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Abstract
To evaluate arm-hand therapies for neurological patients it is important to be able to assess

actual arm-hand performance objectively. Because instruments that measure the actual

quality and quantity of specific activities in daily life are lacking, a new measure needs to be

developed. The aims of this study are to a) elucidate the techniques used to identify upper

extremity activities, b) provide a proof-of-principle of this method using a set of activities

tested in a healthy adult and in a stroke patient, and c) provide an example of the method’s

applicability in daily life based on readings taken from a healthy adult. Multiple devices,

each of which contains a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magne-

tometer were attached to the dominant hand, wrist, upper arm and chest of 30 healthy par-

ticipants and one stroke patient, who all performed the tasks ‘drinking’, ‘eating’ and

‘brushing hair’ in a standardized environment. To establish proof-of-principle, a prolonged

daily life recording of 1 participant was used to identify the task ‘drinking’. The activities

were identified using multi-array signal feature extraction and pattern recognition algorithms

and 2D-convolution. The activities ‘drinking’, ‘eating’ and ‘brushing hair’ were unambiguous-

ly recognized in a sequence of recordings of multiple standardized daily activities in a

healthy participant and in a stroke patient. It was also possible to identify a specific activity

in a daily life recording. The long term aim is to use this method to a) identify arm-hand activ-

ities that someone performs during daily life, b) determine the quantity of activity execution,

i.e. amount of use, and c) determine the quality of arm-hand skill performance.

Introduction
Patients with neurological diseases such as stroke or cerebral palsy often experience serious
problems with arm-hand use in daily life [1,2]. Loss of arm-hand function—for example, due
to a hemiparesis—limits the execution of activities of daily living (ADL) or arm-hand activities,
resulting in greater dependency, restricted social participation and decreased quality of life
[3,4].
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Assessment of arm-hand skill performance is important for both clinical practice and re-
search. In clinical practice it can, for example, be used to track the patient’s progress in arm-
hand use during rehabilitation and information about arm-hand performance can be used to
tailor treatment more effectively to the specific needs and goals of the individual patient. In re-
search, assessment of arm-hand performance can be important to determine the effectiveness
of (new) therapies or to determine the natural course of a disease regarding arm-hand prob-
lems. Many instruments exist to assess arm-hand use in several domains of the International
Classification of Functioning, Disability and Health (ICF) [5]. For instance, measuring a pa-
tient’s arm-hand function, measuring his capacity to perform activities or gauging (self-)per-
ceived performance [6]. However, instruments to assess actual performance in daily life
are scarce.

The currently available instruments that measure actual performance both validly and reli-
ably [6] are not capable of measuring a) which activities a patient actually performs with his
arm and hand, b) the quantity of activity execution, i.e. amount of use, or c) the quality of arm-
hand skill performance. Furthermore, they have several other major disadvantages. For in-
stance, video observation [7] has the disadvantage that the recordings must be assessed by
(multiple) experts, making the method potentially subjective and, moreover, highly time con-
suming. Furthermore, video observation intrudes severely on the patient’s privacy. Accelero-
metry, which is also used to measure actual arm-hand use [8], is unable to distinguish between
specific activity-related movements and non-functional or unintentional movements, thus po-
tentially overestimating a patient’s arm-hand use [9,10]. Furthermore, upper extremity accel-
erometry is rather insensitive for measuring changes over time, as was demonstrated in an
intervention study by Lemmens et al. [9], which showed no improvement of actual arm-hand
use as measured by accelerometry, even when patients reported improvements in arm-hand
use at home for specific activities. A measure of actual performance that is able to identify and
quantify specific activities might have shown improvements in this clinical intervention study.
This illustrates the need for a more specific actual performance measure. In addition, accelero-
metry, as used currently, does not measure the quality of arm-hand performance [9,10]. The
latter, however, is rated “very important” by both patients and therapists since it is associated
with the ability to use the arm-hand while executing ADL.

Given these needs, a new actual performance measure that can not only identify specific
arm-hand activities but also measure the quantity and, preferably, also the quality of specific
arm-hand performance, should be developed. Such a measure needs to meet at least the follow-
ing requirements if it is to detect actual arm-hand performance: 1) the measurement should be
objective, i.e. not requiring subjective interpretations by the patient and/or the therapist, 2) the
instrument should be portable and unobtrusively wearable for ambulatory use in daily life con-
ditions, 3) the instrument should be able to identify specific activities and provide measures of
arm-hand use as well as quality of arm-hand performance, and, finally 4) the instrument
should be applicable in different patient populations [6].

The first step, and the focus of this paper, is to develop and elucidate a method for identify-
ing specific arm-hand related activities. An instrument for assessing actual performance may
be created with body-worn sensors that record movements in terms of specific movement pat-
terns associated with specific activities. A combination of accelerometers, gyroscopes and mag-
netometers for measuring acceleration, angular velocity and orientation towards the earth’s
magnetic field, is expected to be very useful for this purpose. To identify activities, pattern rec-
ognition techniques can be used. There are several pattern recognition approaches that can be
used to identify activities. In general, pattern recognition can be divided into: a) supervised
classification, where the input is classified into a predefined category, and b) unsupervised clas-
sification, where the input is classified into a so-far unknown category based on similarity of
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patterns [11]. Commonly used pattern recognition approaches are statistical classification,
neural networks, structural matching and template matching [11,12]. The latter approach is
used in the present paper, in which similarity between two entities—for example, signal pro-
files—will be determined. Signals from the accelerometers, gyroscopes and magnetometers
may all show a specific pattern related to the movement executed, i.e. the performance of an ac-
tivity. The combination of all these movement patterns (= multi-array signal patterns) may
characterize specific activities and may be used as a template to recognize activities. The re-
cording in which the activity must be recognized will be matched against the stored template
and a correlation measure will be calculated.

The aim of this study was to a) elucidate the techniques used to identify upper extremity ac-
tivities, b) provide a proof-of-principle for this method using a set of activities tested in a
healthy adult and in a stroke patient, c) provide an example of the applicability in daily life
based on a recording from a healthy adult.

Methods

Initial set of upper extremity activities
The present studythe technique for identifying activities elucidated using a set of three typical
but distinctly different daily activities. These activities were chosen from a list of activities pa-
tients reported wishing to train and improve on [13,14]. In this study, the terms ‘activity’ and
‘task’ are equivalent, except that ‘activity’ refers to ADL in general while ‘task’ is used to refer to
ADL executed after a verbal instruction. The activities ‘drinking from a cup’, ‘eating with knife
and fork’, and ‘brushing hair’ were selected for two reasons. Firstly, this set of activities covered
different levels of complexity [15], ranging from, for example, a kinematically simple activity
like drinking to a kinematically far more complex activity like eating with a knife and fork. Sec-
ondly, it included two activities (drinking and brushing hair) with many similarities, the inten-
tion being to see whether it was possible to distinguish them even though they consisted of
similar components, namely a reaching movement, grasping an object, bringing the object to
the head and placing the object back on the table.

As in all upper extremity activities, each of these activities may be kinematically decom-
posed into multiple consecutive sub-phases or sub-tasks. A clinically used and ecologically
valid, albeit descriptive, activity decomposition technique was described by Timmermans et al.
[16]. However, as this technique was primarily based on the (implicit) expertise of clinical ex-
perts, an objective, computational technique for identifying sub-phases among upper extremity
activities was used to detect specific activities among the daily activities that were recorded.

Subjects
There are several aspects to this study. To provide proof-of-principle of the method for identi-
fying activities in a standardized environment, thirty healthy subjects and one stroke patient
(all aged over 50) participated in the study. To provide an example of the applicability of the
method in daily life, an additional healthy adult was recruited for a 30-minute daily life record-
ing. Healthy participants were recruited by advertisement among the staff of Adelante Rehabil-
itation Centre and their families. The one patient included in this study was identified in the
Adelante Rehabilitation Centre database by a rehabilitation physician of the stroke unit and
contacted by letter. The study was reviewed and approved by the Adelante Rehabilitation Cen-
tre’s Medical Ethics Committee in Hoensbroek, the Netherlands, and by the Medical Ethical
Committee of Maastricht UMC+ (Maastricht, The Netherlands, NL42965.068.12). Before
starting the measurements, written informed consent was obtained from all participants. The
patient’s age, hand dominance and gender were recorded when they entered the study.
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Measurements
Subjects performed the tasks ‘drinking from a cup’, ‘eating with knife and fork’, and ‘brushing
hair’ in controlled conditions. They sat comfortably on a chair behind a table, both of which
were height-adapted to the length of the participant to create a starting position in which their
back was straight, their feet on the floor, their knees and hips flexed 90 degrees, their elbows
flexed 90 degrees and the ulnar side of their hands touching the tabletop. For this study, all task
utensils (empty cup, knife, fork, plate with play-dough ‘food’, and hairbrush) were arranged in
a standard way on the tabletop (Fig. 1). After a brief verbal instruction about the task (Table 1),
subjects performed each task five times at their self-selected speed, with short resting intervals
in which they assumed the initial sitting position.

In addition to the controlled conditions, a 30-minute daily life recording was performed in the
home environment of the aforementioned additionally-recruited healthy person. The only instruc-
tion given was to act as normally as possible, performing some (self-chosen) activities of daily living,
including the activity ‘drinking’ at least three times. The participant was observed by a researcher
who was at the participant’s home during this recording and kept a record of the activities.

Sensor-based instrument
To unobtrusively measure the upper extremity kinematics during activity performance, four
lightweight (27 gram, 52mm x 31 mm x 18 mm) wireless multi-sensor body-worn devices (9-

Fig 1. Overview of the positioning of the task utensils in the standardized setting.

doi:10.1371/journal.pone.0118642.g001

Table 1. Verbal instructions given to the participants.

Drinking from a cup Reach towards the cup with the dominant hand, grasp the cup with one hand,
bring the cup to your mouth, take a sip, return the cup to the original location,
return to starting position.

Eating with knife and
fork

Reach towards knife and fork, grasp knife and fork, prod with the fork in the food,
use the knife to cut a piece off, bring the fork to your mouth, return knife and fork
to the original location, return to starting position.

Brushing hair Reach towards the hairbrush, grasp the hairbrush, bring the hairbrush towards
the top of your head, brush the hair downwards twice on the side on which you
are holding the hairbrush and twice on the other side, return the hairbrush to the
original location, return to starting position.

doi:10.1371/journal.pone.0118642.t001
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DOF Shimmer, Shimmer Research, Dublin, Ireland), each consisting of a triaxial accelerome-
ter, a triaxial gyroscope and a triaxial magnetometer, were used. One device was attached on
the dorsal side of the hand (parallel to themetacarpophalangeal joints) using a custom-made
glove, one device on the dorsal side of the wrist (directly proximal to the proc. styloideus ulnea)
using a custom-made fabric strap with Velcro, one device on the upper arm (halfway between
the epicondylus lateralis and the tuberculum majus, parallel to the longitudinal axis of the hu-
merus) using a custom-made fabric strap with Velcro, and one device on the chest (located on
themanubrium sterni) using hypoallergenic tape. The glove-like garment did not obstruct
hand function. An overview of the device locations is shown in Fig. 2. The healthy participants
performed the unimanual tasks with their dominant arm-hand. For the bimanual activity ‘eat-
ing’, the movements of the arm-hand manipulating the knife were recorded.

For taking readings from the stroke patients, the devices were attached not only to the domi-
nant arm-hand and chest, but also to the non-dominant arm-hand. It was decided to measure
both arms and hands because stroke patients use their affected arm-hand mostly as assisting
arm-hand. It is important to measure the affected arm-hand because knowing the (quality of)
movement of this arm-hand may be of use to the rehabilitation specialists and the patient,
whereas the other arm-hand is mainly of interest because this arm-hand will make movements
required to perform an activity (and is therefore necessary for the pattern recognition). For the
unimanual tasks, the stroke patient used his unaffected arm-hand.

The wireless devices were connected to a computer via Bluetooth. Data were synchronously
sampled and saved using the Multi-Shimmer Sync application, version 1.1.0 (Shimmer, Dublin,
Ireland) at 256 Hz. For the measurement with the stroke patient, a sample frequency of 128 Hz
was used to accommodate maximum throughput (number of devices � 9 channels � sample fre-
quency � 2 bytes) of the recording system.

Data pre-processing
All data processing was performed off-line using custom Matlab software (The Mathworks
Inc., Natick, MA). Raw data consisted of 36 signals (four devices, each gauging three types of
signals in three directions). Data from the stroke patient consisted of 63 signals (seven devices,
each gauging three types of signals in three directions). To identify the dominant phases within
the task performed, data pre-processing included zero-phase, low-pass filtering (4th order But-
terworth filter, cut-off frequency equal to 2.5 Hz) of all signals to obtain the low frequency sig-
nal content associated with the three-dimensional spatial displacements / kinematics of the
task performed.

Fig 2. Placement of the sensor devices. A) placement on the dominant arm-hand and chest of healthy
participants, B) bilateral placement on the arms, hands and chest of the stroke patient, C) top view of the
placement of the sensor devices on the hand.

doi:10.1371/journal.pone.0118642.g002
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Results
The results section is divided into three parts. The method for identifying activities will be elu-
cidated (Part I) and proof-of-principle is shown using recordings under controlled conditions
of healthy adults and a stroke patient (Part II) and a daily life recording in a healthy individual
(Part III). This approach was used for all tasks described in the method section.

Part I
Data analysis was aimed at:

a. Identifying ‘templates’, i.e. combinations of multi-signal epochs representing a specific ac-
tivity or sub-phase of a specific activity per subject, and

b. Using these templates to uniquely identify performance of a specific activity among signals
recorded during multiple regular daily activities.

This approach required several (consecutive) steps:

1. Temporal delimitation of each of the five attempts to perform a specific task, i.e. identifying
the start and endpoint of each attempt recorded during the controlled task condition, based
on the gyroscope signals.

2. Normalization of all signals (i.e. accelerometer, gyroscope and magnetometer) in the time
domain of each attempt in order to correct for (small) variations due to differences in speed
of task execution.

3. Creating templates by averaging all signal matrices (thus signals from all sensors from all
devices) from the five attempts of each individual person to obtain the individual template
(i.e. the underlying ensemble averaged signal matrix per task per individual), averaging sig-
nal matrices from the individual templates of multiple persons to create a generic template.

4. Identification of dominant sub-phases of templates (containing signals from all devices and
sensors) within a specific task. The time borders of the sub-phases were identified using the
gyroscope signals.

5. Recognition of specific activity execution among various activities performed daily, i.e.
searching for template occurrence among signal recordings gathered in daily life conditions.

In Step 1 (temporal delimitation), the gyroscope signals were used to identify the time bor-
ders of the repetitions, i.e. the start and endpoints of each of the five attempts to perform a
skill. A 3D resultant gyroscope signal was calculated for all Shimmer devices (Pythagoras’ rule).
These 3D-resultant gyroscope signals were summed into one (artificial) resultant signal (X).
This summation was performed to include the signal content of all gyroscope signals of all de-
vices of one person, since it is not known beforehand which device (e.g. chest, upper arm, wrist
or hand) will be moved first at the start of each task execution and which device will be moved
last at the end of each task execution. From the resultant signal, X, a threshold was determined
from the signal variance recorded during rest periods, thereby distinguishing the ‘resting’ signal
from the ‘active’ signal. When the use of the standard threshold resulted in finding time points
not associated with the performance of the task, in an iterative process, the threshold was in-
creased until this problem was resolved. A minimum duration of the specific task at hand was
set a-priori, as was a minimum duration of the rest phase between repetitions of the task (a-pri-
ori parameters, APPs), both expressed in data points, thereby avoiding false-positive findings
regarding the tasks’ start and endpoints. A collection of five signal matrix epochs, each contain-
ing all signals from all devices and all sensors and representing one task execution, was obtained
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by using the start and endpoints identified. These signal matrix epochs were of unequal length
since no instructions about performance speed were given. A schematic overview of the proce-
dure for identifying start and endpoints for each attempt is shown in Fig. 3. When it was not
possible to identify all repetitions using the described APPs, the APPS were adjusted manually
and repetitions were identified using the same algorithm. Unsuccessful repetitions, caused by
problems with the data transfer or incorrect execution of the activities (i.e. not following the in-
struction), were discarded.

In Step 2 (normalization of the signals in the time domain), each of the aforementioned five
signal matrices (each containing 36 signals, except for the data from the stroke patient, which
consisting of 63 signals) were linearly interpolated to a length of 1000 data points. The ensem-
ble was then averaged to produce one time-normalized individual template signal matrix per
task (Step 3) and a generic template was created. In the present study, the generic template was
made by averaging the time-normalized individual template signal matrices from 29 of the 30
healthy persons for the measurements in the standardized environment. The template was
then applied to the signals of the 30th healthy person.

Step 4 involved identifying dominant sub phases of templates. To identify the time borders
of sub-phases, the 3D resultant gyroscope signal (as calculated in Step 1) from the time-nor-
malized template of the devices on the hand, wrist and upper arm were summed to produce
one overall resultant signal representing overall gyroscope signal content. This was done for
both the individual template and the generic template. In order to identify dominant phases of
upper extremity tasks, the summed gyroscope signal was modeled as a summation of non-nor-
malized Gaussian curves of various lengths in a linear envelope decomposition procedure de-
scribed by Chen et al. [17]. An example of this procedure is shown in Fig. 4.

Cross-correlating the modeled signal (based on Gaussian curves) to the original signal pro-
duced a “goodness-of-fit”measure (R2 or amount of variance explained). The number of
Gaussian curves needed to optimally represent the original signal, was established in an itera-
tive process guided by the trade-off between R2-improvement on the one hand and the amount
of overlap between consecutive Gaussians (i.e. the uniqueness of a movement phase relative to
its predecessor) on the other. The Gaussian curves were numbered according to their signal

Fig 3. Procedure for identifying start and endpoints of task repetitions. The black line represents the
summed gyroscope signal of four devices on one person (signal X). The dotted red line represents the
threshold. Repetitions were identified using an algorithm making use of a threshold, minimal length of a
repetition and minimum distance between two repetitions.

doi:10.1371/journal.pone.0118642.g003
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power (i.e. area under the curve), representing sub phase dominance within the total task.
Next, the time points at which one Gaussian curve crossed its successor were computed (i.e.
point of intersection between two Gaussian curves). These time points represent the time bor-
ders of ensuing sub-phases within a task, which can then be used to further identify sub-phase
templates. In some cases, two Gaussian curves were combined to outline a sub phase. Such a
combination was made if one of the Gaussian curves was too small or had too much overlap
with another Gaussian curve. For instance, in Fig. 4 the Gaussian curves numbered 2 and 5
were combined. Using the time borders already identified, signal matrix epochs, each contain-
ing all signals from all devices and all sensors and representing sub phases of a task,
were obtained.

In summary, at this stage in the overall analysis procedure, templates representing the
complete task (Tempcom) as well as templates for sub phases of the tasks (Tempsub) and their
corresponding timing parameters have been identified, and will be used in Step 5, i.e. for recog-
nizing specific activity execution among various daily activities. Templates consist of all signals
from all devices and all sensors, thus 36 for the recordings with the healthy participants and 63
for the recordings with the stroke patient.

In Step 5, a pattern recognition algorithm based on 2D convolution was used to identify
template occurrence among signal recordings made during daily activity performance. A sche-
matic overview of the procedures described in Step 5 is shown in Fig. 5. The pattern recogni-
tion algorithm is used on all 36 signals simultaneously (or in the case of the stroke patient, in
all 63 signals simultaneously). In the present study, as described earlier, the measurements
were taken under standardized conditions, except for one measurement performed in the
home situation of a participant. Because task duration in daily life is variable, template window
length may not fully match actual task duration in daily life conditions. Consequently, an itera-
tive procedure was used in which the template window length was varied systematically be-
tween 0.6 and 1.4 times its original size in increments of 0.05 (resizing factor), using linear
interpolation (Fig. 5A). During each iteration, the 2D convolution procedure (Fig. 5B) created
a normalized cross-correlation coefficient function representing the level to which the (resized)
template matched a corresponding part of the daily activity signals recorded. All cases in which
the normalized cross-correlation coefficient function exceeded a predefined threshold (mini-
mal “goodness-of-fit” level) were identified. This pre-defined threshold was set manually. The
threshold was task dependent and differed between the complete template and template sub

Fig 4. Identification of sub-phases of a task, based onmodeling the summed gyroscope signal with
non-normalized Gaussian curves.R2 displays the amount of signal variance explained.

doi:10.1371/journal.pone.0118642.g004
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phases. Next, local maxima of this resultant time series were calculated after each resizing
iteration (Fig. 5C). Finally, each local maximum found per iteration was compared to its tem-
poral equivalent from the other iterations, thus producing a) an array of correlation coefficients
associated with ‘best fits’, b) an array of sizing factors associated with the aforementioned

Fig 5. Schematic overview of the procedure of pattern recognition (1 of the 36 signals is shown). A)
Systematic variation in template window length using linear interpolation, example given of 3 of the in total 17
variations in window length, B) Pattern recognition based on 2D convolution, performed for every template
window separately, C) Cross-correlation coefficient functions, calculated during pattern recognition, example
given of 3 of the in total 17 cross-correlation coefficient functions. Local maxima were identified per cross-
correlation coefficient function (marked with red circle) and local maxima with highest cross-correlation of all
cross-correlation functions were identified (marked with red square), D) Overview of epochs where the
template is recognized, including start and endpoints (in data points, DP), cross-correlation coefficients and
relative window length. Red lines mark the places in the sequence of recordings of multiple standardized
daily activities were the template is recognized. DP = data point.

doi:10.1371/journal.pone.0118642.g005
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correlation coefficients, and c) two arrays of start and endpoints indicating the time frame in the
daily activity recording in which the resized template was positively identified (Fig. 5D). Step 5
was performed for Tempcom and Tempsub and for both the individual and generic templates.

The concept of recognizing specific activity execution among the various activities performed
will be shown using typical examples of measurement data from the participants. If an activity was
performed and recognized (i.e. using Tempcom or all sub phases of Tempsub consecutively in
time), it was classed as a true-positive finding. If an activity was not performed and not recognized,
it was called a true-negative finding. If it was performed but not recognized it was called a false-
negative finding. And if an activity was not performed but recognized with the pattern recognition
algorithm, it was called a false-positive finding. Percentages of true-positive findings were calculat-
ed, i.e. (number of true-positive findings/number of times a task was performed)�100%.

Part II
Demographics. To provide proof-of principle of the method for identifying activities in a

standardized environment, thirty healthy participants and one stroke patient were included in
this study for the measurements under standardized conditions. The healthy participants in-
cluded 14 women and 16 men. Mean age was 58.0 ± 5.1 years. For all these participants the
dominant arm-hand was the right arm-hand. The stroke patient was male and aged 57 (im-
paired arm-hand: left, dominant arm-hand: right) with moderate spasticity.

Recognising activities under standardized test conditions in a healthy individual. Fig. 6
shows the identification of the task ‘drinking’ (= template) in a recording containing five

Fig 6. Identification of the activity ‘drinking’ in a sequence of recordings of multiple standardized
daily activities of a healthy participant. Panel A displays the superimposed signals (36 in total) of a
recording of an individual while executing three tasks, namely drinking from a cup, eating with knife and fork
and brushing hair. Panel B displays the pattern recognition using an individual template and the pattern
recognition using a generic template consisting of the mean signal of 30 persons. Both pattern recognition
with the complete task as template and task sub-phases as template are shown. The black lines (complete
task) and coloured lines (task sub-phases) in Panel B mark the places were the template is recognised in the
longer recording.

doi:10.1371/journal.pone.0118642.g006
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repetitions of the task ‘drinking’, five repetitions of the task ‘eating’ and five repetitions of the
task ‘brushing hair’ (= sequence of recordings of multiple standardized daily activities). Panel
A shows the 36 signals of the sequence of recordings of multiple standardized daily activities.
Panel B shows the recognition of the task ‘drinking’ using an individual template, and the rec-
ognition of the task ‘drinking’ using the generic template. When the individual template was
used, drinking was identified with a high sensitivity and high specificity for both Tempcom and
Tempsub. Five out of five drinking repetitions were recognized (100% true-positive). The mean
correlation of this pattern recognition was 0.925 for Tempcom and ranged between 0.885 and
0.990 for Tempsub4. There were no false-positive findings. Using the generic template, the skill
‘drinking’ was also identified with high sensitivity and high specificity. The identification of the
task ‘drinking’ was still 100% true-positive (identified five out of five repetitions). Although
there were some false-positive findings some individual sub-phases (mean correlation ranging
between 0.660 and 0.873), there were no false-positive findings for the complete tasks and the
combination of all sub-phases. The mean correlations were 0.786 for Tempcom and ranged be-
tween 0.778 and 0.864 for Tempsub. In addition, there were no false-negative findings for either
Tempcom or Tempsub and for neither the individual nor the general templates.

Fig. 7 shows the identification of the tasks ‘eating’ and ‘brushing hair’ in the sequence of re-
cordings of multiple standardized daily activities that used the generic templates. As the out-
come of the pattern recognition using the individual templates was equal to or even better than

Fig 7. Identification of the activities ‘eating’ and ‘brushing hair’ in a sequence of recordings of
multiple standardized daily activities of a healthy participant. Panel A displays the superimposed signals
(36 in total) of a recording of an individual while executing three tasks, namely drinking from a cup, eating with
knife and fork and brushing hair. Panel B shows the pattern recognition using a generic template for the task
‘eating’. Panel C presents pattern recognition using a generic template of the task ‘brushing hair’. Both
pattern recognition using the complete task as a template and pattern recognition using task sub-phases as a
template are shown. The black lines (complete skill) and coloured lines (skill sub-phases) in panels B and C
mark the places were the template is recognised in the longer recording.

doi:10.1371/journal.pone.0118642.g007

Recognizing Complex Upper Extremity Activities Using BodyWorn Sensors

PLOS ONE | DOI:10.1371/journal.pone.0118642 March 3, 2015 11 / 20



the outcomes using the generic templates for both the eating task and the brushing task, only
the results for the generic template are shown. For the task ‘eating’, two templates consisting of
sub-phases were constructed that differed in the number of sub-phases. One template consisted
of six sub-phases (Tempsub6) as identified with the Gaussian curves described in the method
section. For the second template (Tempsub4), two consecutive sub-phases were combined to
form one longer sub-phase. This was done twice (sub-phases 1 and 2 were combined, as were
sub-phases 4 and 5). Panel B shows that the task ‘eating’ is recognized with high sensitivity—
five out of five repetitions were recognized (100% true-positive) using Tempcom, Tempsub6 and
Tempsub4. The mean correlation for this pattern recognition was 0.579 for Tempcom, and ran-
ged between 0.712 and 0.829 for Tempsub6 and between 0.693 and 0.800 for Tempsub4. False-
positive findings occurred for some individual sub-phases (mean correlation ranging between
0.673 and 0.833), but no false-positive findings were present for the complete tasks and the
combination of all sub-phases. There were also no false-negative findings for all templates.
This indicates a high specificity for task recognition. Panel C shows the identification of the
task ‘brushing hair’. The ‘brushing hair’ task is recognized in five out of five repetitions (100%
true-positive) using both Tempcom and Tempsub. Mean correlation for the pattern recognition
was 0.415 for Tempcom and ranged between 0.675 and 0.898 for Tempsub4. Using Tempcom,
there were eight false-positive findings (mean correlation of 0.422; five times drinking, three
times eating) out of ten task performances of the activities ‘drinking’ and ‘eating’. Thus sensi-
tivity was lower than for the tasks ‘drinking’ and ‘eating’. However, using Tempsub, false-posi-
tive findings occurred for some individual sub-phases (mean correlation ranging between
0.658 and 0.890), but there were no false-positive findings for the combination of all sub-
phases. There were also no false-negative findings for either Tempcom or Tempsub, indicating
high sensitivity.

Recognition of activities under standardized conditions in a stroke patient. Fig. 8
shows the identification of the tasks ‘drinking, ‘eating’ and ‘brushing hair’ in the data of the
stroke patient. The task ‘eating’ was performed five times and the tasks ‘drinking’ and ‘brushing
hair’ were performed four times. Panels B, C and D show the pattern recognition with the indi-
vidual template. For the pattern recognition with Tempcom all executions of the tasks ‘drinking’
(four out of four repetitions), ‘eating’ (five out of five repetitions) and ‘brushing hair’ (four out
of four repetitions) were identified (100% true-positive) with no false-negative or false-positive
identifications. Mean correlation was 0.99, 0.65 and 0.97 respectively for the tasks ‘drinking’,
‘eating’ and ‘brushing hair’. Pattern recognition with Tempsub identified all tasks unambigu-
ously (100% true-positive) with no false-negative or false-positive identifications. The mean
correlation ranged between 0.81 and 0.99 for the task ‘drinking’, between 0.81 and 0.98 for the
task ‘eating’, and between 0.60 and 0.99 for the task ‘brushing hair’. The tasks drinking, eating
and brushing were therefore recognized with high sensitivity and high specificity. Since only
one stroke patient was included in this study, no generic template could be created.

Part III
Demographics. For the recording during daily life, one additional healthy subject partici-

pated (male, aged 32, dominant arm-hand: right).
Recognition of activities in a daily life recording. Fig. 9 shows the identification of the

activity ‘drinking’ in a daily life recording. This recording included the activities ‘vacuum-
cleaning’, ‘eating with a spoon’, ‘thumbing through a book’, ‘putting shoes on’, ‘phoning some-
one’, ‘writing’, and ‘drinking’ (the latter performed six times, as marked blue in Fig. 9, with 3
drinking performances in the part of the recording marked with �). Since no instructions were
given to the participant, the activity ‘drinking’ was performed differently (confirmed during

Recognizing Complex Upper Extremity Activities Using BodyWorn Sensors

PLOS ONE | DOI:10.1371/journal.pone.0118642 March 3, 2015 12 / 20



observation of the participant) compared to the performance of drinking during the recording
of the template under standardized conditions. The differences were: the initial position and
the end position of the participant in all performances in daily life, the position of the cup,
being lower and more to the left in the first and second drinking performances in Fig. 9, the ab-
sence of the reaching and grasping phase during the drinking performance marked with � in
Fig. 9 (the cup was held with the hand in the lap), finally the ‘sipping phase’ in the drinking
performance marked with �� in Fig. 9 took longer as it involved emptying the whole glass in-
stead of taking one sip.

Using Tempcom, six out of six drinking repetitions were recognized (100% true-positive, in-
dicating high sensitivity, mean correlation was 0.51) but there were also five false-positive find-
ings (mean correlation was 0.46). Using Tempsub4, the first drinking performance was
identified (correlation ranging between 0.70 and 0.82), and for the second drinking perfor-
mance, three out of four sub-phases were identified (true-positive, correlation ranging between
0.62 and 0.74). For the drinking performance marked with �, sub-phases 1 and 4 were not iden-
tified (false-negative). False-positive findings were frequent for sub-phase 1 and sporadic for

Fig 8. Identification of the activities ‘drinking’, ‘eating’ and ‘brushing hair’ in a sequence of recordings
of multiple standardized daily activities of a stroke patient. Panel A displays the superimposed signals
(63 in total) of a recording of a stroke patient while performing three tasks, namely drinking from a cup, eating
with knife and fork and brushing hair. Pattern recognition using an individual template is shown for the tasks
‘drinking’ (Panel B), ‘eating’ (Panel C) and ‘brushing hair’ (Panel D). Pattern recognition with the complete
task as template and with the task sub-phases as template are both shown. The black lines (complete task)
and coloured lines (task sub-phases) in panels B and Cmark the places were the template is recognised in
the longer recording.

doi:10.1371/journal.pone.0118642.g008
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the other sub-phases (mean correlation between 0.55 and 0.92). However, there were no false-
positive findings for the combined sub-phases.

Discussion

Aim and main findings
The aim of this study was to a) elucidate the techniques used to identify upper extremity activi-
ties, b) provide a proof-of-principle for this method using a set of activities tested in a healthy
adult and in a stroke patient, c) to provide an example of the applicability in daily life using a
recording from a healthy adult. This paper elucidated the method for identifying an activity
and showed that it is possible to identify the activities ‘drinking, ‘eating’ and ‘brushing hair’ in
a sequence of recordings of multiple standardized daily activities in a healthy individual by
using templates based on individual signals, as well as by using generic templates. Furthermore,
it was possible to identify the activities ‘drinking’, ‘eating’ and ‘brushing hair’ in a sequence of
recordings of multiple standardized daily activities in a stroke patient (using an individual tem-
plate). When the pattern recognition in a healthy individual was compared with that of a stroke
patient, it could be seen that the stroke patient had no false-positive results. This may be be-
cause the movement pattern of patients is more characteristic for a specific activity. That is, the
template signal profiles in patients differ more distinctly between different activities, whereas
in healthy subjects sub-phase templates of different activities may be more similar.

The activities differed in complexity. Naylor and Briggs defined complexity of activities as
the number of parts or components and the extent of information processing demands that
characterize an activity [15]. More complex activities have more component parts and require
more information processing than less complex activities [15]. The activity ‘drinking’ is less

Fig 9. Identification of the activity ‘drinking’ in a recording in the home situation of a healthy
participant, includingmultiple activities of daily living. Panel A shows the superimposed signals (36 in
total) of the recording made at home. Panel B displays the pattern recognition using an individual template for
the activity ‘drinking’. Both pattern recognition with the complete activity as template and with activity sub-
phases as template are shown. The black lines (complete activity) and coloured lines (activity sub-phases) in
Panel B mark the locations were the template is recognised in the longer recording.

doi:10.1371/journal.pone.0118642.g009
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complex than eating, for several reasons. One of these is that eating is a bimanual activity, de-
manding more cognitive effort and bimanual coordination, and this is known to be more diffi-
cult than unimanual arm-hand use [15]. In the present study, less complex activities such as
drinking and a more complex activity such as eating with knife and fork were both perfectly
identified. Furthermore, activities which contain similar elements (task similarity) [15,18] were
distinguished from each other. These included drinking and brushing hair, both of which in-
volve reaching for and grasping an object as well as displacement of the object towards the
head and back to the table. In addition, it was possible to identify the activity ‘drinking’ in a 30
minute daily life recording.

Individual template versus generic template
The signals used for the template may originate from a recording from one person (an individ-
ual template) or from mean signals of multiple persons (a generic template). One advantage of
a generic template is that it may be used for pattern recognition in many individuals. In this
way, it is not necessary to create a set of individual templates representing different activities
for each individual. Although the performance of upper extremity activities by patients using
their impaired arm-hand will differ from the performance of healthy individuals, it is possible
to construct a generic template consisting of signals from patient data. Nevertheless, it can be
expected that the variability between patients will be too large to use a generic template. A solu-
tion to this problem may be to use an individual template for each patient. The extra measure-
ment required to create this individual template can be done at the patient’s home just before
the daily life measurement, instead of in the laboratory, which will reduce the burden on the
patient. The method for identifying activities described in this study was illustrated with data
from a healthy person and data from a stroke patient. With the healthy individuals, recognition
of the activities ‘drinking’, ‘eating’, and ‘brushing hair’ could be performed with an individual
template as well as with a generic template. For the identification of activities performed by the
stroke patient, only the individual template was used (as currently no generic template based
on data from multiple stroke patients is available). All three activities performed by the stroke
patient were identified correctly.

Template of the complete activity versus activity sub phases
A template may consist of signals representing the performance of a complete activity, or of
signals representing sub-phases of the performance of an activity. In the present study different
activities were identified unambiguously in a standardized environment, with the template rep-
resenting the complete activity and the array of templates representing the activity sub-phases.
However, the performance of activities in daily life will most certainly differ from the perfor-
mance of the activity as measured when creating the template. For instance, the performance
of the activity ‘drinking’ can vary according to the person’s initial posture (as seen in the daily
life recording). This influences the reaching movement (= variance in pattern) and thereby af-
fects the pattern recognition. Or there might be variability in the duration of the performance
(= temporal shift), e.g. whether the person takes one sip from a glass or drinks it all at once.
Similarly, the performance of the activity ‘eating’may vary, for instance, according to the use
of the knife and the number of cuts needed to cut the food. As performances of activities in
daily life situations may vary considerably, both the variance in the signal pattern and the tem-
poral shift between a) the template and b) the daily life recording will probably be more of a
problem when using the template representing the complete task than with the template repre-
senting the sub-phases. As to the pattern recognition using sub-phases, if one specific sub-
phase is not recognized adequately, the recognition of the other sub-phases may still lead to the
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whole activity being identified correctly. If in the performance of the activity ‘eating’, the tem-
plate consists of cutting the food once with the knife, the sub-phase containing ‘cutting’might
be found multiple times in a row during a daily life recording in which the food is cut multiple
times. Another advantage of using sub-phases is that additional non-task-related movements,
such as head scratching, will not influence the pattern recognition because this additional
movement will most likely occur between two sub-phases. The principle of breaking activities
into sub-phases is similar to the idea of Bai et al, who suggested that movements can be under-
stood in terms of smaller components called ‘movelets’ [19]. Bai et al. used movelets to predict
activity types such as walking, standing and sitting.

Laboratory-based versus daily life recording
The ultimate goal is to develop a method/measure to assess actual performance in daily life, i.e.
measuring a) which activities a patient actually performs with his arm and hand, b) the amount
of arm-hand use, and c) the quality of arm-hand skill performance. Results from the measure-
ments taken in the standardized environment have shown that the current method is able to
identify specific activities among a variety of activities. However, the translation from measure-
ments in a laboratory situation to a daily life situation is difficult. Many instruments with
promising results in a standardized environment turned out to be less efficient or not applica-
ble in a daily life situation [20–22]. This is why the present study included a proof-of-principle
test condition involving a daily life situation. Although the method described needs to be fur-
ther optimized, the results presented in this paper show that it is possible to identify a specific
activity (drinking in this case) in a daily life situation. However, it should be noted that the re-
cording shown in the present paper only lasted 30 minutes. Future research should include lon-
ger daily life recordings. The next section describes how the method should be optimized for
identifying activities in daily life.

Optimising the pattern recognition method
The identification of activities is based on resemblance between the signal patterns of the tem-
plate and the signal patterns of the daily activity recording. This resemblance is expressed as a
cross-correlation coefficient function. Currently, the cross-correlation threshold above which
local maxima will be identified is set manually. In future, the level of the threshold should be
set automatically within the pattern recognition algorithm itself.

Sub-phases were identified based on decomposition using Gaussian curves that identified
dominant phases within the gyroscope signals recorded per task. With this method, it is possi-
ble to identify very short sub-phases. However, sub-phases of shorter duration result in shorter
sub-phase template lengths with less specific signal contents. This makes it more likely that
two different sub-phases will be identified as similar, leading to false-positive findings. For the
task ‘eating’ it was shown that the template consisting of 6 sub-phases was capable of identify-
ing the activity, but with many false-positive findings. After combining 2 sub-phases into 1
larger sub-phase (twice), a template consisting of 4 sub-phases was created that led to fewer
false-positives but was still able to identify ‘eating’. In the future, the eligibility of combining
sub-phases should be automated as part of the pattern recognition algorithm.

In general, the computational time needed for the data-analysis is in the order of seconds.
However, the time currently needed for procedures in which some settings have to be made
manually mostly falls between 1 and 3 minutes, after which computational time, again, was in
the order of seconds. Consequently, the time needed for data analysis could be shortened by
optimizing manual procedures.
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For the pattern recognition, a total of 36 signals (for the healthy participant) or 63 signals
(for the stroke patient) were used. That is, the x, y and z axes were evaluated separately for each
device and each sensor. In this way, the placement and orientation of the sensor can affect the
output on each axis. At the moment, this seems to have no large effects on the pattern recogni-
tion. However, when it becomes a problem—for instance, in a daily life situation—the calcula-
tion of a 3D resultant signal for each sensor in every device might be a solution. This, however,
needs to be investigated further.

For identifying activities in a daily life situation, a combination of the template containing
the complete activity performance and the array of templates containing activity sub-phases
will probably be best.

Optimizing the actual performance measure
For the activity performance by the healthy individuals, sensors were attached to the dominant
arm and hand of the participants. The dominant arm-hand plays a major role in performing
both unimanual and bimanual tasks. For the healthy subjects, recordings from sensors on the
dominant arm-hand were successfully used to identify specific activities. In patients with im-
pairments of their arm-hand, however, there is also clinical interest in measuring the affected
arm-hand. Unimanual activities will be most likely performed with the unimpaired arm-hand,
but the affected arm-hand plays an important role in performing bimanual activities. There-
fore, for the measurement with the stroke patient, bimanual recordings were made. That is,
measuring both the impaired arm-hand and the non-impaired arm hand. It was shown that
identification of both unimanual and bimanual activities was achieved using the data from sen-
sors attached to the trunk and to both arms and hands. In future, signals of the impaired arm-
hand will additionally be used to assess, for instance, the quality of performance during
specific activities.

The current paper has described the principle and practice of identifying activities using am-
bulatory sensors containing a tri-axial accelerometer, tri-axial gyroscope and tri-axial magne-
tometer. To be applicable in daily life situations, however, the sensor system needs to be
adapted to be even less obtrusive and more user-friendly. For example, the sensors should be
smaller so they can be worn under the clothes or incorporated in the fabric of clothes [23]. Fur-
thermore, the data should be saved locally or streamed to a device or mobile phone that the
participant can wear, instead of streaming it to a computer.

Comparison with actual performance measures described in the
literature
The ultimate aim is to develop an actual performance measure capable of a) identifying which
activities a patient actually performs with his arm and hand, b) measuring the quantity of exe-
cuting activities (i.e. the amount of use), and c) assessing the quality of arm-hand skill perfor-
mance. As far as we know, no such instruments are currently available. However, many
instruments are being developed to assess actual performance. Many different pattern recogni-
tion techniques are available and are being used. Leutheuser et al, for example, used a feature
set of four time domain features and two frequency domain features and a combination of clas-
sification systems to distinguish between activities such as vacuuming, sweeping, sitting, stand-
ing, cycling, ascending/descending stairs and walking [24]. Their proposed classification
method had a mean positive classification rate of 89.6%. With the meta-classifier AdaBoost M1
they achieved an overall accuracy of 95% for recognizing a set of activities that included walk-
ing, lying, making a sandwich, cleaning windows and computer work. Healthy participants
wore five wireless accelerometers and performed the activities in standardized as well as in
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semi-naturalistic circumstances. Classification using subject-independent data (leave-one-out
method) outperformed classification with user-specific data [24]. Some instruments use static
or non-body-worn sensors in addition to ambulatory sensors such as the SERSMAA instru-
ment [10] or the Data Acquisition Platform (DAP) described in Min and co-workers [25]. The
SERSMAA is capable of detecting the handling of specific tagged objects, while the DAP is able
to classify early morning activities. A disadvantage of systems that use static sensors is that they
are harder to implement because the sensors must be installed in a patient’s home or because
only specific objects can be used. Strohrmann et al used 10 ETH orientation sensors (consisting
of 3D accelerometers, 3D gyroscopes and 3D digital compasses) to evaluate quality of move-
ment during the execution of motor tasks [26]. They assessed, amongst others, task completion
time, movement intensity, smoothness of movement and synchrony of arm movements.

The system and method used in the present paper differed to some extent from the studies
mentioned above. For example, we focused solely on upper extremity activities. From a clinical
point of view, problems with arm-hand skill performance are very important and require a
thorough assessment instrument. In order to be able to recognize multiple upper extremity ac-
tivities and distinguish between these activities, it is essential to measure multiple body seg-
ments of the upper limb. Furthermore, we divided the recorded signals into several consecutive
sub-phases. Apart from improving pattern recognition, this approach may also be very useful
in quantifying the quality of arm-hand performance, as these sub-phases can be seen as the
building blocks of the total activity. However, it must be noted that other pattern recognition
approaches exist, each having their own advantages, and it is likely that no one single pattern
recognition approach is optimal. Jain et al stated that multiple methods and approaches have
to be used, i.e. combining several sensing modalities and classifiers [11]. The pattern recogni-
tion approaches and techniques that have additional benefits to the present method need to be
explored. More research is needed to further improve the actual performance measures.

Future research
Future research should focus on optimizing the method for identifying activities, quantifying
actual arm-hand use and measuring the quality of actual arm-hand performance. Furthermore,
the concept as described in the present paper should be applied to more activities and in more
(patient) populations. As the instruments should be applicable in both adults and children, the
concept should also be tested in children as their motor control and motor planning differs
from that of adults [27,28], resulting in different movement patterns (signal patterns of activi-
ties to be recognized). Thereafter, this concept should be extensively tested in the daily life situ-
ations of individuals.

Conclusion
In the present study, we have elucidated a technique for identifying activities and presented a
proof-of-principle with data from a healthy individual and from a stroke patient. It can be
concluded that this method is very promising with regard to the applicability of these sensor
devices for identifying specific activities among multiple activities, both among healthy individ-
uals and patients, and in both a standardized setting and in daily life conditions.
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