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The Algebra of Gene Assembly in Ciliates

Robert Brijder and Hendrik Jan Hoogeboom

Abstract The formal theory of intramolecular gene assembly in @kds fitted into
the well-established theories of Euler circuits in 4-regwgraphs, principal pivot
transformations, and delta-matroids.

1 Introduction

Gene assembly is an intricate process occurring in unieeltrganisms called cil-
iates. During this process a nucleus, calledrieronucleusis transformed into a
functionally and structurally different nucleus calleé thacronucleuslt is accom-
plished using involved DNA splicing and recombination giems. Gene assembly
has been formally studied on the level of individual genes, 8.g., [20] and [10].

The theory of Euler circuits in 4-regular graphs was ingthin a seminal pa-
per by Kotzig [31]. Bouchet further developed the theory biating it to delta-
matroids [6] and isotropic systems [5, 7]. In [6], Bouchetsia matrix transforma-
tion that turns out to be “almost” principal pivot transfo(PPT) [42]. PPT, delta-
matroids, and isotropic systems enjoy many interestinggnttes which have direct
consequences for the theory of Euler circuits in 4-regulaphs.

Although, at first glance, the formal theory of gene asserabgms to be related
to the theory of Euler circuits in 4-regular graphs (thislwgcome clear when we
consider Fig. 5 in Section 3), there have been little attsrtgfit the former theory
into the latter. In this paper we do exactly this. We show that formal model
of gene assembly can be defined quite efficiently in terms @fgddar graphs. In
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a survey-style fashion we discuss consequences of knowttgés the theory of
4-regular graphs (including, e.g., results related to PRI delta-matroids) for the
theory of gene assembly.

This paper is organized as follows. In Section 2 we brieflaliebe biology of
gene assembly in ciliates and its string model [19, 23] (¢8@[20]). In Section 3
we view gene assembly in terms of Euler circuit transfororeti(or, more gener-
ally, circuit partition transformations) in 4-regular gtss, and in terms of the corre-
sponding local and edge complementation transformatiosaped circle graphs.
These operations of local and edge complementation turmool¢ special cases
of principal pivot transform defined on arbitrary square nicas, cf. Section 4. In
Section 5, we find that we can view local and edge complementat terms of
a very elementary operation, called pivot, on set systeisllf, in Section 6, we
combine pivot on set systems with another operation, cédiel complementation,
on set systems. Together the two operations turn out to fagroap, which enables
us to replace the intricate graph operations by a simplébadgen set systems.

2 Gene Assembly in Ciliates

Ciliates contain two different kinds of nuclei, which diffeoth functionally and
structurally. The relatively largenacronucleugMAC for short) has many copies
of short chromosomes, each containing only a single or jdetagenes. Theni-
cronucleugMIC for short) contains a much smaller number of chromosgraach
containing numerous genes (as is usual for chromosomeséarae The germ-line
MIC is only used for reproduction, while the somatic MAC isedgor general cell
regulation. During sexual reproduction, a newly formed Md@ransformed into a
MAC. This process is calledene assemblgnd is accomplished using extensive
DNA splicing and recombination operations.

[Mo [ [ Ma [ [Mo] [ [ [ W [ [ [ [ow] [m] [wo]

Fig. 1 The structure of the MIC gene encoding for the Actin proteisterkiella nova.

The genetic material in the MIC is scrambled: the genes arkeorup into seg-
ments, callednacronuclear destined sequen¢esMDSs for short), which are re-
ordered and possibly inverted with respect to the corredipgiMAC genes. More-
over, the MDSs in the MIC genes are separatednipgrnal eliminated sequences
(IESs for short) which are not part of the genes. For exanthke MIC form of
the Actin | gene of the ciliate Sterkiella nova is depicted-ig. 1 and can be de-
scribed as the strinig M3 11 M1, Mgl3Ms 14 M7 15 Mg leM>17MylgMglg [39], where
the M;’s are MDSs and th§’s are IESs. Note that the inversion of the MM is
indicated by a bar. The MDS¥dy, ..., Mg are oriented and numbered according to
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the order in which they occur in the corresponding “unscraadibMAC gene, see
Fig. 2. Note that consecutive MDSs overlap (the gray segsnenfig. 2). These
segments are callgubintersin the MIC gene as they indicate the complex recom-
bination schema that is to be performed to obtain the cooresipg MAC gene.

My M3 My

M2 M1

Fig. 2 The structure of a MAC gene consistingroMDSs.

The generic form of recombination aligns two MDSs on theimoamon pointer,
and then performs a crossover operation at that pointeiige®. In that way the
two segments are joined into a larger MDS segment. Note tieabtder (or the
level of parallelism) in which recombination operations applied has no influence
on the outcome. This gener@nfluencyroperty of recombination ensures that the
MAC gene is uniquely obtained from MIC gene by performingambination on
each pointer pair (regardless of the order in which recoatlin takes place) [22].
Biologically, the pointer pair no longer exists after redmnation as it cannot be
used for another recombination operation. Mathematicialyrns out to be worth-
while to leave the pointer pair for further consideration.

We consider the intramolecular model for gene assembly f&8n20]. In this
model three specific types of recombination operationsiatemduished, see Fig. 4:
(a) Two consecutive MDSs (i.e., a single IES separates tbévidSs) having the
same orientation can be recombinedlbgp excision In that process a circular
molecule is removed from the segment containing that IES. Tfio MDSs in
opposite orientation can be recombinedHairpin recombinationThis operation
inverts the segment originally between the two MDSs. Thggreent may contain
other MDSs. (c) Two interleaved pairs of consecutive MD8s,MDSs in each
pair in the same orientation, can be recombineddyble loop recombinatiaur-
ing this operation two segments between the MDSs are swappsetjuence of
recombination operations (of these types) is cadleccessfulor a given MIC gene
gif (i) ¢ is applicable to (defined org and (ii) applying¢ on g yields the MAC
gene corresponding . Because of the above mentioned confluence property of

T EVEY I [ EV Y E I
ly [4] 5] I ly Iy

Fig. 3 Recombination on pointer 4 joins MD$4; andM,. The left and right pointers dfl; are
denoted by 3 and 4, respectively (and similarly ).
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Fig. 4 Three operations: loop excisioteft-hand sid§ hairpin recombinationupper-right cor-
ner), and double loop recombination (intermediate stage dmiyer-right cornel

recombination in general, we hageis successful fog iff ¢ is applicable tagy and
each pointer pair is used exactly oncepin

The above recombination operations are formalized ongstras follows. Let us
fix a positive integek. We denote pointers, and their orientation, by the alphabet
n=1{1,2,....k}uU{1,2,...,k}. The inversion of stringv = wyw,...wn € I1* is
the stringw = Wy,...W»Wy, where we leip = p for eachp e /1.

A directed double occurrence stringr doc-stringfor short, (called legal string
in [20]) is a stringw over [T that contains each pointer afexactly twice, in either
orientation (barred or unbarred). The MIC gene is then eeddny concatenating
the pointers (including their orientation) in the same oratethey appear in the MIC
gene. Hence if there areMDSs, then MD3V; (fori € {2,...,k — 1}) corresponds
toi (i + 1), its inversionMi; corresponds téi + 1) i, MDSsM; andMj correspond to
2 andk, respectively, and their inversions correspond emdk, respectively (recall
thatM; andMy have only one neighbouring MDS). Note that there is no poihte
Thus the MIC form of Actin | of Sterkiella nova mentioned aleois written as
34456756 78 B2 2 89, space added for clarity.

The three recombination operations can be described usiogttings in the
following straightforward manner [19, 23]. First we defihe following three map-
pings on doc-strings. Lety,...,us € 1%, and letp,q € {1,...,k}. Then,u\ p
deletes occurrences pfandpin u; if u=u; pu pug thenus p=u; pu, pus; and
if u=uLpqupuwqus thenux{p,q} =u pusqus pUxguUs. In a similar way we
defineux pin caseu = u; puw pys (i.e., the bars on the two occurrencespére
swapped), and x {p,q} in case the positions gf andq are interchanged and/or in
case the two occurrences in theair org-pair are barred.
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Fig. 5 Actin | gene of Sterkiella nova. Schematic diagram, basef8dh

Then (a)u\ p models loop excision, providedcontainspp (or pp) as consec-
utive pointers, (b= p\ pmodels hairpin recombination,and (ax{p,q}\p\q
models double loop recombination.

Given a doc-string, any sequence of these three operatianseduces this string
into the empty string is called successful reductiorNote that if a doc-stringv
represents a MIC geng then successful reductions wfcorrespond precisely to
successful reductions df It is easily verified that every doc-string has a successful
reduction [21]. This reduction usually is not unique.

3 Graph Models

It is not surprising that graph-theoretical concepts aneadrtant tools in modelling
and understanding the process of gene assembly in cil@wssider for instance
the diagram of the Actin | gene of Sterkiella nova as depittgdPrescott [37]. A
simplified representation is given in Fig. 5 (see Example lbvidor details). The
structure of the genetic material is given as a “bi-colotigrdph, with pointers as
vertices, and MDS and IES segments as edges. We can readbatliginal MIC
sequence and the target MAC sequence from the graph. If uenfthe IES and
MDS edges in an alternating fashion, then we obtain the Mid,ifwe follow the
edges according their colours, then we obtain the MAC (wéhKing IESS).

Example 1In the MDS-IES description of the MIC form of Actin | of Steddla
nova (from Section 2), we explicitly add the pointers flamgkihe MDS'’s, to obtain
the sequence = lo p3Ms P4 l1 Pa M4 ps 2 PsMe P73 Ps Ms s 14 p7 M7 pgls oMo ls
P3M2P2 17 M1 p21g pgMs polo.
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One may viewrt as an Eulerian path in a multigragh the pointersp; are the
vertices ofG, and the strings in-between the vertices are the (labedigggs ofs. In
this way mrinduces Fig. 5. Apart from the MDS edgk (in-betweenp; and p;. 1)
and IES edgek, there are also “mixed” edges, like the lolgiM; on p,, caused by
the fact thatM; has no initial pointer. Note that we may have parallel edges,
there are two edges frops to pe.

The MAC form is obtained by recombining MDSs at each poirfter.example,
at ps in 7T we have bothM, psl, andls psMs, whereas in the MAC fornM, and
Ms are joined at vertex (pointegs, and we have botM, ps Ms andl3 psl». Recall
from Fig. 3 that when recombining MDSs at a pointer, IESs ath& same time
joined together at that pointer.

As MDS M, is inverted in the MIC form, it has to be read “backwards” ie th
MAC form. Thus, in the MAC form we follow edgpz M p, in opposite direction.
Also, when recombiningyl; andM, at p, at the same time we joily andlg at the
same vertex.

In this way, the MAC form of the gene consists of three molesLThe string (the
pointers are omittedplslgl7M{M> ... MgMglgl g represents the strand consisting of
the recombined MDS’s and flanking IES’s. The MAC form also has circular
IES molecules (that are exciseth):andl, 1413 (again the pointers are omitted)O

In the manner described above, every (unbarred) doc-stiefiges a 4-regular
multigraph (every vertex has degree 4, we allow loops andlighedges) together
with an Euler cycle (that visits every edge of the graph dyamice). Start by rep-
resenting every pointer pair by a vertex. Then follow thangtradding an edge as
we step from pointer to pointer. Treat the string as if ciacund connect the last
pointer to the first. Obviously, the multigraph is 4-regubard the string traces an
Euler cycle through the multigraph. The result is very samib the representation
of the gene in Fig. 5, if we merge the initial and final “edggséndlg. Conversely,
every 4-regular multigraph with Euler cycle induces a (und@) doc-stringv (in
fact, a set of “equivalent” doc-strings that are obtainedfuv by conjugation).

We briefly describe the theory of operations on cycles ingk#a multigraphs as
initiated by Kotzig [31] and continued by Bouchet. Given eegrular multigraph we
obtain a set of cycles by pairwise “joining” the edges at eaattiex. These pairings
can be unambiguously described using a fixed Euler circiihakor, see Fig. 6 (a—
¢). The pairings may follow the Euler circuit, and otherwiseonnect in a way

/\ ) \/\/\/\\\ \// \\\ \ — )
/%, /l/\, ( ) { p - q )
[ ) B (4|

T @ (

Fig. 6 Three ways to connect pairs of edges in a 4-regular graphiveeta an Eulerian cycle (a)
following the cycle (b) orientation consistent (c) orieiida inconsistent. Two interleaved vertices
in the cycle. {ightmost diagram

)
\
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that may or may not agree with the orientation of the Euleruiir The pairings of
Fig. 6 (a—c) are called smoothings in [3] and transitionSin [

Example 2(1) Consider the (unbarred) doc-striwg= 12613456245. Thenw de-
fines a 4-regular grap@& along with an Euler circuigy, in G, see Fig. 7(a). For
convenience, the edges@are directed according to. (2) If we take the pairing

at vertex 2 that is in an orientation-consistent way diffiicfeom E;, and if we take
the same the pairings &, at the other vertices, then we obtain two disjoint cycles,
W, = 1245 andw, = 26134563, see Fig. 7(b). (3) If we take the pairing at vertex 2
that is in an orientation-inconsistent way different fr&g and if we take the same
the pairings agy at the other vertices, then we obtain the Euler circuit desdr
by w = 12365431&45, see Fig. 7(c). O

Note how an orientation-inconsistent transition inducégsesersal” of part of
the original Euler circuit, which agrees with hairpin redamation. Also note that
an orientation-consistent transition breaks the Eulemdiriinto two disconnected
parts. Consider now two verticgsandq that are interleaved in the Euler circuit,
occurring in the order--p---q---p---q---, see Fig 6 (right). Then a synchronized
orientation-consistent transition at bgtrandq again yields an Euler circuit. This
Euler circuit is obtained from the original one by swappiwg segments in exactly
the same way as double loop recombination.

Then, to correctly model the gene assembly process, we baweep track on
which pointers (vertices) we can apply the successiveitransvhile maintaining
an Euler circuit. Both the orientation and interleavingsg/maaange during the pro-
cess. The tool we use is that ofcacle graph which represents the intersections
of the chords in a circle: each chord is represented by awartd two vertices are
adjacent iff the corresponding chords intersect. A (bgroet-stringw defines a
circle graphC(w) in a natural way by writingv in a circular way and connecting
the pointer pairs. We additionally encode the relativerddagon of the pointers of
each pointer pair by adding a loop to a vertex when the twotpasrof the pointer
pair have different orientation (i.e., one is with a bar, #melother is without a bar).
In [20] +-signs are used instead of loops, and the corresponding) gegpivalent
to a (looped) circle graph, is calledsigned graphThe advantage of using loops
instead oft-signs will become clear in Section 4. The (looped) circlapdnC(w)
of the doc-stringv= 126134563245 is given in Fig. 9 (middle, bottom row).

From now on, bygraphwe mean an undirected gra@where loops are allowed,
but parallel edges are not allowed. More precis@ly: (V,E) whereV is a finite

Fig. 7 Recombining edges of an Euler cycle, cf. Example 2.
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Fig. 8 Pivot on an edgé€u,v} in a graph. Adjacency between vertioeandy is toggled iffx € \4
andy € V;j withi # j. Note thatu andv are adjacent to all vertices s — these edges are omitted
in the diagram. The operation does not affect edges adjazegttices outside the seig, Va, V3.

set ofverticesandE C {{x,y} | x,y € V} a set ofedgeqwe have{x} € E iff xis a
looped vertex). If the grap is clear from the context of considerations, then we
simply denote its vertex set by. ForX C 'V, we denote the subgraph Gfinduced
by X asG[X].

We define the basic operations of local and edge compleni@mtat graphs [31,
7]. If Gis a graph with looped vertax then thdocal complemernf G onu, denoted
by G xu, is obtained fromG by complementing the edges in the neighbourhood
Ne(u) ={veV |{u,v} € E,u## v} ofuin G. Thus, forv,w € Ng(u), e= {v,w} is
an edge ofc* uiff eis not an edge o6 * u (we allowv = w, i.e., thate is a loop).

All other edges remain the same@andG x u.

For an edgdu, v} of G with u andv distinct unlooped vertices, one defines the
edge complemeratf G on {u,v}, denoted bYG x {u, v}, as follows. For vertes its
closed neighbourhood, denoted Kyg[w], equalsNg(w) U{w}. The neighbours of
u andv can be partitioned in the three séis[u] \ Ng[Vv], Ng[v] \ Ng[u] andNg[u] N
Ng[v]. The graphG* {u,Vv} is obtained fromG by complementing all pair§x,y}
such thatx andy are each neighbours ofor v, but not in the same partition, cf.
Fig. 8. This will not change any adjacencies to vertices d@aent tou andv, nor
will it change any loops.

Theorem 1 ([31]). Let w be a doc-string and let, g € {1,...,k}. If wx p is defined
(i.e., w contains both p angd), then Gw) « p=C(wx p). If wx {p,q} is defined,

then Qw) * {p,q} = C(w= {p,q}).

Of course, Theorem 1 may be reformulated using Euler cycles 4-regular
multigraphs instead of doc-strings.

Example 3Consider the doc-stringy = 126134563245. It defines the circle
graphC(w) in Fig. 9 (middle). If we complement the neighbourhdudgl,, (2) =

{1,4,5} of vertex 2 inC(w) we obtain the grap@(w) « {2} =C(123654316245),
see Fig. 9 (left). Edge complement on unlooped efi§yd} in C(w) yieldsC(w)

{3,4} =126132456345 depicted in Fig. 9 (right). O
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Fig. 9 Local complement on looped vertex|2ft-hand sidg edge complement on unlooped edge
{3,4} (right-hand sidg. The top row indicates how the pointer segments overlapdruhderlying
doc-strings, the bottom row contains circle graphs.

Theorem 1 suggests a generalization of the three recondmnaperations on
doc-strings that model loop excision, hairpin recombatiand double loop re-
combination (from Section 2). We have that (a) removing amated unlooped
vertex corresponds to loop excision, (b) local complemenigollowed by the
deletion of the vertex involved corresponds to hairpin rebimation, and (c) edge
complementation followed by the deletion of the verticeslwed corresponds to
double loop recombination.

A reductionof a graphG is a sequence of these three operations, asdca
cessful reductiomf G is a reduction ofG to the empty graph. Every graph has a
successful reduction: indeed, apply local complementagolus until there are no
more loops, then apply edge complement reductions untigteph contains only
isolated unlooped vertices, and finally remove these isdlahlooped vertices.

If a doc-stringw can be successfully reduced by a sequence of operations, the
the associated circle graffjw) can be rewritten by the corresponding sequence of
graph operations. For the converse a similar result hokdep that we may have to
reorder the loop excision operations [19, 23]. For, e.@ singw = 2332 there is
a unigue sequence of two loop excisions (“inside out”), @its circle graptC(w)
consists of two isolated unlooped vertices which can be v any order.

Since not every graph is a circle grapfw) for some doc-stringy, the operations
of local complementation: p and edge complementation{ p,q} are generaliza-
tions of the corresponding operationg and « { p,q}, respectively, for doc-strings.

We remark that a polynomial called thMartin polynomial[32] (its multivariate
variantis called théransition polynomia[30]) has been defined w.r.t. Euler circuits
C in 4-regular multigraphs. This polynomial records the nemaf circuitscy (C)
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obtained when performing 0@ a setT of transitions of the form described as in
Fig. 6. In a similar way as described in this section, the Masblynomial corre-
sponds to a graph polynomial called tiierlace polynomia[4] (or Tutte-Martin
polynomial[8]) in which local and edge complementation play a cenwkd.rinter-
estingly, the well-knowrTutte polynomiabn the diagonal coincides with the inter-
lace polynomial when restricting to bipartite graphs [2]nAmber of variations of
the Martin and interlace polynomials is studied in the &tare as we may restrict
or loosen the allowed types of transitiohsAmong them is th&enrose polynomial
[35, 1] and thebracket polynomiafor graphs [41]. For a detailed survey on these
polynomials we refer to [24, 25].

4 Matrices

With the definitions of local complementationu and edge complementation
x{u,v} in place, we are interested 8equencesf these operations (and in par-
ticular successful reductions). Since the definition ofeedgmplementation is al-
ready involved by itself, it seems even more difficult to wraabout the effect of
sequences such as{u,v} x {v,w}. Fortunately, it turns out that sequences of local
and edge complementation correspond to (a special cadeeo$ptcalled principal
pivot transform operation on square matrices. This wiltlléaa different perspec-
tive in which sequences of local and edge complementationsnaich easier to
study. Let us first recall the principal pivot transform ogt@n.

LetV be afinite set, and l&f be av x V matrix, i.e., a matrix where the columns
and rows are indexed by. For a setX CV we useA[X] to denote the principal
submatrix induced b¥ (i.e., the rows and columns are indexedX)y Moreover,
we defineA\ X = AV \ X]. Let A be aV x V-matrix (over an arbitrary field), and
let X CV be such thafA[X] is nonsingular, i.e., d&{X] # 0. Theprincipal pivot
transform(PPT or pivotfor short) ofA on X, denoted byAx X, is defined as follows,

X V\X
see [43]. IfA:\>;\x <E 2 ),then

X V\ X

X Pl —P1Q
AxX =y x (RFfl S—RFHQ)'

Hence Ax X is defined iffA[X] is nonsingular. MatrixAx X)\ X = S—RP1Qis
called theSchur complemerf X in A.

The pivot is sometimes considered a partial inverse, shaedAx X are related
as follows, where the vectors andx, correspond to the elementsXf In fact, the
following relation defineg\x X givenA andX [42].
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A(e)= Ga)max ()= () @
Y1 y2 Y1 Y2

Note that if defA # 0, thenAxV = A~1. By Equation (1) we see that a pivot oper-
ation is an involution (i.e., operation of order 2), and mgemerally, if(Ax X) xY

is defined, the\x (X AY) is defined (applying the symmetric differenceXfnd
Y) and the resulting matrices are equal. Note that in ordeppdyahe pivot « X to
matrix A it is required thaA[X] is nonsingular.

We may apply pivot to graphs through its adjacency matrixesgntation. The
adjacency matri®A(G) of a graphG = (V,E) is aV x V matrix (a,y) overF, (the
binary field) witha, v = 1 iff {u,v} € E. Obviously, forX CV, A(G[X]) = A(G)[X].
In this paper we make no distinction betwe8rand A(G) and so we write, e.g.,
detG to denote deA(G), the determinant oA(G) computed oveF,. In this way,
graphs correspond precisely to symme¥ig V-matrices oveif,. By convention,
the determinant of the empty matrix (or graph) is 1.

For a graphG and nonemptyX C V, X is calledelementary in Gf G[X] is
nonsingular and for all nonemp¥/C X, G[Y] is singular. Hence, iX is elementary
in G, thenGx X is defined buG «Y is not defined for any nonempty proper subset
of X. Itis easy to see that K is elementary irG, either (1)X = {u} € E(G) (i.e.,
Xis aloop) or (2)X = {u,v} € E(G) and{u},{v} ¢ E(G) (i.e.,X is an edge on
unlooped vertices). Geelen [26] observed that a pivot oEGa¥is precisely local
complementation and a pivot of Case (2) is precisely edgeptamentation.

Indeed, if vertexu has a loop irG, then the matribG[{u}] is equal to the k 1

u

identity matrixu (1). Hence,x {u} is indeed applicable t& and
u V\ {u}

_u 1 Xo
CH{ul =y qu} (xu G[V—U]—quJ)’

wherexy is the column vector belonging to without element at positiofu, u).
One may easily verify tha® « {u} is indeed the graph obtained fra&nby applying
local complementation on.
Turning to edge complementation {iéi, v} is an edge irG andu andv are not
u v

0 1>. Hence,x {u,v} is

looped vertices, then the mati&{{u,v}] is equal to\u/ (1 0

indeed applicable t& and

u v VA {u,v}

u 0 1 X0
Gx{uv}=v 1 0 xJ
VA{uVE \xv Xu GV —u—v—(XuXJ +XuXv)
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wherexy is the column vector o6 belonging tou without elements at positions
(u,u) and(v,u) (and similarly foryy). One may again verify th&x* {u, v} is indeed
the graph obtained froi® by applying edge complementation ¢n, v}.

Having thus characterized local and edge complementatiterins of pivot, we
are ready to study sequences of these operations. For exaleil,v, andw be
mutually distinct unlooped vertices @&. If (G« {u,v})*{v,w} is defined (i.e., if
{u,v} is an edge 06, and{v,w} is an edge 06 « {u,v}), then we immediately find
that (G« {u,v}) « {v,w} = G« ({u,v} A {v,w}) = G« {u,w} (and that{u,w} is an
edge ofG sinceG x {u,w} is defined andi andw are unlooped vertices). In general
we have the followingonfluenceesult.

Let ¢ = =Xy xXo--- % X, be a sequence of pivot operations (we assume left-
associativity of pivot). Thesupportof ¢, denoted by su@), is defined agy X;,
i.e., the set of vertices that occur an odd number of timefs i ¢ is applicable to
a graphG, then, by the abovesgd = G+ (Xp AXo A ... AXy) = Gxsuf@). This
observation may be seen as a highly generalized versior afthfluence property
of DNA recombination from Section 2. If we specialize thissebvation for the
case where the X;’s are elementary (i.e., local or edge complementatiohsj) tve
obtain the following.

Theorem 2 ([11]). If ¢ and ¢’ are applicable sequences of local and edge comple-
mentations for a graph G, thesug¢) = sup¢’) implies Gp = G¢'.

Special cases of this result are mentioned in the literafthie triangle equal-
ity stated abovey {u,v} x {v,w} = x{u,w} for a graph with induced loopless tri-
angle{u,v,w}, can be found as [4, Lemma 10], [27, Proposition 1.3.5], &8 [
Proposition 2.5]. A “classical” proof typically involveskping track of numerous
neighbouring edges. Also commutativity of edge compleiatgon is obtained in
the context of gene assembly by Harju et al. [29]: if two digj@dge complemen-
tations are applicable in either order, then the two resarésidentical. In short,

s {u, v} {w,x} = = {w,x} * {u,v}.

Example 4Consider the MDS sequenié M3 M5 Mo Ml. It defines the pointer se-
quence 453823 which in turn has circle grap8 depicted in Fig. 10. The figure
illustrates thaG {2} « {3} « {4} = G* {3,4} x{2}. O

Note also thaG is nonsingular iff there is a sequengeof local and edge com-
plementations with sy ) =V such thaG¢ is defined. Moreover, if this is the case,
then we may choosg in such a way that each vertex\éfappears exactly once. In

NGNS eari N
2 W P B @ ‘e e‘e Jo& ‘e e‘

Gx{2} Gx{2,3} G*{234} Gx{3,4}

Fig. 10 Circle graphG for 4535622 (left and right)G = {2, 3,4} is computed twice, a6 x {2}
{3} {4}, and asG« {3,4} « {2} (reading from right to left).
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the context of gene assembly, we thus find that there is a sequ# hairpin and
double-loop recombinations to transform a MIC gene intodtieesponding MAC
gene iff the circle grapis corresponding to MIC gene is nonsingular. Moreover, if
this is the case, then the circle graph corresponding to thé ene isG«V =G 1,

the inverse matrix of the adjacency matrix®f Thus, from this point-of-view, we
have the amusing fact that the construction of the MAC getelsrnnverting a ma-
trix. Intermediate products obtained during the transttion of a MIC gene into
its MAC gene, using only hairpin and double-loop recombora, correspond in
this way to partially inverted matrices.

For each possible s&tof operation-types (loop excision, hairpin recombination
double loop recombination) there is a characterizatioh@&iistence of a sequence
of recombination operations to transform a MIC gene intodtieesponding MAC
gene, where each recombination operation is of a type f&psee [20, Section
13.3] whenS contains loop excision, and [11, 17] for the remaining casksre
only hairpin recombination and/or double loop recombimratire allowed.

We remark that an extension of the interlace polynomial fgvaphs to arbitrary
matrices (over some field), using PPT instead of local an& edgnplementation
on graphs, has been studied in [28, 15].

5 Set Systems

In this section we provide yet another perspective on logdledge complementa-
tion. It turns out that we may define local and edge compleatiemt (and pivot for
graphsin general) in terms of a very elementary operatisebsystems, essentially
only involving symmetric difference.

First we recall a fundamental result on PPT due to Tucker (48¢ also [18,
Theorem 4.1.1] and [34]). This result allows one to formeltdite applicability of
the pivot Y to the resulting matriXA « X in terms of applicability of the pivot
x (X AY) to the original matrixA.

Proposition 1 ([43]). Let A be a Vx V-matrix, and let XC V' be such that K] is
nonsingular. Then, for all YZ V, det{ Ax X)[Y] = detA[X A Y]/ detA[X].

We remark here that Proposition 1 for the case- V \ X is called the Schur
determinant formula, dgtA = X) \ X) = detA/detA[X], and was shown already in
1917 by Issai Schur, see [40].

A set systenfoverV) is an ordered paiM = (V,D) with V a finite set and
a family of subsets o¥/. We write simplyY € M to denoteY € D. LetM be a set
system ove¥. We define, forX C V, the pivot (often calledtwist in the literature,
see, e.g., [26]M « X = (V,Dx X), whereD« X = {Y A X |Y € D}.

For aV x V-matrix A, we let.#x = (V,Da) be the set system witha = {X C
V | detA[X] # 0}. As observed in [6] we have, by PropositionZ & .#p.x iff
det((AxX)[Z]) # 0 iff det(AlX AZ]) #0 iff XAZ € 4 iff Z € .#p+X. Hence
<//A*X = %A* X.
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Through the adjacency matrix representation of graphs, aeaarry the notion
of . for matrices over to graphs. L& be a graph. Given only the set system
s = (V,Dg), one can (re)construct the gra@h {u} is a loop inG iff {u} € D¢,
and{u,v} is an edge irG iff ({u,v} € Dg)® (({u} € De)A ({v} € Dg)) (® denotes
exclusive or), see [9, Property 3.1]. Hence the functi@, which assigns to each
graphG its set system# is injective. In this way, the family of graphs (with Sét
of vertices) can be considered as a subset of the family clysée¢ms (over s&f).

As s = A * X, the pivot operation for graphs coincides with the pivotrepe
ation for set systems. Therefore, pivot on set systems famadternative definition
of pivot on graphs. Note that while for a set syst€hoverV, M x X is defined for all
X CV, fora graphG, G« X is defined precisely when d8fX] = 1, or equivalently,
whenX € Dg, whichin turn is equivalentt@ € Dg * X. Thus, e.g, while on a graph
x {u} «{v} and x {u,v} cannot be both defined, they are on set systems, where they
have the same outcome.

Example 5Consider circle grapks from Example 4, see Fig. 10. The correspond-
ing set system equalsZg = (V,{,2,5,34,23,25,45,35,234, 245 345} ) where

V = {2,3,4,5}. Note that we abbreviate sets in this example, so, e.g., 246tds
{2,4,5}. Then.Zs* {3} = (V,{3,23,35,4,2,235 3455, 24,2345 45} ). This does
not represent a graph (asis not a set ofZg « {3}). O

It turns out that# for graphsG has a special structure, that oflelta-matroid
[6]. A consequence of the fact tha# is a delta-matroid, is that the maximal sets
of . w.r.t. inclusion, denoted by méx), are all of cardinality equal to the
rank r(A(G)) of matrix A(G). Thus, if G is the circle graph corresponding to a
MIC gene, then the nullitn(A(G)) = V| —r(A(G)) of A(G) (i.e., the dimension
of the nullspace oA(G)) is equal to the number of loop recombinationsirery
successful transformation of that gene to its MAC form. Egléntly, the number
of loops created during the transformation of a MIC genes®AC gene is equal
to the nullity of the adjacency matrix of the circle graphresponding to that MIC
gene. In fact, a s C V is the support of the loop excision part of a successful
reduction ofG iff V\ § € max(./Gg).

Example 6 Consider the circle grap@ from Example 4 and corresponding set sys-
tem.#g, see Example 5. A6 has nullity 1 the maximal sets o# are of cardi-
nality 3. Considering the maximal sefg,3,4}, {2,4,5}, {3,4,5} of .#g, we see
that loop recombination can be performed on every pointeegix4d. O

6 Loop Complementation

The concept of local complementation defined in this paperniy defined on
looped vertices, and thus cannot be applied to simple graphslated concept,
which is also called local complementation, is defined fahesimple grapiG and
vertexu of G: local complementation o& on u complements the neighbourhood
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Fig. 11 Verification of applicability of«{u, v} 4 {u} * {u} « {v} 4 {u} = {u} + {u} to any graptF
having an edggu, v} with bothu andv non-loop vertices.

of u (without introducing loops). By abuse of notation we derat® local com-
plementation for simple graplby G« {u}. The operation edge complementation
can be defined as for graphs with loops. In this context of Brgmphs we have the
“curious” identity x {u,v} = x{u} « {v}x{u} = x{v} «{u} x{v}[7, Corollary 8.2],
which is not valid for graphs with loops. In fact, in that catfee left and right side
of the equation do not have the same support.

In order to deal with loops the operation loop complemeateis useful. For a
graphG and a seX of vertices ofG, loop complementatioaf G on X, denoted by
G+ X, is the graph obtained fro@ by toggling the loops on the verticesin This
operation can be faithfully represented on set systemssé&tosystenivl = (V,D)
and elemenu € V, loop complementationf M on u, denoted byM + u, is the
set systen{V,D’), whereD’ = D A {XU{u} | X € D,u ¢ X}. As the operation is
commutative we extend it thl + X for setX C V by performing the+ u's, u € X,
in any order. We have#Zg ,x = .#c+ X for any setX C V.

Pivot « X and loop complementatior- X for sets systems together form an
interesting algebra. On a single common elemehe operations«u and + u
are involutions (i.e., of order 2) generating a group isgohar to the grouss of
permutations on 3 elements [14]. In particular, we havaxu+u= xu-+uxu,
which is the third involution (in addition to pivot and loopmplementation). On
different elements # v the operations commute, thusy+v= +Vvx*u, + U+Vv=
+V+4uUu,andxusxv= xVxU.

This algebra makes it possible to understand the relatiomdan edge comple-
mentation and local complementation for simple graph, roaetl above. First one
notes that the sequence of operatigns + {u,v} + {u} x {u} x{v} +{u} = {u} +{u}
is applicable to any graph with edge, v} andu andv unlooped vertices, by check-
ing the existence of loops amandv in successive stages, see Fig. 11. Then we
observe thatp is the identity on set systems using the group structureguitie
fact that, for set systems, we havéu,v} = «{u} « {v}). This makeg the identity
on any graph where it is applicable (without having to coestitie involved graph
operations). We can proje¢t from graphs to simple graphs by skipping the loop
complementation operations, and obtain the equalify, v} = * {u} x {v} x {u}.

Inspired by and motivated by the context of gene assemlgyintierplay of loop
complementation and pivot was implicitly (and only for these of doc-strings)
studied in [12]. This interplay led to an extension of thesitgce polynomial (in-
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cluding the related bracket polynomial for graphs) and geresion of the Penrose
polynomial from graphs (resp. matroids)Aematroids [13, 16].

7 Discussion

We have fitted the theory of gene assembly in ciliates in tle@rh of 4-regular
graphs, and we have carried over results from the latteryhwothe former. In-
terestingly, operations on Euler circuits in 4-regularmgdys(cf. Fig. 6) occur (often
implicitly) also in other topics of computational moleculdology. For instance, the
monograph [36] by Pevzner has three chapters where thetaperaf Fig. 6 are
used: Chap. 2 on restriction mapping has them under the namdesexchange and
order reflexion; Chap. 5 on sequencing by hybridizationfiesst rearrangements of
Eulerian cycles; and Chap. 10 on genome rearrangemenisstedersal in the so-
called breakpoint graph. Hence we expect that these togickdthers) may benefit
from a similar approach as is done in this paper; to carry theegeneral theory of
4-regular graphs to these topics.
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