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Abstract. Fuzzy Cognitive Maps (FCM) may be defined as Recurrent Neural Networks 

that allow causal reasoning. According to the transformation function used for updating the 

activation value of concepts they can be characterized as discrete or continuous. It is 

remarkable that FCM having discrete neurons never exhibit chaotic states, but this premise 

cannot be guaranteed for FCM having continuous concepts. On the other hand, complex 

sigmoid FCM resulting from experts or learning algorithms often show chaotic or cyclic 

patterns, therefore leading to confusing interpretation of the investigated system. The first 

contribution of this paper is focused on explaining why most studies on FCM stability are 

not applicable to FCM used on classification or decision-making tasks. Next we describe a 

non-direct learning methodology based on Swarm Intelligence for improving the system 

stability once the causal weight estimation is done. The objective here is to find a specific 

threshold function for each map neuron simulating an external stimulus, instead of using 

the same transformation function for all concepts. At the end, we can compute more stable 

maps, so better consistency in hidden patterns is achieved. 
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1   Introduction 

The FCM theory [2] was introduced by B. Kosko as a knowledge-based 

methodology for modeling and simulating dynamical systems. These 

structures combine the reasoning strength of the connectionist approach 

with some elements of fuzzy logic, which are normally considered during 

the knowledge-engineering phase [3]. Using this methodology, a system 

can be modeled in terms of concepts (e.g. variables, objects or states which 

are equivalent to neurons in connectionist models) and causal relations 

among such entities. In a few words, from the structural point of view, a 

simple FCM may be denoted as directed graphs allowing feedback, 

consisting on neurons and weighted arcs. 

 

In a simple FCM, each link takes value in the range [−1,1]. It denotes the 

causality degree between two nodes as a result of the quantification of a 

fuzzy linguistic variable [6]. The activation value of concepts is also fuzzy 

in nature and regularly takes values in the range [0,1]. Hence, the higher 

the activation value, the stronger the influence of the concept over the 

investigated system. In other words, FCM establish the forward and 

backward propagation of causality [5], admitting the knowledge base to 

increase when concepts and links between them are increased. 

 

In the past decade, FCM based models have gained considerable research 

interest among researches, being widely used for solving several real-

world problems. Some practical examples include [11]: decision-making 

tasks, risk analysis, prediction, text categorization, pattern recognition, 

management, and classification. However, estimating parameters that 
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characterize the whole system (e.g. the causal weight matrix) may be 

tedious for humans, leading to inefficient models. In order to increase the 

reliability of FCM-based models several learning algorithms for tuning 

such parameters have been introduced [10], although most of them are 

focused on computing causal relations between map concepts. 

 

On the other hand, existing approaches suppose that FCM are closed 

systems and they do not consider external influences, while other factors 

such as the FCM stability are frequently ignored. As far as known, there 

is no existence of any learning method for enhancing the system stability 

once the system causality is established. For example, let us suppose a 

FCM resulting from experts where causal connections may be partially 

modified (e.g. we know the direction of causalities and an approximation 

of their values that should be preserved). Can we expect lineal stability in 

the final map? If not, how to improve the stability of the system without 

affecting causal connections estimated by experts? 

 

In the literature a few researches concerning FCM convergence have been 

proposed. For instance, Kosko [4] developed an analytic method based on 

Liapounov functions for reaching stable solutions on Feedback Standard 

Additive Models (SAM - which share several of the FCM characteristics). 

Unfortunately, Kosko concluded that such conditions cannot be extended 

to FCM due to the large number of feedback links involved in FCM-based 

models. More recently, other analytical methods were introduced (see next 

Section 3), but we believe that such approaches are mostly useful for 

stabilizing FCM used in modeling tasks. 
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Being more specific, this paper attempts explaining why most analytical 

models ensuring the existence and uniqueness of a fixed-point attractor 

cannot be used for solving prediction or decision-making tasks. As well, 

we describe a non-direct algorithm based on Swarm Intelligence, whose 

learning goal is the system stability. Briefly, the main idea here is to find 

an appropriate threshold function for each map neuron, instead of using 

the same function for all concepts. It attempts enhancing the map stability 

once the estimation of the causal weight matrix is done, without affecting 

the inference ability of the original system. In practice this scheme could 

be modeled as a sigmoid FCM using excitable neurons, that is, neurons 

that could be influenced by external factors.  

 

It is pertinent to remark that authors will be focused on sigmoid FCM, 

instead of discrete (e.g. binary o trivalent) ones. This remark is motivated 

by the benchmarking analysis discussed in [27] where results showed that 

the sigmoid function significantly outperforms the other functions, by 

using the same decision model. Besides, since FCM are deterministic 

models, a discrete map will always find a previously visited state vector 

(although the path length to reach this point could be exponential).  

 

The rest of the paper is organized as follows: in Section 2 mathematical 

specifications about FCM are provided. In Section 3 we review the most 

relevant studies on FCM convergence and their drawbacks, whereas in 

Section 4 we describe a learning algorithm based on Swarm Intelligence 

principles. After that, Section 5 introduces the experimental framework 

concerning HIV-1 drug resistance, and also provides further details about 

simulations. Finally, conclusions are given in Section 6.    
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2   A brief background on Fuzzy Cognitive Maps 

Mathematically speaking, a simple FCM can be defined using a 4-tuple 

(𝐶, 𝑊, 𝐴, 𝑓) where 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑀} is a set of 𝑀 graph nodes or 

neurons, 𝑊: (𝐶𝑖, 𝐶𝑗) → 𝑤𝑖𝑗 is a function which associates a causal value 

𝑤𝑖𝑗 ∈ [−1,1] to each pair of nodes (𝐶𝑖, 𝐶𝑗). It denotes the weight of the 

directed edge from 𝐶𝑖 to 𝐶𝑗, which also represents the causality degree 

between these concepts. Therefore the weight matrix 𝑊𝑀×𝑀 gathers the 

system causality which could be estimated by experts, or computed from 

historical data. Likewise, 𝐴: (𝐶𝑖) → 𝐴𝑖 associates an activation degree 

𝐴𝑖 ∈ ℝ to each concept 𝐶𝑖 at the moment 𝑡 (𝑡 = 1,2, … , 𝑇). Finally, a 

threshold or transformation function 𝑓: ℝ → [0,1] is used to keep the 

activation value of neurons in the allowed range.  

 

Following equation (1) shows how to update the activation vector (i.e. the 

activation value of neurons) using the state vector 𝐴0 as the initial 

configuration. In the same way to other recurrent models - such as the 

well-known Hopfield network - this information propagation mechanism 

is iteratively repeated until a hidden pattern [5] is observed (which is an 

ideal outcome), or a maximal number of iterations 𝑇 is reached. In this 

scheme the most commonly used threshold functions are: the bivalent 

function, the trivalent function, and the sigmoid variants. 

 

𝐴𝑖
(𝑡+1)

=  𝑓 (∑ 𝑤𝑗𝑖

𝑀

𝑗=1

𝐴𝑗
(𝑡)

) , 𝑖 ≠ 𝑗                   (1) 
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The effect on the selection of a specific function over the stability and 

inference capabilities of the FCM was explored in [1]. From this work 

some important remarks were concluded: 

 Discrete FCM never show chaotic behavior. It means that always 

a fixed-point attractor or a limit cycle will be detected in the map 

outputs. These states have the following behavior: 

o Fixed-point attractor (∃𝑡𝑘  𝜖 ℕ ∶  𝐴(𝑡+1) = 𝐴(𝑡), ∀𝑡 > 𝑡𝑘): the 

system produces the same output after the time 𝑡𝑘. 

o Limit cycle (∃𝑡𝑘 , 𝑃 𝜖 ℕ ∶  𝐴(𝑡+𝑃) = 𝐴(𝑡), ∀𝑡 > 𝑡𝑘): the same 

output or state vector is regularly observed with period 𝑃. 

 Continuous FCM may additionally exhibit chaotic states, where 

the FCM model continues to produce different state vectors for 

successive cycles. In these situations the FCM cannot stabilize, 

leading to confusing system responses. 

 

During the simulation phase on a sigmoid FCM, the activation value of 

each map neuron is influenced by the values of the connected concepts 

with the appropriate weights [15]. It shows the causal effect of changes on 

the neurons’ activation value on the whole system. More specifically, once 

the system reaches a fixed-point attractor, decision-makers use this 

information to make decisions leading to the desired solution [25]. That is 

why FCM theory is a very convenient approach for performing modeling 

and simulation tasks. However, when the system reaches a limit cycle or 

a chaotic behavior, decision-making is practically impossible [30]. In the 

following Section 3 we review some theoretical results that attempts to 

provide better stability features on FCM-based models.    
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3   Stability on non-discrete Fuzzy Cognitive Maps 

As far as known, in the literature few researches concerning stability on 

continuous FCM have been proposed. In this section we revise the most 

relevant contributions in this field, and after that we try to explain why 

these approaches are not adequate for stabilizing sigmoid FCM used on 

classification tasks. Here the main goal of a FCM-based classifier is the 

mapping of an input set (initial excitation of input neurons) to a desired 

output vector (system response), according to the representation of the 

knowledge stored inside the classifier’s structure. 

 

In reference [31] the authors proved that when the weight matrix fulfills 

certain conditions, then the FCM will converge to a unique fixed-point 

attractor. For example, if the map has not input neurons (they influence 

but are not influenced by the other nodes) then the map will converge to 

the same attractor regardless the exact values of the initial concept values 

(see Theorem 1). Besides, they introduce an adaptive weight-estimation 

method that employs appropriate weight projection criteria to assure that 

the uniqueness of FCM solution is not compromised.  

 

This result is only useful for modeling and cannot be used in FCM-based 

classifiers. In order to understand implicit limitations of this theorem, let 

us suppose a balanced classification problem having three values for the 

decision attribute (e.g. Low, Middle and High). According to Theorem 1 

and supposing that convergence conditions are met, then the FCM will 

always converge to the same fixed-point attractor, which means that 2/3 

of all instances will be erroneously classified. 
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Theorem 1: There is one and only one solution for any concept value 𝐴𝑖 

of any FCM (using a sigmoid transformation function), if: 

(∑‖𝑤𝑖‖

𝑛

𝑖=1

)

1 2⁄

< 4                      (2) 

 

It does not consider FCM with input concepts; although results discussed 

above are still valid (see Theorem 2). In these cases the equilibrium point 

does not depend solely on the weight set, as in the case of FCMs with no 

input nodes, but also depends on the values of the input neurons. Hence, 

different excitation values will drive the FCM to different fixed-point 

attractors. It means that, for each equilibrium point, we need to compute a 

distinct weight set ensuring the desired response, leading to ambiguous 

understanding of the same investigated system.  

 

Theorem 2: For a sigmoid FCM with m input nodes, there is one and 

only one solution for any concept value 𝐴𝑖 if: 

(∑‖𝑤𝑚+𝑖‖

𝑛

𝑖=1

)

1 2⁄

< 4                      (3) 

 

In reference [7] a slightly different theorem concerning the steepness λ of 

sigmoid threshold function is presented (see next Theorem 3). It is based 

on the assumption that if there were two stable fixed points then a slight 

change in initial conditions (which cannot be exactly quantified) may 

result in a totally different outcome, making the value of the map hard to 

justify. Though, following the same reasoning explained above it is clear 

that this approach seriously limits the simulation ability of sigmoid FCM 

when solving classification or prediction problems. 
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Theorem 3: The number of solutions of (1) depends on the size of 𝜆: 

 If 𝜆 > 0 is small enough then there is a unique solution. This 

fixed point of the sigmoidal FCM, is linearly stable. 

 If 𝜆 > 0 is large enough there can be multiple solutions, where 

many of these fixed points may be linearly stable. 

 

For better understanding of the above affirmation let us consider a FCM 

concerning travel behavior analysis [24]. This model involves three kinds 

of variables which are translated as map neurons, and three further nodes 

for each transport mode (bus, bike or car). When the FCM inference 

process is activated, a decision concept called “Utility” is examined. It has 

evidence related to the user preferences with respect to each transport 

mode for an initial condition. Conversely, according to Theorem 3 and 

supposing that 𝜆 > 0 is small enough, the map will converge to the same 

solution independently the initial scenario, so the system will not be able 

to distinguish between two different decisions. 

 

Summarizing, although some researches [21] ensure that FCM cannot be 

applied in classification tasks, recent studies [9,19,20,22] showed that 

FCM are in turn potential classifiers. However, FCM-based classifiers do 

not regularly consider the system stability in their learning phase, and as 

was discussed in this section, some of most relevant approaches seem to 

be inadequate to overcome this serious problem. In the next section we 

describe a supervised learning algorithm based on Swarm Intelligence, 

which attempts improving the system stability on sigmoid FCM, once the 

estimation of the causal weight matrix is done. 
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4   Improving the global stability on Sigmoid FCM 

In the literature several supervised and unsupervised learning algorithms 

have been proposed, mainly focused on the transformation of the causal 

weight matrix. As a brief categorization, they can be gathered in three 

large categories [15]: Hebbian-based, population-based and also hybrid 

approaches. Nevertheless, most of these algorithms cannot guarantee the 

system stability (e.g. population-based methods). Thus, in this section we 

describe a non-direct learning algorithm, which is able to provide better 

stability on sigmoid FCM, once the causal weights matrix estimation is 

done. This approach attempts to reduce the system response variability 

over the time, but always preserving the accuracy. 

 

Being more specific, Tsadiras [1] demonstrated that the inference ability 

of FCM-based models may be strongly influenced by the selection of the 

concepts’ transformation function. On the other hand, Theorem 2 proved 

that the steepness 𝜆 could be associated to the system stability. Based on 

these assumptions, in reference [16] a set of empirical simulations were 

performed with the goal of studying the effects of using several sigmoid 

transformation functions, over the global stability of the system response, 

as next equation (4) suggests. It should be stated that such experiments are 

equivalent to use a custom parameter 𝜆𝑖 for each map neuron, instead of 

using the same constant factor for all functions. But which is the real 
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impact of this variation over the system behavior? 

 

𝑓𝑖(𝑥) =
1

1 + 𝑒−(𝑥−0.5)𝜆𝑖
              (4) 

From empirical simulations authors concluded that variations of factor 𝜆𝑖 

lead to some changes on the map stability. Consequently, it seems to be 

reasonable to suppose that a learning algorithm could help to improve the 

system convergence, by solving the related real-parameter optimization 

problem. It is relevant to remark that normally FCM are considered as 

closed systems where external factors affecting the concepts are omitted. 

But in many real world problems this perception will be inadequate and 

may affect the global accuracy or the system stability.  

 

For example, it is well-known that biological behavior on proteins not only 

depends on the  amino acids interaction, but also is conditioned by external 

factors such as the chemical processes influencing the catalytic responses 

[16]. Precisely, such factors may be modeled using a threshold function 𝑓𝑖 

for each neuron 𝐶𝑖 (instead of using the same function for all neurons), 

ensuring better stability. The activation value of a node 𝐶𝑖 will be now 

conditioned by the free interaction of the connected neurons, and also by 

the steepness 𝜆𝑖 which involves the stimulus.  

 

The effect of this artificial stimulus may be computed at each cycle as the 

difference between the map response using the same function for all nodes 

(i.e. 𝜆1 = ⋯ = 𝜆𝑛), and the system output using a proper family of 

sigmoid functions ensuring better stability. What is more, the model is 

equivalent to introduce a positive factor 𝜉𝑖 ≤ 1 to intensify or reduce the 
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final activation value of each neuron 𝐶𝑖. From this modification we can 

deduce that the parameter 𝜆𝑖 = 𝜆𝜉𝑖, which is the value that requires to be 

optimized during the supervised learning phase. 

The learning goal is focused on estimating a family of sigmoid functions 

ensuring stability features. More explicitly, we need to find a family of 

functions {𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑀(𝑥)}, where the 𝑖th sigmoid function will be 

used for updating the activation value of the 𝑖th concept. In practice, it 

implies to find the steepness 𝜆𝑖 for each function. With this goal in mind, 

in reference [16] the authors presented a novel learning algorithm based 

on Swarm Intelligence principles [23], which exploits a particle swarm to 

solve the related optimization problem. 

 

Particle Swarm Optimization (PSO) is a non-direct search method for 

solving challenging continuous problems [26]. In the standard PSO each 

particle (i.e. swarm agent) denotes a 𝑀-dimensional point in the solution 

space (where 𝑀 is the total number of map neurons). The 𝑖th dimension of 

each particle represents the steepness 𝜆𝑖 associated to the 𝑖th threshold 

function. During the search, swarm agents adjust their position by using a 

combination of an attraction to the best positions that they individually 

have found, and an attraction to the best solutions that any particle has 

found, imitating those who have a better performance.  

 

PSO-based methods have proven to be quite competent for solving real-

parameter optimization tasks [32]. Nevertheless, the swarm is frequently 

attracted to local optima, causing premature convergence states. For this 

reason, the authors adopted a variant called PSO with Random Sampling 
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in Variable Neighborhoods (RSVN) which is able to notably outperform 

the constricted PSO algorithm [13]. Equation (5) displays the objective 

function that should be minimized during the search steps. 

𝜙(𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑀) = ∑ ∑ ∑ |𝐴𝑖𝑘
(𝑡)

− 𝐴𝑖𝑘
(𝑡−1)

|

𝑇

𝑡=2

          (5)

𝑀

𝑖=1

𝐾

𝑘=1

 

 

In the above function, 𝐾 is the available number of instances, 𝑀 denotes 

the number of neurons, 𝑇 is the maximal number of times, whereas 𝐴𝑖𝑡
𝑘  is 

the activation value of the 𝑖th concept for the current time 𝑡, using the 𝑘th 

instance as initial condition. Here a single instance is a sequence of values 

codifying the initial conditions of the modeled system, and its 

corresponding response. In brief, during the learning step the algorithm 

attempts to reduce the variability of the system response for each input 

over the time. In this scheme a solution will be considered as no feasible 

if the system inference is negatively affected, which preserves the global 

accuracy. On the other hand, causal weights cannot be modified during 

this optimization procedure since this model is oriented to compute more 

stable maps once the causality estimation is done. 

 

It should be highlighted that the main goal of our research is to describe a 

methodology for improving the system stability, therefore we could use 

any continuous metaheuristic (e.g. Evolutionary Algorithms) for solving 

the related optimization task. What is more, during simulations we prefer 

to adopt an approximate approach since population-based metaheuristics 

are capable to find near-optimal solutions in a reasonable execution time, 

ignoring analytical properties of the objective function (e.g. continuity, 

convexity, differentiability or gradient information) which are frequently 
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unknown in advanced. However, exact algorithms such as mathematical 

programming techniques could be used as well. 

 

It is fair to mention that the idea of using “excitable” neurons on FCM-

based models is not a contribution of this work. For example, Stylios and 

Groumpos [8] introduced a new FCM model where each concept has an 

external output (bias), which influences each node with a weight and it is 

taken into account at the calculation rule. The reader may easily perceive 

the similarity between the Stylios’ proposal and the approach discussed in 

this section, since both models are oriented to simulate influences over the 

neurons. In next Section 5 we conduct several experiments that allow 

studying the effects of the proposed learning algorithm over the stability 

of six sigmoid FCM concerning drug resistance analysis. 

5   Performance analysis 

In order to validate the method discussed in the above section we use six 

adjusted FCM taken from [18]. Such maps describe the behavior of some 

HIV-1 mutations related to their resistance to existing antiviral drugs. 

More precisely, the authors modeled the HIV protease protein as a FCM 

where each sequence position is taken as a neuron, while another node for 

the resistance target is also defined. The protease sequence is defined by 

99 amino acids, and its main function is related to the maturation of 

released viral particles by cleaving precursor proteins [14]. With the goal 

of reducing the number of concepts involved in the final modeling, they 

use those sequence sites associated with drug resistance. In this topology 
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neurons are fully connected; whereas a causal connection between each 

sequence position and the resistance is established.  
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It is important to mention that each map denotes the protein behavior for 

a specific drug: Amprenavir (APV), Indinavir (IDV), Saquinavir (SQV), 

Nelfinavir (NFV), Ritonavir (RTV) and Atazanavir (ATV). Each drug has 

associated a high-quality filtered datasets taken from [29] consisting in 

reported mutations and their resistance value. Despite the prediction 

abilities of this model [22], the authors cannot ensure the system stability. 

Following we conduct experiments studying the effects of the algorithm 

described before over the stability of these maps. 

 

In all the experiments performed in this section we use a constricted PSO 

Type 1 where 𝜔 = 0.7298 and 𝑐1 = 𝑐2 ≈ 1.496. The parameter settings 

of the PSO-RSVN algorithm adopted as optimizer is fixed as follows: 40 

particles as swarm size, 80 generations, 10 variable neighborhoods, while 

the allowed number of generations without progress is set to 20. It should 

be mentioned that parameters concerning the PSO-RSVN algorithm were 

tuned as reference [17] suggests, since such values proved to be a proper 

configuration for several problems. Last of all, the number of times used 

during the inference phase is 𝑇 = 100, whereas the activation degree of 

each map node is calculated as the normalized contact energy [28] of the 

corresponding amino acid in the input sequence. 

 

As a first analysis, the stability of the resistance neuron for each inhibitor 

(using a randomly selected mutation) is measured. Figures 1-3 show the 

activation degree of the resistance concept (𝑥 axis) over the time (𝑦 axis) 

for two situations: the dashed line represents the response using the same 

function for all neurons, whereas the solid line denotes the output using 
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the family of sigmoid functions found by the algorithm.  

From these simulations we can conclude that the algorithm improves the 

convergence property of each map. In this simulation, only the resistance 

node was monitored since it is the decision neuron, allowing predicting 

whether a new unclassified mutation observed in a patient infected by the 

virus will be susceptible to the target inhibitor or not. 

 

The reader may observe that the system response changes for next drugs: 

IDV, RTV and ATV. In such cases the classification rate does not suffer 

any change since the resistance target for a drug is measured in a certain 

range instead of using a single value. This range is computed by adopting 

a pre-defined biological cut-off which allows classifying a new mutation 

in susceptible or resistant. However, we noticed that some FCM achieved 

better accuracy, which is an unexpected positive result. 

 

For better understanding of this issue let us analyze the behavior of the 

selected mutation “FKLDVFMIIVVSVTVNML” for the map IDV. This 

sequence has high level of resistance for the drug IDV, which means that 

the higher the activation value of the resistance neuron, the better the 

accuracy of the model for this instance. But after applying the learning 

algorithm (see Figure 1a) the FCM is able of computing higher resistance 

value for the decision neuron. From these results four behaviors were 

observed: (1a-1b) the convergence rate of stable maps was improved, (2a-

2b) cyclic patterns were removed, (3a) the variability response on chaotic 

systems was reduced, although the final system remains chaotic, and 

finally (3b) the chaotic behavior was corrected, leading to a perfectly 



18 

 

stable system which is the most desirable outcome. 

 

To generalize these results we introduce a second experiment which tries 

to answer the next question: are the stability improvements statistically 

significant? By doing so, we calculate for each instance the difference 

between the original system response, and the average system response 

after applying the described learning algorithms 10 times. In practice this 

measure is equivalent to compute the evaluation function (4) for each 

mutation individually (𝐾 = 1). Table 1 summarizes the 𝑝-value resulting 

from the Wilcoxon signed rank test [12] associated to each inhibitor, and 

also the behavior of the objective function for all mutations (taking into 

account the original system, and the best sample solution after applying 

the proposed learning methodology). This test suggests rejecting the null 

hypothesis H0 (𝑝-value < 0.05) in all cases, confirming that there exist 

significant improvements on the systems stability. 

 

Why it is desirable more stable systems? To answer this question let us 

analyze the inference process for the map SQV regarding the selected 

mutation “FKLDVFMIGVPVISTVNML”. This sequence has high level 

of resistance to inhibitor SQV. When the same function is used for all the 

neurons, the activation level of the decision neuron has lower degree of 

resistance towards the end (iteration 82), and hence the sequence may be 

erroneously classified as susceptible. But using the family of sigmoid 

functions found by the learning algorithm the final neuron is more stable, 

although the biological system remains chaotic. Actually, the variability 

that shows this map towards the end will not affect the system response, 

because in this case the final class value (susceptible or resistant) will be 
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determined using a range instead of a single value. 

Figures 4-5 show the swarm diversity behavior for all inhibitors, during 

the search phase. The 𝑥 axis denotes the current generation, whereas the 𝑦 

axis represents the average distance among particles, normalized in the 

range [0,1]. Observe that the PSO-RSVN algorithm performed identical to 

the standard constricted PSO model for drugs IDV and RTV, since the 

swarm reorganization strategy remained inactive. However, for inhibitors 

ATV, APV, NFV and SQV the algorithm detected potential stagnation or 

premature convergence states, so the swarm reorganization method was 

activated, therefore improving the population diversity. 

 

To conclude, we present another experiment illustrating why theoretical 

results concerning FCM stability (discussed in the Section 3) cannot be 

used in prediction tasks. With this goal in mind, we estimate the causal 

matrix of each map by using the weights adaptation procedure discussed 

in reference [31]. Observe that Theorem 2 is not applicable to the FCM 

described before because they have not input neurons, so all concepts are 

updated during the inference procedure. Similarly, we use Theorem 3 for 

stabilizing FCM-based systems as reference [18] suggests.  

 

Once six maps have been stabilized, all available mutations are classified 

to evaluate the prediction accuracies. Table 2 shows the confusion matrix 

achieved for each inhibitor. Based on these simulations we can conclude 

that, after applying such theoretical results, all FCM are able to converge 

to a stable fixed-point attractor. However, since this attractor is the same 

regardless the initial stimulus (i.e. mutation) that they attempt to predict, 
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the classification quality is considerable affected. 

6   Conclusions 

Stability on sigmoid FCM-based systems plays an important role during 

the decision-making process. As discussed, stability means to ensure the 

existence of fixed-points attractors. However, most learning algorithms do 

not consider this issue in their weights estimation scheme, leading to 

systems exhibiting cyclic or chaotic patterns. To deal with this drawback 

some analytical methods have been developed, but they are not adequate 

for stabilizing FCM used in prediction or decision-making tasks. More 

exactly, such methods are focused on determining analytical conditions 

ensuring the existence and uniqueness of a stable point, however, in most 

cases this attractor is the same for all input sequences. 

 

In this paper an approximate algorithm for enhancing the global stability 

properties of sigmoid FCM was discussed. The central proposition of this 

procedure is to estimate, using a Swarm Intelligence approach, a custom 

sigmoid function for each node instead of using the same transformation 

function for all neurons. It attempts to efficiently simulate the effects of 

external factors over the neurons, where the learning goal is the system 

stability. In order to validate the proposal we used six FCM concerning the 

Bioinformatics field. From simulations we can conclude that, after 

applying the learning methodology, adjusted FCM exhibit better stability 

without varying the system causality. The future work will be focused on 

studying the convergence on Sigmoid FCM, but now from perspective of 
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the causal links characterizing the neurons’ interaction. 
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a) 
 

Figure 1. Activation value of the resistance neuron for a) drug IDV b) drug RTV where 

the solid line is the map response using the same function for all neurons, and the dashed 

line represents the map output using the family of functions estimated by the algorithm. 

Note that in both cases the convergence speed is improved.  

 
 

 

Figure 2. Activation value of the resistance neuron for a) drug ATV b) drug APV where 

the solid line is the map response using the same function for all neurons, and the dashed 

line is the map output using the family of functions estimated by the algorithm. In such 

examples the system output shows different behaviors for the same input, but after 

applying the learning methodology cyclic patterns are removed.  

 

 

 

 

Figure 3. Activation value of the resistance concept for a) drug SQV b) drug NFV where 

the solid line is the map response using the same function for all neurons, and the dashed 

line represents the output using the family of functions estimated by the algorithm. In the 

first case the variability of the system response is notably reduced, while in the second 

case a perfectly stable map is computed, which evidently is the ideal outcome. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

a) 

a) 

b) 

b) 

b) 



25 

 

 

Figure 4. Swarm diversity behavior for a) drug IDV b) drug RTV. In both cases the PSO-

RSVN algorithm performs identical to the constricted PSO algorithm since the swarm 

reorganization procedure remains inactive during the search progress. 

 

 

 

Figure 5. Swarm diversity behavior for a) drug ATV b) drug APV. In the first case the 

swarm reorganization method is activated once, whereas in the second scenario it is 

activated twice. As a result, the swarm diversity is significantly improved.  

 

 

 

 

Figure 6. Swarm diversity behavior for a) drug SQV b) drug NFV. In the first case the 

swarm reorganization method is activated twice, whereas in the second example the 

clearing procedure is activated at iterations 30, 51 and 72.  
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Table 1.  Results achieved by the Wilcoxon test (𝒑-value) for each inhibitor. Variability 

of the system response (𝝓-value) using the original map (BL) and using the improved 

map resulting after applying the discussed learning algorithm (AL) for all instances.  

 

Inhibitor Mutations 𝒑-value Hypothesis 𝝓-value (BL) 𝝓-value (AL) 

APV 96 0.000 Rejected 39.09962 1.98303 

ATV 69 0.000 Rejected 13.84345 2.43406 

IDV 137 0.038 Rejected 10.58505 3.78721 

RTV 151 0.024 Rejected 19.19583 7.52529 

NFV 204 0.000 Rejected 19.59037 2.835233 

SQV 139 0.010 Rejected 13.92619 6.158739 

 

Table 2.  Confusion matrixes achieved for each inhibitor after applying results discussed 

in Section 3. Since the fixed-point atractor is the same regardless the input sequence, all 

mutations are always labeled as objects belonging to the same decision class.   

 

 Using Theorem 1 Using Theorem 3 

Inhibitor Class Susceptible Resistant Susceptible Resistant 

APV 
Susceptible 0 22 0 22 

Resistant 0 74 0 74 

ATV 
Susceptible 11 0 0 11 

Resistant 58 0 0 58 

IDV 
Susceptible 0 26 0 26 

Resistant 0 111 0 111 

RTV 
Susceptible 15 0 0 15 

Resistant 136 0 0 136 

NFV 
Susceptible 17 0 0 17 

Resistant 187 0 0 187 

SQV 
Susceptible 24 0 0 24 

Resistant 115 0 0 115 

 


