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Abstract. Gene rearrangements within the process of gene assembly in ciliates

can be represented using a 4-regular graph. Based on this observation, Burns et al.

[Discrete Appl. Math., 2013] propose a graph polynomial abstracting basic fea-

tures of the assembly process, like the number of segments excised. We show that

this assembly polynomial is essentially (i) a single variable case of the transition

polynomial by Jaeger and (ii) a special case of the bracket polynomial introduced

for simple graphs by Traldi and Zulli.

1 Introduction

Ciliates are an ancient group of unicellular organisms. They have the remarkable prop-

erty that their DNA is stored in two vastly different types of nuclei. During conjugation

a germline nucleus called the micronucleus (MIC) is transformed into a somatic nu-

cleus called the macronucleus (MAC). In this way, each MIC gene is transformed into

its corresponding MAC gene, in a process that we call gene assembly. Various formal

models for this gene transformation process are presented in [3].

One of these formal models is string based, with letters representing “pointers”

(special DNA sequences in a MIC gene) together with their relative orientation in the

corresponding MAC gene [10]. The model postulates that three operations called loop

excision, hairpin recombination, and double loop recombination accomplish the trans-

formation of a MIC gene to its corresponding MAC gene. This model has been signifi-

cantly generalized using the notion of circle graph, see, e.g., [10,3].

This string-based formal model can be very naturally fitted within the well-developed

theory of transformations of Eulerian circuits in 4-regular graphs [4]. An example us-

ing the Actin I gene of Sterkiella nova, taken from Prescott [18], is recalled below. It is

known that these Eulerian circuit transformations may in turn be viewed both as a spe-

cial case of a matrix operation called principal pivot transform (see [22]) and as a set

system operation called twist. It turns out that the interplay of the successive operations

can be much better understood in these more general settings compared to the string or

graph settings. These generalizations for gene assembly are outlined in [4].

⋆ R.B. is a postdoctoral fellow of the Research Foundation – Flanders (FWO).
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Fig. 1. Actin I gene of Sterkiella nova. Schematic diagram, based on [18].

Here we recall the 4-regular graph representation that represents both the MIC and

MAC form of a gene. We recall how the MIC and MAC form of a gene are two dif-

ferent sets of circuits in a 4-regular graph, and may be obtained from one another by

making different decisions where to continue a path at each vertex. Possible interme-

diate results of this recombination can also be read from this 4-regular graph. Based

on this observation, Burns et al. [7] have proposed the assembly polynomial, a graph

polynomial intended to abstract basic features of the assembly process, like the number

of molecules excised during this process.

In this paper we show that the assembly polynomial is closely related to the fol-

lowing graph polynomials: (i) the transition polynomial by Jaeger [15,13] and (ii) the

bracket polynomial introduced for simple graphs by Traldi and Zulli [21]. We show

how notions and results related to these polynomials may be carried over to the assem-

bly polynomial. We note that the transfer of notions and results between other (related)

graph polynomials have been accomplished, as can be seen in [11,12].

Gene Assembly as 4-Regular Graphs

Prescott and Greslin [19] have unraveled the different representations of genetic mate-

rial in the MIC and MAC form of genes in ciliates. We illustrate this using the example

of the Actin I gene of Sterkiella nova, the presentation of which is based on [18]. In

MIC form this gene consists of macronuclear destined sequences (MDSs for short),

which end up in the MAC form of this gene, that are scrambled (their order may be

permuted and some MDSs may be inverted). The segments in between the MDSs are

called internal eliminated sequences (IESs for short) that are excised and do not appear

in the MAC form of this gene.

The MIC of the Actin I gene can be written as I0 M3 I1 M4 I2 M6 I3 M5 I4 M7 I5 M9

I6 M2 I7 M1 I8 M8 I9, where Mi and I j represent MDSs and IESs, respectively. The final

MAC can be written as M1M2 . . .M8M9. Both the MIC and MAC form of this gene can
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Fig. 2. Graph Gw defined by string w = 145265123463, see Example 1. The edges trace the

Eulerian circuit Cw as defined by w according to the edge numbers given.

be read from the 4-regular graph G in Fig. 1. The vertices of G represent the pointers,

i.e., the places where recombination takes place, and the edges represent the MDSs and

IESs. Each vertex has two incoming and two outgoing edges. The MIC and MAC form

both trace paths in the diagram. For the MIC form successive incoming and outgoing

edges are chosen such that the two visits of a vertex do not cross, whereas for the MAC

form the successive visits are connected in a crossing fashion (see top right illustration).

Without loss of generality, in the abstract context considered in the next sections,

the initial edge and final edge are joined to form a single edge, in order to obtain an

actual 4-regular graph.

2 Eulerian Circuits in 4-regular Graphs

The example in the introduction illustrates that 4-regular graphs are one of the key tools

for describing the transformation of a MIC gene into its MAC gene. The MIC gene

corresponds to an Eulerian circuit, while the MAC gene corresponds to a number of

circuits (each edge belongs to one such circuit), such that one of those contains the

MDSs in the proper order and orientation, while the other circuits contain only IESs

that are excised during the gene assembly process. We abstract from genes and describe

circuits in 4-regular graphs over an abstract alphabet (the elements of which, in effect,

denote pointers).

A double-occurrence string over an alphabet V contains each letter from V exactly

twice. Each double-occurrence string describes a 4-regular graph Gw together with an

Eulerian circuit Cw for Gw, choosing vertex set V and edges that follow consecutive

letters in w (in a cyclic fashion).

Example 1. Let V = {1, . . . ,6}. For w = 145265123463, the 4-regular graph Gw

is given in Fig. 2, where the edges are numbered according to the Eulerian circuit

Cw. Thus, first introduce a vertex for each element in V . Then continue by reading

w and adding (undirected) edges between consecutive letters (in a cyclic fashion):

1 1—4 2—5 3—2 4—6 5—5 6—1 7—2, etc. ⊓⊔
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Fig. 3. Three ways to connect pairs of edges in a 4-regular graph relative to an (oriented) Eulerian

circuit: (a)
e
→ v

e1→ following the circuit, (b)
e
→ v

e3→ in an orientation-consistent way, and (c)
e
→ v

e2← in an orientation-inconsistent way.

We discuss here the basic theory of splitting and joining Eulerian circuits in 4-

regular graphs, see [16] and also [14, Chapter 17]. Let G be a undirected 4-regular

graph and C an Eulerian circuit of G. We assume here that circuits are not oriented.

Consider a circuit partition P of G, i.e., a set of circuits of G that together contain

all the edges exactly once. We can describe P relative to C by considering at each

vertex how the circuits in P follow the edges relative to C. In fact, when during a walk

of P, P enters a vertex v, then P can leave in one of exactly three directions.1 They

can be classified as follows, cf. Fig. 3. Let . . .
e
→ v

e1→ . . .
e2→ v

e3→ . . . be an arbitrary

orientation of C. (i) If, by entering v via e in P, P leaves v via e1, then we say that

P follows C at v. (ii) If P leaves v via e3, then we say that P is orientation-consistent

with C at v, and finally (iii) if P leaves v via e2, then we say that P is orientation-

inconsistent with C at v. In [15], the first two are called coherent and the last one is

called anticoherent. Moreover, in [7] the last two are called (parallel) p-smoothing and

n-smoothing, respectively.

We let D(C,P) = (D1,D2,D3) be the ordered partition (we allow some Di to be

empty) of V such that the vertices of P that (i) follow C are in D1, (ii) are orientation-

consistent with C are in D2, and (iii) are orientation-inconsistent with C are in D3. (We

return to this notion later, see Example 6 and Theorem 5.)

A transition at a vertex v is a partition in (unordered) pairs of the edges incident to

v. A transition system of G is a set of transitions, one for each vertex of G. Note that a

circuit partition uniquely determines a transition system. Indeed, if a circuit of P visits

vertex v, entering and leaving at v via a pair of edges, then another visit of v (which

may occur either in the same circuit or in another circuit of P) uses the remaining pair

of edges. In the same way, a transition system uniquely determines a circuit partition.

Remark 2. In the process of gene assembly in ciliates, the MIC form of a gene traces

an Eulerian circuit, while its corresponding MAC form has a different transition at each

vertex (i.e., pointer). For each vertex v, this transition is uniquely determined by the rel-

ative orientation in the MIC form of the two MDSs with edges incident to v. When the

MDSs have the same orientation, the orientation-consistent transition is taken; other-

wise, the orientation-inconsistent transition is taken. In this way, an intermediate result

1 In case G has loops one has to consider “half edges” to obtain three directions, but these

technicalities are left to the reader.
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Fig. 4. Changing the Eulerian circuit of Fig. 2 at vertex 5 in orientation-consistent and orientation-

inconsistent ways, respectively. The transition that follows Cw at vertex 5 is indicated on the left.

of the gene assembly process either follows the MIC or the MAC transition at each ver-

tex. Thus in modelling the rearrangements in gene assembly in ciliates one has to keep

track of the relative orientation of the MDS-segments.

In Fig. 3, we see that changing an Eulerian circuit at a single vertex by choosing

the transition in an orientation-consistent manner, splits the circuit into two circuits.

Choosing the orientation-inconsistent transition instead “inverts” part of the circuit.

Example 3. The Eulerian circuit Cw is given by w = 145265123463, cf. Example 1.

By changing Cw at vertex 5 in an orientation-consistent way, we have the transitions
2

—5
6

— and
5

—5
3

—, so we obtain two circuits 145123463 and 526. By recombining in

an orientation-inconsistent way we have the transitions
2

—5
5

— and
3

—5
6

—, so we obtain

a single circuit 145625123463 with segment inverted, see Fig. 4. ⊓⊔

We noted that changing the transition of vertex v in an Eulerian circuit C to an

orientation-consistent way splits the circuit in two. However, when we in parallel change

transitions in an Eulerian circuit at distinct vertices u and v, both in an orientation-

consistent way, then again an Eulerian circuit is formed, provided that u and v are “inter-

laced” in C, i.e., they occur in the order · · ·u · · ·v · · ·u · · ·v · · · (again, strings are regarded

cyclic). In that case, two segments between the occurrences u and v are swapped. This

is an important observation in the context of intra-molecular models of gene assembly.

The interlacement of pairs of vertices is captured in an interlace graph (also called a

circle graph as it can be defined using a collection of chords in a circle with edges

denoting their intersection, see, e.g., [14, Chapter 17]).

The interlace matrix I(C) of C is the V ×V -matrix (i.e., the rows and columns are

not ordered, but indexed by V ) over GF(2) that has 1 at position (u,v) if vertices u and v

are interlaced in C, i.e., occur in the order · · ·u · · ·v · · ·u · · ·v · · · , and 0 otherwise. Since

I(C) is symmetric, I(C) may be viewed as the adjacency matrix of a simple graph G,

called the interlace graph of C. We are sloppy, and also use I(C) as a notation for G.

Example 4. For Cw defined by w= 145265123463, the interlace graph I(Cw) is given

in Fig. 5. ⊓⊔
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1 1 0 1 0

3 0 1 1 0

4 1 1 0 0

5 0 0 0 0









Fig. 6. Cf. Example 6. (a) Partition P of the edges of the 4-regular graph Gw into three closed

walks; edge numbers according to Cw. (b) Both the graphical and matrix representation of the

graph (I(Cw)+∆ ({1,3}))\{2,6}.

Cohn and Lempel [8] proved a surprisingly simple formula for the number of cir-

cuits that result from an Eulerian circuit C in a 4-regular graph by changing C in an

orientation-consistent way at several vertices. The formula is in terms of the nullity

(dimension of the null space) of the interlace matrix. A more general treatment of this

result is given by Traldi [20], allowing one to change transitions in both orientation-

consistent and orientation-inconsistent ways. Above we have borrowed the terminology

of [20].

Traldi has shown that the number of circuits in P can be elegantly expressed in

terms of the interlace matrix I(C) and the partition D(C,P). Let A be a V ×V -matrix. If

D ⊆ V , then A \D denotes the restriction of A to the principal submatrix of A indexed

by V \D, and ∆(D) is the V ×V -matrix that has 1 only on diagonal elements (u,u) with

u∈D, and 0 elsewhere. Also, ν and ρ denote the nullity and rank of matrices computed

over GF(2), respectively.

Theorem 5 (Traldi-Cohn-Lempel). Let G be an undirected, connected 4-regular graph

with Euler cycle C, and let P be a circuit partition of E(G), such that D(C,P) =
(D1,D2,D3). Then |P|= ν((I(C)+∆(D3))\D1)+ 1.

Example 6. We continue the running example. Fig. 6(a) shows a circuit partition P of

Gw in three parts, with circuits 14632, 1345, and 265. At vertex 5, the circuits trace

the transitions 2—5 6— and 5—5 3—, which is orientation-consistent w.r.t. the circuit Cw.

Hence 5 belongs to the second component of the partition D(Cw,P). Considering all

vertices, we find D(Cw,P) = ({2,6},{4,5},{1,3}). Graph (I(Cw)+∆({1,3}))\{2,6}
is obtained from the interlace graph I(Cw) by deleting vertices 2,6 and adding loops



Graph Polynomials Motivated by Gene Rearrangements in Ciliates 7

to 1,3. It is given in Fig. 6(b). The corresponding matrix has (dimension 4× 4, rank 2,

and) nullity 2. Indeed |P|= 2+ 1 satisfies Theorem 5. ⊓⊔

3 Graph Polynomials Motivated by Gene Rearrangement

One of the first graph polynomials is defined by Martin [17] for 4-regular graphs. Given

such a graph G, the coefficient of yk in its polynomial MG(y) equals the number of

circuit partitions P of G with |P| = k. Currently, there is an impressive body of results

on graph polynomials, see, e.g., the overview papers by Ellis-Monaghan and Merino

[11,12]. Typical topics that are studied are algebraic and combinatorial in nature, and

include recursive formulations of the polynomials, and the interpretation of evaluations

at specific values. Generalizations have been obtained for structures like knots and ma-

troids [15]. Also, a multimatroid polynomial is proposed as a unified framework to

several polynomials for graphs and matroids [5].

The study of gene rearrangements has motivated the introduction of new polynomi-

als, most notably the interlace [2,1] and assembly [7] polynomials, as, e.g., a feature

that could measure and compare the complexity of the rearrangement process. Both

these polynomials fit in the corpus of existing graph polynomials, and thus techniques

and results can be carried over. For the interlace polynomial it has been shown that it

is tied to the well-known Tutte polynomial [1,5]. Here we discuss how the assembly

polynomial is related to other known polynomials.

The Transition Polynomial and its Relatives

It was observed by Jaeger [15] that several polynomials for 4-regular graphs are spe-

cial cases of the transition polynomial, which is a multivariate/weighted polynomial.

Similar as the Martin polynomial, the transition polynomial counts circuit partitions P

w.r.t. an arbitrary Eulerian circuit C. However, the circuit partitions P have weights in

the transition polynomial that depend on D(C,P). Unfortunately, it seems that [15] is

not widely distributed.

We show that the assembly polynomial is closely related to the transition polyno-

mial, essentially by embedding its second variable into the weights. Secondly, we ob-

serve a less obvious relation to the bracket polynomial for graphs in terms of the nullity

of the adjacency matrix of the circle graph using Theorem 5.

Burns et al. [7, Section 6] (see also [9]) define the assembly polynomial for a 4-

regular graph Gw together with an Eulerian circuit Cw belonging to a double-occurrence

string w over alphabet V . The assembly polynomial of Gw w.r.t. Eulerian circuit Cw is

S(Gw)(p, t) = ∑
s

pπ(s)tc(s)−1
,

where the sum is taken over all 2|V | transition systems s that differ at each vertex from

the transition system corresponding to Cw (a transition that differs from the transition

of Cw is called a smoothing in [7]), π(s) equals the number of orientation-consistent

transitions of s w.r.t. Cw (called p-smoothings in [7]), and c(s) equals the number of

circuits in the circuit partition corresponding to s.
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Fig. 7. Construction of Gw for w= 112323, and the eight smoothings that determine its assembly

polynomial, see Example 7.

Example 7. Consider the double-occurrence string w= 112323. In Fig. 7 we show that

its corresponding Eulerian circuit Cw in the 4-regular graph Gw (top-left) and its eight

possible smoothings (at each vertex, vertical connections correspond to a consistent-

orientation change, i.e., a p-smoothing). Note that Gw has both a loop and parallel edges.

The assembly polynomial equals S(Gw) = p3t + 2p2t + p2 + pt2 + 2p+ t (as can be

verified using the Assembly Words online tool [6]).

We discuss the transition polynomial from [15]. Let P(G) be the set of all transition

systems of G. Note that |P(G)| = 3|V |, where V is the set of vertices of G. A weight

function W assigns a weight to each of the three possible transitions at each vertex. The

weight ω(s) of the transition system s is the product of the weights of s at each vertex.

The (weighted) transition polynomial of G is now defined as

q(G,W ;x) = ∑
s∈P(G)

ω(s)xc(s)−1
.

We obtain the assembly polynomial as a special case of the transition polynomial

by fixing the weights W (C) relative to the Eulerian circuit C. Transitions that follow

C have weight 0 (so are not counted at all), orientation-consistent and and orientation-

inconsistent transitions have weight p and 1 respectively. We have ω(s) = pπ(s) if s

contains no transitions that follow C, and ω(s) = 0 otherwise. Hence S(Gw)(p, t) =
q(Gw,W (Cw);t).

The interlace polynomial on the other hand, is equal to a suitable generalisation of

the transition polynomial where zero weight is assigned to the orientation-inconsistent

transitions.

Various results are known for the transition polynomial. For example, let P be a

circuit partition of G and W (P) be such that the transitions belonging to P have weight

0, and the other transitions have weight 1. Then q(G,W (P);−2) = (−1)|V |(−2)c(P)−1,

see [15, Proposition 11]. Consequently, S(Gw)(1,−2) = (−1)|V | since P is the Euler

circuit Cw and c(Cw) = 1.
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We now move to a second interpretation of the assembly polynomial. Consider a

transition system s that never follows circuit C, as is relevant in this context. It deter-

mines a set of circuits Ps, and the number of circuits c(s) = |Ps| is given by the Traldi-

Cohn-Lempel formula, and equals ν(I(Cw)+∆(D3))+1, where D(C,Ps)= (∅,D2,D3).
Recall that s determines D(C,Ps) but also vice versa. Thus we reformulate the assembly

polynomial of Gw w.r.t. Cw replacing summation over transition systems s by summa-

tion over partitions (∅,D2,D3). The notation ∪̇ represents disjoint set union.

S(Gw)(p, t) = ∑
D2∪̇D3=V

p|D2|tν(I(Cw)+∆ (D3)).

In this formulation we recognize a related graph polynomial defined by Traldi and Zulli

[21]. Let A (G) be the adjacency matrix of graph G. The bracket polynomial of a graph

G is

[G](A,B,d) = ∑
∆

Aν(∆ )Bρ(∆ )dν(A (G)+∆ )

with a summand for each n× n diagonal matrix ∆ = ∆(D) for some D⊆V .

Now let D⊆V , and set D3 =D and D2 =V \D. Then ν(∆(D)) = |V |−|D3|= |D2|.
Taking A = p, B = 1, and d = t we see that the terms for the bracket and assembly

polynomials match. To be precise, the assembly polynomial S(Gw) of the 4-regular

graph Gw defined by the double-occurrence string w is equal to the bracket polyno-

mial [I(Cw)](p,1, t) of the interlace graph I(Cw). As a consequence, when two double-

occurrence strings have the same interlace graph, their 4-regular graphs have the same

assembly polynomial, cf. [9, Proposition 3].

The transition polynomial allows for a straightforward recursive relation [15, Propo-

sition 4], cf. [7, Lemma 6.4] for the case of the assembly polynomial. In fact, this re-

cursive relation characterizes the transition polynomial. In a similar way, the bracket

polynomial allows for a characteristic recursive relation [21], using a generalization

of Euler circuit transformations called local complementation and edge complementa-

tion (which in turn is a special case of the general matrix operation of principal pivot

transform [22]).

We hope these connections may be a starting point for transferring notions and

results from one of these fields to another.
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