. 3 and Eq. 4,
which is key to a fast and efficient implementation [2].

3.3. Disparity Selection

After the left and right aggregated confidence maps have been
computed for every disparity d ∈ [dmin, dmax], the best dis-
parity per pixel (i.e. the one with lowest cost εd(p)) is selected
using a Winner-Takes-All approach:

DW (p) = argmin
d∈[dmin,dmax]

εd(p) (12)

which results in the disparity maps DW for the left image
and D′W for the right image, both shown in Fig. 3. These
disparity maps will serve as input to the iterative refinement
process described next in section 4.

DW D′
W

Fig. 3: Left and right Winner-Takes-All disparity maps, as
determined by Eq. 12.

4. ITERATIVE DISPARITY REFINEMENT

We now iteratively refine the two initial disparity maps DW

and D′W . One iteration consists of four stages. First we
cross-check the disparities for consistency between the two
disparity maps in section 4.1. Next, the local support win-
dows as described in section 2 are employed again, to update
a pixel’s disparity with the disparity that appears most inside
its windows. This method is the most powerful and is de-
tailed in section 4.2. Any invalid disparities that remain after
this are handled in section 4.3. In the last stage in section 4.4
the disparity map is median filtered to remove any remaining
speckle noise. Finally, we initialize for the next iteration in
section 4.5.

4.1. Disparity Cross-check

A left-to-right cross-check means that for each of the pixels
p of the left disparity map DW , the corresponding pixel p′

is determined in the right image based on the disparity value
DW (p), and the disparity value D′W (p′) in the right disparity
map is compared with DW (p). If they differ, the cross-check
fails and the disparity is marked as invalid. Introducing the
superscript i ≥ 1 to denote the current refinement iteration,
this is expressed as:

Di
C(p) =

{
Di−1

W (p) if Di−1
W (p) = D′i−1W (p′)

INVALID otherwise
(13)

with D0
W = DW and D′0W = D′W , and with p now related to

p′ as xp′ = xp − Di−1
W (p), yp′ = yp. The process is then

reversed for a right-to-left cross-check of the disparity map
D′i−1W , which leaves us with the left and right cross-checked
disparity maps Di

C and D′iC .
Invalid disparities are most likely to occur around edges

in the image, where occlusions are present in the scene. In
Fig. 4 we show these occluded regions as pure black (marked
as invalid) pixels.

D1
C D′1

C

Fig. 4: Left-to-right and right-to-left cross-checked disparity
maps, as determined by Eq. 13.

4.2. Bitwise Fast Voting over Local Support Windows

This second stage updates a pixel’s disparity with the dis-
parity that is most present inside its local support windows
WH(p) and WV (p) as defined in section 2. We may say that
this is valid, because pixels in the same window have simi-
lar colors by definition, and therefore with high probability
belong to the same object and should have the same dispar-
ity. Confining the search to the local support windows also
ensures that we greatly reduce the risk of edge fattening arti-
facts.

To efficiently determine the most frequent disparity value
within a support window, we apply a technique called bitwise
fast voting [12] and adapt it to handle both horizontally and
vertically oriented support windows. At the core of the bit-
wise fast voting technique lies a procedure that derives each
bit of the most frequent disparity independently from its other
bits.

First consider a pixel p with local support window W (p).
We sum the kth bit bk(s) (either 0 or 1) of the disparity value
Di

C(s) of all pixels s in the support window, and call the re-
sult Bk(p) (for clarity, we drop the superscript i for a mo-
ment). Furthermore distinguishing again between horizontal
and vertical support windows, this gives:

BH
k (p) =

∑
s∈WH(p)

bk(s) (14)

BV
k (p) =

∑
s∈WV (p)

bk(s) (15)

The kth bit Di|k
B (p) of the final disparity value Di

B(p) is
then decided as:

D
i|k
B (p) =

{
1 if Bk(p) > β ×N(p)

0 otherwise
(16)

where β ∈ [0, 1] is a sensitivity factor that we will come back
to below, and Bk(p) and N(p) are determined by a weighted
sum:

Bk(p) = α BH
k (p) + (1− α) BV

k (p) (17)

N(p) = α
∥∥WH(p)

∥∥+ (1− α)
∥∥WV (p)

∥∥ (18)

where α is as before in Eq. 11.
Intuitively, for a pixel p, Eq. 16 states that the kth bit of its

final disparity value is 1 if the kth bit appears as 1 in most of
the disparity values under its local support window. The num-
ber of actual appearances of 1 are counted in Bk(p), whereas
the maximum possible appearances of 1 is represented by the
window size N(p). The sensitivity factor β controls how
many appearances of 1 are required to confidently vote the
result and is best set to 0.5.

Certain disparities might be invalid due to the cross-check
of Di

C(p) in section 4.1. While counting bit votes, we must
take this into account by reducing N(p) accordingly. This
way the algorithm is able to update an invalid disparity by
depending on votes from valid neighbors only, and thereby
reliably fill in occlusions and handle part of the image bor-
ders. Black patches in Fig. 5 are remaining invalid disparities
that the bitwise vast voting was not able to fill in. Lastly, the
bit votes can be counted very efficiently by orthogonally sep-
arating Eq. 14 and Eq. 15 [2].

D1
B D′1

B

Fig. 5: Left and right disparity maps after bitwise fast voting,
as determined by Eq. 16.

4.3. Invalid Disparity Handling

The bitwise fast voting removes many invalid disparities by
replacing them with the most occurring valid value inside
their windows. It will fail however if the window does not
contain any valid values, or in other words, if N(p) = 0 in
Eq. 16. This occurs mostly near the borders of the dispar-
ity maps, but also can manifest itself anywhere in the image
where the occlusions are large enough.

For each remaining pixel with an invalid disparity, we
search to the left and to the right on its scanline for the closest
valid disparity, and store it in the corrected disparity map Di

I

(shown in Fig. 6). Unlike the bitwise fast voting, this scanline
search is necessarily not confined to image patches of similar
colors.

D1
I D′1

I

Fig. 6: Left and right disparity maps after remaining invalid
disparities have been filled in, as described in section 4.3.

4.4. Median Filter

In the last refinement step, small disparity outliers are filtered
using a 3 × 3 median filter, resulting in the final disparity
maps (for the current iteration) Di

M and D′iM shown in Fig. 7.
A median filter has the property of removing speckle noise,
in this case caused by disparity mismatches, while returning
a sharp signal (unlike an averaging filter).

D1
M D′1

M

Fig. 7: Left and right disparity maps after application of a
3× 3 median filter, as described in section 4.4.

4.5. The Next Iteration

This completes one iteration of the disparity refinement. The
next iteration i + 1 immediately starts again with the dis-
parity cross-check of Eq. 13, by setting Di

W = Di
M and

D′iW = D′iM .With each iteration the disparity map is consider-
ably improved. In practice three to five iterations (3 ≤ i ≤ 5)
suffice more often than not, at which point the refinement
tends to converge to its final solution.

5. RESULTS

We demonstrate the effectiveness of our method on the left
viewpoint of various Middlebury datasets [6]. All quantitative
measurements are expressed in dB PSNR compared with the
respective scene’s ground truth. Black patches in the ground
truth disparity maps indicate invalid pixels (missing data) and
are therefore not taken into account.

For the Teddy scene the effect is clear in Fig. 9. Without
any refinement (D0

W) the result remains noisy, with a PSNR
of 19.40 dB. Furthermore, the left border can not be reliably
matched and remains ambiguous, because this information is
missing in the right image. One refinement iteration (D1

M)
already increases the quality with 8 dB to 27.53 dB, yet some
substantial noise overall and errors in the left border remain.
A second iteration (D2

M , 29.56 dB) resolves these issues for
the most part, and adds another 2 dB in PSNR. The third it-
eration (D3

M , 29.57 dB) takes care of the last visually notice-
able artifacts (e.g. the black erroneous patch in the lower left
corner) and delineates the objects’ edges slightly better, but
quantitatively its effect is already negligible. Performing any

Fig. 8: From this plot of the PSNR measurements of Table 2,
it is clear that the iterative refinement quickly reaches its peak
quality level and then stabilizes.

more iterations (e.g. D5
M and D10

M) barely has any effect at
all, and the algorithm stabilizes on a final solution. One ob-
vious erroneous patch remains next to the pink teddy’s right
ear. However, we postulate that this is due to the limited accu-
racy of the color consistency check that determines the local
support windows (Eq. 2), rather than a limitation of the re-
finement as a whole.

The Cones scene of Fig. 10 is another challenging dataset
that our iterative refinement is able to handle very well. With-
out refinement (D0

W , 15.62 dB) the disparity map naturally
remains noisy, and one refinement iteration (D1

M , 18.55 dB)
is not able to improve the quality satisfactorily. A consid-
erable amount of noise and errors remain, e.g. on the white
cone in the background, on the little white box in the fore-
ground, and the left border. A second iteration is required to
increase the quality with nearly 8 dB to 26.44 dB. The PSNR
continues to slowly rise hereafter, until by the ninth iteration
(D9

M , 26.97 dB) even the mismatches on the wooden frame-
work in the background are fully resolved. All cones are well
discernible. Note in particular the green cone with blue base
in front of the red cone. The cones in the left border however
disappear, because this information is again not available in
the right image.

Venus in Fig. 11 consists of three to four slanted planes
with large homogeneously textured regions interspersed with
rapidly changing fine – but similar – detail that may easily
throw off most local window-based cost aggregation. After
five iterations (D5

M , 31.06 dB) however, the algorithm suc-
ceeds to comprehend the slanting of the planes, although the
result will always lack the smooth gradual change in gray-
scale luminance of its ground truth (DGT).

A great strength of our iterative refinement is that it can be
applied to any local stereo matching algorithm, as long as the
initial disparity map is of sufficient quality. To demonstrate
this in the extreme case, we applied it to a disparity map that
was computed using a conventional 17×17 square cost aggre-
gation window. As shown in Fig. 12, the result improves dra-
matically with nearly 10 dB: from 18.21 dB for D0

W to 28.10
dB for D3

M after only three iterations. However, all artifacts
from a naive stereo matching algorithm cannot be eliminated,

Module GT 640 GTX Titan
ms % ms %

Local Support Windows 2.905 1.08 0.510 1.16
Per-Pixel Matching Cost 4.684 1.74 0.748 1.70
Cost Aggregation 213.141 79.30 36.716 83.20
Disparity Cross-check 0.100 0.04 0.014 0.03
Bitwise Fast Voting 47.693 17.74 6.100 13.82
Invalid Disparity Handling 0.067 0.03 0.010 0.02
Median Filter 0.193 0.07 0.031 0.07

Total 268.783 100.00 44.129 100.00

Table 1: Absolute and percentage-wise execution time mea-
surements on an NVIDIA GeForce GT 640 and GTX Titan.

not even by applying many more iterations.
All PSNR measurements are listed in Table 2. From their

plot in Fig. 8, it is clear that the iterative refinement reaches its
peak quality level after no more than three to five iterations,
after which it remains stable.

With regard to execution time, Table 1 lists the measure-
ments to compute the left disparity map of the 450× 375 res-
olution Teddy scene, for a disparity range of [dmin, dmax] =
[12, 53] (42 disparities). To complete the pipeline up to and
including one refinement iteration (i.e. to compute D1

M), our
algorithm takes 44 ms on an NVIDIA GeForce GTX TITAN.
Of these 44 ms, about 38 ms (or 86%) is taken by the initial
disparity estimation, whereas one refinement iteration only
requires about 6 ms (or 14%). Adding four more iterations
of the refinement totals 44+4× 6 = 68 ms, thus still provid-
ing a real-time solution at about 14 FPS.

6. CONCLUSION

We proposed a novel iterative refinement process to apply
to any stereo matching algorithm. It performs in real-time
and increases the quality of a disparity map with several dB
PSNR.

Its overall success is in large part attributable to the re-
peated interaction between four rigorously defined modules,
and especially between the disparity cross-check and the bit-
wise fast voting. Starting from a seed disparity map, the
bitwise fast voting smooths out its disparities over patches
of similar color, which are assumed to belong to the same
surface and therefore should possess the same disparity (or
depth in the scene). The disparity cross-check subsequently
removes again all disparities that were incorrectly estimated.
In between this, the invalid disparity handling helps to fill in
invalid pixels that the bitwise fast voting cannot reach, and
the median filter removes speckle noise. It would be expected
that an indefinite repetition would eventually have a detrimen-
tal effect on the quality of the disparity map. However, we ob-
served that the interaction between the four modules prevents
this from happening and instead the process tends to converge
to a final solution.

Currently, we consider the weakest link to be the way the

I D0
W (19.40 dB) D1

M (27.53 dB) D2
M (29.56 dB)

D3
M (29.57 dB) D5

M (29.96 dB) D10
M (29.43 dB) DGT

Fig. 9: Teddy: (I) left image, (D0
W) initial disparity map, (D1

M) – (D10
M) 1 to 10 refinement iterations, (DGT) ground truth.

I D0
W (15.62 dB) D1

M (18.55 dB) D9
M (26.97 dB) DGT

Fig. 10: Cones: (I) left image, (D0
W) initial disparity map, (D1

M) – (D9
M) 1 to 9 refinement iterations, (DGT) ground truth.

I D0
W (19.76 dB) D1

M (25.04 dB) D5
M (31.06 dB) DGT

Fig. 11: Venus: (I) left image, (D0
W) initial disparity map, (D1

M) – (D5
M) 1 to 5 refinement iterations, (DGT) ground truth.

D0
W (18.21 dB) D1

M (23.53 dB) D2
M (26.44 dB) D3

M (28.10 dB) D4
M (28.03 dB)

Fig. 12: Teddy: (D0
W) initial disparity map computed using a conventional 17 × 17 square window, and (D1

M) – (D4
M)

subsequently refined using our iterative refinement. Compare with Fig. 9.

Dataset D0
W D1

M D2
M D3

M D4
M D5

M D6
M D7

M D8
M D9

M D10
M

Teddy (Fig. 9) 19.40 27.53 29.56 29.57 29.72 29.96 29.54 29.54 29.54 29.45 29.43
Cones (Fig. 10) 15.62 18.55 26.44 26.75 26.83 26.87 26.88 26.91 26.95 26.97 26.95
Venus (Fig. 11) 19.76 25.04 28.97 30.83 30.88 31.06 31.10 31.08 31.10 31.09 31.08
Sq. Win. (Fig. 12) 18.21 23.53 26.44 28.10 28.03 27.94 27.83 27.74 27.69 27.65 27.62

Table 2: PSNR measurements in dB, for 1 (D1
M) to 10 (D10

M) iterations of our iterative refinement process from section 4 on the
left disparity map of various Middlebury datasets. The initial disparity map (D0

W) has been computed with our stereo matching
algorithm from section 3. The bottom entry (Sq. Win.) is an exception, where the initial disparity map of the Teddy dataset was
computed using a conventional 17 × 17 square window, and subsequently refined using our iterative refinement. (Boldfaced
numbers are referenced in the text and figures.)

local support windows are determined. The pixel-wise color
consistency check in section 2 is rather rudimentary. Relying
on color-based image segmentation to more precisely define
the local support windows has the potential to increase the
matching quality considerably.

References
[1] J. Davis, D. Nehab, R. Ramamoorthi, and

S. Rusinkiewicz. Spacetime stereo: a unifying
framework for depth from triangulation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 27
(2):296–302, February 2005.

[2] Maarten Dumont, Patrik Goorts, Steven Maesen,
Philippe Bekaert, and Gauthier Lafruit. Real-time Local
Stereo Matching using Edge Sensitive Adaptive Win-
dows. In Proceedings of the 11th International Con-
ference on Signal Processing and Multimedia Applica-
tions, SIGMAP 2014, pages 117–126, Vienna, Austria,
August 2014.

[3] Jiangbo Lu, Sammy Rogmans, Gauthier Lafruit, and
Francky Catthoor. High-speed dense stereo via direc-
tional center-biased support windows on programmable
graphics hardware. In Proceedings of 3DTV-CON: The
True Vision Capture, Transmission and Display of 3D
Video, Kos, Greece, May 2007.

[4] Nicolas Papadakis and Vicent Caselles. Multi-label
depth estimation for graph cuts stereo problems. Jour-
nal of Mathematical Imaging and Vision, 38(1):70–82,
2010.

[5] Christian Richardt, Douglas Orr, Ian Davies, Antonio
Criminisi, and Neil A. Dodgson. Real-time spatiotem-
poral stereo matching using the dual-cross-bilateral grid.
In Computer Vision ECCV 2010, volume 6313 of
Lecture Notes in Computer Science, pages 510–523.
Springer Berlin Heidelberg, 2010.

[6] Daniel Scharstein and Richard Szeliski. A taxonomy
and evaluation of dense two-frame stereo correspon-

dence algorithms. International Journal of Computer
Vision, 47(1–3):7–42, 2002.

[7] Olga Veksler. Fast variable window for stereo corre-
spondence using integral images. In Proceedings of the
2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR’03, pages 556–
561, Madison, Wisconsin, June 2003.

[8] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang,
and David Nister. High-quality real-time stereo using
adaptive cost aggregation and dynamic programming. In
Proceedings of the Third International Symposium on
3D Data Processing, Visualization, and Transmission,
3DPVT ’06, pages 798–805, Washington, DC, USA,
2006.

[9] Qingxiong Yang, Liang Wang, Ruigang Yang, Sheng-
nan Wang, Miao Liao, and David Nister. Real-time
global stereo matching using hierarchical belief prop-
agation. In Proceedings of the British Machine Vision
Conference, volume 6, pages 989–998, 2006.

[10] Kuk-Jin Yoon and In-So Kweon. Locally adap-
tive support-weight approach for visual correspondence
search. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, CVPR ’05, pages 924–931, Washington,
DC, USA, 2005.

[11] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-
based local stereo matching using orthogonal integral
images. IEEE Transactions on Circuits and Systems for
Video Technology, 19(7):1073–1079, 2009.

[12] Ke Zhang, Jiangbo Lu, Qiong Yang, Gauthier Lafruit,
Rudy Lauwereins, and Luc Van Gool. Real-time and
accurate stereo: A scalable approach with bitwise fast
voting on cuda. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 21(7):867–878, July 2011.

[13] C. Lawrence Zitnick and SingBing Kang. Stereo for
image-based rendering using image over-segmentation.
International Journal of Computer Vision, 75(1):49–65,
Oct 2007.

