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Abstract

The combined model as introduced by Molenberghs et al. (2007, 2010) has been shown to

be an appealing tool for modeling not only correlated or overdispersed data but also for data that

exhibit both these features. Unlike techniques available in the literature prior to the combined

model, which use a single random-effects vector to capture correlation and/or overdispersion,

the combined model allows for the correlation and overdispersion features to be modeled by two

sets of random effects. In the context of count data, for example, the combined model natu-

rally reduces to the Poisson-normal model, an instance of the generalized linear mixed model in

the absence of overdispersion and it also reduces to the negative-binomial model in the absence

of correlation. Here, a Poisson model is specified as the parent distribution of the data condi-

tional on a normally distributed random effect at the subject or cluster level and/or a gamma

distribution at observation level. Importantly, the development of the combined model and sur-

rounding derivations have relevance well beyond mere data analysis. It so happens that the

combined model can also be used to simulate correlated data. If a researcher is interested in

comparing marginal models via Monte Carlo simulations, a necessity to generate suitable cor-

related count data arises. One option is to induce correlation via random effects but calculation

of such quantities as the bias is then not straightforward. Since overdispersion and correlation

are simultaneous features of longitudinal count data, the combined model presents an appealing
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ACCEPTED MANUSCRIPT

framework for generating data to evaluate statistical properties, through a pre-specification of

the desired marginal mean (possibly in terms of the covariates and marginal parameters) and a

marginal variance-covariance structure. By comparing the marginal mean and variance of the

combined model to the desired or pre-specified marginal mean and variance, respectively, the

implied hierarchical parameters and the variance-covariance matrices of the normal and Gamma

random effects are then derived from which correlated Poisson data are generated. We explore

data generation when a random intercept or random intercept and slope model is specified to

induce correlation. The data generator, however, allows for any dimension of the random effects

although an increase in the random-effects dimension increases the sensitivity of the derived

random effects variance-covariance matrix to deviations from positive-definiteness. A simula-

tion study is carried out for the random-intercept model and for the random intercept and slope

model, with or without the normal and Gamma random effects. We also pay specific attention to

the case of serial correlation.

Key Words: Copulas, Correlated data, Multivariate Gamma distribution, Poisson distribu-

tion.

1 Introduction

Research today generates a lot of data that have to be analyzed and summarized into meaningful

and informative statements. Analysis is done using statistical methods that depend on the kind

of data at hand. In medical research, it is often the case that data on a patient is profiled longi-

tudinally in the sense that each patient is followed repeatedly or observed at multiple points over

time. This introduces the phenomenon of correlated data because observations from one patient

will be more related or similar than observations across different patients. A lot of research has

already been committed to the analysis of correlated data. For example, Molenberghs and Ver-

beke (2005) and Verbeke and Molenberghs (2000) focus on methods for the analysis of discrete

2
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

6:
55

 2
2 

Se
pt

em
be

r 
20

14
 



ACCEPTED MANUSCRIPT

and continuous longitudinal data, respectively. In the context of continuous or normal longitudinal

data, calculations are computationally easier than in the non-normal case because the model for

the response variable given random effects is the normal distribution and that of the random effects

is the normal distribution as well. The two combined and integrating over the random effects leads

to a normal distribution as the marginal model. In the non-normal case though, the model for the

outcome variable and the random effects combined does not lead, in general, to closed-form solu-

tions for the marginal model. Even if it does, expressions tend to be cumbersome. This is due to

the lack of the elegant and convenient multivariate distributions analogous to the case of longitudi-

nal data that can be assumed normally distributed. This poses computational and interpretational

challenges. Specific to count data, which is of interest here, evaluation of the multivariate Pois-

son distribution grows in computational complexity with an increase in the dimensions due to the

summations inherent in the distribution (Karlis, 2003). It is therefore of interest to find alternative

means of analysis of correlated count data. One alternative is the generalized linear mixed model

(GLMM) proposed by Breslow and Clayton (1993). This model accounts for the correlation by

use of effects specific to a subject or study unit (random effects) and then derives the marginal

distribution as a result of combining a random-effects distribution with a Poisson distribution for

the data given the random effects. Molenberghs et al. (2007, 2010) have introduced the so-called

combined model (CM) as a tool to model data that is not only correlated but also overdispersed.

Overdispersion may occur when the model restricts the data in the sense that the variance expected

from the model is less than that observed in the data. It is commonly encountered in data assumed

to follow a binomial distribution, correlated or uncorrelated, correlated Bernoulli/binary random

variables, correlated or independent observations arising from counting processes (Poisson data),

and time-to-event/survival data. This is due to the mean-variance relationship inherent in the dis-

tributions that are assumed to be the data generating mechanisms. Overdispersion is, however, not

an issue in the case of independent Bernoulli observations. Research has shown overdispersion to

be caused by, for example, missing covariates and the presence of correlation between individual
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responses or clustering, among others. Depending on outcome type and model, not accounting for

overdispersion may lead to bias in some or all parameters; it definitely biases precision estimates.

The result is then usually smallerp-values for the statistical tests as well as, of course, confidence

intervals that are narrower than should be if overdispersion were properly handled. This means

that inference based on such statistical analyses is questionable and may be misleading.

Solutions have been proposed in the literature and implemented in statistical software to account

for overdispersion. The negative-binomial (NEGBIN) model for count data is one such tool which

assumes the count data to have the Poisson as the parent distribution and a Gamma distribution

for the extra parameter that accounts for overdispersion. The resulting marginal distribution is

then the negative-binomial distribution. Note that earlier statistical analyses were generally only

able to account for either correlation or overdispersion, but not both. But, given data that exhibit

both features, it is a necessity to account for both in analyses, indeed. We refer to Section 2 for a

detailed description of the GLMM, negative-binomial, and combined models.

We now turn to data-generation, the aspect which this paper contends to contribute to. It is common

practice in statistics to carry out Monte-Carlo (MC) simulations in which samples are randomly

drawn from probability distributions to mimick statistical processes that can be used to study prop-

erties of statistical methods. Simulation of correlated Poisson random variables is a topic of ongo-

ing research and various methods have been proposed in the literature to this end, some of which

include: the overlapping sums (Madsen and Dalthorp, 2007; Mardia, 1970; Kocherlakota and

Kocherlakota, 1992, 2001); Lognormal-Poisson hierachy; Normal to Anything (NorTA; Cario and

Nelson, 1997, 1998; Nelson, 2006; Mardia, 1970; Li and Hammond, 1975), and extensions thereof

(Yahav and Shmueli, 2012; Ghosh and Pasupathy, 2012; Shin and Pasupathy, 2007; Avramidis

et al., 2009; Park and Shin, 1998; Downer and Moser, 2001). See also Devroye (1986) for an

overview on random variate generation. These tools yield correlated Poisson random variables

with the specification of the Poisson means and the desired or target correlation structure. Most
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of these methods, however, suffer from such limitations as: severe computational restrictions; dif-

ficulty achieving the target correlation; generated variables are required to be overdispersed; low

correlations obtained; correlations constrained to be strictly positive; etc. Another approach is to

use random effects to induce the correlation, thereby generating data from a hierarchical model.

If the simulation is in the context of hierarchical models, this approach would be fine. However,

whenever interest is in population-averaged or marginal models, the parameters used in the hierar-

chical model do not have a 1:1 correspondence with those in the marginal model. Given such a tool

as the combined model that incorporates the two common features of count data, namely, overdis-

persion and correlation, it certainly is essential to generate data from such a method whenever

interest is in simultaneously investigating these features. In this paper, we present the combined

model as a tool to generate correlated Poisson random variables.

The rest of the paper is organized as follows. Section 2 reviews the modeling background. In

Section 3, the focus is on data generation. A simulation study is set up in Section 4; results are

presented in Section 5.

2 Overview of the models

2.1 Notation

Our focus in this paper is the generation of correlated count or Poisson random variables forK

independent subjects in a study with subjecti having measurementsYi j , i = 1, . . . ,K, j = 1, . . . , ni.

This is based on specification of the mean model in terms of anni × p known design matrixXi,

a p-dimensional fixed-effects parameter vectorβ andZi, anni × q design matrix for the random

effects of subjecti.
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2.2 Modeling discrete correlated data

In dealing with discrete univariate data, generalized linear models (GLM; Nelder and Wedder-

burn, 1972; McCullagh and Nelder, 1989; Agresti, 2002), which are a class of fixed-effects models

unifying linear, logistic, and Poisson regression models among others, is the standard approach

for analysis. The GLM generalizes the linear regression model in that the linear component, ex-

pressed in terms of covariates, relates to the response variable via a link function. In the presence

of correlation, an extension of the GLM framework to the so-called generalized linear mixed model

(GLMM; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993; Molenberghs and Verbeke,

2005) is commonly used. The GLMM modifies the linear predictor in the GLM to include un-

known subject-specific effects in addition to the fixed effects. These subject-specific effects or

random effects are, in practice, usually assumed to follow a normal distribution for reasons of con-

venience and availability of software, but any other distribution could be used in principle. Specific

to count data, the mathematical expression of the GLMM is

Yi j |bi ∼ Poi(λi j ),

ln(λi j ) = X>i jβ + Z>i j bi ,

bi ∼ N(0,D),

(1)

whereby the conditional distribution of the observations from a subjecti given the random effectsbi

is Poisson with a rate parameterλi j that is log-linearly related to covariates. Fitting these models is

done by maximizing the marginal likelihood resulting from integrating (3) over the random effects.

Closed form expressions for these integrals do not exist in all cases but Molenberghs et al. (2007,
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2010) derived the marginal mean and covariance for the Poisson case as

μi j = ln(λi j ) = X>i jβ + 0.5Z>i j DZi j , (2a)

var(Y i) = Mi + Mi(e
Zi DZ>i − Ji)Mi , (2b)

respectively, whereJi is a matrix of 1’s andMi is a diagonal matrix with entriesμi j . Also, the

higher-order marginal moments and the marginal joint distribution can be derived in closed form

for the Poisson case (Molenberghs et al. 2010).

2.3 Modeling overdispersion

As mentioned in the introduction, overdispersion is a phenomenon where the observed variance

in the data is greater than what is expected or predicted by the model. An obvious check for

overdispersion is to compare the sample mean and sample variance. It is expected that the mean

and variance are the same for the Poisson case, and deviations from this point to the more rarely

encountered case of underdispersion (the observed sample variance is less than the predicted or

expected model variance) or overdispersion. Indeed, models that account for overdispersion have

been proposed in the literature and even implemented in statistical software packages like SAS and

R, for example. Some references in this light are Hinde and Demétrio (1998a, 1998b), Breslow

(1984), Lawless (1987), and Molenberghs and Verbeke (2005). In dealing with overdispersed

data, one way forward is to assume a two-stage approach for the response such that in stage 1,

a distribution is considered for the response or outcome variable, given a random effect f (yi |bi),

and in stage 2, a model for the random effects f (bi) is specified. Combining the two stages and

integrating over the random effects results in the marginal model:

f (yi) =
∫

f (yi |bi) f (bi)dbi . (3)

7
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For count data, frequently the assumption thatYi |λi ∼ Poi(λi) is made, together with allowingλi

to be a random variable assumed to follow a Gamma distribution withE(λi) = μi and var(λi) =

σ2
i . The marginal distribution is then the negative-binomial distribution. Extension to the case of

correlated or hierarchical count data is rather easy as shown in Section 3.2 of Molenberghs et al.

(2010).

2.4 Modeling correlation and overdispersion

Analysis of data with both correlation and overdispersion features is a continuing area of research,

indeed. The introduction of the combined model by Booth et al. (2003) and Molenberghs et al.

(2007, 2010) quite flexibly accounts for these features simultaneously. Please note that it is not our

intention to present a comprehensive literature review of the combined model and its associates.

Rather, we reflect on the combined model as a data generator but refer to, for example, Winkelmann

(2004, 2008), Sutradhar (2011), Chid and Quddus (2003), Deb and Holmes (2000) and related

references therein for discussions of similar approaches and further details on this matter. The

combined model brings together the two models discussed in Sections 2.2 and 2.3 in the presence

of both correlation and overdispersion. It also reduces to the GLMM in the presence of correlation

and overdispersion as far as described by the normal random effects, or the negative-binomial

model in the presence of overdispersion but not correlation. The CM is given by

Yi j ∼ Poi(λ∗i j ),

λ∗i j = θi jλi j = θi j exp(x>i jβ + z>i j bi),

θi ∼ Gamma(mean= 1, variance= Σi),

bi ∼ N(0,D),

(4)
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whereθi j , the entries inθi, are the overdispersion parameters introduced at observation level. If we

assume theθi j to be independent as is often done in practice, then the association is only induced by

thebi and theθi j would cover the overdispersion not accounted for by the normal random effects.

Then,Σi is reduced to a diagonal matrix. Alternatively, theθi j can be allowed to be correlated

as well such thatΣi can take on more general structures. This implies the use of some form of

Multivariate Gamma (MGamma) distribution. For example,Σi can be chosen such that there is a

time-dependence, or other covariate dependencies, in the association structure. Evidently, as is also

the case in the linear mixed model, when random effects and generalΣi are present, the user needs

to carefully ensure that the resulting marginal model is identifiable. A classical counterexample

from the linear mixed model setting is a random intercept combined with a compound-symmetry

residual structure. This leads to fully aliased parameters. The marginal mean and the marginal

variance-covariance matrix take the form:

E(Yi j ) = μi j = θi j exp(x>i jβ + 0.5z>i j Dzi j ),

var(Y i) = Mi + Mi(Pi − Ji)Mi ,

(5)

whereMi = diag(μi) and

Pi = e(0.5Zi DZ>i ) (Σi + Ji) e(0.5Zi DZ>i ).

Here,Ji is a matrix of ones. Note that we make use of the fact that the gamma random effects have

unit mean.

3 Generation of correlated counts

As will be presented in Section 3.1, the GLMM can be used to parsimoniously generate correlated

count data with prespecified marginal mean function and such variance-covariance structures as

compound symmetry and the one generated by random intercept and random slope. In the GLMM
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case, however, the random effects used do not separate correlation and overdispersion, a disad-

vantage that may lead to mis-representation of the random-effects variability. The algorithm for

generating data from the combined model, which accounts for both correlation and overdispersion,

is given in Section 3.2.

3.1 The GLMM as a data generator

The GLMM can be used to generate correlated random variables with a desired structure. Given

a marginal (log) mean (possibly depending on covariatesX̃i) and a variance-covariance matrix for

Y i, Algorithm 1 below generates random variables with this pre-specified structure.

Algorithm 1:

1. Derive the unknownsβ and D of the GLMM by comparing the desired marginals with

the marginals from the GLMM.

2. Using D, simulatebi .

3. Computeln(λi j ) = x>i jβ + z>i j bi .

4. Simulate Yi j ∼ Poi(λi j ).

To put matters into context, if we consider the case of compound symmetry (CS), for example,

in that the desired marginal mean is ln(μi) = X̃iα and desired variance-covariance structure is

V = Mi + τ
2Ji (CS structure), then the necessary unknowns in step 1 of the above algorithm are

derived by comparing [a]̃Xiα = Xiβ + 0.5ZiDZ>i [which is (2a) expressed in matrix form] for the

marginal mean, and, [b]Mi + τ
2Ji = Mi + Mi(eZi DZ>i − Ji)Mi for the marginal variance-covariance

structure. Solving [a] forβ and [b] forD leads to:

β =
(
X>i Xi

)− X>i (X̃iα − 0.5ZiDZ>i ), (6a)

D =
(
Z>i Zi

)− Z>i log
(
M−1

i τ
2Ji M

−1
i + Ji

)
Zi

(
Z>i Zi

)−
, (6b)

10
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

6:
55

 2
2 

Se
pt

em
be

r 
20

14
 



ACCEPTED MANUSCRIPT

where (.)− indicates a generalized inverse. For a generalV, τ2Ji in D above becomesV − Mi.

Then, it follows thatE(Y i) = eX̃iα and var(Y i) = V. If the generalized inverse is not an inverse, the

solution clearly is not unique. This is not a problem, it simply means that several choices ofβ and

D are possible, that nevertheless all lead to the desired marginal structure. This is akin to the fact

that there is a one-to-many map between a given marginal model on the one hand and the class of

hierarchical models that marginalizes to it on the other. Any member of the class of hierarchical

model can in principle be used as a data generator for the marginal structure.

3.2 The combined model as a data generator

The combined model can be used to generate correlated Poisson random variables following logic

similar to that described in Section 3.1. The major difference from the GLMM is that there is a third

unknown term in the combined model, i.e.,Σi, the variance-covariance matrix for the overdisper-

sion parameter(s). Given a desired mean and variance-covariance structure, Algorithm 2 generates

the Poisson variates.

Algorithm 2:

1. Derive the unknownsβ, D, andΣi in the CM.

2. Generateθi ∼ MGamma(mean= 1, variance= Σi).

3. Using D, simulatebi .

4. Computeλ∗i j = θi j exp(x>i jβ + z>i j bi).

5. Simulate Yi j ∼ Poi(λ∗i j ).

The necessary unknowns in step 1 of Algorithm 2 are given byβ as in (6a) and further

D =
(
Z>i Zi

)− Z>i log
[
M−1

i (V − Mi)M
−1
i + Ji

]
Zi

(
Z>i Zi

)−
,

Σi = e−Zi DZ>i
[
M−1

i (V − Mi)M
−1
i + Ji

]
− Ji ,
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where notational conventions are as before.

An extension to generating purely serially correlated outcomes is done by removing the normal

random effect and choosingθi such that it follows a serially correlated multivariate gamma. Note

that ‘multivariate’ is used here in the broad sense, because all hierarchical structures, such as

longitudinal and clustered data to name a few, imply marginal multivariate structures. Evidently,

in such structured designs, the marginal covariance matrix will typically not be unstructured.

The general form of the combined model (4), in the case of Poisson data, is that the normal random

effects are correlated and the Gamma random effects are also correlated. From this general case,

several special cases can be derived. An overview of the possible combinations is presented in

Table 1. The following special cases, which are also presented in Table 1, can be derived from the

more general case:

• A combination of normal and independent Gamma random effects. This is the most com-

monly used form of the combined model in which the normal random effects induce/account

for correlation while the Gamma random effects induce/account for overdispersion. It is

model (4) but withΣi diagonal.

• Normal random effects without Gamma random effects. In this case, (4) reduces to (1) and

data is generated as explained in Section 3.1. Here, the normal random effects induce/account

for both correlation and overdispersion.

• No normal random effects, no Gamma random effects. The absence of both random effects is

equivalent to generating independent counts which is not of interest in this paper.

• No normal random effects, correlated Gamma random effects such that both correlation and

overdispersion are induced via the Gamma random effects. Thus,λi j in (4) becomes exp(x>i jβ)

andΣi is fully general.

• No normal random effects, independent Gamma random effects. In this case, the combined
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model reduces to the negative-Binomial model which accounts for overdispersion but not

correlation.λi j in (4) becomes exp(x>i jβ) andΣi is diagonal.

Extra variations can be constructed by choosing for the normal random effects (random intercept

+ slope, or higher dimensions) to be either independent (D diagonal) or correlated. In this paper,

we have only studied the latter case but the former is very easily obtainable.

4 Setup of simulation study

As illustrated in Section 3.2, the combined model can take on several forms or variations. To

evaluate the performance of the different forms of the combined model as data generators, a sim-

ulation was set up across the variations. More specifically, given a pre-specified marginal mean

and variance-covariance matrix, 1000 Monte Carlo replications of correlated count data sets were

generated from each of the several forms. Marginal models were then fitted to these data sets and

the difference between the pre-specified parameters and those estimated by fitting the marginal

models were studied. Two different arms have been considered for the simulation, namely, sample

size K = 100 and 500. ForK = 100, 2 correlated Poisson variables were generated from the

following model specification;

Yi j ∼ Poi(λ∗i j ),

λ∗i j = θi jλi j = θi j exp(β0 + b0i + β1Ti + (β2 + b1i)ti j + β3Ti ∗ ti j ),

θi ∼ Gamma(mean= 1, variance= Σi),

bi =

(b0i

b1i

)

∼ N

[(0

0

)

,D =

(d11 d12

d12 d22

)]

,

V∗ =

(36 12

12 29

)

,

(7)
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whereTi ∼ Bernoulli(0.5), ti j is the ordering of thejth observation (i = 1, . . . ,K = 100, j = 1,2) in

subjecti, and the desired marginal mean parameters areβ0 = 1.521, β1 = 0.237, β2 = 0.254, β3 =

0.345. Generalized estimating equations (GEE, Liang and Zeger 1986), NEGBIN, and the GLMM

were used to study the behavior of the data generator, averaged over the 1000 MC replications.

GEE is one tool commonly used to model correlated data when scientific interest is in inference on

the marginal parameters. It makes no distributional assumptions apart from the specification of the

mean functionμi = exp(X iβ) for models with the log link, the variance functionVi = A1/2
i Ri(ααα)A

1/2
i

whereAi is anni×ni diagonal matrix with var(μi j ) as thejth diagonal element, andRi(ααα) is anni×ni

(perhaps incorrect) working correlation matrix to allow for dependence between within-subject

observations expressed in terms ofααα a vector of unknown parameters.

For K = 500, 4 random variables were generated from a similar model as above, the difference

being that a random intercept model for the normal random effects was used. More specifically,

λ∗i j = θi jλi j = θi j exp(β0 + b0i + β1Ti + β2ti j + β3Ti ∗ ti j ),

bi = b0i ∼ N(0,d),

V∗ =




256 128 144 224

128 208 228 172

144 228 299 296

224 172 296 567




,

(8)

wherei = 1, . . . ,K = 500 andj = 1,2,3,4. The desired marginal mean parameters were specified

asβ0 = 1.521, β1 = 0.437, β2 = −0.254 andβ3 = 0.145. In addition to GEE, NEGBIN and GLMM

models used in the case ofK = 100, the so-called marginal multilevel model (MMM) was also

used, mainly motivated by the fact that the sensitivity of the MMM to starting values is less severe

if the random intercept model is specified for the normal random effects than in the case of random

intercept and slope. The MMM was described by Heagerty (1999) for binary longitudinal data,
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building on a specification of the marginal rather than the conditional mean given random effects.

More precisely, this model puts together the two worlds of marginal and conditional or hierarchical

modeling in the sense that it puts the ideas of Generalized Estimating Equations (GEE, Liang and

Zeger, 1986) and the GLMM together leading to inferences both in the marginal and conditional

senses.

5 Results of Simulation Study

Tables 2 and 3 present the results from the simulation study. Generally, from Table 2, all marginal

models (GEE, NEGBIN, MMM) seem to perform similarly across the various forms of the com-

bined model. This is expected as the proposed data generator is aimed at the context of marginal

models. Specific to this case of using a random-intercept model for the normal random effects,

GEE, MMM, and the GLMM yield the same results for time-related parametersβ2 andβ3 with

minor differences between GEE or GLMM versus MMM in the case of normal and no gamma

random effects. Given normal random effects with random intercept only and no Gamma random

effects, the marginal parameters are expected to be the same as the hierarchical parameters with

a change inβ0. Indeed, GEE, NEGBIN, MMM, and GLMM yield the same parameter estimates

with a change in the intercept (β0) for GLMM. Across all variations of the combined model, GEE,

MMM, and GLMM generally differ on parametersβ0 andβ1. No specific pattern can be identified

for the NEGBIN relative to GEE and MMM, except in the above-mentioned case of normal ran-

dom effects and no Gamma random effects. When the Gamma random effects are correlated, the

parameter estimates are rather different from the true parameters and even change sign forβ2 for

both hierarchical and marginal models. Since the GLMM is a hierarchical model, the results for

the GLMM presented should be interpreted with caution. We emphasize that GLMM should not

be used to model data generated by our proposal. From Table 3, which is the case of a random

15
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

6:
55

 2
2 

Se
pt

em
be

r 
20

14
 



ACCEPTED MANUSCRIPT

intercept and slope model for the normal random effects, both GEE and NEGBIN yield the same

parameter estimates and standard deviations across the combined model variations. Since in this

setting, only 2 random variables were generated, it may be interesting to consider the generation

of more than 2 random variables and also larger sample sizes so as to get broader insight into

this scenario. The parameterα for the NEGBIN goes to infinity in the absence of overdispersion,

which is what we observe in the normal RE, no Gamma RE case. Again, the GLMM should be

interpreted with care given that it is not a marginal but rather a hierarchical model.

Apart from the simulation, we also generated 4 different datasets of sizeK = 500 from the com-

bined model with [1] two time points (bivariate case) with only the random intercept specified for

the bi random effects, [2] two time points with random intercept and slope, [3] four time points

with random intercept only, and [4] four time points with random intercept and slope. The gamma

random effects are correlated. Table 4 summarizes the generation settings considered here, in

which 2 or 4 correlated Poisson variates are generated corresponding to 2 and 4 time points, re-

spectively. We have only considered the case of the random intercept on the one hand and the

random intercept and slope in time models on the other, for illustrative purposes. It is easy to

manipulate more general dimensions. Note though that the higher the random-effects dimension,

the higher the risk of theD matrix not being positive-definite. Also, because the gamma random

effects are allowed to be correlated, very little or no information is derived from thebi random

effects. We generate data given covariates (X̃i) as treatment (trt, 0 or 1), time (2 or 4 points) and

the interaction of treatment and time. Note that we assumeX̃i = Xi, thus using the same covariates

but the method also allows for use of different covariates in the two design matrices. Table 5 shows

the results of the derived unknown parameters that aid the data generation process for the 4 cases

presented in Table 4. Here,α is the parameter vector for the specified marginal mean anddiff is the

change between the marginal parametersα and the conditional/derived parametersβ. As expected

in the case of a random intercept model (cases 1 and 3), a change is only evident in the intercept
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relative to the other parameters. In cases 2 and 4 for the random intercept and slope model, a

difference between the marginal and conditional mean parameters is reflected in the intercept and

time parameter estimates. Table 6 presents the summary statistics and the Spearman correlation

coefficients of the generated Poisson variables, while Figures 1–4 show marginal distributions and

scatter plots of the generated random variables for cases 1–4, respectively. In Table 6, the mean

is smaller than the square of the standard deviation, indicating overdispersion. It can also be seen

that the generated random variables are correlated (seeρ). From Table 4, cases 3 and 4 are similar

with the only difference being that case 3 only has a random intercept while case 4 has random

intercept and slope(time) as the covariates for the random effects. Specific to this case and given

thatΣi is fully general, there are minimal changes from case 3 to 4 (see Figures 3 and 4, and Table

6). Similarly, by comparing Figures 1 and 2, and also Table 6, we clearly see that that inclusion

of a random slope allows to roughly retain the correlation structure, but modifies the mean and

variance structures. Further, when the marginal structure is specified, it is possible to decompose

the hierarchical structure (in particular, the random effects) in different ways, yet leading the same

result, as it should be. Indeed, it is clear, from comparing Figures 3 and 4, that the same marginal

structure (mean, variance, correlation) can be obtained, with our without the use of a random slope.

This gives the user some latitude as to choose a decomposition that is flexible yet computationally

efficient.

6 Discussion and conclusions

The combined model as introduced by Molenberghs et al. (2007, 2010) simultaneously accommo-

dates correlation and overdispersion unexplained by the normal random effects, In the absence of

correlation, the model simplifies to a negative-binomial model for overdispersion. On the other

hand, in the absence of overdispersion, it simplifies to the GLMM. The model’s flexible capabili-
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ties make it a good candidate as a data generator given that one always wants to generate data that

reflects the characteristics of interest, in this case, overdispersion and/or correlation. The CM is

a convenient tool that mimics or incorporates these intrinsic features of correlated count data. In

particular, a fully marginal view as well as a random-effects view can be taken. This implies that a

broad toolkit emerges. In the purely marginal view, essentially a multivariate gamma variate, easy

to generate, is transformed to a multivariate count variable.

The covariates determining the fixed- and random-effects design matrices are kept simple herein.

This is not limiting in the sense that a specification of any covariates can be done as is needed. It is

possible to encounter non-positive definiteD matrices or negative entries along the diagonal ofΣi.

This may point to a non-allowable hierarchical model to come with the marginal model or perhaps

a marginal model that is in itself not allowable. The analogy would be a multivariate normal with a

given but non-positive definite variance-covariance matrix. Such model is invalid in the first place

and needs to be reconsidered.

Because the combined model is hierarchical, random variables with only positive correlations are

generated due to restrictions of positive-definiteness on the random effects variance-covariance

matrices. This may be a drawback for the combined model, as is the case for some of the methods

present in literature for count data generation. However, a way to overcome this is to generate

directly from the marginal model, arguably via correlatedθi j , of which the variance-covariance

matrixΣi then reflects the desired structure.
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Hinde, J. and Deḿetrio, C.G.B. (1998a). Overdispersion: Models and estimation.Computational

Statistics and Data Analysis27, 151-170.
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Table 1:Possible combinations of the normal and Gamma random effects in the context of count
data.✓ refers to combinations of the combined model from which correlated and/or overdispersed
data can be generated, while✗ refers to the independent count data generationcase

Gamma random effects

Present Yes No

Correlated Independent

Normal random effects
Yes

Correlated ✓ ✓ ✓

Independent ✓ ✓ ✓

No ✓ ✓ ✗
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Table 2: Simulation, generate 4 random variables: Parameter estimates (standard deviations)
for GEE (exchangeable correlation), NEGBIN, MMM and GLMM, and, absolute bias (MSE) for
GEE, NEGBIN and MMM, averaged over 1000 MC replications for sample size (N)= 500. True
parameters areβ0 = 1.521, β1 = 0.437, β2 = −0.254andβ3 = 0.145 and a random intercept
model was specified for the normal random effects (RE). Corr means correlated while IND means
independent

Model Parameter
Normal,

Corr Gamma
Normal,

IND Gamma
Normal,

No Gamma
No normal,

Corr Gamma
No normal,

IND Gamma

Parameter estimates (standard deviations)

GEE intercept (β0) 3.353(0.098) 1.550(0.515) 1.522(0.046) 3.354(0.098) 1.556(0.509)

T (β1) 1.295(0.103) 0.413(0.564) 0.437(0.057) 1.295(0.103) 0.408(0.561)

t (β2) 0.015(0.040) -0.296(0.259) -0.255(0.018) 0.015(0.040) -0.298(0.256)

t*T (β3) 0.079(0.041) 0.178(0.281) 0.145(0.022) 0.079(0.041) 0.180(0.279)

NEGBIN intercept (β0) 3.319(0.185) 1.681(0.633) 1.522(0.046) 3.321(0.185) 1.690(0.629)

T (β1) 0.978(0.193) 0.296(0.678) 0.437(0.057) 0.979(0.194) 0.289(0.677)

t (β2) 0.028(0.085) -0.354(0.320) -0.255(0.018) 0.027(0.085) -0.358(0.318)

t*T (β3) 0.203(0.088) 0.231(0.341) 0.145(0.022) 0.202(0.088) 0.234(0.340)

alpha 0.322(0.009) 0.064(0.004) 899.005(1305.540) 0.322(0.010) 0.064(0.004)

MMM intercept (β0) 3.066(0.118) 1.395(0.617) 1.522(0.050) 3.066(0.118) 1.404(0.608)

T (β1) 2.174(0.142) 2.038(0.669) 0.431(0.062) 2.178(0.141) 2.040(0.664)

t (β2) 0.015(0.040) -0.296(0.259) -0.255(0.022) 0.015(0.040) -0.298(0.256)

t*T (β3) 0.079(0.041) 0.178(0.281) 0.146(0.022) 0.079(0.041) 0.180(0.279)

d 1.448(0.120) 5.630(0.447) 0.006(0.004) 1.451(0.121) 5.660(0.454)

GLMM intercept (β0) 2.342(0.136) -1.421(0.620) 1.519(0.045) 2.341(0.135) -1.426(0.612)

T (β1) 2.174(0.142) 2.038(0.669) 0.437(0.055) 2.178(0.141) 2.040(0.664)

t (β2) 0.015(0.040) -0.296(0.259) -0.255(0.018) 0.015(0.040) -0.298(0.256)

t*T (β3) 0.079(0.041) 0.178(0.281) 0.145(0.022) 0.079(0.041) 0.180(0.279)

d 1.448(0.120) 5.630(0.447) 0.006(0.004) 1.451(0.121)5.660(0.454)

Absolute bias(MSE)

GEE intercept (β0) 1.832(3.365) 0.029(0.266) 0.001(0.002) 1.833(3.369) 0.035(0.261)

T (β1) 0.858(0.747) 0.024(0.318) 0.000(0.003) 0.858(0.746) 0.029(0.316)

t (β2) 0.269(0.074) 0.042(0.069) 0.001(0.000) 0.269(0.074) 0.044(0.067)

t*T (β3) 0.066(0.006) 0.033(0.080) 0.000(0.000) 0.066(0.006) 0.035(0.079)

NEGBIN intercept (β0) 1.798(3.268) 0.160(0.426) 0.001(0.002) 1.800(3.273) 0.169(0.424)

T (β1) 0.541(0.331) 0.141(0.479) 0.000(0.003) 0.542(0.331) 0.148(0.481)

t (β2) 0.282(0.087) 0.100(0.113) 0.001(0.000) 0.281(0.086) 0.104(0.112)

t*T (β3) 0.058(0.011) 0.086(0.124) 0.000(0.000) 0.057(0.011) 0.089(0.124)

MMM intercept (β0) 1.545(2.401) 0.126(0.396) 0.001(0.002) 1.545(2.402) 0.117(0.383)

T (β1) 1.737(3.037) 1.601(3.011) 0.006(0.004) 1.741(3.051) 1.603(3.008)

t (β2) 0.269(0.074) 0.042(0.069) 0.001(0.000) 0.269(0.074) 0.044(0.067)

t*T (β3) 0.066(0.006) 0.033(0.080) 0.001(0.001) 0.066(0.006)0.035(0.079)
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Table 3:Simulation, generate 2 random variables: Parameter estimates (standard deviations) for
GEE (exchangeable correlation), NEGBIN and GLMM, and, absolute bias (MSE) for GEE and
the NEGBIN models averaged over 1000 MC replications, N=100. True parameters areβ0 =

1.521, β1 = 0.237, β2 = 0.254, β3 = 0.345with a random intercept and slope model specified for
the normal random effects (RE). Corr means correlated while IND meansindependent

Model Parameter
Normal,

Corr Gamma
Normal,

IND Gamma
Normal,

No Gamma
No normal,

Corr Gamma
No normal,

IND Gamma

Parameter estimates (standard deviations)

GEE intercept (β0) 1.749(0.240) 1.522(0.304) 1.524(0.127) 1.752(0.238) 1.497(0.304)

T (β1) 0.922(0.258) 0.226(0.350) 0.241(0.157) 0.866(0.260) 0.253(0.351)

t (β2) 0.266(0.127) 0.249(0.175) 0.252(0.078) 0.263(0.126) 0.264(0.175)

t*T (β3) 0.336(0.136) 0.355(0.198) 0.342(0.095) 0.337(0.137) 0.338(0.199)

NEGBIN intercept (β0) 1.749(0.240) 1.522(0.304) 1.524(0.127) 1.752(0.238) 1.497(0.304)

T (β1) 0.922(0.258) 0.226(0.350) 0.241(0.156) 0.866(0.260) 0.253(0.351)

t (β2) 0.266(0.127) 0.249(0.175) 0.253(0.078) 0.263(0.126) 0.264(0.175)

t*T (β3) 0.336(0.136) 0.355(0.198) 0.342(0.095) 0.337(0.137) 0.338(0.199)

alpha 6.494(1.628) 3.715(0.729) 1238.877(1640.875) 6.316(1.492) 3.740(0.714)

GLMM intercept (β0) 1.373(0.244) 1.003(0.311) 1.508(0.066) 1.373(0.240) 0.988(0.311)

T (β1) 1.186(0.263) 0.484(0.353) 0.218(0.082) 1.129(0.261) 0.502(0.353)

t (β2) 0.427(0.127) 0.464(0.177) 0.242(0.044) 0.425(0.126) 0.474(0.176)

t*T (β3) 0.223(0.136) 0.252(0.198) 0.383(0.057) 0.225(0.136) 0.240(0.199)

d11 0.806(0.224) 1.997(0.457) 0.043(0.069) 0.824(0.219) 1.980(0.446)

d12 -0.339(0.105) -1.058(0.255) -0.031(0.039) -0.347(0.103) -1.051(0.246)

d22 0.155(0.052) 0.590(0.147) 0.225(0.141) 0.159(0.052)0.588(0.140)

Absolute bias(MSE)

GEE intercept (β0) 0.228(0.110) 0.001(0.093) 0.003(0.016) 0.231(0.110) 0.024(0.093)

T (β1) 0.685(0.536) 0.011(0.123) 0.004(0.025) 0.629(0.463) 0.016(0.124)

t (β2) 0.012(0.016) 0.005(0.031) 0.002(0.006) 0.009(0.016) 0.010(0.031)

t*T (β3) 0.009(0.018) 0.010(0.039) 0.003(0.009) 0.008(0.019) 0.007(0.040)

NEGBIN intercept (β0) 0.228(0.110) 0.001(0.093) 0.003(0.016) 0.231(0.110) 0.024(0.093)

T (β1) 0.685(0.536) 0.011(0.123) 0.004(0.025) 0.629(0.463) 0.016(0.124)

t (β2) 0.012(0.016) 0.005(0.031) 0.001(0.006) 0.009(0.016) 0.010(0.031)

t*T (β3) 0.009(0.018) 0.010(0.039) 0.003(0.009) 0.008(0.019)0.007(0.040)
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Table 4: Parameters specified to generate correlated Poisson random variables from the combined
model.

2 time points 4 timepoints

Case 1: Case 3:

X̃i = Xi covariates Intercept T t T*t Intercept T t T*t

α 1.521 0.237 0.254 0.345 1.521 0.437 -0.254 0.145

Zi covariates Intercept Intercept

V∗




36 12

12 29







256 128 144 224

128 208 228 172

144 228 299 296

224 172 296 567




Case 2: Case 4:

covariates (̃Xi = Xi) Intercept T t T*t Intercept T t T*t

α 2.521 0.237 0.254 0.345 1.521 0.437 -0.254 0.145

Zi covariates Intercept+ t Intercept+ t

V∗




225 615

615 2581







256 128 144 224

128 208 228 172

144 228 299 296

224 172 296 567
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Table 5: The necessary unknowns (β and D) for each of the cases presented in Table 4.

Derived unknowns

CaseParameter α β diff D

1. Intercept 1.521 1.521 0.0002203
[
0.0004406

]

T 0.237 0.237 -1.02E-14

t 0.254 0.254 -6.88E-15

T*t 0.345 0.345 1.082E-14

2. Intercept 2.521 2.521 -0.000493




0.000263 −0.000039

−0.000039 0.0006242




T 0.237 0.237 6.495E-15

t 0.254 0.253 0.0008976

T*t 0.345 0.345 -3.89E-15

3. Intercept 1.521 1.518 0.002885
[
0.00577

]

T 0.437 0.437 -3.4E-14

t -0.254 -0.254 -1.11E-15

T*t 0.145 0.145 -1.5E-15

4. Intercept 1.521 1.520 0.0014135




0.0040014 0.0000601

0.0000601 0.0002349




T 0.437 0.437 -3.5E-14

t -0.254 -0.255 0.0006473

T*t 0.145 0.145 6.939E-16
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Table 6: Summary statistics and the Spearman correlation (ρ) matrices of the generated Poisson
variables; std refers to the standard deviation.

Case Var. mean std median min. max. ρ

1. Y1 16.68 12.15 15.00 0 56




1 0.81

1




Y2 28.36 19.93 27.50 0 75

2. Y1 87.07 43.92 85.50 7 205




1 0.88

1




Y2 142.86 121.50 121.50 0 654

3. Y1 16.39 29.35 3 0 171




1 0.64 0.60 0.59

1 0.96 0.69

1 0.79

1




Y2 129.10 106.93 110 0 498

Y3 152.90 141.64 127 0 619

Y4 27.26 72.56 0 0 832

4. Y1 16.71 30.50 3.50 0 184




1 0.68 0.64 0.60

1 0.96 0.68

1 0.79

1




Y2 129.94 109.32 113.00 0 601

Y3 155.41 147.01 127.50 0 748

Y4 28.84 84.72 0 0 1147
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Figure 1:Two Poisson random variables generated from the combined model with random inter-
cept model.
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Figure 2:Two Poisson random variables generated from the combined model with random inter-
cept and slope model.
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Figure 3:Four Poisson random variables generated from the combined model with random inter-
cept model.
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Figure 4:Four Poisson random variables generated from the combined model with random inter-
cept and slope model.
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