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Abstract 

We have explored to what extent charging electrical vehicles (EVs) can be exploited to stabilize smart grids. Firstly, 
we discuss the transition to a future with a lot of renewable energy resources. Next, a decentralized coordinated 
charging schedule for EVs is proposed, taking into account the comfort settings of the consumers and local and 
temporal flexibility. Based on the vehicle behavior information (trajectories, parking places and duration, etc.) the 
algorithm assures that all vehicles can follow their planned trajectories and that power constraints on each car park 
are always met. An advantage of this decentralized coordination algorithm is that the privacy of consumers, including 
their future trajectory planning, charging controllers, parking duration, etc. are all treated on local processors on 
board. As a consequence the responsibility for constructing the charging schedules is put only with the vehicle owner. 
On the other hand, the parking managers need only to be concerned with the network congestion issues. A first 
application focuses on controlling the power flows at these parking locations and on rescheduling the charging of the 
electrical vehicles, so that costs are minimized within the comfort settings and within the physical limitations of the 
charging stations. This coordinated charging is applied on a car fleet of 200 electrical vehicles and 56  parking 
locations. Trajectories are computed with an activity based model (FEATHERS). In a second application, the 
imbalance costs are taken into account as well. The main advantage is for the retailer, who can now actively use the 
flexibility of the charging process to lower his power trading costs.  
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1. Introduction 

Wind turbines, combined heat and power installations, solar panels and other renewable energy 
resources are becoming more popular. The main drawback of this trend is that the power is no longer 
produced in a few large plants, which are easy to control. An additional problem is that the power 
production by these resources is often unreliable and unpredictable. This combined with the fact that 
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production and consumption must be in equilibrium at every instant can cause severe problems in the 
future grid. One solution to overcome this, is to make use of the flexibility of consumers: instead of tuning 
the production to the actual consumption, the consumption can follow the production. This is the 
paradigm shift used in many smart grid test cases. In the transition from the current situation to a smart 
grid, the comfort settings of most consumers cannot be altered. Heating, lighting, most industrial 
processes cannot be postponed if the production decreases. For that reason, charging electrical vehicles 
(EVs) offers an important opportunity to buffer variable production [1-6]. A second problem is that our 
distribution grid is not equipped to deal with large local peaks in production and consumption [7, 8]. 
Changing feeders and transformers is expensive. An alternative for these investments is to introduce 
variable tariffs, so that over-consumption can be avoided if the power grid cannot support this. In order to 
gain realistic results, three different concepts are combined. Firstly, information about the behavior of the 
EV owners, like: which trips are planned? When are the cars parked? How many cars are parked together? 

agent based model, FEATHERS [9]. The actual fuel consumption and battery 
-of-the-art technology. Detailed information about the exact state of the 

distribution grid in Flanders is not available. For that reason, we did not take variations in the distribution 
grid into account and focused on only a few zones. The third component is the intelligence of the smart 
grid. A distributed controller is implemented to steer the charging schedules of the individual EV in order 
to minimize costs within the capacity constraints dictated by the power grid. In this study, a few possible 
business cases are explored. First we examine if it is above-all possible to charge all EVs with the current 
power grid. From these simulations it follows that if EVs are equipped with a coordination algorithm, the 
current grid capacity is sufficient. Next the battery systems are actively used to trade on the imbalance 
markets and thus to support the business model of a retailer. 

2. Activity Based Models 

To test the scheduling algorithm presented in paragraph 3, travel behavior information of the EVs is 
needed: the algorithm assumes that all EV owners have a day-ahead knowledge on what their travel 
behavior will be. This information is obtained using activity based modeling. Activity-based modeling 
(ActBM) is a technique that predicts the daily travel agenda (schedule) for each member of a synthetic 
population. Most ActBM generate predictions for a single day. For each predicted activity, the ActBM 
specifies the activity type, start time, duration, location as well as the duration and transportation mode for 
the trip to reach the activity location. Activity-based models are micro-simulators: behavior for each 
individual is simulated. This allows to investigate the overall effects of traffic demand management 
policies. FEATHERS is an operational activity based model for the region of Flanders (Belgium); it 
generates schedules for a given day-of-week.  
FEATHERS input data consists of: 
 the synthetic population for the study area. This contains socio-economic data (household composition, 

education level, income category, age category, etc.) describing each individual so that the 
distributions fit the census data. 

 an area subdivision into traffic analysis zones (TAZ). 
 land-use data for each TAZ. This consists of tens of attributes including number of people living in the 

TAZ for several age and employment categories, amount of people employed in the TAZ in several 
economic segments (industry, agriculture, education, distribution, hospitals, etc.). 

 impedance matrices specifying the travel time and distance between TAZ for off-peak, morning-peak 
and evening-peak periods and for several transportation modes (i.e. car, slow, public transport). 

 a set of decision trees trained using large scale (periodic) travel surveys. Those data essentially specify 
individual behavior as a function of socio-economic data and partial schedule characteristics. They are 
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used as conditional probability functions to sample agenda and activity attribute values for each 
individual. 

The FEATHERS model is characterized by the data given in Table I. FEATHERS is built on the 
Albatross kernel described in [10]. It makes use of 26 decision trees to first predict the basic travel agenda 
containing mandatory periodic activities and related trips (work, school) and in a second stage the flexible 
activities (shopping, social visits, etc.). The decision trees are used in a fixed order that models the 
decision making process.. Each step determines new attributes for agenda components by stochastic 
sampling. The resulting schedules are consistent at the household level (resources available to the 
partners). The schedule (agenda) is constructed using several stages; this results in a chained decision 
process where each stage further completes the partially constructed agenda. The Albatross system is 
called a computational process model (as opposed to a utility maximization model). It is a rule-based 
system where the rules consist of decision tree based predictions. FEATHERS output consists of a travel 
schedule for each member of the synthetic population. For each predicted trip a tuple (origin, destination, 
start time, duration, mode) is predicted. This allows to calculate expected mode-specific traffic flows in 
time and space; those flows are validated using traffic counts made available by public traffic 
management services. FEATHERS predictions have been used in [11] to calculate the electric power 
demand generated by EV charging for each TAZ in Flanders as a function of time under several charging 
behavior, EV market share and charging opportunity (at home, at work) assumptions. The simulations to 
test the EV charging algorithm proposed, use FEATHERS predicted schedules as input data. Both the 
locations where EV induced electric power demand occurs and the corresponding charging time intervals 
are taken from FEATHERS results. Note that the distance between charging opportunities available to the 
individual are important. Only a  small selection of EVs is used for two reasons: (i) hardly any details 
about the power distribution grid in Flanders are available. Since the grid would look uniform all over 
Flanders, large scale simulation would not reveal more information than small ones. Secondly, the control 
algorithms are designed to be distributed over multiple computers, but all computations are still 
performed on a single machine. This practical reason limits the number of participants also to a few 
hundred at most. We selected those EVs which are parked at ten locations. Grid constraints are 
downscaled to mimic the consumption of other EVs and of background consumption. 

Table 1. Characteristics of the input data for Flemish activity based models. 

Synthetic population size 6 million people 

Number of TAZ 2368 

TAZ area (average value) Approx. 5 km2 

Number of diaries in survey Approx. 8000 

3. Simulation Results 

To illustrate the algorithm, a simulation was carried out where charging schedules were constructed for 
200 EVs. From the FEATHERS predicted travel schedules for the EVs, there are 56 locations where at 
least one vehicle is parked during the day. The electricity tariff for all EVs is assumed to be equal, and is 
an hourly varying dynamic tariff. This dynamic tariff is based on the day-ahead tariffs of the Belgian 
Power Exchange (Belpex) [12]. The maximum charging power of the vehicles is set to 3.6 kW. The 
maximum power available for charging EVs at every location is set to 14.4 kW, so only 4 EVs can charge 
at full power simultaneously at every location. Every vehicle is assumed to have a battery capacity of 24 
kWh [13]. The state of charge of the EV batteries at the beginning of the day is assumed to lie between 
90% and 100%. When cars are driving, they consume a 200Wh/km [14], and we assume an average 
driving velocity of 50 km/h. The simulations are carried out for one day, with a time-step of 5 minutes. A 
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simulated day starts at 3 am. The distributed control scheme consists of an individual utility function for 
each EV consisting of the price for charging and a small quadratic term, taking power losses into account. 
Each utility function is subject to a set of constraints. Global constraints, like the limited charging capacity 
of the car parks and the overall imbalance power are passed to these utility functions by means of 
Lagrange multipliers [15-16]. The value of these Lagrange multipliers is adapted iteratively until all 
global constraints are met. The main disadvantage of this method is that solutions have to be iterated, 
which causes a larger communication overhead between the local EV solvers.  

As a benchmark, the solution to the global minimization problem is calculated using linear 
programming. In this centralized optimal solution, the overall cost that needs to be paid to charge all EVs 
is 37.9 euro. After about 100 iterations, convergence is reached: the electricity cost paid by all EV owners 
reaches the benchmark value, and the maximal charging power encountered at the parking locations does 
not exceed its maximum value. However, already after about 30 iterations the electricity cost paid by the 
EV owners differs less than 0.1% from the optimal value, and the maximal power encountered at the 
charging locations is less than 10% higher than its maximum. Fig. 1 shows the total charging power at 
every location versus the time of day, calculated after the first iteration, and after convergence is reached. 
A darker color indicates a higher power. Red colors indicate that the capacity limit is reached. The figure 
clearly shows that the algorithm forces the EVs to charge at other locations when the maximal power 
constraint is violated. 

 
Fig. 1. Total charging power at each location versus time of day at the 1st and the final iteration. A darker color indicates a higher 
charging power. 
 
In a second application, the charging flexibility of the EV is used to lower imbalance costs for the retailer. 
Retailers have to predict the consumption 24h in advance and buy this power on a day-ahead market 
(DAM). Deviations from this predictions have to be traded in real time on the imbalance market. Prices 
fluctuate more rapidly on the imbalance market and prices for a positive or negative imbalance differ. 
Since the exact charging moments are usually not critical for EV, this creates an opportunity to charge at 
strategic moments: it will be beneficial to charge when (i) the predictions overestimated the actual 
consumption and a positive imbalance is created; or when (ii) the negative imbalance prices are lower 
than the day-ahead prices and the charging prices are thus lower on the imbalance market than on the day-
ahead market. On the other hand, it is beneficial to post-pone charging when (i) predictions 
underestimated the actual consumption and the overall portfolio of the retailer is thus already negative; or 
when (ii) the prices for a positive imbalance are larger than the DAM prices. In the latter case cheap 
power bought on the DAM is sold more expensively on the imbalance market. If this imbalance market is 
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incorporated in the simulation, it appears that the optimal charging does not result in minimized overall 
imbalance power, but rather strategically causes imbalances. When charging now on the imbalance market 
is cheaper than on the DAM, EVs charge more than planned. This results in additional flexibility, which is 
used later to lower imbalance costs when these exceed the DAM price.  
Simulations are run over 48h for three cases: a benchmark case, where every EV charges as fast as 
possible. Here no strategy is taken into account. Next, EVs can only chose when to charge and finally EVs 
can both charge and discharge. Fig. 2 summarizes the results. We split the power imbalance in two 
groups, depending on the ratio between the imbalance price and the DAM price. In the left column, 
imbalance prices are below DAM prices and it is thus beneficial to charge more than originally scheduled. 
In the right column a positive imbalance is most beneficial, since the redundant energy can be sold above 
the DAM price. The benchmark case is insensitive to this ratio, which results in an average imbalance cost 

discharge, they can also benefit from high prices on the imbalance market, which can be seen in the 
outliers on the right graph. The left graph remains almost unchanged. Overall the retailer can gain on the 

 
 
 

 
Fig. 2. Total charging power at each location versus time of day at the 1st and the final iteration. A darker color indicates a higher 
charging power. 

4. Conclusion 

An algorithm is proposed for constructing EV charging schedules, taking into account a maximum 
charging power constraint at each charging location and the individual energy consumption of each EV. 
The charging schedules are constructed day-ahead, given a (time-varying) electricity price, and given a 
known trip schedule for the following day. The algorithm is a price-based demand response algorithm, 
and is based on a dual decomposition technique. A first advantage of the proposed approach is that 
geographical information is included in the coordination method, and constraints of charging at different 
locations are taken into account. Vehicle owners are given an incentive to charge at other locations when 
power constraints at the charging location are violated. A second advantage is that the calculations are 
performed in a distributed way, to put the responsibility for constructing charging schedules only at the 
EV side. This contrasts with approaches where all, possibly privacy sensitive, information to form vehicle 
schedules needs to be gathered in one central location. Thirdly, convergence of the proposed algorithm is 
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guaranteed for not-strictly convex utility functions for the EVs. The functioning of the algorithm is 
illustrated in two applications. Evidently, nowadays the number of EVs is too small for these problems to 
occur and the practical implementation of this coordination algorithm falls beyond the scope of this 
research. 
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Appendix 

For every EV an individual optimization problem can be formulated 
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with indices },...,1{ Tt  Index used to number discrete time intervals and  },...,1{ Ni  index used to 
number EVs; environmental parameters: )(ci t  consumption of EV, )(tSLP  estimation of background 
consumption and EV consumption,  )(ti  is a parameter which is zero if EV is consuming and one if EV 

is parked, DAM , DAM
mean  are energy price on the day-ahead market (

price over the horizon); control parameters )(tpi is the power consumption of EV, )(tqi is the battery 
capacity of EV, )(imb t  is the Lagrange multiplier concerning the imbalance and )(capacity t  the 

Lagrange multiplier concerning the grid capacity; and parameters initial
iq  is the initial battery capacity, ST  

the time interval period, i  energy losses due to (dis)charging EV, 
i

p  lower bound for (dis)charging the 

EV (0 if no vehicle to grid technology is present; ip  otherwise, ip  upper bound for loading EV, iq  
upper bound for EV capacity
in [h]. This problem can be solved locally in every EV. So most information is used only locally. 
The  optimization problem is given by 
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With )(t  the energy price for left-over energy on the imbalance market, )(t  the energy price for 

energy shortage on the imbalance market, )(t  the left-over power of the aggregator, )(t  the power 

shortage of the aggregator, are energy losses due to transport,   p  Upper bound for power transport 
 This equation can be solved autonomously. This set of optimization problems has common Lagrange 
multiplicators )(imb t  and )(capacity t . Both can be estimated with a relaxation method. This type of 
coordination mechanisms work well as long as all actors cooperate. So implicitly, we assume that 
cheating is not allowed. This principle is widespread and is in use in many energy market, like the 
Belgian day-ahead market. 
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