
Made available by Hasselt University Library in https://documentserver.uhasselt.be

The Algebra of Gene Assembly in Ciliates

Peer-reviewed author version

BRIJDER, Robert & Hoogeboom, Hendrik Jan (2014) The Algebra of Gene

Assembly in Ciliates. In: Jonoska, Nataša; Saito, Masahico (Ed.). Discrete and

Topological Models in Molecular Biology, p. 289-307.

DOI: 10.1007/978-3-642-40193-0_13

Handle: http://hdl.handle.net/1942/18454



The Algebra of Gene Assembly in Ciliates

Robert Brijder and Hendrik Jan Hoogeboom

Abstract The formal theory of intramolecular gene assembly in ciliates is fitted into
the well-established theories of Euler circuits in 4-regular graphs, principal pivot
transformations, and delta-matroids.

1 Introduction

Gene assembly is an intricate process occurring in unicellular organisms called cil-
iates. During this process a nucleus, called themicronucleus, is transformed into a
functionally and structurally different nucleus called themacronucleus. It is accom-
plished using involved DNA splicing and recombination operations. Gene assembly
has been formally studied on the level of individual genes, see, e.g., [20] and [10].

The theory of Euler circuits in 4-regular graphs was initiated in a seminal pa-
per by Kotzig [31]. Bouchet further developed the theory by relating it to delta-
matroids [6] and isotropic systems [5, 7]. In [6], Bouchet uses a matrix transforma-
tion that turns out to be “almost” principal pivot transform(PPT) [42]. PPT, delta-
matroids, and isotropic systems enjoy many interesting properties which have direct
consequences for the theory of Euler circuits in 4-regular graphs.

Although, at first glance, the formal theory of gene assemblyseems to be related
to the theory of Euler circuits in 4-regular graphs (this will become clear when we
consider Fig. 5 in Section 3), there have been little attempts to fit the former theory
into the latter. In this paper we do exactly this. We show thatthe formal model
of gene assembly can be defined quite efficiently in terms of 4-regular graphs. In
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a survey-style fashion we discuss consequences of known results in the theory of
4-regular graphs (including, e.g., results related to PPT and delta-matroids) for the
theory of gene assembly.

This paper is organized as follows. In Section 2 we briefly recall the biology of
gene assembly in ciliates and its string model [19, 23] (see also [20]). In Section 3
we view gene assembly in terms of Euler circuit transformations (or, more gener-
ally, circuit partition transformations) in 4-regular graphs, and in terms of the corre-
sponding local and edge complementation transformations on looped circle graphs.
These operations of local and edge complementation turn outto be special cases
of principal pivot transform defined on arbitrary square matrices, cf. Section 4. In
Section 5, we find that we can view local and edge complementation in terms of
a very elementary operation, called pivot, on set systems. Finally, in Section 6, we
combine pivot on set systems with another operation, calledloop complementation,
on set systems. Together the two operations turn out to form agroup, which enables
us to replace the intricate graph operations by a simple algebra on set systems.

2 Gene Assembly in Ciliates

Ciliates contain two different kinds of nuclei, which differ both functionally and
structurally. The relatively largemacronucleus(MAC for short) has many copies
of short chromosomes, each containing only a single or just afew genes. Themi-
cronucleus(MIC for short) contains a much smaller number of chromosomes, each
containing numerous genes (as is usual for chromosomes in general). The germ-line
MIC is only used for reproduction, while the somatic MAC is used for general cell
regulation. During sexual reproduction, a newly formed MICis transformed into a
MAC. This process is calledgene assemblyand is accomplished using extensive
DNA splicing and recombination operations.

M3

M2

M1 M8M9M7M5M6M4

Fig. 1 The structure of the MIC gene encoding for the Actin protein in Sterkiella nova.

The genetic material in the MIC is scrambled: the genes are broken up into seg-
ments, calledmacronuclear destined sequences(or MDSs for short), which are re-
ordered and possibly inverted with respect to the corresponding MAC genes. More-
over, the MDSs in the MIC genes are separated byinternal eliminated sequences
(IESs for short) which are not part of the genes. For example,the MIC form of
the Actin I gene of the ciliate Sterkiella nova is depicted inFig. 1 and can be de-
scribed as the stringI0M3 I1M4 I2M6 I3M5 I4M7 I5M9 I6M2 I7M1 I8M8 I9 [39], where
theMi ’s are MDSs and theIi ’s are IESs. Note that the inversion of the MDSM2 is
indicated by a bar. The MDSsM1, . . . ,M9 are oriented and numbered according to



The Algebra of Gene Assembly in Ciliates 3

the order in which they occur in the corresponding “unscrambled” MAC gene, see
Fig. 2. Note that consecutive MDSs overlap (the gray segments in Fig. 2). These
segments are calledpointersin the MIC gene as they indicate the complex recom-
bination schema that is to be performed to obtain the corresponding MAC gene.

· · ·

Mk
︷ ︸︸ ︷

︸ ︷︷ ︸

Mk−1

M3
︷ ︸︸ ︷

︸ ︷︷ ︸

M2

M1
︷ ︸︸ ︷

Fig. 2 The structure of a MAC gene consisting ofκ MDSs.

The generic form of recombination aligns two MDSs on their common pointer,
and then performs a crossover operation at that pointer, seeFig. 3. In that way the
two segments are joined into a larger MDS segment. Note that the order (or the
level of parallelism) in which recombination operations are applied has no influence
on the outcome. This generalconfluencyproperty of recombination ensures that the
MAC gene is uniquely obtained from MIC gene by performing recombination on
each pointer pair (regardless of the order in which recombination takes place) [22].
Biologically, the pointer pair no longer exists after recombination as it cannot be
used for another recombination operation. Mathematically, it turns out to be worth-
while to leave the pointer pair for further consideration.

We consider the intramolecular model for gene assembly from[38, 20]. In this
model three specific types of recombination operations are distinguished, see Fig. 4:
(a) Two consecutive MDSs (i.e., a single IES separates the two MDSs) having the
same orientation can be recombined byloop excision. In that process a circular
molecule is removed from the segment containing that IES. (b) Two MDSs in
opposite orientation can be recombined byhairpin recombination. This operation
inverts the segment originally between the two MDSs. This segment may contain
other MDSs. (c) Two interleaved pairs of consecutive MDSs, the MDSs in each
pair in the same orientation, can be recombined bydouble loop recombination. Dur-
ing this operation two segments between the MDSs are swapped. A sequenceϕ of
recombination operations (of these types) is calledsuccessfulfor a given MIC gene
g if (i) ϕ is applicable to (defined on)g and (ii) applyingϕ on g yields the MAC
gene corresponding tog. Because of the above mentioned confluence property of

3
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Fig. 3 Recombination on pointer 4 joins MDSsM3 andM4. The left and right pointers ofM3 are
denoted by 3 and 4, respectively (and similarly forM4).
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Fig. 4 Three operations: loop excision (left-hand side), hairpin recombination (upper-right cor-
ner), and double loop recombination (intermediate stage only,lower-right corner)

recombination in general, we haveϕ is successful forg iff ϕ is applicable tog and
each pointer pair is used exactly once inϕ .

The above recombination operations are formalized on strings as follows. Let us
fix a positive integerκ . We denote pointers, and their orientation, by the alphabet
Π = {1,2, . . . ,κ}∪ {1̄, 2̄, . . . , κ̄}. The inversion of stringw = w1w2 . . .wn ∈ Π ∗ is
the stringw̄= w̄n . . . w̄2w̄1, where we let¯̄p= p for eachp∈Π .

A directed double occurrence string, or doc-stringfor short, (called legal string
in [20]) is a stringw overΠ that contains each pointer ofw exactly twice, in either
orientation (barred or unbarred). The MIC gene is then encoded by concatenating
the pointers (including their orientation) in the same order as they appear in the MIC
gene. Hence if there areκ MDSs, then MDSMi (for i ∈ {2, . . . ,κ−1}) corresponds
to i (i+1), its inversionMi corresponds to(i +1) i , MDSsM1 andMκ correspond to
2 andκ , respectively, and their inversions correspond to2̄ andκ̄ , respectively (recall
thatM1 andMκ have only one neighbouring MDS). Note that there is no pointer 1.
Thus the MIC form of Actin I of Sterkiella nova mentioned above is written as
34 45 67 56 78 9̄32̄ 2 89, space added for clarity.

The three recombination operations can be described using doc-strings in the
following straightforward manner [19, 23]. First we define the following three map-
pings on doc-strings. Letu1, . . . ,u5 ∈ Π ∗, and let p,q ∈ {1, . . . ,κ}. Then,u\ p
deletes occurrences ofp and p̄ in u; if u= u1 pu2 p̄u3 thenu∗ p= u1 pū2 p̄u3; and
if u= u1 pu2qu3 pu4qu5 thenu∗{p,q}= u1 pu4qu3 pu2qu5. In a similar way we
defineu∗ p in caseu = u1 p̄u2 pu3 (i.e., the bars on the two occurrences ofp are
swapped), andu∗ {p,q} in case the positions ofp andq are interchanged and/or in
case the two occurrences in thep-pair orq-pair are barred.
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Fig. 5 Actin I gene of Sterkiella nova. Schematic diagram, based on[37]

Then (a)u\ p models loop excision, providedu containspp (or p̄p̄) as consec-
utive pointers, (b)u∗ p\ pmodels hairpin recombination, and (c)u∗{p,q}\ p\q
models double loop recombination.

Given a doc-string, any sequence of these three operations that reduces this string
into the empty string is called asuccessful reduction. Note that if a doc-stringw
represents a MIC geneg, then successful reductions ofw correspond precisely to
successful reductions ofg. It is easily verified that every doc-string has a successful
reduction [21]. This reduction usually is not unique.

3 Graph Models

It is not surprising that graph-theoretical concepts are important tools in modelling
and understanding the process of gene assembly in ciliates.Consider for instance
the diagram of the Actin I gene of Sterkiella nova as depictedby Prescott [37]. A
simplified representation is given in Fig. 5 (see Example 1 below for details). The
structure of the genetic material is given as a “bi-coloured” graph, with pointers as
vertices, and MDS and IES segments as edges. We can read both the original MIC
sequence and the target MAC sequence from the graph. If we follow the IES and
MDS edges in an alternating fashion, then we obtain the MIC, and if we follow the
edges according their colours, then we obtain the MAC (with flanking IESs).

Example 1.In the MDS-IES description of the MIC form of Actin I of Sterkiella
nova (from Section 2), we explicitly add the pointers flanking the MDS’s, to obtain
the sequenceπ = I0 p3M3 p4 I1 p4M4 p5 I2 p6M6 p7 I3 p5M5 p6 I4 p7M7 p8 I5 p9M9 I6
p3M2 p2 I7M1 p2 I8 p8M8 p9 I9.
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One may viewπ as an Eulerian path in a multigraphG: the pointerspi are the
vertices ofG, and the strings in-between the vertices are the (labelled)edges ofG. In
this wayπ induces Fig. 5. Apart from the MDS edgesMi (in-betweenpi andpi+1)
and IES edgesIi , there are also “mixed” edges, like the loopI7M1 on p2, caused by
the fact thatM1 has no initial pointer. Note that we may have parallel edges,e.g.,
there are two edges fromp5 to p6.

The MAC form is obtained by recombining MDSs at each pointer.For example,
at p5 in π we have bothM4 p5 I2 and I3 p5M5, whereas in the MAC formM4 and
M5 are joined at vertex (pointer)p5, and we have bothM4 p5M5 andI3 p5 I2. Recall
from Fig. 3 that when recombining MDSs at a pointer, IESs are at the same time
joined together at that pointer.

As MDS M2 is inverted in the MIC form, it has to be read “backwards” in the
MAC form. Thus, in the MAC form we follow edgep3M2 p2 in opposite direction.
Also, when recombiningM1 andM2 at p2 at the same time we joinI7 andI8 at the
same vertex.

In this way, the MAC form of the gene consists of three molecules. The string (the
pointers are omitted)I9I5I8I7M1M2 . . .M8M9I6I0 represents the strand consisting of
the recombined MDS’s and flanking IES’s. The MAC form also hastwo circular
IES molecules (that are excised):I1 andI2 I4 I3 (again the pointers are omitted).⊓⊔

In the manner described above, every (unbarred) doc-stringdefines a 4-regular
multigraph (every vertex has degree 4, we allow loops and parallel edges) together
with an Euler cycle (that visits every edge of the graph exactly once). Start by rep-
resenting every pointer pair by a vertex. Then follow the string, adding an edge as
we step from pointer to pointer. Treat the string as if circular, and connect the last
pointer to the first. Obviously, the multigraph is 4-regular, and the string traces an
Euler cycle through the multigraph. The result is very similar to the representation
of the gene in Fig. 5, if we merge the initial and final “edges”I0 andI9. Conversely,
every 4-regular multigraph with Euler cycle induces a (unbarred) doc-stringw (in
fact, a set of “equivalent” doc-strings that are obtained fromw by conjugation).

We briefly describe the theory of operations on cycles in 4-regular multigraphs as
initiated by Kotzig [31] and continued by Bouchet. Given a 4-regular multigraph we
obtain a set of cycles by pairwise “joining” the edges at eachvertex. These pairings
can be unambiguously described using a fixed Euler circuit asanchor, see Fig. 6 (a–
c). The pairings may follow the Euler circuit, and otherwisereconnect in a way

(a) (b) (c)

p q

Fig. 6 Three ways to connect pairs of edges in a 4-regular graph relative to an Eulerian cycle (a)
following the cycle (b) orientation consistent (c) orientation inconsistent. Two interleaved vertices
in the cycle. (rightmost diagram)
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that may or may not agree with the orientation of the Euler circuit. The pairings of
Fig. 6 (a–c) are called smoothings in [3] and transitions in [6].

Example 2.(1) Consider the (unbarred) doc-stringw= 126134563245. Thenw de-
fines a 4-regular graphG along with an Euler circuitEw in G, see Fig. 7(a). For
convenience, the edges inG are directed according tow. (2) If we take the pairing
at vertex 2 that is in an orientation-consistent way different fromEw, and if we take
the same the pairings asEw at the other vertices, then we obtain two disjoint cycles,
wa = 1245 andwb = 26134563, see Fig. 7(b). (3) If we take the pairing at vertex 2
that is in an orientation-inconsistent way different fromEw, and if we take the same
the pairings asEw at the other vertices, then we obtain the Euler circuit described
by w′ = 123654316245, see Fig. 7(c). ⊓⊔

Note how an orientation-inconsistent transition induces a“reversal” of part of
the original Euler circuit, which agrees with hairpin recombination. Also note that
an orientation-consistent transition breaks the Euler circuit into two disconnected
parts. Consider now two verticesp andq that are interleaved in the Euler circuit,
occurring in the order· · · p· · ·q· · · p· · ·q· · · , see Fig 6 (right). Then a synchronized
orientation-consistent transition at bothp andq again yields an Euler circuit. This
Euler circuit is obtained from the original one by swapping two segments in exactly
the same way as double loop recombination.

Then, to correctly model the gene assembly process, we have to keep track on
which pointers (vertices) we can apply the successive transition while maintaining
an Euler circuit. Both the orientation and interleavings may change during the pro-
cess. The tool we use is that of acircle graph, which represents the intersections
of the chords in a circle: each chord is represented by a vertex and two vertices are
adjacent iff the corresponding chords intersect. A (barred) doc-stringw defines a
circle graphC(w) in a natural way by writingw in a circular way and connecting
the pointer pairs. We additionally encode the relative orientation of the pointers of
each pointer pair by adding a loop to a vertex when the two pointers of the pointer
pair have different orientation (i.e., one is with a bar, andthe other is without a bar).
In [20] ±-signs are used instead of loops, and the corresponding graph, equivalent
to a (looped) circle graph, is called asigned graph. The advantage of using loops
instead of±-signs will become clear in Section 4. The (looped) circle graphC(w)
of the doc-stringw= 1261̄345̄632̄45 is given in Fig. 9 (middle, bottom row).

From now on, bygraphwe mean an undirected graphG where loops are allowed,
but parallel edges are not allowed. More precisely,G = (V,E) whereV is a finite

1

23

4

5 6
(a)

1

23

4

5 6
(b)

1

23

4

5 6
(c)

Fig. 7 Recombining edges of an Euler cycle, cf. Example 2.
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V1 V2

V3

u
v

V1 V2

V3

u
v

Fig. 8 Pivot on an edge{u,v} in a graph. Adjacency between verticesx andy is toggled iffx∈Vi

andy∈Vj with i 6= j . Note thatu andv are adjacent to all vertices inV3 — these edges are omitted
in the diagram. The operation does not affect edges adjacentto vertices outside the setsV1,V2,V3.

set ofverticesandE ⊆ {{x,y} | x,y∈V} a set ofedges(we have{x} ∈ E iff x is a
looped vertex). If the graphG is clear from the context of considerations, then we
simply denote its vertex set byV. ForX ⊆V, we denote the subgraph ofG induced
by X asG[X].

We define the basic operations of local and edge complementation on graphs [31,
7]. If G is a graph with looped vertexu, then thelocal complementof Gonu, denoted
by G∗ u, is obtained fromG by complementing the edges in the neighbourhood
NG(u) = {v∈V | {u,v} ∈ E,u 6= v} of u in G. Thus, forv,w∈ NG(u), e= {v,w} is
an edge ofG∗u iff e is not an edge ofG∗u (we allowv= w, i.e., thate is a loop).
All other edges remain the same inG andG∗u.

For an edge{u,v} of G with u andv distinct unlooped vertices, one defines the
edge complementof G on{u,v}, denoted byG∗ {u,v}, as follows. For vertexw its
closed neighbourhood, denoted byNG[w], equalsNG(w)∪{w}. The neighbours of
u andv can be partitioned in the three setsNG[u]\NG[v], NG[v]\NG[u] andNG[u]∩
NG[v]. The graphG∗ {u,v} is obtained fromG by complementing all pairs{x,y}
such thatx andy are each neighbours ofu or v, but not in the same partition, cf.
Fig. 8. This will not change any adjacencies to vertices not adjacent tou andv, nor
will it change any loops.

Theorem 1 ([31]). Let w be a doc-string and let p,q∈ {1, . . . ,κ}. If w∗ p is defined
(i.e., w contains both p and̄p), then C(w) ∗ p = C(w∗ p). If w∗ {p,q} is defined,
then C(w)∗ {p,q}=C(w∗ {p,q}).

Of course, Theorem 1 may be reformulated using Euler cycles in a 4-regular
multigraphs instead of doc-strings.

Example 3.Consider the doc-stringw = 1261̄345̄632̄45. It defines the circle
graphC(w) in Fig. 9 (middle). If we complement the neighbourhoodNC(w)(2) =
{1,4,5} of vertex 2 inC(w) we obtain the graphC(w)∗{2}=C(12 3̄6̄54̄3̄16̄2̄45),
see Fig. 9 (left). Edge complement on unlooped edge{3,4} in C(w) yieldsC(w) ∗
{3,4}= 1261̄3 2̄4 5̄6345 depicted in Fig. 9 (right). ⊓⊔
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Fig. 9 Local complement on looped vertex 2 (left-hand side); edge complement on unlooped edge
{3,4} (right-hand side). The top row indicates how the pointer segments overlap in the underlying
doc-strings, the bottom row contains circle graphs.

Theorem 1 suggests a generalization of the three recombination operations on
doc-strings that model loop excision, hairpin recombination, and double loop re-
combination (from Section 2). We have that (a) removing an isolated unlooped
vertex corresponds to loop excision, (b) local complementation followed by the
deletion of the vertex involved corresponds to hairpin recombination, and (c) edge
complementation followed by the deletion of the vertices involved corresponds to
double loop recombination.

A reductionof a graphG is a sequence of these three operations, and asuc-
cessful reductionof G is a reduction ofG to the empty graph. Every graph has a
successful reduction: indeed, apply local complement reductions until there are no
more loops, then apply edge complement reductions until thegraph contains only
isolated unlooped vertices, and finally remove these isolated unlooped vertices.

If a doc-stringw can be successfully reduced by a sequence of operations, then
the associated circle graphC(w) can be rewritten by the corresponding sequence of
graph operations. For the converse a similar result holds, except that we may have to
reorder the loop excision operations [19, 23]. For, e.g., the stringw= 2332 there is
a unique sequence of two loop excisions (“inside out”), while its circle graphC(w)
consists of two isolated unlooped vertices which can be removed in any order.

Since not every graph is a circle graphC(w) for some doc-stringw, the operations
of local complementation∗ p and edge complementation∗ {p,q} are generaliza-
tions of the corresponding operations∗ p and∗{p,q}, respectively, for doc-strings.

We remark that a polynomial called theMartin polynomial[32] (its multivariate
variant is called thetransition polynomial[30]) has been defined w.r.t. Euler circuits
C in 4-regular multigraphs. This polynomial records the number of circuitscT(C)
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obtained when performing onC a setT of transitions of the form described as in
Fig. 6. In a similar way as described in this section, the Martin polynomial corre-
sponds to a graph polynomial called theinterlace polynomial[4] (or Tutte-Martin
polynomial[8]) in which local and edge complementation play a central role. Inter-
estingly, the well-knownTutte polynomialon the diagonal coincides with the inter-
lace polynomial when restricting to bipartite graphs [2]. Anumber of variations of
the Martin and interlace polynomials is studied in the literature as we may restrict
or loosen the allowed types of transitionsT. Among them is thePenrose polynomial
[35, 1] and thebracket polynomialfor graphs [41]. For a detailed survey on these
polynomials we refer to [24, 25].

4 Matrices

With the definitions of local complementation∗ u and edge complementation
∗ {u,v} in place, we are interested insequencesof these operations (and in par-
ticular successful reductions). Since the definition of edge complementation is al-
ready involved by itself, it seems even more difficult to reason about the effect of
sequences such as∗ {u,v} ∗ {v,w}. Fortunately, it turns out that sequences of local
and edge complementation correspond to (a special case of) the so-called principal
pivot transform operation on square matrices. This will lead to a different perspec-
tive in which sequences of local and edge complementations are much easier to
study. Let us first recall the principal pivot transform operation.

LetV be a finite set, and letA be aV×V matrix, i.e., a matrix where the columns
and rows are indexed byV. For a setX ⊆ V we useA[X] to denote the principal
submatrix induced byX (i.e., the rows and columns are indexed byX). Moreover,
we defineA\X = A[V \X]. Let A be aV×V-matrix (over an arbitrary field), and
let X ⊆ V be such thatA[X] is nonsingular, i.e., detA[X] 6= 0. Theprincipal pivot
transform(PPTor pivot for short) ofA onX, denoted byA∗X, is defined as follows,

see [43]. IfA=

(
X V\X

X P Q
V \X R S

)

, then

A∗X =

(
X V \X

X P−1 −P−1Q
V \X RP−1 S−RP−1Q

)

.

Hence,A∗X is defined iffA[X] is nonsingular. Matrix(A∗X)\X = S−RP−1Q is
called theSchur complementof X in A.

The pivot is sometimes considered a partial inverse, sinceA andA∗X are related
as follows, where the vectorsx1 andx2 correspond to the elements ofX. In fact, the
following relation definesA∗X givenA andX [42].
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A

(
x1

y1

)

=

(
x2

y2

)

iff A∗X

(
x2

y1

)

=

(
x1

y2

)

(1)

Note that if detA 6= 0, thenA∗V = A−1. By Equation (1) we see that a pivot oper-
ation is an involution (i.e., operation of order 2), and moregenerally, if(A∗X) ∗Y
is defined, thenA∗ (X ∆ Y) is defined (applying the symmetric difference ofX and
Y) and the resulting matrices are equal. Note that in order to apply the pivot∗X to
matrixA it is required thatA[X] is nonsingular.

We may apply pivot to graphs through its adjacency matrix representation. The
adjacency matrixA(G) of a graphG= (V,E) is aV×V matrix (au,v) overF2 (the
binary field) withau,v = 1 iff {u,v} ∈ E. Obviously, forX⊆V, A(G[X]) =A(G)[X].
In this paper we make no distinction betweenG andA(G) and so we write, e.g.,
detG to denote detA(G), the determinant ofA(G) computed overF2. In this way,
graphs correspond precisely to symmetricV×V-matrices overF2. By convention,
the determinant of the empty matrix (or graph) is 1.

For a graphG and nonemptyX ⊆ V, X is calledelementary in Gif G[X] is
nonsingular and for all nonemptyY ( X, G[Y] is singular. Hence, ifX is elementary
in G, thenG∗X is defined butG∗Y is not defined for any nonempty proper subset
of X. It is easy to see that ifX is elementary inG, either (1)X = {u} ∈ E(G) (i.e.,
X is a loop) or (2)X = {u,v} ∈ E(G) and{u},{v} 6∈ E(G) (i.e.,X is an edge on
unlooped vertices). Geelen [26] observed that a pivot of Case (1) is precisely local
complementation and a pivot of Case (2) is precisely edge complementation.

Indeed, if vertexu has a loop inG, then the matrixG[{u}] is equal to the 1×1

identity matrix:
(

u

u 1
)
. Hence,∗ {u} is indeed applicable toG and

G∗ {u}=

(
u V \ {u}

u 1 χT
u

V \ {u} χu G[V−u]− χuχT
u

)

,

whereχu is the column vector belonging tou without element at position(u,u).
One may easily verify thatG∗{u} is indeed the graph obtained fromG by applying
local complementation onu.

Turning to edge complementation, if{u,v} is an edge inG andu andv are not

looped vertices, then the matrixG[{u,v}] is equal to

(
u v

u 0 1
v 1 0

)

. Hence,∗{u,v} is

indeed applicable toG and

G∗ {u,v}=





u v V\ {u,v}

u 0 1 χT
v

v 1 0 χT
u

V \ {u,v} χv χu G[V−u− v]− (χvχT
u + χuχT

v )
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whereχu is the column vector ofG belonging tou without elements at positions
(u,u) and(v,u) (and similarly forχv). One may again verify thatG∗{u,v} is indeed
the graph obtained fromG by applying edge complementation on{u,v}.

Having thus characterized local and edge complementation in terms of pivot, we
are ready to study sequences of these operations. For example, let u,v, andw be
mutually distinct unlooped vertices ofG. If (G∗ {u,v}) ∗ {v,w} is defined (i.e., if
{u,v} is an edge ofG, and{v,w} is an edge ofG∗{u,v}), then we immediately find
that(G∗ {u,v}) ∗ {v,w}= G∗ ({u,v} ∆ {v,w}) = G∗ {u,w} (and that{u,w} is an
edge ofG sinceG∗{u,w} is defined andu andw are unlooped vertices). In general
we have the followingconfluenceresult.

Let ϕ = ∗X1 ∗X2 · · · ∗Xn be a sequence of pivot operations (we assume left-
associativity of pivot). Thesupportof ϕ , denoted by sup(ϕ), is defined as∆i Xi ,
i.e., the set of vertices that occur an odd number of times inϕ . If ϕ is applicable to
a graphG, then, by the above,Gϕ = G∗ (X1 ∆ X2 ∆ . . . ∆ Xn) = G∗ sup(ϕ). This
observation may be seen as a highly generalized version of the confluence property
of DNA recombination from Section 2. If we specialize this observation for the
case where the∗Xi ’s are elementary (i.e., local or edge complementations), then we
obtain the following.

Theorem 2 ([11]). If ϕ andϕ ′ are applicable sequences of local and edge comple-
mentations for a graph G, thensup(ϕ) = sup(ϕ ′) implies Gϕ = Gϕ ′.

Special cases of this result are mentioned in the literature. The triangle equal-
ity stated above,∗ {u,v} ∗ {v,w}= ∗{u,w} for a graph with induced loopless tri-
angle{u,v,w}, can be found as [4, Lemma 10], [27, Proposition 1.3.5], and [33,
Proposition 2.5]. A “classical” proof typically involves keeping track of numerous
neighbouring edges. Also commutativity of edge complementation is obtained in
the context of gene assembly by Harju et al. [29]: if two disjoint edge complemen-
tations are applicable in either order, then the two resultsare identical. In short,
∗ {u,v} ∗ {w,x}= ∗ {w,x} ∗ {u,v}.

Example 4.Consider the MDS sequenceM4M3M̄5M2M̄1. It defines the pointer se-
quence 4534̄5232̄ which in turn has circle graphG depicted in Fig. 10. The figure
illustrates thatG∗ {2} ∗ {3} ∗{4}= G∗ {3,4} ∗ {2}. ⊓⊔

Note also thatG is nonsingular iff there is a sequenceϕ of local and edge com-
plementations with sup(ϕ) =V such thatGϕ is defined. Moreover, if this is the case,
then we may chooseϕ in such a way that each vertex ofV appears exactly once. In

2

3 4

5

G

2

3 4

5

G∗{2}

2

3 4

5

G∗{2,3}

2

3 4

5

G∗{2,3,4}

2

3 4

5

G∗{3,4}

2

3 4

5

G

Fig. 10 Circle graphG for 4534̄523̄2 (left and right)G∗{2,3,4} is computed twice, asG∗{2}∗
{3}∗{4}, and asG∗{3,4}∗{2} (reading from right to left).
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the context of gene assembly, we thus find that there is a sequence of hairpin and
double-loop recombinations to transform a MIC gene into thecorresponding MAC
gene iff the circle graphG corresponding to MIC gene is nonsingular. Moreover, if
this is the case, then the circle graph corresponding to the MAC gene isG∗V =G−1,
the inverse matrix of the adjacency matrix ofG! Thus, from this point-of-view, we
have the amusing fact that the construction of the MAC gene entails inverting a ma-
trix. Intermediate products obtained during the transformation of a MIC gene into
its MAC gene, using only hairpin and double-loop recombinations, correspond in
this way to partially inverted matrices.

For each possible setSof operation-types (loop excision, hairpin recombination,
double loop recombination) there is a characterization of the existence of a sequence
of recombination operations to transform a MIC gene into thecorresponding MAC
gene, where each recombination operation is of a type fromS, see [20, Section
13.3] whenS contains loop excision, and [11, 17] for the remaining caseswhere
only hairpin recombination and/or double loop recombination are allowed.

We remark that an extension of the interlace polynomial fromgraphs to arbitrary
matrices (over some field), using PPT instead of local and edge complementation
on graphs, has been studied in [28, 15].

5 Set Systems

In this section we provide yet another perspective on local and edge complementa-
tion. It turns out that we may define local and edge complementation (and pivot for
graphs in general) in terms of a very elementary operation onset systems, essentially
only involving symmetric difference.

First we recall a fundamental result on PPT due to Tucker [43](see also [18,
Theorem 4.1.1] and [34]). This result allows one to formulate the applicability of
the pivot ∗Y to the resulting matrixA∗X in terms of applicability of the pivot
∗ (X ∆ Y) to the original matrixA.

Proposition 1 ([43]). Let A be a V×V-matrix, and let X⊆V be such that A[X] is
nonsingular. Then, for all Y⊆V, det(A∗X)[Y] = detA[X ∆ Y]/detA[X].

We remark here that Proposition 1 for the caseY = V \X is called the Schur
determinant formula, det((A∗X) \X) = detA/detA[X], and was shown already in
1917 by Issai Schur, see [40].

A set system(overV) is an ordered pairM = (V,D) with V a finite set andD
a family of subsets ofV. We write simplyY ∈M to denoteY ∈ D. Let M be a set
system overV. We define, forX ⊆V, thepivot (often calledtwist in the literature,
see, e.g., [26])M ∗X = (V,D∗X), whereD∗X = {Y ∆ X |Y ∈ D}.

For aV×V-matrix A, we letMA = (V,DA) be the set system withDA = {X ⊆
V | detA[X] 6= 0}. As observed in [6] we have, by Proposition 1,Z ∈MA∗X iff
det((A∗X)[Z]) 6= 0 iff det(A[X ∆ Z]) 6= 0 iff X ∆ Z ∈MA iff Z ∈MA ∗X. Hence
MA∗X = MA∗X.



14 Robert Brijder and Hendrik Jan Hoogeboom

Through the adjacency matrix representation of graphs, we may carry the notion
of MA for matrices over to graphs. LetG be a graph. Given only the set system
MG = (V,DG), one can (re)construct the graphG: {u} is a loop inG iff {u} ∈ DG,
and{u,v} is an edge inG iff ({u,v}∈DG)⊕(({u}∈DG)∧({v} ∈DG)) (⊕ denotes
exclusive or), see [9, Property 3.1]. Hence the functionM(·) which assigns to each
graphG its set systemMG is injective. In this way, the family of graphs (with setV
of vertices) can be considered as a subset of the family of setsystems (over setV).

AsMG∗X =MG∗X, the pivot operation for graphs coincides with the pivot oper-
ation for set systems. Therefore, pivot on set systems formsan alternative definition
of pivot on graphs. Note that while for a set systemM overV, M∗X is defined for all
X ⊆V, for a graphG, G∗X is defined precisely when detG[X] = 1, or equivalently,
whenX ∈DG, which in turn is equivalent to∅∈DG∗X. Thus, e.g, while on a graph
∗{u}∗{v} and∗{u,v} cannot be both defined, they are on set systems, where they
have the same outcome.

Example 5.Consider circle graphG from Example 4, see Fig. 10. The correspond-
ing set system equalsMG = (V,{∅,2,5,34,23,25,45,35,234,245,345}) where
V = {2,3,4,5}. Note that we abbreviate sets in this example, so, e.g., 245 denotes
{2,4,5}. ThenMG∗ {3}= (V,{3,23,35,4,2,235,345,5,24,2345,45}). This does
not represent a graph (as∅ is not a set ofMG∗ {3}). ⊓⊔

It turns out thatMG for graphsG has a special structure, that of adelta-matroid
[6]. A consequence of the fact thatMG is a delta-matroid, is that the maximal sets
of MG w.r.t. inclusion, denoted by max(MG), are all of cardinality equal to the
rank r(A(G)) of matrix A(G). Thus, if G is the circle graph corresponding to a
MIC gene, then the nullityn(A(G)) = |V| − r(A(G)) of A(G) (i.e., the dimension
of the nullspace ofA(G)) is equal to the number of loop recombinations inevery
successful transformation of that gene to its MAC form. Equivalently, the number
of loops created during the transformation of a MIC gene to its MAC gene is equal
to the nullity of the adjacency matrix of the circle graph corresponding to that MIC
gene. In fact, a setSl ⊆ V is the support of the loop excision part of a successful
reduction ofG iff V \Sl ∈max(MG).

Example 6.Consider the circle graphG from Example 4 and corresponding set sys-
temMG, see Example 5. AsG has nullity 1 the maximal sets ofMG are of cardi-
nality 3. Considering the maximal sets{2,3,4}, {2,4,5}, {3,4,5} of MG, we see
that loop recombination can be performed on every pointer except 4. ⊓⊔

6 Loop Complementation

The concept of local complementation defined in this paper isonly defined on
looped vertices, and thus cannot be applied to simple graphs. A related concept,
which is also called local complementation, is defined for each simple graphG and
vertexu of G: local complementation ofG on u complements the neighbourhood
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u v

u v

u v

u v

u v

u v

+{u}

∗{u,v}

∗{u}

+{u}

+{u}

∗{u}
∗{v}

Fig. 11 Verification of applicability of∗{u,v}+{u}∗{u}∗{v}+{u}∗{u}+{u} to any graphF
having an edge{u,v} with bothu andv non-loop vertices.

of u (without introducing loops). By abuse of notation we denotealso local com-
plementation for simple graphsG by G∗{u}. The operation edge complementation
can be defined as for graphs with loops. In this context of simple graphs we have the
“curious” identity ∗{u,v}= ∗{u}∗{v}∗{u}= ∗{v}∗{u}∗{v} [7, Corollary 8.2],
which is not valid for graphs with loops. In fact, in that case, the left and right side
of the equation do not have the same support.

In order to deal with loops the operation loop complementation is useful. For a
graphG and a setX of vertices ofG, loop complementationof G on X, denoted by
G+X, is the graph obtained fromG by toggling the loops on the vertices inX. This
operation can be faithfully represented on set systems. Forset systemM = (V,D)
and elementu ∈ V, loop complementationof M on u, denoted byM + u, is the
set system(V,D′), whereD′ = D ∆ {X∪{u} | X ∈ D,u 6∈ X}. As the operation is
commutative we extend it toM+X for setX ⊆V by performing the+u’s, u∈ X,
in any order. We haveMG+X = MG+X for any setX ⊆V.

Pivot ∗X and loop complementation+X for sets systems together form an
interesting algebra. On a single common elementu the operations∗ u and + u
are involutions (i.e., of order 2) generating a group isomorphic to the groupS3 of
permutations on 3 elements [14]. In particular, we have+ u∗ u+ u= ∗ u+ u∗ u,
which is the third involution (in addition to pivot and loop complementation). On
different elementsu 6= v the operations commute, thus,∗u+v= +v∗u, +u+v=
+ v+u, and∗u∗ v= ∗ v∗u.

This algebra makes it possible to understand the relation between edge comple-
mentation and local complementation for simple graph, mentioned above. First one
notes that the sequence of operationsϕ = ∗{u,v}+{u}∗{u}∗{v}+{u}∗{u}+{u}
is applicable to any graph with edge{u,v} andu andv unlooped vertices, by check-
ing the existence of loops onu andv in successive stages, see Fig. 11. Then we
observe thatϕ is the identity on set systems using the group structure (using the
fact that, for set systems, we have∗{u,v}= ∗{u}∗{v}). This makesϕ the identity
on any graph where it is applicable (without having to consider the involved graph
operations). We can projectϕ from graphs to simple graphs by skipping the loop
complementation operations, and obtain the equality∗ {u,v}= ∗ {u} ∗ {v} ∗ {u}.

Inspired by and motivated by the context of gene assembly, the interplay of loop
complementation and pivot was implicitly (and only for the case of doc-strings)
studied in [12]. This interplay led to an extension of the interlace polynomial (in-
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cluding the related bracket polynomial for graphs) and an extension of the Penrose
polynomial from graphs (resp. matroids) to∆ -matroids [13, 16].

7 Discussion

We have fitted the theory of gene assembly in ciliates in the theory of 4-regular
graphs, and we have carried over results from the latter theory to the former. In-
terestingly, operations on Euler circuits in 4-regular graphs (cf. Fig. 6) occur (often
implicitly) also in other topics of computational molecular biology. For instance, the
monograph [36] by Pevzner has three chapters where the operations of Fig. 6 are
used: Chap. 2 on restriction mapping has them under the namesorder exchange and
order reflexion; Chap. 5 on sequencing by hybridization features rearrangements of
Eulerian cycles; and Chap. 10 on genome rearrangements studies reversal in the so-
called breakpoint graph. Hence we expect that these topics (and others) may benefit
from a similar approach as is done in this paper; to carry overthe general theory of
4-regular graphs to these topics.
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