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Abstract

Expert opinion plays an important role when selecting promising clusters of
chemical compounds in the drug discovery process. Indeed, experts can qualita-
tively assess the potential of each cluster and, with appropriate statistical meth-
ods, these qualitative assessments can be quantified into a success probability for
each of them. However, one crucial element often overlooked is the procedure
by which the clusters are assigned/selected to/by the experts for evaluation. In
the present work, the impact is studied that such a procedure may have on the
statistical analysis and the entire evaluation process. It has been shown that some
implementations of the selection procedure may seriously compromise the validity
of the evaluation and, consequently, the fully random allocation of the clusters to
the experts is strongly advocated.

keywords: Drug discovery, Missing data, Sensitivity analysis, Hierarchical models.

1 Introduction

Over the last decades, as a result of advances in fields like genetics and molecular biology,
our capacity to develop chemical compounds for therapeutic use has been dramatically
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increased. Nevertheless, developing these compounds into an effective drug is an ex-
pensive and lengthy process and, therefore, pharmaceutical companies need to carefully
evaluate their potential before investing more resources on them (Alonso et al., 2008)).
Nowadays, expert opinion is widely acknowledged as a crucial element in this evaluation
process (Oxman et al., 2007; Hack et al., 2011)). For this purpose, in practice, similar
compounds are grouped into clusters whose potential is qualitatively assessed by experts.
Further, with appropriate statistical methods, these assessments can be quantified into a
success probability for each cluster, where success refers to recommending the inclusion
of a cluster into the sponsor’'s database for future scrutiny.

The large number of clusters typically involved in these studies implies that a selec-
tion procedure, by which every expert chooses or gets assigned a number of clusters for
evaluation, needs to be implemented. In the present work we argue that some implemen-
tations of the selection procedure may lead to serious selection bias that can jeopardize
the entire evaluation process. Two possible strategies to avoid the previous problem are:
(i) to compel every expert to evaluate all clusters and (ii) to assign a subset of the clus-
ters to each expert fully randomly. Strategy (i) may be practically infeasible, given the
exorbitant number of clusters one frequently is confronted with in this type of studies.
Implementing strategy (ii) may lead to some logistic difficulties, but it arguably is the
most reasonable and reliable option to avoid bias and simplify the posterior analysis of
the data. In the present work we strongly advocate (ii).

Problems that come with selection bias, as well as their possible correction, have
been documented in many fields (Horwitz and Feinstein, 1978; |Hernan, Herndndez-Diaz,
and Robins, 2004; (Geneletti, Richardson, and Best, 2009). |Geneletti et al. (2011) noted
that the crucial factor to determine the most appropriate bias correction method is the
underlying cause of bias. This is apparent in the methods available in the literature,
given that most of them are tailored towards a specific form of bias origin. For instance,
Torner et al. (2010) addressed this issue in cohort studies, where bias may result from
over-selecting severely ill patients, due to the long time taken by the less ill individuals to
portray the symptoms. They tackled the problem by introducing a time window between
entry into the cohort and entry into the study. Heckman (1979) approached the topic in
applied econometrics using a correction, based on a two-stage estimation method, that
is easy to implement and has a firm basis in statistical theory (Puhani, 2000). Selection
bias may also emanate, among other sources, from missing data (nonresponse bias,
attrition bias), censoring or publication bias; research efforts have been undertaken in
these scenarios as well (Lee and Marsh, 2000; Baser et al., 2003} |Juni and Egger, 2005).

A key similarity between many of the methods discussed by these authors is the
formulation of separate models for the outcome and the selection process. Typically,
untestable assumptions are associated with these models, simply because the outcomes
of subjects that were not selected are never known.

In spite of earlier research efforts, the impact of selection bias has often been un-
derestimated, as many share the school of thought that it may not be serious enough
to motivate the use of complicated bias correction methods. Contrary to this we found
that, in the scenario studied in this manuscript, the selection process may need to be
explicitly modeled even if selection bias is not present. In addition, we showed using
theoretical elements and simulations that, in the presence of selection bias, the proba-
bility of success for every cluster can be estimated only by making strong and untestable



assumptions. However, an upper bound for this probability may be obtained under a
weaker condition of monotonicity.

The paper is organized as follows. A case study is introduced and analyzed in Section
[2l The selection bias problem is studied in detail in Section [3] and a simulation study is
presented and discussed in Section [4] Finally, the case study is reanalyzed in Section
and some concluding remarks are offered in Section [6]

2 The case study

The pharmaceutical company Johnson & Johnson carried out a project to assess the po-
tential of 22, 015 clusters of chemical compounds, in order to identify those that warrant
further screening. In total 147 experts took part in the study and their assessments were
coded as 1 if they recommended the cluster for further screening, —1 if not recommended
and 0 if indifferent. For the sake of our discussion the response was dichotomized. We
adopted a coding scheme where 1 corresponds to a positive recommendation and 0
otherwise. However, the methodology presented can easily accommodate other coding
schemes as well.

Experts carried out the evaluation of the clusters using the desk-top application
Third Dimension Explorer (3DX) (Agrafiotis et al, 2007). For every expert, in a typical
session, a random subset of clusters selected from the entire set of 22,015 was assigned
for evaluation. Each cluster was presented with additional information that included
its size, the structure of some of its distinctive members like the compound with the
lowest/highest molecular weight, and 1-3 other randomly chosen members of the cluster.
The application was designed to support multiple sessions that would allow the expert
to stop and resume the evaluation at their own convenience. The clusters in the subset
could be evaluated in any order by the expert, but a new random subset of clusters,
excluding the ones already rated, was assigned for evaluation only when all the clusters
in the previous subset were evaluated, or when the expert resumed the evaluation after
interrupting the previous session for a break. Clusters assigned but not evaluated could,
in principle, be assigned again in another session.

The histogram in Figure [1| displays the distribution of the number of clusters evalu-
ated by the experts. Clearly, the distribution is positively skewed, indicating that, as one
would expect, many experts opted to evaluate few clusters. Indeed, 25% of the experts
evaluated less than 345 clusters, 50% less than 1200 and 75% of the experts evaluated
less than 2370 clusters. Evidently, the large differences in the number of clusters evalu-
ated by the experts are not the result of the random allocation, but rather are dictated
by the number of evaluation sessions each expert found convenient. Actually, the pos-
sibility of interrupting and reassuming the evaluation session at will allowed the experts
to influence the selection process and, hence, standard models that assume complete
randomization may not be appropriate.

2.1 Estimating the probability of success

The main goal of the study was to find out, using these qualitative evaluations, which
clusters had the highest probability of being recommended for further screening and
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Figure 1: Histogram for the number of clusters rated by the experts. The height of
a bar indicates the number of experts whose number of rated clusters fall within the

range given by the width of the bar.

therefore, should be included into the sponsor's database. To estimate this probability
of success for every cluster, let us denote the vector of ratings associated with expert @
by Y; = (Y;;j);ea,, where A; is the subset of all clusters evaluated by the ith expert and
i=1,...,n. Milanzi et al. (2013) considered the following logistic-normal model

logit [P (Yi; = 1|b;)] = B; + by, (1)

where (3, is a fixed parameter characterizing the effect of cluster C; with j € A; and
b; ~ N(0,07) is a random expert effect. Based on model (|1)) these authors calculate the
marginal probability of success for cluster C; by integrating over the random effect, i.e,

exp (8; +b) 2
Py =1 = [ T2 L ol )
where ¢(b|0, 07) denotes a normal density with mean zero and variance 7.

The likelihood emanating from model suffers from a severe dimensionality prob-
lem. Indeed, the vector of fixed effects B3 = (f1,...,n) has dimension N = 22 015
and the dimension (V;) of the response vector Y'; ranges from 20 to 22,015. As a con-
sequence, serious computational issues can emerge when fitting model with the most
commonly available computing resources. Milanzi et al. (2013) developed an algorithm
that allows to handle these issues with a very small loss of efficiency and, hence, in the
present work the dimensionality problem will not be discussed further.

Results for the top 20 ranked clusters, i.e., the clusters with the highest estimated
probability of success are given in the first part of Table [1f (under the ‘Naive' columns).
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The median estimated probability of success for all clusters was around 18%, rather a
low value, and 75% of the clusters had estimated probabilities of success smaller than
29%. However, at the top 20, all clusters had an estimated probability larger than 60%
and those in the top 3 had probabilities of success around 90%.

In addition, we also found a lot of heterogeneity between experts with an estimated
variance 77 ~ 20. Note that, on the one hand, this large variance may indicate the need
for selecting experts from a more uniform population by defining, for example, more
stringent selection criteria. On the other hand, more stringent selection criteria may
conflict with having experts that represent an appropriately broad range of expert opinion.
Finding a balance between these two considerations is very important to guarantee the
overall quality of the study and, in general, if substantial heterogeneity among experts is
encountered, then more discussions should be held to determine the reasons for it before
further actions are taken.

Finally, taking into account practical considerations like the economic cost associated
with the development of these clusters of compounds, the time frame required for such
a development and the social and economical gains that these clusters of compounds
may bring, researchers could define the minimum probability of success that may justify
the further study of a given cluster.

As previously stated, the possibility of interrupting and reassuming the evaluation
sessions at will, allowed the experts to influence the selection process. This raises con-
cerns about the possible presence of selection bias. In the next section, this important
issue is studied in more detail.

3 Selection bias

Let X; = (Xj1, ..., X;n)  denote the vector containing the selection-indicators for expert
i, where X;; = 1 if expert i evaluates cluster j and 0 otherwise. The probability
that expert ¢ would rate cluster j as 1, given that he actually evaluates it, can be
conceptualized as

P Yy =1,X;; = la;, b;)
P (Xij = 1]a;) ’

P(Yy =1|Xy =1,a;,b;) = (3)
where (a;, b;)" is a vector of expert-specific random effects, assumed to follow a bivariate
normal distribution with mean zero and covariance matrix 3. We say that there is selec-
tion bias in the rating process if P (Y;; = vi;| Xi; = 1,a;,b;) # P (Yij = vi;|1Xi; = 0, ai, b;).
It can be easily shown that absence of selection bias is equivalent to the validity of the
following conditional independence assumption

P (Yij = yij, Xij = wijlai, b;) = P (Yi; = yis|bs) P (X5 = vi5]as), (4)

for all 7,7 and, consequently, in the rest of the manuscript these two concepts, lack of
selection bias and conditional independence, will be used interchangeably. Essentially,
(4]) states that for every expert the rating and selection procedures are independent and
governed by different, although possibly correlated, random effects. Some important
scenarios covered by are the ones described as strategy (i) and (i) in Section [1]
Indeed, in strategy (i) all experts are compelled to evaluate all clusters and, therefore,



P (X;; =1|a;) = 1 for all i, j. Moreover, in strategy (ii) the possible dependence
between Y;; and Xj;; is broken by the random allocation and in that case typically
P (X;; = 1]a;) = P (X;; = 1). Under (4], expression ({3|) can be rewritten as

Model , used in Section to quantify the success probabilities, basically tries to char-
acterize P (Y;; = 1]b;) and, hence, it is valid if the conditional independence assumption
holds. Some comments are in place. Note first that, on the one hand, P (Y;; = 1|b;)
quantifies the chance that expert ¢ will rate cluster 5 as 1, irrespective of whether he
actually evaluates the cluster or not. Thus, it is a marginal probability that does not de-
pend on the selection process. On the other hand, P (Y;; = 1|X;; = 1,b;) describes the
chance that expert 7 will rate cluster j as 1 given that he evaluates it and, in principle,
it might differ from P (Y;; = 1|X;; = 0,b;). Actually, in the most general scenario, the
potential of cluster j can be quantified as

PY;=1)= //P(Y;'j = 1{a;, b;) ¢(a;,b;]0,3) da;db;, (6)

where ¢(-|0, X) denotes a bivariate normal density with mean zero and covariance matrix
3 and

P(Yy = 1a;, b;) = Ex [P (Yy; = 1{Xy; = zy5, a;, b;)] (7)
= P(Y;J = ]—|ng = 1,az~,bi) P(XZ] = 1|az) + P(Y;j = ]‘|Xl] = O,ai,bi) P(XU = 0|az) .

This expression is very insightful. Note first that we have information about how the
experts rated the clusters they evaluated and, therefore, P (Y;; = 1|X;; =1, a;,b;) can
be estimated from the data. We also have information about which clusters every expert
evaluated and we could use this information to estimate P (X;; = 1|a;). The critical
term in is P (Y;; = 1|X;; = 0,a;,b;). In fact, the event {Y;; = v;;|Xi; = 0,a;,0;} is
counterfactual and we do not have information about how the experts would have rated
a cluster they did not evaluate if, contrary to fact, they had evaluated it. As a result,
this probability is not identifiable from the data without additional assumptions.

The previous discussion illustrates that in the most general case computing @ re-
quires: (1) to explicitly model P (X;; = 1|a;) and (2) to make untestable assumptions
about the counterfactual probabilities P (Y;; = 1|X;; = 0,a;,b;). A reasonable such
assumption in many situations may be the following monotonicity condition

P(YZ] = 1|XZJ = O,CLi,bi) S P(Y;j = ]-|Xm = 1,&2‘,[)7;) .

That may be the case, for instance, if experts choose to evaluate those clusters they
find more promising or interesting. The previous inequality implies that P (Y;; = 1]a;, b;) <
P (Y;; = 11X,; = 1,a;,b;) and, hence, one could use the data at hand to provide an up-
per bound for (@ This upper bound suggests that in many applications discarding those
clusters with a small estimated probability of success may be reasonable, even if selection
bias is present. Nonetheless, one should be cautious when interpreting a large probability
of success if selection bias is suspected.



3.1 How ignorable is the selection procedure in the absence

of selection bias?

It is clear from the previous discussion that, in the presence of selection bias, one needs
to explicitly model the selection mechanism to compute @ Nevertheless, the preceding
arguments do not fully clarify whether the selection procedure can be safely ignored
when selection bias is not present. In what follows we will study the ignorability of
the selection process in absence of selection bias, but first we need to extend notation.
Let P (ij = IL‘Z‘]‘|CL1‘, Bja Ozj) and P (}/l] = yzj|Xz] = Tij, bz‘, BJ) denote the models for the
selection and rating procedure respectively. Note that in the previous formulation we
allow the selection procedure to depend on the parameters that characterize the rating
process (3;) and also on other selection-specific parameters («;). Furthermore, it will be
assumed that the components of the vectors X; and Y'; are independent conditionally
on the random effects a; and b;, respectively. It is easy to see that, in absence of selection
bias, (b)) takes the simpler form

P(Y; = 118) = / P (¥, = 11X, = L,b, B;) 6(50, 0%) dbs. (®)

Expression does not depend on the selection procedure and the estimation of the
success probabilities is reduced to the estimation of the clusters effect and the variance
component o7. However, even though the selection procedure does not explicitly appear
in (8), one may need to take it into account when estimating the 3;s and o7.

In fact, one estimates these parameters using the complete data Y;, X; € {0, 1}N.
The vector of ratings can be decomposed as Y; = (Y, Y",)’, where Y; € {0, 1}
is the sub-vector associated with the clusters the expert evaluated, Y, is the obvious
complement and N; = 1’ X;. The joint distribution of (Y}, X’ a;, b;)’ takes the form

Under conditional independence P (Y, = y,| X; = ;,b0;,8) = P (Y; = y,|b;,3). One
further has that P (Y; = y;|b;, 8) = P (Y1, = y;|b:, B) P (Y 0;: = y;|bi, B) and, there-
fore,

P(Yi =y, Xi=xi0, 0|3, , %)

Yoi

= ZP (Y1 = Y110, B) P (Yoi = yolbi, B) P (X = @ifai, B, @) ¢(ai, bi]0, %),
in

= P(Yli = yu‘bmﬁ) P (Xz' = wi’ahﬁa 04) ¢(@iabi’07 2)>

= H P (Y, = ylij’biaﬁj)]

JEA;

N
HP(Xij = wy5lai, By, o) | ¢(aq, b0, X).
J

Marginally, the previous equations lead to

P(Yli:y1i7Xi:mi|/37a72) ://P(Yli:yli‘bi:B)P(Xi:milaiv/gva) ¢(ai>bi|0a2)daidbi7

(9)



and the likelihood emerging from (9] takes the form
L(B,(LE) :HP(Yli:y1i>Xi:wi‘/@7o‘72)' (10)

Using the maximum likelihood estimators Bn a,, Egn one can estimate the probabilities
of success by substituting Bn Efgn into . Note, however, that to estimate 3, ag, one
may need to explicitly model the selection process. An important special instance where
the selection mechanism can be ignored is when the selection and rating processes are
also marginally independent, i.e, when ¢(a;, b;|0,X) = ¢(a;|0, 02)(;|0, 07) and have a
disjoint parametric space. In fact, under these assumptions @D simplifies to

P(Yy=vy,,Xi= $i|ﬁ7a702) = /P(Xi = zfa;, @) ¢(ai|07‘73)dai/P(Yli = yy:lbi, B) ¢(bi|07‘7§)dbi-

Consequently, regarding the parameters of interest 3 and o7, the contribution of expert
t to the likelihood becomes

/P(Yu = Yulbi, B) ¢(bi|0,0§)dbz‘,=/ 1P, = ?J1z‘j|bz‘75j)] (b0, o3y) db.

jeA;

The previous expression is the contribution of expert ¢ to the likelihood when the selection
mechanism has been discarded. Therefore, in this scenario, if conditional independence
holds, the selection procedure can be fully ignored.

Importantly, such a scenario will result if a random allocation of the clusters to experts
is implemented, where the experts have not influence whatsoever on the selection process.
The previous discussion shows that fully random allocation is a powerful tool not only to
avoid selection bias, by guaranteeing conditional independence, but also to considerably
simplify the analysis by making the selection mechanism ignorable for the estimation of
the parameters.

4 Simulation study

To numerically evaluate the ignorability of the selection procedure and the impact of
selection bias on the assessments, a simulation study was designed. The data were
generated mimicking the main characteristics encountered in the case study. Nonetheless,
the size of the simulated data sets were chosen so that model could be fitted using
maximum likelihood. To that effect, two hundred data sets were generated, with the
following parameters held constant across data sets: (1) Number of clusters N = 50,
chosen to ensure tractability of maximum likelihood estimation for the whole data, (2)
number of experts n = 147, and (3) a set of 50 values assigned to the parameters
characterizing the cluster effects (3;), which were sampled from a N(0, 2) one time and
then held constant in all data sets. Factors varying across the data sets were: (1) the
number of ratings per expert N;, determined by the selection model and (2) a set of
147 expert random-effects b;, independently sampled from N (0, 10). Conceptually, each
generated data set represents a replication of the evaluation study in which a new set
of experts rates the same clusters. Therefore, varying b; from one data set to another



resembles the use of different groups of experts in each study, sampled from the entire
experts’ population. Furthermore, the selection and rating probabilities were computed
using the following models

logit [P (Xi; = 1]bs)] = b;, (11)
logit [P(Y;; = 1|b;)] = B; + by, (12)

and X;; ~ Bernoulli [P (X;; = 1]b;)], Yi; ~ Bernoulli [P (Y;; = 1|b;)], respectively. Mod-
els (11) and are a special case of the general modeling framework introduced in
Section [3.1] In fact, to simplify the computational burden and improve numerical sta-
bility, we considered the situation in which the selection and rating procedures shared a
common random effect. This is the so-called shared parameter model (SPM), for which
corr(a;, b;) = 1 (Follmann and Wu, 1995 Little, 1995).

In the previous setting, like in the case study, some experts will tend to evaluate a
large number of clusters whereas others will tend to evaluate only a reduced number of
them. Note further that the rating process does not depend on the selection procedure,
ie.,

P (Y = 11Xy = 1,b;, 8;) = P (Yy; = 1| Xy = 0,b;, 8;) = P (Yy; = 1]by),

and, therefore, there is no selection bias. All the generated data sets were analyzed
using model and the success probability of each cluster was estimated by plugging
the necessary maximum likelihood estimators into . The integral was approximated
as

Q
- N exp (55 + by)
Pgo=P(Y;=1) *Z 1—|—expzﬁj +qbq)

q=1
where Q = 10,000 and b, ~ N(0,57) when using the EJ values estimated from model
and b, ~ N(0,10) when using the true 5; values. Table [2| summarizes the main results
and the clusters are ordered decreasingly according to their true probability of success.
Clearly, ignoring the selection procedure can have a huge impact on the estimators
B; and, consequently, on the estimates of the success probabilities. Indeed, using the
estimated probability of success }350, cluster 32 would be considered the most promising
one whereas, in reality, it should be ranked as number 8 taking into account its true
probability of success. These findings unequivocally showed that ignoring the selection
process, when estimating the model parameters and the probabilities of success, may be
extremely misleading even in the absence of selection bias.
Further, we studied a scenario in which selection bias was present. To this end we
considered the following rating mechanism

5J+bl lf il?ij: 1,

13
B +b; —0.223 if z;; = 0. (13)

logit [P(Yy; = 1| Xy = 745, b;)] = {

Essentially, implies that, for every expert 7, the odds of rating a cluster as 1 is 25%
larger when the cluster is evaluated than when it is not. The values of the true success
probabilities in this scenario, computed using , are given under the column Pg; in
Table . Note that, even if one can avoid bias when estimating /3; and o7, a comparison
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between Psy and Pgs; clearly shows that, in the presence of selection bias, a naive use of
would lead to an overestimation of the true probabilities of success, as it was stated
in Section 3.11

In a second simulation study the selection process was taken into account when
estimating the parameters of interest. Basically, the likelihood was maximized
with the selection proccess modeled as logit [P (X;; = 1|a;)] = a + a;. The settings
were essentially the same as before but, to alleviate the computational burden, only 10
clusters were considered. The results are presented in Table [3] Once more, the naive
approach that ignores the selection process led to biased estimates for the cluster effects,
the variance component and the probabilities of success. Importantly, for some clusters,
the relative bias in the estimated probability of success was as large as 30%. Further,
when the selection procedure was incorporated into the likelihood as given in ,
the bias disappeared and the probabilities of success were always accurately estimated.
Additional simulations (not shown) with a reduced number of 50 experts confirmed these
conclusions.

5 Case study revisited

In a new analysis of the case study, the parameters of interest were estimated using
likelihood with the selection process modeled as logit [P (X;; = 1|a;)] = a; + a;.
The main results are presented in the second part of Table [1] (under the ‘Joint Model’
columns). Both modeling approaches ‘Naive' and ‘Joint’ assume absence of selection
bias, but while the naive-model fully ignores the selection process, the joint-model does
take the selection process into account when estimating the relevant parameters.

There are substantial differences between the results obtained with both methods.
In general, the joint-model approach seems to produce lower estimates of the success
probabilities and leads to a different ranking of the clusters. For instance, cluster 432169
ranked as number one by the joint-model approach with an estimated probability of
success 0.91, was ranked as 18 by the naive-model method with an estimated probability
of success 0.64. Additionally, the joint-model also produced a smaller estimate of the
between-raters variability.

For completeness, the third part of Table |1 (under the ‘SPM’ columns) shows the
results obtained with the shared parameter model introduced in Section 4] The dif-
ferences between the SPM and the other two methods are striking. In fact, the SPM
produces much lower estimates of the success probabilities and, therefore, it provides a
rather sceptical view of the potential of all clusters. In addition, it also produces a much
smaller estimate of the between-experts variability. However, there is some evidence to
suggest that the SPM may not be a good description of data generating mechanism.
Indeed, the shared parameter model makes some testable predictions that allow to eval-
uate its adequacy. For instance, it postulates that experts who rate more clusters should
tend to give higher ratings as well. Figure [2| shows that this prediction of the model is
not fulfilled by the data at hand and raises doubts about its adequacy.

Arguably, the joint-model approach offers a more flexible description of reality and,
therefore, one may be inclined to put more weight on the results emanating from it.
Nonetheless, it is important to point out that a formal model comparison between can-
didate models, based on maximum likelihood tests or information criteria, is hampered
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in this scenario by the fact that the models are not fitted using maximum likelihood.
One can, however, evaluate the fit produced by the different selection models using the
data. Given that the rating model is the same in all cases, one could use the model fit
of the selection model as an informal criterion to select the best joint model. In the case
study, the conclusions emanating from the joint model get additional support from the
fact that the selection model it uses, offers the most plausible description of the data.
In any case, a very careful discussion incorporating domain-specific knowledge, will be
needed before final conclusions can be drawn from these analyses.

6 Discussion and concluding remarks

The topic studied here can be related to other statistical fields and perhaps the most
evident connection is with missing data analysis. Indeed, like many problems from areas
like hierarchical models (Lindstrom and Bates, 1988)), causal inference, and treatment
compliance (Holland, 1986)), selection bias could also be framed within a missing data
context. To illustrate this connection using a simpler notation, let us focus on the
special case in which the selection and rating procedures shared a common random effect.
Conditioning on the expert effect, one could think of the selection and rating procedures
introduced in Section [3| as analogous to the pattern mixture framework often use to
handle missing observations (Molenberghs and Kenward, 2007)). Similarly, the condition
used to define selection bias in Section [3) is closely related to the concept of missing not
at random (MNAR) that appears in the classical missing data taxonomy (Rubin, 1976}
Kenward and Carpenter, 2007; Molenberghs and Kenward, 2007)), and which means that
the missing-data mechanism is related to unobserved outcomes, in addition to observed
outcomes and covariates. To exemplify this, consider the expression

P (Yij = yi|bi) '
P (Xij = wy]b:)

P (Yij = yi|Xij = 235, b)) = P (Xi5 = 245 Yy = 35, b:) (14)
If the probability of not evaluating a cluster is independent of its (unobserved) rating, then
we have P (X;; = 0|Yi; = vij, b;) = P (X;; = 0|b;), which is the definition of the Missing
At Random mechanism (MAR) in the Rubin taxonomy (Rubin, 1976). MAR means
that, given observed outcomes and covariates, missingness does not further depend on
unobserved ones. It is easy to see that and the subsequent expressions imply

P (Yij = il Xiy = 1,b;) = P (Yy; = 45| Xi; = 0,0;) = P (Yy; = yi[bi)

and, therefore, the absence of selection bias can be seen as an MAR process, given the
expert. Moreover, the conditional independence assumption for the rating and selection
procedure introduced in Section [3] is closely related to the generalized shared parameter
modeling (GSPM) framework, used to describe a MNAR mechanism (Creemers et al.,
2011). This relationship with the GSPM explains why, unlike in the selection model
context in missing data, where under MAR the likelihood paradigm implies ignorability,
in the context studied in this manuscript even in absence of selection bias the selection
procedure will often be non-ignorable. The reason for this important difference is that
the random effects governing the selection and rating procedures are correlated and,
therefore, marginally independence does not hold.
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It has been shown that in a missing data problem the data at hand do not provide
enough information to discriminate between MAR and MNAR (Molenberghs et al., 2008)).
Likewise, the data at hand will not provide enough information to discard the presence of
selection bias if the assignment mechanism was non-random or had the potential to be
influenced by the experts. One could, however, conceive a sensitivity analysis to evaluate
the robustness of the conclusions with respect to the potential presence of selection bias.

In addition, the relevance of the numerical procedures should not be overlooked
when working with complicated hierarchical models. For instance, given the complexity
of the models used in the analyses of the case study and the high dimensionality of the
data, in all the approaches shown Table [I] the likelihood was computed using the Laplace
approximation. Unlike in the case study, the data used in the simulations had purportedly
a lower dimension and this allowed to approximate the likelihood using adaptive Gaussian
quadrature. It has been shown that these type of choices may have a non-negligible
impact on the results (Lesaffre and Spiessens, 2001). More complex models are often
less biased, but they may require a cruder approximation of the likelihood. Simpler
models often allow a better approximation of the likelihood, but they may also be more
prone to serious bias. The optimal balance between complexity and precision is difficult
to determine in real examples where the true is unknown and this difficulty emphasizes
the importance of using all information available when interpreting the results in the
decision making process.

Summarizing, we have shown that the mechanism used to assign the clusters to
the experts is a key issue to guarantee the validity of the entire evaluation process.
Essentially, to guarantee this validity, one needs to ensure that the selection and rating
processes are independent. In addition, to be able to carry out a simpler analysis that
is consequently less prone to error, one also needs to ensure that both processes are
marginally independent and do not share any parameter. A fully random allocation of
the clusters to the experts seems to be the most, if not the only, practical way to achieve
these conditions. Therefore, we strongly advocate for its use in the present work.

In cases where a fully random allocation is not feasible due to practical problems, a
joint modeling approach and/or a sensitivity analysis may be the most reasonable and
sound alternatives.
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Figure 2: A scatter plot for the number of clusters rated and the proportion of clusters

recommended by each expert
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Table 2:  Simulation results. ID: cluster id; [(;: true cluster effect on the rating
process; Psg: true probability of success without selection bias; Psy: true probability
of success with selection bias. The mean of the naive estimated values (ignoring the

selection process) are denoted using a hat™.

True values Naive

ID B; Psq Pg, //B\j Psg
3 4.326 0.865 0.858 2.338 0.746
1 3.602 0.821 0.813 -0.259 0.471
33 3.518 0.815 0.807 -0.320 0.463
A7 3.434 0.809 0.801 3.146 0.808
50 3.037 0.781 0.772 1.683 0.684
27 2.127 0.706 0.696 -1.216 0.364
30 2.059 0.700 0.690 1.272 0.642
32 2.056 0.700 0.690 10.228 0.947
14 1.892 0.685 0.675 2.374 0.749
7 1.701 0.668 0.657 1.591 0.676

1.505 0.650 0.639 3.366 0.804
48 1.369 0.637 0.625 1.950 0.711
10 1.293 0.629 0.618 2.581 0.767
21 1.032 0.604 0.592 1.690 0.685
11 0.876 0.588 0.577 -1.637 0.320
26 0.873 0.588 0.577 4.348 0.863
15 0.685 0.569 0.558 1.671 0.683
13 0.602 0.561 0.549 4.249 0.851
4 0.582 0.559 0.547 1.827 0.698
42 0.389 0.540 0.528 1.314 0.646
op 10.00 9.080
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Table 3:  Simulation results. B;: true value used to generate the data; Psy: true
probability of success. The mean of the estimated values are denoted using the hat
symbol. The estimates are obtained using the naive approach that ignores the selec-

tion process and the joint model that takes this process into account.

True values Naive Joint Model

cid B Psq BJ Pso B\] Pso
1 3.60 0.84 6.16 0.95 5.02 0.85
2 -1.98 0.29 -0.96 0.37 -2.01 0.29
3 4.33 0.88 9.58 0.97 7.96 0.90
4 0.58 0.56 1.57 0.70 0.59 0.56
5 0.11 0.51 1.07 0.64 0.10 0.51
6 -0.53 0.44 0.45 0.56 -0.54 0.44
7 1.70 0.68 2.75 0.82 1.73 0.68
8 -0.10 0.49 0.89 0.62 -0.08 0.49
9 1.51 0.66 2.51 0.80 1.51 0.66
10 1.29 0.64 2.29 0.78 1.31 0.64
o} 10.00 7.103 10.28
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