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Abstract

In hierarchical data settings, be it of a longitudinal, spatial, multi-level, clustered, or otherwise repeated
nature, often the association between repeated measurements attracts at least part of the scientific interest.
Quantifying the association frequently takes the form of a correlation function, including but not limited
to intraclass correlation. Vangeneugden et al [1] derived approximate correlation functions for longitudinal
sequences of general data type, Gaussian and non-Gaussian, based on generalized linear mixed-effects
models (GLMM). Here, we consider the extended model family proposed by Molenberghs et al [2]. This
family flexibly accommodates data hierarchies, intra-sequence correlation, and overdispersion. The family
allows for closed-form means, variance functions, and correlation function, for a variety of outcome types
and link functions. Unfortunately, for binary data with logit link, closed forms cannot be obtained. This is in
contrast with the probit link, for which such closed forms can be derived. It is therefore that we concentrate
on the probit case. It is of interest, not only in its own right, but also as a instrument to approximate
the logit case, thanks to the well-known probit-logit ‘conversion.’ Next to the general situation, some
important special cases such as exchangeable clustered outcomes receive attention because they produce
insightful expressions. The closed-form expressions are contrasted with the generic approximate expressions
of Vangeneugden et al [1] and with approximations derived for the so-called logistic-beta-normal combined
model. A simulation study explores performance of the method proposed. Data from a schizophrenia
trial are analyzed and correlation functions derived. Some Keywords: Beta-binomial model; Conjugate
Random effects; Intraclass correlation; Generalized linear mixed model; Longitudinal data; Maximum
likelihood; Probit link; Repeated measures.

1 Introduction

In applied sciences, one is often confronted with the collection of hierarchical data or repeated measures, in

particular longitudinal, clustered and spatial data. For continuous data, the linear mixed model is commonly

used (LMM, Verbeke and Molenberghs [3]). Marginalizing the linear mixed model over its random effects,

and deriving marginal mean, variance, and correlation functions is straightforward. For example, psychometric
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validation based on the LMM is rather feasible (Vangeneugden et al [4, 5]).

For non-Gaussian outcomes, this simplicity vanishes. First, one has to choose between marginal models,

such as generalized estimating equations (GEE, Liang and Zeger [6]), or random-effects models, such as the

generalized linear mixed model (GLMM, Breslow and Clayton [7]). It is generally found that marginalizing

the latter is less than straightforward. Stumbling blocks are the non-linear nature of the link function and the

mean-variance relationship (Molenberghs and Verbeke [8], Chapter 16). In spite of these issues, it is a viable

modeling candidate, even when the marginal correlation is of interest. Vangeneugden et al [1]( henceforth

abbreviated as VMLGBS) showed that the derivation of correlations based on GLMM is generally feasible

if one is prepared to accept a Taylor-series based approximation. Their results are general, not only across

data types, such as continuous outcomes, binary or ordinal outcomes, and counts, but also covers multivariate

repeated measures, where more than one sequence per subject is measured repeatedly, even with different data

types for the various sequences. In addition to their general results, these authors paid particular attention to

binary outcomes, as well as on combined binary and Gaussian sequences.

One obvious though important case where the approximate results of VMLGBS become exact is for normally

distributed outcomes, since then the GLMM reduces to the LMM. Molenberghs, Verbeke, and Demétrio

[9](henceforth abbreviated as MVD) presented a model for longitudinal or otherwise hierarchical count data

that simultaneously incorporates normal random effects in the linear predictor, as in any GLMM, as well as

conventional overdispersion parameters. Overdispersion arises when the mean-variance relationship stemming

from the posited generalized linear model (McCullagh and Nelder [10]) is too restrictive. This issue can occur

with both cross-sectional as well as with hierarchical data. It is commonly encountered with count data. One

convenient way to incorporate overdispersion is through gamma random effects, giving rise in the univariate

case to the so-called negative binomial model (Breslow [11]). Hence, both random effects are combined into a

single model. Thus, the proposal by MVD, referred to as the combined model, generalizes at once the GLMM

and negative-binomial models and therefore, a fortiori , the univariate Poisson model. MVD also showed

that, unlike the general GLMM case, the Poisson case allows for closed-form expressions for the mean vector,

variance-covariance matrix, and even for the full joint probability vectors. This is true for the combined model

and hence also for all of the aforementioned special cases, providing the opportunity to derive closed-form

expressions for the within-unit correlation functions since it implies that there is no practical need for the

Taylor-series based approximations mentioned earlier. Vangeneugden et al [12] have contrasted the generic

approximate expressions for the correlation of repeated count data derived in Vangeneugden et al [1] with

the results of the exact intra-sequence correlation expressions. They concluded that the proposed extension

strongly outperforms the classical GLMM.

In their paper, Molenberghs et al [2](henceforth abbreviated as MVDV), proposed a broad class of generalized

linear models accommodating overdispersion and clustering through two separate sets of random effects. They

emphasize conjugate random effects at the level of the mean for the first aspect and normal random effects
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embedded within the linear predictor for the second aspect, even though the proposed family is more general.

They use the term strong conjugacy for these cases where conjugacy properties still apply when also normally

distributed random effects are present. MVDV noted that, in comparison to the longitudinal Poisson case,

the longitudinal binary case, with logit link, defeats closed-form solutions and strong conjugacy. In spite of

it being a very natural choice in the univariate case, it does not combine very nicely with normal random

effects. MVDV have shown that closed-form expressions can be derived for the probit case. Rodŕıguez and Elo

[13] also noted the comfort of using the probit link, stemming from the existence of closed-form correlations,

unlike with the logit and complementary log-log links. These authors mention that often the correlation on

the (latent) scale of the linear predictor is calculated, rather than at the probability (manifest) scale. While

the former is definitely easier to calculate, the latter may be the one of scientific interest. Moreover, there can

be a large discrepancy between both correlations.

The paper is organized as follows. In Section 2, a motivating case study, stemming from clinical trials in

patients with schizophrenia, is introduced. Section 3 contains four main ingredients: standard generalized

linear models, with emphasis on the binary logistic and probit model; (2) classical models for overdispersion;

(3) models for repeated measures with normal random effects, with focus on the binary-normal model; and

(4) the general combined model of MVDV (Section 3.1) with further details for the Bernoulli case offered in

Section 3.2. In Section 4, closed-form correlation functions are derived for the particularly insightful case of

exchangeable clustered data. In Section 5, a Taylor-series-based approximation is derived. In Section 6, the

results of the different models are contrasted and finally, Section 7 reports simulations, directed at evaluating

the quality of the approximation and the closed formulae.

2 A Clinical Trials in Schizophrenic Patients

We have available individual patient data from four double-blind randomized clinical trials, comparing the ef-

fects of risperidone to conventional anti-psychotic agents for the treatment of chronic schizophrenia. Schizophre-

nia has long been recognized as a heterogeneous disorder with patients suffering from both “negative” and

“positive” symptoms. Negative symptoms are characterized by deficits in social functions such as poverty of

speech, apathy and emotional withdrawal. Positive symptoms entail more florid symptoms such as delusions

and hallucinations, which are superimposed on the mental status. Several measures can be considered to

assess a patient’s global condition. The Clinical Global Impression (CGI) of overall change versus baseline is

a 7-grade scale used by the treating physician to characterize how well a subject has improved since baseline.

The levels are: ‘very much improved,’ ‘much improved,’ ‘minimally improved,’ ‘no change,’ ‘minimally worse,’

‘much worse,’ ‘very much worse.’ Clinical response is often defined as a CGI score of ‘very much improved

or ‘much improved.’ Given that the label in most countries recommends doses ranging within 4–6 mg/day,

we include in our analysis only patients who received either these doses of risperidone or an active control

3



(haloperidol, perphenazine, or zuclopenthixol). Depending on the trial, treatment was administered for a

duration of 6–8 weeks. For example, in the international trials by Peuskens et al [14], Marder and Meibach

[15], and Hoyberg et al [16] patients received treatment for 8 weeks, while in the study by Huttunen et al

[17] patients were treated over a period of 6 weeks. The sample sizes were 453, 176, 74, and 71, respectively.

Measurements were taken at weeks 1, 2, 4, 6, and 8. In Section 6, the pooled data from these trials will

be analyzed. While a choice to pool can be perceived as controversial, here the trials are comprised of very

similar patients.

3 Modeling Framework

Our model for binary outcomes is based upon the generalized linear model and two of its extensions, the fist

one to accommodate overdispersion, the second one to account for data hierarchies, such as in longitudinal

data. We briefly review these building blocks.

A random variable Y follows an exponential family distribution if the density is of the form

f(y) ≡ f(y|η, φ) = exp
{
φ−1[yη − ψ(η)] + c(y, φ)

}
, (1)

for a specific set of unknown parameters η and φ, and for known functions ψ(·) and c(·, ·). Often, η and φ

are termed ‘natural parameter’ (or ‘canonical parameter’) and ‘dispersion parameter,’ respectively. It is well

known that

E(Y ) = µ = ψ′(η), (2)

Var(Y ) = σ2 = φψ′′(η), (3)

implying a mean-variance relationship: σ2 = φψ′′[ψ
′−1(µ)] = φv(µ), with v(·) the so-called variance function.

Of central interest here is the Bernoulli distribution with success probability P (Y = 1) = π, the density can

be written as

f(y) = exp

{
y ln

(
π

1 − π

)
+ ln(1 − π)

}
, (4)

which implies that the Bernoulli distribution belongs to the exponential family, with natural parameter θ

equal to the logit, i.e., ln[π/(1 − π)] of π, scale parameter φ = 1, with mean µ = π and variance function

v(π) = π(1 − π). The natural link function is the logit link, leading to the classical logistic regression model

with ln[πi/(1 − πi)] = ηi = xi
′β. An alternative to the logit link is the probit, where ηi = Φ−1(πi) and

Φ(·) is the standard normal cumulative distribution function. This model is slightly less standard because the

probit model is not the natural link, as we will see in Section 3.2, it has appeal in the overdispersed and/or

repeated contexts.

When the standard exponential-family models constrain the mean-variance relationship, so-called overdisper-

sion is introduced. Early reviews are provided by Hinde and Demétrio [18, 19] provide general treatments of
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overdispersion. The Poisson case received particular attention by Breslow [11] and Lawless [20]. A natural

step is to allow the overdispersion parameter φ 6= 1, so that (3) produces Var(Y ) = φv(µ). A convenient route

is through a two-stage approach. Generally, the two-stage approach is made up of considering a distribution

for the outcome, given a random effect f(yi |θi) which, combined with a model for the random effect, f(θi),

produces the marginal model:

f(yi) =

∫
f(yi|θi)f(θi)dθi. (5)

When the data are hierarchical, let Yij denote the jth outcome measured for cluster (subject) i, i = 1, . . . , N ,

j = 1, . . . , ni and Yi the ni-dimensional vector of all measurements available for cluster i. It is then common

to include normal random effects in the linear predictor of the generalized linear model, giving rise to the

family known as generalized linear mixed model (Engel and Keen [27], Breslow and Clayton [7], Wolfinger

and O’Connell [28]). Assume that, in analogy with (1), conditionally upon q-dimensional random effects

bi ∼ N(0, D), the outcomes Yij are independent with densities of the form

fi(yij |bi, ξ, φ) = exp
{
φ−1[yijλij − ψ(λij )] + c(yij , φ)

}
, (6)

with

η[ψ′(λij)] = η(µij) = η[E(Yij|bi, ξ)] = x′
ijξ + z′

ijbi (7)

for a known link function η(·), with xij and zij p-dimensional and q-dimensional vectors of known covariate

values, with ξ a p-dimensional vector of unknown fixed regression coefficients, and with φ a scale (overdis-

persion) parameter. Finally, let f(bi|D) be the density of the N(0, D) distribution for the random effects

bi. A commonly encountered member of this family is the logit-normal model, but one can also consider a

probit-normal model.

3.1 A Model Combining Overdispersion-related and Normal Random Effects

Bringing together concepts from the overdispersion models and the normal random effects model, MVDV

specified a broad class of general linear models for repeated data accommodating overdispersion and clustering

through two separate sets of random effects, producing the following general family:

fi(yij |bi, ξ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
, (8)

with notation similar to what was used in (6), but now with conditional mean

E(Yij |θij, bi) = µc
ij = θijκij, (9)

where the random variable θij ∼ Gij(ξij , σ
2
ij), κij = g(x′

ijξ + z′
ijbi), ξij is the mean of θij and σ2

ij is the

corresponding variance. Finally, as before, bi ∼ N(0, D). Write ηij = x′
ijξ + z′

ijbi. Unlike in Section ??, we

now have two different notations, ηij and λij, to refer to the linear predictor and/or the natural parameter.

The reason is that λij encompasses the random variables θij , whereas ηij refers to the ‘GLMM part’ only.
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It is convenient, but not strictly necessary, to assume that the two sets of random effects, θi and bi, are

independent of each other. Regarding the components θij of θi, three useful special cases result from assuming

that: (1) they are independent; (2) they are correlated, implying that the collection of univariate distributions

Gij(ξij, σ
2
ij) needs to be replaced with a multivariate one; and (3) they are equal to each other, useful in

applications with exchangeable outcomes Yij . In this paper, we will operate under (1); the other cases can be

studied similarly.

The relationship between mean and natural parameter now is

λij = h(µc
ij) = h(θijκij). (10)

We can still apply standard GLM ideas to derive the mean and variance, combined with iterated-expectation-

based calculations. For the mean, it follows that E(Yij) = E(θij)E(κij) = E[h−1(λij)]. MVDV have derived

approximate formulae using Taylor expansion around bi = 0 for mean, variance and covariance function.

3.2 Bernoulli-type Models for Binary data

In the binary case the general model described in Section 3.1 becomes

Yij ∼ Bernoulli(πij = θijκij), (11)

κij =
exp

(
x′

ijβ + z′
ijbi

)

1 + exp
(
x′

ijβ + z′
ijbi

) . (12)

Unlike in the Poisson case (see MVD), closed forms for neither the mean nor the variance follow in this

case. When only overdispersion random effects are included, especially when they are assumed to follow a

beta distribution, conjugacy applies. However, the combination of beta-distributed and normal distribution

precludes strong conjugacy.

MVDV have derived general approximate expressions for the mean, variance and the covariance:

E(Yij) = E(θij)E(κij), (13)

Var(Yij) = E(θij)E(κij) − E(κij)
2E(θij)

2, (14)

Cov(Yij, Yik) = E(κij .κik) · Cov(θij , θik) + E(θij)E(θik) · Cov(κij, κik). (15)

These authors further consider (13)–(15) for the three situations described in the previous section, i.e., the

θij generally correlated, uncorrelated, and equal. They also derived approximate expressions for (13)–(15) in

case of θij ∼ Beta(α, β) and contemplated into special cases.

In comparison to the longitudinal Poisson case, the just described longitudinal binary case defeats closed-form

solutions and strong conjugacy. As stated before, more progress is possible with the probit link. The random-

effects probit model has received some attention in earlier decades (Schall [30], Guilkey and Murphy [31],
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Hedeker and Gibbons [32], McCulloch [33], Gibbons and Hedeker [34], Renard, Molenberghs, and Geys [35],

Rodŕıguez and Elo [13]), with emphasis primarily on computational schemata to deal with the multivariate

normal integral.

Replacing the normal with the probit, while at the same time assuming that the overdispersion parameters are

beta distributed, comes down to:

κij = Φ1(x
′
ijξ + z′

ijbi),

θij ∼ Beta(α, β). (16)

Like before, α and β could be allowed to vary with i and/or j. MVDV have shown that the joint distribution

can be written as:

fni
(yi = 1) =

(
α

α+ β

)ni

· Φni
(Xiξ;L−1

ni
), (17)

with

Lni
= Ini

− Zi

(
D−1 + Z′

iZi

)−1
Z′

i. (18)

While this is the joint probability for a vector of nothing but successes, (1, . . . , 1)′, all other probabilities can

be derived straightforwardly by appropriate contrasts of success probabilities:

fni
[yi = mi = (mi1, . . . , mini

)′] =
∑

s⊃λ(mi)

sgn(s)Φ#s

(
X̃

(s)
i ξ;L−1

(s)

)
·
(

α

α+ β

)#s

, (19)

with λ(mi) = λ(mi1, . . . , mini
) the set of places for which mij = 1,

sgn(s) =





1 if #s − #λ(mi) is even,

0 otherwise,

X̃
(s)
i contains the rows from Xi with row number in s, and L(s) is the #s-dimensional matrix built from the

appropriate sub-matrices of these used in (18). The above developments evidently generalize when (16) is

replaced with θij ∼ Beta(αj, βj).

Next, the means, variances, and covariances can be derived from (17), by evaluating it for the one- and

two-dimensional cases. We find:

E(Yij) =
α

α+ β
· Φ1(x

′
ijξ;L−1

1 ) =
α

α+ β
· Φ1(|I +Dzijz

′
ij|−1/2x′

ijξ), (20)

Var(Yij) =
α

α+ β
· Φ1(x

′
ijξ;L−1

1 ) ·
[
1 − α

α+ β
.Φ1(x

′
ijξ;L−1

1 )

]
, (21)

Cov(Yij, Yik) =

(
α

α+ β

)2

·




Φ2







x′
ij

x′
ik


 ξ, L−1

2jk


− Φ1(x

′
ijξ;L−1

1j )Φ1(x
′
ikξ;L−1

1k )




, (22)
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where

L2jk = I2 −




z′
ij

z′
ik





D−1 +




z′
ij

z′
ik


 (zij zik)




−1

(zij zik),

Note that the rightmost density in (20) is standard normal. Evidently, (17) and (19) lead, not only to the

mean, variance, and covariance expressions, but also to the higher-order moments.

4 Closed-form Derivation of the Correlation Function

In general, the correlation between two measurements j and k on the same experimental unit i is:

Corr(Yij , Yik) =
Cov(Yij , Yik)√

Var(Yij) · Var(Yik)
. (23)

For the binary case with probit link and assuming a Beta distribution for the overdispersion parameters, we

can use (21) and (22) to derive a closed-form expression for the correlation. Because of its generality, it is

hard to simplify (23), except in specific cases. We consider the special case of an exchangeable structure,

where x′
ijξ = ξ, and random intercepts, i.e. zij = 1, and D = d. Then (21) and (22) simplify to

Var(Yij) =
α

α+ β
· Φ1(ξ;L

−1
1 ) ·

[
1 − α

α+ β
.Φ1(ξ;L

−1
1 )

]
, (24)

Cov(Yij, Yik) =

(
α

α+ β

)2

·





Φ2







ξ

ξ


 , L−1

2jk


− [Φ1(ξ;L

−1
1j )]2




, (25)

Now, via straightforward algebra it is easy to show that L1j = 1/(d+ 1) and

L2jk =
1

1 + 2d




1 + d −d

−d 1 + d




Hence we have that

L−1
2jk =




1 + d d

d 1 + d


 . (26)

Furthermore, we can transform to obtain the standard normal univariate and the bivariate distribution via the

Cholesky decomposition:

Φ1(ξ;L
−1
1 ) = Φ1

(
ξ√
d+ 1

)
, (27)

Φ2







ξ

ξ


 , L−1

2jk


 = Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


 , (28)
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where the correlation for the bivariate normal distribution based on (26) is defined by ρ = d/(d+ 1).

Based on (24)–(25) and (27)–(28), the closed-form expression for the correlation becomes:

Corr(Yij, Yij) =

α
α+β ·





Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


−

[
Φ1

(
ξ√
d+1

)]2




Φ1

(
ξ√
d+1

)
·
[
1 − α

α+β
· Φ1

(
ξ√
d+1

)] . (29)

As a special case, consider the normal-probit model without Beta random effects, then (29) reduces to

Corr(Yij , Yij) =

Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


−

[
Φ1

(
ξ√
d+1

)]2

Φ1

(
ξ√
d+1

)
·
[
1 − Φ1

(
ξ√
d+1

)] . (30)

5 Taylor-series-based Derivation of the Correlation Function

VMLGBS derived approximate expressions for the correlation function in the GLMM, including when multiple

sequences on the same subject are observed. For convenience, these derivations are reproduced in Appendix A.

Given the absence, for the entirely general case, of closed-form expressions for the moments and hence, a

fortiori , for the joint distribution, this is pragmatically a sensible way forward. In our probit case, it is strictly

speaking unnecessary to resort to such approximations. Their importance lies in the following: it is generally

understood that Taylor-series-based expansions in GLMM could be highly inaccurate, especially when restricted

to the first order. This has been amply documented for so-called penalized and marginal quasi-likelihood (for a

summary, see Molenberghs and Verbeke [8]). However, most experience is built regarding marginal regression

parameters in the logistic-linear case, whereas here we deal with correlations in the probit-linear case. This is

why we offer such calculations. Moreover, because here it is possible to explicitly derive closed forms next to

approximations, the agreement or discrepancy between them provides, with due caution, indirect evidence as

to the quality of approximation in the logistic case.

When we consider the special case of an exchangeable structure as we did in Section 4, then Vij(0) = V (0) =

exp(ξ)/[1 + exp(ξ)]2 and (A.7) simplifies to

r̃hoijk = Corr(Yij, Yij) =
V (0)d

1 + V (0)d
. (31)

Similar approximate formulas can be derived for the combined logistic-Beta-normal model; we refer to Sec-

tion A.2 of the Appendix for more detail. Upon using (A.8), (A.9), (A.10), and (23), with the same notation

as above and writing κ(0) = κ, then:

r̃hoijk =

(
α

α+β

)
· κ2 (1 − κ)

2
d

[
κ+ κ (1 − κ) (1 − 2κ) 1

2d
]
−
(

α
α+β

)
·
[
κ+ κ (1 − κ) (1 − 2κ) 1

2d
]2 (32)
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Table 1: Estimated Intraclass Correlation Coefficient using probit and logistic models with and without over

dispersion random effect.

Model Dispersion Estimate (s.e.)

Logistic-Normal (31) No 0.48 (0.026)

Logistic-Combined-Conjugate-Normal (32) Beta 0.62 (0.126)

Probit-Normal (30) No 0.67 (0.028)

Probit-Combined-Conjugate-Normal (29) Beta 0.60 (0.035)

6 Analysis of the Schizophrenia Data

VMLGBS analyzed the data introduced in Section 2. They used the GLMM framework, applying a logistic

model with normal random effects and have calculated that the intraclass coefficient of correlation was 0.48

(s.e. 0.026), using the approximation derived in (31). This figure needs to be approached, however, with

due caution. To underscore this, we re-analyzed the data using the logistic model combining conjugate and

normal random effects introduced in Section 3.1 with approximations provided in (32). Furthermore, we used

the closed-form expressions (29) and (30), derived in Section 4. Table 1 summarizes results. First, the point

estimate is questionable in the logistic case, due to the often poor approximation. This is clearest when there

is no conjugate random effect. Furthermore, the standard error in the logistic case can be less than trustworthy

as well; this phenomenon is now clearest in the combined case. It is therefore safer to use the probit-based

models for correlation assessment, and other inferences. While both probit-based models are similar in terms

of the correlation estimate, it also follows that ignoring the overdispersion aspect leads to a certain amount

of overestimation for the correlation coefficient.

7 Simulation Study

To corroborate theoretical considerations and findings from the above data analysis, we performed a limited

simulation study to evaluate the performance of the closed-form expressions from the probit model. We refer

to VMLGBS for simulations to evaluate the approximate derivation for (31) using the Bahadur model for

that purpose. We assume an exchangeable structure, where x′
ijξ = ξ, and random intercepts, i.e., zij = 1,

and D = d. Admittedly, this is relatively limited, but it leads to a constant marginal correlation coefficient.

Otherwise, the marginal correlation would be a function of the covariates.

10



Table 2: Results of the simulation study.

True ρ α ξ d P00 P10 = P01 P11 N Est. (s.d.)

0.15 3 -0.8 0.25 0.64 0.14 0.07 200 0.180 (0.146)

1000 0.177 (0.084)

0.25 17 -0.2 0.5 0.38 0.18 0.25 200 0.254 (0.111)

1000 0.257 (0.048)

0.50 2.5 -0.2 4.25 0.48 0.12 0.28 200 0.595 (0.074)

1000 0.600 (0.034)

0.75 23.5 -0.2 9 0.46 0.06 0.41 200 0.764 (0.063)

1000 0.777 (0.027)

If we simulate 2 repeated measures, we can use (17) and (27) and (28) to derive that:

P11 =

(
α

α+ β

)2

·Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


 ,

P01 = P10 =

(
α

α+ β

)
· Φ1

(
ξ√
d+ 1

)
−
(

α

α+ β

)2

·Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


 ,

P00 = 1− 2 ·
(

α

α+ β

)
· Φ1

(
ξ√
d+ 1

)
+

(
α

α+ β

)2

· Φ2







ξ√
(d+1)(1+2d)

ξ√
d+1


 , ρ


 ,

where ρ = d/d+ 1 as before and where P11, P10, P01, and P11 indicate the four success/failure combinations.

We used Monte Carlo machinery to simulate different true values for ρ: 0.15, 0.25, 0.50, and 0.75, respectively.

For all 4 situations, 1000 datasets were generated, of size 200 and 1000, respectively. To obtain true ρ values of

0.25, 0.50 and 0.75, specific values for α, d, ξ where determined and β was fixed at 1/α. Table 2 summarizes

the results.

Overall, the behavior of the estimator is quite acceptable, especially for sample sizes of 1000, where the average

over the simulation run is invariably close to the true value. Note that there is no perfect match, because the

covariates are chosen to approximate the targeted true value, without fully coinciding with it.
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8 Concluding Remarks

Many inferential questions can be framed in terms of correlations between repeated or otherwise hierarchical

measures taken on the same experimental unit. Such data can be conveniently modeled by means of random

effects models, like linear and generalized linear mixed models. In contrast with the LMM case, the GLMM

renders more difficult the derivation of such correlations. VMLGBS derived approximate correlation expressions

in a broad GLMM framework, where not only a single one but several repeated-measures sequences per unit

may be recorded, perhaps of a different data type. These authors paid explicit attention to binary endpoints,

as well as to combinations of binary and Gaussian outcomes.

In this paper, we built on the work of MVDV who described a family of generalized linear models for repeated

measures with normal and overdispersion random effects, the latter of conjugate. These authors have shown

that in the case of binary data, the probit model allows to derive closed-form expressions for mean, variance

and covariance. First, we derived approximate expressions based for the binary case, but with the probit link

used rather than the more conventional logit link. For the overdispersion random effects, the beta distribution

was chosen. Closed-form and approximate expressions were derived.

The quality of the approximations was assessed using data from a four schizophrenia trials. This is important

to gauge whether the more conventional but computationally more involved logit-link-based models can be

approximated by the convenient probit case. We concluded that the approximation is not all that good when

only normal random effects are included, but that this radically changes when both sets of random effects are

present; indeed, then the approximation’s quality is excellent. Simulations based on the probit-beta-normal

model showed that these exact derivations were stable and on average close to the true correlation.

Hence, the probit-beta-normal model provides a proper alternative to the logistic-beta-normal model, enabling

exact derivations for the mean, variance, covariance and correlation due to strong conjugacy. Especially when

correlation is of interest, this model should be contemplated.
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Appendix

A Taylor-series-based Derivation of the Correlation Function

A.1 Models with Normal Random effects

We can usefully write the general model as Y i = µi + εi, where µi, the conditional mean, given the random

effects, can be written as µi = h(Xiβ + Zibi), Xi and Zi are known design matrices, β are fixed-effect

parameters, bi are random effects, and h is a known link function. Finally, εi is the residual error component.

We will now derive a general formula for the variance-covariance matrix of Y i without any restriction on the

distribution of the outcome variable nor on the complexity of the model, e.g., allowing for serial correlation

or not. This maximizes the similarity with the case of continuous, normally distributed outcomes. However, a

key distinction is that in the linear case there is no mean-variance link, whereas here the residual variance will

follow from the mean. The variance covariance matrix can be written as:

V i = Var(Y i) = Var(µi + εi) = Var(µi) + Var(εi) + 2Cov(µi, εi). (A.1)

It is easy to show that Cov(µi, εi) = Cov[E(µi|bi), E(εi|bi)] + E[Cov(µi, εi|bi)] = 0 since the first term is 0

and the second term equals E[E(µi −E(µi))(εi)|bi] = 0 as µi is a constant when conditioning on bi. For the

first term in (A.1) we have, using a first-order Taylor series expansion around bi = 0:

Var(µi) = Var(µi(ηi)) = Var(µi(X iβ + Zibi)) (A.2)

∼=
(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)
D

(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)′

∼= ∆iZiDZ ′
i∆

′
i, (A.3)

where ∆i =
∂µ

i

∂ηi

∣∣∣∣
bi=0

. For the second term in (A.1), we have:

Var(εi) = Var[E(εi|bi)] +E[Var(εi|bi)] = E[Var(εi|bi)] = Φ
1

2 ΣiΦ
1

2 , (A.4)

where Φ is a diagonal matrix with the overdispersion parameters along the diagonal. In case there are no

overdispersion parameters, Φ is set equal to the identity matrix. Expand the variance function Σi so that

Var(εi) = Φ
1

2 Ai
1

2 RiAi
1

2 Φ
1

2 , (A.5)

where Ri is the correlation matrix and Ai is a diagonal matrix containing the variances following from the

generalized linear model specification of Y ij given the random effects bi = 0, i.e., with diagonal elements

v(µij |bi = 0). Using (A.3) and (A.5), we have the following expression for the variance-covariance matrix

(A.1):

V i
∼= ∆iZiDZ ′

i∆
′
i + Φ

1

2 Ai
1

2 RiAi
1

2 Φ
1

2 . (A.6)

When the canonical link is used, we have Ai = ∆i and (A.6) can be written as: V i
∼= ∆iZiDZ ′

i∆
′
i +

Φ
1

2 ∆
1

2

i Ri∆
1

2

i Φ
1

2 . If in addition, conditional independence (no serial correlation) is assumed, then (A.6)
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simplifies to: V i
∼= ∆iZiDZ ′

i∆
′
i + Φ

1

2 ∆iΦ
1

2 . Further, if we reduce the random-effects part to a random-

intercept model, i.e., Zi = 1 and D = d, then (A.6) reduces to V i
∼= ∆i(dJ)∆′

i + Φ
1

2 ∆iΦ
1

2 .

When we have a random-intercept model for binomial data with a logit link and assuming no overdispersion,

V i reduces to V i
∼= ∆i(dJ)∆′

i + ∆i = ∆i(dJ + ∆
−1
i )∆′

i. Furthermore, ∆i is a diagonal matrix with

Vij(0) as diagonal elements, where the variance function Vij(0) = µij

∣∣
bi=0

(1 − µij

∣∣
bi=0

), and therefore

V i
∼= diag(Vij(0))[dJ + diag(Vij(0))−1]diag(Vij(0)). In other words, the variance-covariance matrix for

subject i is specified by the matrix with elements: vijj = Vij(0)[1+Vij(0)d], vijk = dVij(0)Vik(0), (j 6= k).

Based on these, we can determine a first-order approximation of the marginal correlation between time point

j and k, which is the intraclass correlation coefficient of reliability:

ρijk = Corr(Yij, Yik) =
Vij(0)Vik(0)d√

{Vij(0)[1 + Vij(0)d]}{Vik(0)[1 + Vik(0)d]}
. (A.7)

Note that, when d = 0, then ρijk = 0, and when d → ∞, then ρijk → 1. Thus, the full positive correlation

range is attainable, quite unlike marginal models for correlated binary data, that experience restrictions on the

correlation parameter space to certain degrees. For a discussion, see Molenberghs and Verbeke (2005). No

negative correlations can occur, which is entirely in line with the model’s hierarchical nature, i.e., where d is

and remains interpretable as a variance. The related discussion for the case of linear mixed models can be

consulted in Verbeke and Molenberghs (2000).

A.2 Combined Models with Normal and Beta Random Effects

In the binary case, the general model takes the form (11) and (12) where θij ∼ Beta(α, β) and bi ∼ N(0, D).

MVDV have derived general approximations for marginal model elements, using Taylor expansion of κij around

bi = 0. In this case we have that E(Yij) = E(θij)E(κij) and E(θij) = α/(α+ β). Then, the approximation

of the mean, variance, and covariance can be written as:

E(Yij) ≈ α

α+ β
·
[
κ

(0)
ij +

1

2
κ

(0)
ij (1 − κ

(0)
ij )(1 − 2κ

(0)
ij )z′

ijDzij

]
,

Var(Yij) ≈ E(Yij)[1− E(Yij)],

Cov(Yij, Yik) ≈
(

α

α+ β

)2

· κ(0)
ij (1 − κ

(0)
ij )κ

(0)
ik (1 − κ

(0)
ik )z′

ijDzik.

From this we can derive the correlation between measurements j and k for the same experimental unit, as in

(23).

In case of an exchangeable structure with a random intercept model, then κ
(0)
ij = κ

(0)
ik = κ, and hence the

formulas above for mean, variance, and covariance simplify to

E(Yij) ≈ α

α+ β
·
[
κ+

1

2
κ(1 − κ)(1 − 2κ)d

]
, (A.8)

Var(Yij) ≈ E(Yij)[1− E(Yij)], (A.9)

Cov(Yij, Yik) ≈
(

α

α+ β

)2

· [κ(1 − κ)]
2
d. (A.10)
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