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Abstract  

 

Daily activity-travel sequences of individuals have been estimated by activity-based 

transportation models. The sequences serve as a key input for travel demand analysis and 

forecasting in the region. However, the high cost along with other limitations inherent to 

traditional travel data collecting methods has hampered the models’ further advancement and 

application, particularly in developing countries. With the wide deployment of mobile phone 

devices today, we explore the possibility of using mobile phone data to build such a travel 

demand model. 

Our exploration consists of four major steps. First, home, work and other stop locations for 

each user are identified, based on their mobile phone records. All the obtained locations along 

with their particular orders on a day are then formed into stop-location-trajectories and 

classified into clusters. In each cluster, a Hidden Markov Model (HMM) is subsequently 

constructed, which characterizes the probabilistic distribution of activities and their related 

travel of the sequences. Finally, the derived models are used to simulate travel sequences 

across the entire employed population. 

Using data collected from natural mobile phone usage of around 9 million users in Senegal 

over a period of one year, we evaluated our approach via a set of experiments. The average 

length of daily sequences drawn from the stop-location-trajectories and the simulated results 

is  4.55 and 4.72, respectively. Among all the 677 types of the stop-location-trajectories, 520 

(e.g. 76.8%) are observed from the simulated sequences, and the correlation of sequence 

frequency distribution over all the types between these two sequence sets is 0.93. The 

experimental results demonstrate the potential and effectiveness of the proposed method in 

capturing the probabilistic distribution of activity locations and their sequential orders 

revealed by the mobile phone data, contributing towards the development of new, up-to-date 

and cost-effective travel demand modelling approaches. 

Keywords activity-travel sequences, Hidden Markov Model, activity-based transportation 

models, travel surveys, mobile phone data. 
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1. Introduction 

 

1.1. Activity-based transportation models 

The main premise of activity-based transportation models is the treatment of travel behavior 

as a derived demand of activity participation. In this modeling paradigm, travel is analyzed 

through daily patterns of activity behavior related to and derived from the context of land-use 

and transportation network as well as personal characteristics such as social-economic 

background, lifestyles and needs of individuals (e.g. Bhat & Koppelman, 1999; Davidson et 

al., 2007; Wegener, 2013).  

All the above information, complemented with a training set of household travel surveys 

which record the full daily activity-travel sequences of a small sample of individuals during 

one or a few days, is analyzed and translated into heuristic decision making rules, using 

machine learning techniques, e.g. decision trees (e.g. Arentze & Timmermans, 2004; 

Bellemans et al., 2010). These rules represent the scheduling process of activities and travel 

by the individuals. Once established, the activity-based models can be used as the 

probabilistic basis for a micro-simulation process using Monte Carlo methods, in which 

complete daily activity-travel sequences for each individual in the whole region are 

synthesized. The synthesized sequences are then aggregated into travel measures, e.g. the 

average number of trips or travel distances per day, or an origin-destination (OD) matrix.  The 

OD matrix represents the number of trips between each pair of locations of the region, and it 

can be assigned to a road network through traffic assignment algorithms. The derived travel 

measures as well as the amount of travel assigned to specific roads can subsequently serve as 

essential input for travel analysis in the region, such as travel demand forecasting, emission 

estimates, and the evaluation of emerging effects caused by different transport policy 

scenarios. Fig. 1 illustrates the entire process of an activity-based transportation model. 

 

 

 
Fig. 1. The entire process of an activity-based transportation model 

 

1.2. Problem statement 

Despite comprehension and advancement of activity-based transportation models, e.g. 

Albtross (Arentze & Timmermans, 2004), TASHA (Roorda et al., 2008), Feathers (Bellemans 

et al., 2010), the availability of household travel surveys has been a prerequisite condition for 

the model building, regardless of the following drawbacks of the data collection method (e.g. 

Asakura & Hato, 2006; Cools et al., 2009). (i) The entire survey is a lengthy process; from the 

initial data gathering to data cleaning and the exploitation of the first results, it could take 

months even years, causing a time lag between the data initially obtained and the results that 

are required for objective and up-to-date activity-travel behavior analysis. (ii) It imposes a 

significant burden on respondents, resulting in low response rates and under-reporting of short 

trips. (iii) Despite the above disadvantages, the data is very expensive to collect, leading to 
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only a limited number of respondents and a (or a few) day(s) being involved in the surveys. 

Consequently, this tends to obfuscate the less frequent activities, such as sports or 

telecommuting activities which are often carried out once a week or once a month. Questions 

are also raised about the capability of such limited sample size in representing activity-travel 

behavior of a whole population.  

Apart from travel surveys, travel information has also been gathered from sensors, e.g. loop 

detectors and video cameras, which are installed in a road network to monitor traffic flow. 

However, the sensors are usually set up on highways, as it is expensive to instrument a whole 

region with such static devices. Consequently, the collected data is only limited to the high-

capacity roads, and sheds little light on the traffic flow in the rest of the area (e.g. Gühnemann 

et al., 2004).  

Due to the data constraints, the existing methods on travel behavior analysis and travel 

demand modeling are restricted to only a (or a few) statistical average day(s) and a relatively 

small region as well as to a subset of the population, because of the lack of a large dataset that 

is spatially and temporally extensive as well as involves more individuals. Consequently, the 

results are difficult to be generalized to evaluate travel demand in various types of days (e.g. 

weekdays, weekend and holidays) and at a higher geographical scale (e.g. an entire city or a 

whole country). For a long time, data problems have been one of the essential challenges of 

the current research on travel demand modelling. The problems have seriously hampered 

further development and application of  the existing techniques (e.g. Hartgen, 2013; Janssens 

et al., 2012). Having accurate, reliable, while affordable travel data for the estimation of travel 

demand and the subsequent analysis on transport network systems has thus been a major 

concern, particularly in developing countries. 

 

1.3. Mobile phone data: a new data source for travel demand modelling 

The wide deployment of mobile phones has created the opportunity to use the devices as a 

new data collection method to overcome the lack of reliable travel data (Jiang et al., 2013). 

Location data recorded from mobile phone devices reflects up-to-date travel patterns on a 

significantly large sample of a population, making the data a natural candidate for the analysis 

of mobility phenomena in the region (e.g. Do & Gatica-Pereza, 2013; Schneider et al., 2013). 

In addition, the data collection is a by-product of mobile phone companies for billing and 

operational purposes that generates neither extra expenses nor respondent burden.  

The importance and added value of mobile phone data in the field of transportation research 

have been manifested by a variety of studies, ranging from  the  investigation of key 

dimensions of human travel, such as travel distances and time expenditure at different 

locations (e.g. González et al., 2008; Schneider et al., 2013; Song et al., 2010), to the 

discovery of typical mobility patterns (e.g. Bayir et al., 2009; Berlingerio et al., 2013; 

Calabrese et al., 2011), and to the examination of the status and efficiency of current transport 

network systems (e.g. Angelakis et al., 2013; Steenbruggen et al., 2013). Particularly, mobile 

phone data has been employed to explore the possibilities of building travel demand models, 

e.g. OD matrices (e.g. Becker et al., 2011; Calabrese et al., 2011; Shan et al., 2011). The 

research by (Shan et al., 2011) can represent the typical process of such exploration. The 

study utilizes mobile phone data of more than 0.3 million users collected in the metropolitan 

area of Lisbon, Portugal for an entire month. In this process, the two most frequent call cell 

towers for each of the users are first identified as the residential and employment locations, 

respectively. Using the two obtained locations, an OD matrix depicting home-to-work 

commuting trips in the morning is then built. Based on a census survey, this derived OD 

matrix is subsequently scaled up to account for the total employed population of 1.3 million in 

the study area. The adjusted matrix is ultimately used to compare against the travel demand 

during the same morning period forecasted by an integrated land use and transportation model 



developed in this region. The results show comparative performance of this OD matrix in 

estimating the morning travel demand in this region. 

However, despite its advancement by incorporating mobile phone data into the modeling 

process, the OD-based method does not consider the sequential information which is 

imbedded in activity-travel patterns. A detailed analysis of the sequential dependencies of the 

daily activities from activity-travel behavior is thus ignored in the modeling process. It has 

been widely acknowledged that the choice of activities is dependent on the preceding activity 

engagement (e.g. Joh et al., 2008; Wilson, 2008), exemplified by the fact that, during one 

particular working day, it is highly probable that the combination of having breakfast, travel 

and working is observed together. On the contrary, if a sports activity is carried out in the 

morning, there is a small chance that it is performed again in the evening. The 

interdependencies of daily activities have been considered as a crucial factor in the activity-

travel decision making process (e.g. Delafontaine et al., 2012; García-Díez et al., 2011). A 

modeling process, which takes into account the sequential information and generates activity-

travel sequences that are consistent with the sequential constraints observed from real travel 

behavior, is thus important. The existing activity-based models have integrated the sequential 

information of daily activities into the modeling process. But as previously described, the 

activity-based models are constructed based on a small set of activity-travel sequences from 

travel surveys, thus subject to the shortcomings that are inherent to the traditional data 

collection methods. A model, which is based on massive mobile phone data while taking into 

account the sequential aspect of activity-travel behavior, has so far been lacking. 

 

1.4. Research contributions 

Extending the current studies on the application of mobile phone data to transportation 

research, and particularly addressing the above mentioned limitations in the development of 

travel demand models, our study proposes a new approach which is based on the phone data 

and considers the sequential information imbedded in activity-travel patterns. Specifically, 

this study is to build a workers’ travel demand model based on mobile phone data using 

Hidden Markov Modeling (HMM) techniques. The derived model characterizes the 

probabilistic distribution of activities and their related travel on a day among workers. The 

models can be used to simulate new activity-travel sequences across the whole employed 

population. The synthesized sequences can be subsequently aggregated into certain travel 

measures which serves as important input for travel demand analysis in the region. 

Compared to existing activity-based models, this approach offers the following advantages.  

(i) This method is built upon the observed current activity-travel behavior of a large 

proportion of population, thus providing a more representative and up-to-date modeling 

process. (ii) Through a long period of mobile phone data records, inter- and intra- personal 

variations of travel behavior as well as weekday, weekend and seasonal deviations are 

captured. (iii) The use of mobile phone data generates no extra financial cost in terms of data 

collection, making it a cost-effective approach. This is particularly practical in developing 

countries where, as stated before, the high cost of traditional travel data collection 

mechanisms combined with other disadvantages of the methods have deterred the much 

needed development of a new, effective and cheaply realized travel demand modelling 

technique. With the use of the large-scale mobile phone data, the proposed method can be 

regarded as a reality mining approach which places the realized trips of travellers in daily life 

directly at the centre of the analytical process. (iv) When this method is compared with the 

OD-based modeling approach, the OD-based method analyzes travel behavior in terms of the 

distribution of all individual trips over different pairs of origin-destination locations; it is an 

aggregated modeling process. While the approach developed in this study examines the entire 

activity-travel sequences and focuses on the sequential aspect of travel behavior. In this new 



approach, the locations which are accessed by an individual on the same day are viewed and 

tackled as a whole, rather than an isolated participation in activities. Both methods analyze 

activity-travel behavior from different perspectives, thus providing a complementary means of 

modeling travel demand based on mobile phone data. In addition, while the OD-based 

approach is just an end product of the observed behavior from the phone data, and reflects the 

current mobility phenomena; the model proposed in this study is able to predict travel demand 

in regions where no phone data is provided or in future scenarios, e.g. the displacement of 

residential areas or the establishment of new industrial sites. 

The remainder of this paper is organized as follows. Section 2 introduces the mobile phone 

data and Section 3 details the proposed modeling approach. A case study is conducted in 

Section 4, and a comparison of the modeling results against the data in the validation set is 

carried out in Section 5. Finally, Section 6 ends this paper with major conclusions and 

discussions for future research. 

 

2. Mobile phone data description  

 

The mobile phone dataset consists of full mobile communication patterns of around 9 million 

users in Senegal between January 1, 2013 to December 31, 2013 (de Montjoye et al., 2014). 

The dataset contains the location and time when each user conducts a call activity, including 

initiating or receiving a voice call or text message, enabling us to reconstruct the user’s time-

resolved call location trajectories. The locations are represented with the identifications of 

base stations (cells) in a GSM network; the radius of each of the stations ranges from a few 

hundred meters in metropolitan to a few thousand in rural areas, controlling our uncertainty 

about the user’s precise location. Despite the low accuracy of users’ exact locations, the 

massive mobile phone data represents a significant percentage (i.e. 69%) of this country’s 

total population, providing a valuable source and opportunity for the analysis on human travel 

behavior and for drawing relevant inferences that can be statistically sound and representative.  

In order to address privacy concerns, the original dataset has been split into consecutive two-

week periods. In each period, users are randomly selected and assigned to anonymized 

identifiers. New random identifiers are chosen for re-sampled users in different time periods. 

The data process results in totally 25 randomly sampled datasets, each of which contains 

communication records of 300,000 users over two weeks. One of these datasets is selected for 

this study. Table 1 illustrates typical call records of an individual identified as user20 on 

Thursday, January 24
th

, 2013. 

 
Table 1. The typical call data of an individual

 

Time
 

11:57:00
 

13:40:00
 

16:59:00
 

17:43:00
 

21:28:00
 

Cell_id
 

751
 

749
 

177
 

751
 

751
 

 

3. Methodology 

 

3.1. Overview of the approach 

The method is composed of 4 major steps. (i) Home, work and other stop locations for each 

user are identified, based on their mobile phone records. (ii) The obtained location trajectories 

are clustered according to the travel features encoded in the sequences. (iii) In each cluster, a 

Hidden Markov Model is constructed, which characterizes the probabilistic distribution of the 

corresponding sequences. (vi) The obtained models are used to simulate activity-travel 

sequences across the whole employed population in the study region. The overall structure of 

the approach is shown in Fig. 2, and the detailed procedure is elaborated as follows. 

 

 



 

 

 

 

 

 

 

 

 

 
Fig. 2. The overall structure of the methodology 

 

3.2. Home, work and other stop location identification 

 

3.2.1. Mobile phone call location trajectories 

A call location trajectory from a mobile phone user during a day, i.e. call-location-trajectory, 

is defined as a series of locations where the user makes calls when traveling or doing 

activities, as the day unfolds. It can be formulated as a sequence of l1 -> l2 -> … -> ln, where 

n is the length of the sequence, i.e. the total number of locations that the user has travelled to 

when making calls that day, and li (1 ≤ i ≤ n) is the identification of the locations, e.g. cell IDs 

in this study. At each li, there could be multiple calls ki (ki ≥ 1), referred as call-frequency; the 

time for each of the calls is denoted as T(li,1), T(li,2), …, T(li,ki), respectively. The time 

interval between the first and the last call time in the set of consecutive calls, i.e. T(li,ki) – 

T(li,1), is defined as call-location-duration. Accommodating the time signatures of the 

multiple calls, a call-location-trajectory  can be represented as l1(T(l1,1),T(l1,2),…,T(l1,k1)) -> 

… -> ln(T(ln,1),T(ln,2),…,T(ln,kn)), simplified as l1(T(1),T(2),…T(k1)) -> … -> 

ln(T(1),T(2),…,T(kn)). Given the above call-location-trajectories constructed from the mobile 

phone data, the home and work locations are first predicted. This is followed by the 

identification of stop locations where activities are carried out.  

 

3.2.2. Prediction of home and work locations 

Various methods have been proposed to derive home and work locations from mobile phone 

data, mainly based on the visited frequency of a location during a particular time period (e.g. 

Becker et al., 2011; Calabrese et al., 2011). However, different time windows have been 

specified in these methods, depending on the context of the study area. In this study, a similar 

approach is adopted, but the time windows are empirically estimated from the mobile phone 

data as follows. The time period when call activities start to increase considerably in the 

morning during weekdays is chosen as the work start time, denoted as work-start-time. 

Similarly, the moment when the second peak of call activities start to appear in late afternoon 

is considered as the work end time, referred as work-end-time. Around this time, it is assumed 

that people start to communicate for off-work activity engagement. 

Based on these two temporal points, a location is defined as the home location if it is the most 

frequent stop throughout the weekend period as well as during the night-time interval on 

weekdays between work-end-time and work-start-time. On the contrary, a location is 

considered as a work place if it satisfies the following criteria. (i) It is the most common place 

for call activities in the perceived work period between work-start-time and work-end-time on 

weekdays. (ii) It is not identical to the previously identified home location for the user. (iii) 

The calls at the location are not limited in only one day, they should occur at least 2 days a 

week.  

Mobile phone data  HMM construction  

 

Home, work and stop location identification 
 

Model parameter estimation 

Stop-location-trajectory classification 

 

Monte Carlo simulation  

 

Model configuration 



With the above-defined identification criteria, we assume that people have only one home 

location and at most one work location. The additional locations, which are occasionally 

accessed for home or work activities, are regarded as a stop for non-mandatory activities. In 

addition, only individuals, who work in areas different from their home locations and who 

work at least two days per week, are included for the analysis of workers’ travel behavior.  

 

3.2.3. Identification of stop locations 

After the identification of the distinct home and work locations for each user, the remaining 

locations in the call-location-trajectories are either stop-locations where people pursue non-

mandatory activities or non-stop-locations.  Each of these non-stop-locations can be further 

divided into either a trip-location where the user is traveling, or a false-location that is 

wrongly documented due to location update errors. The location update errors normally occur 

when call traffic is busy in the user’s real location area, and consequently this location is 

shifted to less crowded cells for short time periods, causing location area updates, without the 

users’ actual moving (e.g. Calabrese et al., 2011).  

In addition, for the identified home or work locations, some occurrences of the locations 

could also be caused by non-stop reasons, e.g., people travelling in the same area as their 

home locations when making calls. Therefore, each location occurrence in the call-location-

trajectories will be classified into stop-locations and non-stop ones, regardless its activity 

type.  

The scenarios, where the two types of non-stop-locations could occur, can be illustrated with 

the call records of two typical users. The trajectory from the first user, identified as user265, 

is l1(17:06,17:43) -> l2(17:51) -> l3(17:56,19:41) -> l4(21:55), where 4 locations are 

observed, with the call-location-duration as 37, 0, 105 and 0 min respectively. Each of these 

locations needs to be identified as either a stop visit or just a passing-by place. The trajectory 

of the second user, i.e. user72, is l1(13:21,20:11) -> l2(22:00) -> l3(22:02) -> l4(22:05) -> 

l2(22:07,23:12). This user has 5 location updates, with the call-location-duration as 410, 0, 0, 

0 and 65 min respectively.  It should be noted that the time interval between the first and 

second visit to location l2 is only 7 min. Although there is a possibility that this user may have 

travelled at a high speed during this period, the temporary interruption of l2 by the extra 

locations l3 and l4 in such a short interval is most likely resulted from the location update 

errors. Consequently, locations l3 and l4 are falsely connected to the user’s mobile phone at 

22:02 pm and 22:05 pm although he/she had been actually remaining at location l2 during this 

period.  

In order to identify the stop-locations, the approach proposed in the study (Liu et al., 2014) is 

used, which consists of the following steps. (i) For each location li, the call-location-duration 

is first examined. If it is longer than a certain time limit, denoted as Tcall-location-duration, this 

location is considered as a stop-location. (ii) Otherwise, if the condition does not hold (e.g. 

only a single call made at li), and if the location appears in the middle of a daily sequence of 

n, i.e. 1 < i < n, a second parameter, namely maximum-time-boundary, defined as the time 

interval between the last call time at li’s previous location and the first call time of its next 

location, i.e. T(li+1,1) – T(li-1,ki-1), is computed. If this time period is longer than a threshold 

value, defined as Tmaximum-time-boundary, li is perceived as a stop visit. (iii) When li is in the first or 

last position of a trajectory and the call-location-duration is shorter than Tcall-location-duration, 

there is no sufficient information to estimate maximum-time-boundary for this visit. Thus, all 

the distinct locations, where the user has stayed at least once for conducting an activity over 

the entire survey period, are collected. These locations are considered as potential stop 

locations that are on the user’s daily activity agenda and that are visited either routinely or 

once in a while. If li is one of these locations, it is assumed to be a stop for activity purposes. 

In contrast, if li is the place where the individual has not been observed doing activities, it is 



then considered as a passing-by place or being recorded as a localization error and therefore 

removed.  

After the removal of locations that are either trips or stem from localization errors, all the 

remaining locations from a call-location-trajectory are regarded as stops and formed a stop-

location-trajectory. Based on the above described identification process, if a duration of 30 

and 60 min are used for Tcall-location-duration and Tmaximum-time-boundary respectively, as set up in our 

experiment described in Section 4, the obtained stop-location-trajectories for user265 and 

user72  are l1 -> l3 -> l4 and l1 -> l2 respectively.  

 

3.3. Stop-location-trajectory classification  

Each location li 
in the previously obtained stop-location-trajectories is complemented with its 

function, denoted as activity(li), categorized into home, work and non-mandatory activities, 

represented as ‘H’, ‘W’ and ‘O’, respectively. While H and W encapsulate all activities 

performed at home and work (including school) places respectively; O refers to all activities 

undertaken outside home and work places, differentiated between maintenance activities (e.g. 

shopping, banking or visiting doctors) and discretionary activities (e.g. social visits, sports or 

going to restaurants) (e.g. Arentze & Timmermans, 2004). Travel is implicit in between each 

two consecutive locations of the sequences. 

Various methods have been used to classify activity sequences, mainly based on either a priori 

scheme or a numerical distance measure. A priori scheme aims to cluster the sequences 

according to predefined variables, e.g. socio-demographic factors of respondents or activity-

travel features of the sequences. For example, researches (Spissu et al., 2009) first extract 

activity sequences of all employed people and then divide the sequences into HWH, HOH, 

HOWH, HWOH and HWOWH, depending on whether non-mandatory activities are involved, 

and if so, on when these non-mandatory activities are conducted. This classification method 

provides a simple way to build the clusters and to analyze the correlation between the 

behavior of each cluster and the socio-demographic characteristics of the corresponding 

individuals. Numerical distance measure methods, on the other hand, classify activity-travel 

sequences based on some measures of distances between the sequences, such as the number of 

identical activities (e.g. Roorda & Miller, 2008) or the similarities of the activities and their 

sequential order derived using sequence alignment methods (SAM) (e.g. Joh et al., 2008; 

Saneinejad & Roorda, 2009). 

In this study, the stop-location-trajectories are classified based on the travel features of the 

sequences, i.e. the number of home based tours on the days. Two types of home-based tours, 

including home-based-work-tour and home-based-non-work-tour, are defined as a chain of 

locations (trips) that starts and ends at home and accommodates at least one work or one non-

mandatory location visit, respectively. Based on this definition, a stop-location-trajectory for a 

working day can be classified into 1-home-based-work-tour (e.g. HWH), 2-home-based-

work-tours (e.g. HWHWH), or 3 (or more)-home-based-work-tours (e.g. HWHWHWH), 

referred as 1_HBWT, 2_HBWT or 3_HBWT, respectively. While for a non-working day, the 

trajectory can be assigned into 1-home-based-non-work-tour (e.g. HOH), 2-home-based-non-

work-tour (e.g. HOHOH), or 3 (or more)-home-based-non-work-tour (e.g. HOHOHOH), 

namely 1_HBNT, 2_HBNT or 3_HBNT, respectively. Apart from the above 6 classes, the 

weekday days when an individual does not make any trips are characterized into an additional 

class, represented as the single letter of H. 

Given a group of users along with the distances between the home and work locations of the 

individuals, referred as d, their stop-location-trajectories can be attributed to the above 

corresponding classes. The relative frequencies of the trajectories in each of the 7 clusters 

over the total number of the sequences, in each particular range of distance d, is referred as 



distance-based-tour-class-distribution, which characterizes the observed probabilities of the 

sequences in each tour class  with respect to the home-work distances. 

 

3.4. Hidden Markov Model construction 

 

3.4.1. Model configuration  

A pHMM is a probabilistic representation that can capture statistical relevant information 

implicit in a group of related sequences. It was introduced into bio-informatics in the 1990s 

(Krogh et al., 1994) and has since been widely used for large-scale protein sequence analysis 

(e.g. Finn et al., 2014). The information extracted from a group of sequence includes: (i) a 

sequence of positions, each with its own distribution overall all possible letters; (ii) the 

possibility for either skipping a position or inserting extra letters between consecutive 

positions.  

In this study, the HMM building process for the two classes, including 1_HBWT and 

1_HBNT, are described. The similar process applies to the remaining tour classes including 

2_HBWT, 3_HBWT, 2_HBNT and 3_HBNT. 

A HMM for the 1_HBWT class is designed as follows (see Fig. 3). It divides a sequence into 

four different parts, including: (i) before-going-to-work sub-sequences which represent the 

activities and travel undertaken before leaving home to work, e.g. HOH; (ii) commute sub-

sequences which account for the activities and travel pursued during the home-to-work and 

work-to-home commutes respectively, e.g. HOW or WOH; (iii) work-based sub-sequences 

which accommodate all activities and travel conducted from work, e.g. WOW; (iv) after-work 

sub-sequences which comprises the activities and travel engaged after arriving home from 

work, e.g. HOH. 

Based on the above segmentation of the sequences, a total of 8 states is defined, including the 

start home, work and end home locations, defined as m1,  m2 and m3 respectively, and the 

other stop locations corresponding to each part of the sequences, defined as m1,1, m1,2, m2,1, 

m2,2 and m3,1, respectively. Each of these states can emit an letter, i.e. x, from all possible 

types of x governed by a distinct emission probability distribution, defined as pemit(x|state).  

At each of the states, maximum 3 possible transition probabilities s  are assigned to describe 

the likelihood of movement between each two connected states as follows. (i) Transitions 

linking state mk (k=1, 2) to the other 3 possible states, including: to state mk,1, i.e. )|(
1, mm kk

 , 

when a trip is made in the morning before going to work (k=1) or at noon during work period 

(k=2); to state mk,2, i.e. )|(
2, mm kk

 , when an activity is conducted during the commuting way 

from home to work (k=1) or from work to home (k=2); to state mk+1, i.e. )|( 1 mm kk , when 

no stops occur on the commuting ways from home to work (k=1) or from work to home 

(k=2). (ii) Transitions from state m3 to only a state m3,1, i.e. )|(
31,3 mm  , when a trip is made 

in the evening after coming back from work. (iii) Transitions from state mk,1(k=1, 2, 3) to 

state mk, i.e.  )|(
1,mm kk

 , when the person returns back home after finishing all activities 

outside in the morning or in the evening (k=1 or 3), or when the person returns to work after 

finishing activities outside at noon (k=2); or to itself, i.e. )|(
1,1, mm kk

 , when an extension of 

multiple activities is done in the respective periods. (iv) Transitions from state mk,2 (k=1, 2) to 

state mk+1, i.e.  )|(
2,1 mm kk

 , when all the activities are finished on the commuting way from 

home to work (k=1) or from work to home (k=2); or to itself, i.e. )|(
2,2, mm kk

  when an 

extension of multiple activities is done on the commute trips.  



Apart from the above 8 states for stop locations, an additional End state is added to the end of 

the model, allowing transitions from m3 to the end of the sequence; the corresponding 

transition probability is defined as )|(
3mEnd . 

 
Fig. 3. The HMM for a home-based-work-tour 

 

The above-defined model configuration thus turns the home-based-work-tours into a network 

system of a set of states. States mk (k=1, 2, 3) underline the basic structure of the sequences, 

i.e. the home and work locations, while the introduction of the remaining states 

accommodates the situation where activities are conducted at different periods that are formed 

based on the home and work places. The transition probabilities s  reveal the intensity of the 

conversion between different states (situations). 

Alongside the transition probabilities, the model also accommodates the emission probability 

of letter x at each state, i.e. pemit(x|state). In the current study, variable x represents the type of 

different activities; however, it can also be used to characterize other dimensions of the 

sequences, e.g. travel start time, distances and travel modes, thus capable of modeling 

multiple aspects of activity-travel behavior.  

Fig. 4 illustrates the HMM for the 1_HBNT class. It has only 3 states, including the states for 

start and end home locations, i.e. m1 and m2, respectively, and the third one, i.e. m1,2, 

representing locations for non-work activities conducted during the home-based tour. 

 

 
Fig. 4. The HMM for a home-based-non-work-tour 
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3.4.2. Model parameter estimation  

After the model structure is defined, the next step involves the estimation of the specific 

parameters including the transition probabilities and emission probabilities. The probabilities 

s  and pemit(x|state) can be obtained by the observed frequencies of the letters at the 

corresponding periods of the sequences (e.g. Durbin et al., 1998). Let A(r|q) as the 

frequencies of the transitions from a state, denoted as q, to another state, denoted as r, and 

E(x|state) as the frequencies of letter x at state state, respectively. The estimators for the 

parameters are given by the following formula. 
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Where, x, x’{set of all letter types at the state}. 

 

In the parameter estimation process, a pseudocount is set, which is a small value added to 

A(r|q) or E(x|state) if the instances of the corresponding observed cases are zero. This is to 

adjust the probability of rare but not impossible events so that the events are not completely 

excluded. The relative values of pseudocounts represent the prior knowledge on the expected 

probabilities of the corresponding events. 

3.5. Monte Carlo simulation 

 

3.5.1. The whole process of the simulation 

Using the constructed HMMs and the distance between the home and work locations of an 

individual, the Monte Carlo method can be used to generate a new sequence. Monte Carlo 

simulation is a process that approximates solutions to quantitative problems, e.g.  determining 

the properties of some phenomenon or behavior, through repeated statistical sampling. In this 

process, the investigated system is simulated a large number of times; for  each simulation, all 

of the uncertain parameters in the system are sampled according to their respective 

probabilistic distribution. The simulation results are a large number of separate and 

independent realizations, each representing a possible “future” for the system. The results can 

be used for subsequent statistical analysis on the properties of the system. 

In the simulation process, we first generate a tour class according to the probabilistic 

distribution characterized in the distance-based-tour-class-distribution. From this selected 

class, an entire daily sequence for this individual is then simulated based on the HMM derived 

from the specific class. The detailed simulation procedure based on the HMM for 1_HBWT 

class is described in the following section; a similar process can be applied to other classes 

using the respective models. 

 

3.5.2. HMM simulation 

Given distance d and the HMM as demonstrated in Fig. 3, the new sequence, i.e. s, is 

generated as follows. (1) Sequence s is initiated by the start home activity at state m1 (i.e. 

s=H). (2) The next state is decided among the three states of m11, m12 and m2, according to the 

corresponding transition probabilities of )|(
111 mm , )|(

112 mm and )|(
12 mm . (3) If m11 is 

chosen, activity x emitted from probability distribution pemit(x| m11) is added to the sequence 

(i.e. s=Hx). At this state, a next transition needs to be chosen between going back to m1 (i.e. 

s=HxH ) or continuing on this state (i.e. s=Hxx), based on )|(
111 mm  and )|(

1111 mm  

respectively. If the latter situation is selected, the loop at m11 continues until a transition to the 



home location at m1 occurs (i.e. s=Hxx..xH). (4) If m12 is selected, x is added to the sequence 

(i.e. s=Hx ). At m12, a new transition is decided to either move to m2 (i.e. s=HxW ) or remain 

on this state (i.e. s=Hxx), governed by probabilities )|(
122 mm  and )|(

1212 mm  respectively. 

The remaining on this state continues until a transition to m2 is chosen (i.e. s=Hx..xW). (5) If 

m2 is selected, activity W is added to the sequence (i.e. s=HW). (6) The similar procedure 

described in steps 2-5 is repeated for next states including m2 and m3, using the corresponding 

transition probabilities. The simulation process finally stops when the transition from m3 to 

the End state of the model is realized based on )|(
3mEnd .  

4. Case study 

 

In this section, adopting the proposed approach and using the mobile phone dataset described 

in Section 2, we carry out a case study. In this process, a set of stop-location-trajectories for 

workers are first identified. The corresponding individuals are then randomly divided into two 

parts with the ratio as 4 to 1, for model training and validation, respectively. From the training 

set, the stop-location-trajectories are classified; in each cluster, a HMM is constructed. Based 

on the derived HMMs, new activity-travel sequences for individuals in the validation set are 

simulated.  

 

4.1. Stop-location-trajectory construction 

 

4.1.1. Work-start-time and work-end-time 

Fig. 5 describes the distribution of the frequencies of calls made in each hour of the 

weekdays, showing that from 8am in the morning, calls start to increase considerably and 

reach their peak at noon; while at 20pm in the evening, a second climax of call activities starts 

to occur. These two morning and evening temporal points are chosen as the work-start-time 

and work-end-time, respectively. 

 

 
Fig. 5. The distribution of the time of calls 

 

Based on the pre-defined criteria for home and work location identification, 319,492 users 

(i.e. 99.9% of the total users in the mobile phone dataset) have their home locations 

discovered. The remaining 0.1% are those who made no calls at weekend or in the night 

period from 20pm to 8am across the two surveyed weeks. As a result, their homes cannot be 

spotted by these rules. Meanwhile, 89,643 users are screened out as employed people, if they 

work between 8am and 20pm at least two weekdays per week. By contrast, those who work in 

the same location as their homes, who work at night shifts or at weekends, who work less than 



two days a week, or who make few calls at work, are left out. Although the final obtained 

workers account for only 28.1% of the total users in the selected dataset, they represent the 

part of population who regularly travels to work during the day time period among weekdays, 

thus they  are an important target group for travel behavior analysis and transport network 

management. All the 7,897,854 call records of these individuals during weekdays are 

extracted, and the consecutive calls made at a same location are aggregated. This reduces the 

records to 3,479,532 locations. The locations for a same user on a same day are linked 

according to the temporal order, resulting in total 781,817 call-location-trajectories that will 

be used  for further analysis.  

 

4.1.2. Tcall-location-duration and Tmaximum-time-boundary  

For each location in the call-location-trajectories, a distinction must be made between stop-

locations and non-stop ones which include trip- and false-locations. Two parameters 

characterize this identification process. The first one Tcall-location-duration defines the minimum 

time interval at a location, above which the location is considered as a possible stop. The 

other parameter Tmaximum-time-boundary estimates the total time that is required to travel from the 

previous cell to the current one and from the current one to the next cell.  In addition, it should 

also be able to detect location update errors which usually occur in a short time interval.  

In this experiment, Tcall-location-duration and Tmaximum-time-boundary are set as 30 min and 60 min 

respectively. Under these thresholds, 33.3% of all the locations from the call-location-

trajectories are removed; the remaining locations in these sequences form the set of stop-

location-trajectories. The average length of these trajectories is 2.97. Based on the assumption 

that a user starts and ends a day at home, the stop-location-trajectories are added with a home 

activity at the beginning and/or end of the sequences if the home activity is absent from these 

two positions. All the obtained stop-location-trajectories are divided into training and 

validation sets. 

 

4.2. Stop-location-trajectory classification 

The obtained stop-location-trajectories from the training set are classified according to the 

number of home-based-work-tours and home-based-non-work-tours accommodated in the 

sequences. The average frequencies of sequences in each class relative to the total number of 

the sequences are 63.05%, 5.29%, 0.84%, 22.31%,  1.86%, 0.26%  and 6.39% for classes 

1_HBWT, 2_HBWT, 3_HBWT, 1_HBNT, 2_HBNT, 3_HBNT and H, respectively. The 

sequences in each class are further split based on distance d of the corresponding users. Fig. 6 

shows the distribution of the sequence frequencies in each class, across each kilometer of d. In 

this figure, each curve represents a particular class.  It is noted that, as d increases, most of the 

curves do not remain constant; variation in the distribution of the frequencies within each of 

the classes is observed. For instance, for the top curve representing the most typical class 

1_HBWT, the frequencies increase as d gets larger but starts to decrease when d reaches a 

certain distance, e.g. 11km. While for the second top curve featuring class 1_HBWT, the 

frequencies show a stable rising trend as d increases. It suggests that, given a certain distance 

d, the observed sequence probabilities of each tour class slightly differ from the average 

frequency over all distance values in the class. 

 

 



 
Fig. 6. The distribution of sequence frequencies in each class over home-work distances 

 

Based on the observation from Fig. 6, we thus divide d into 4 intervals including  2km, 2-

6km, 6-11km, and >11km. The frequencies of each class in each of these intervals characterize 

the distance-based-tour-class-distribution. Table 2 lists the obtained results; the average over 

all distance values are also presented as a comparison. This table further demonstrates the 

variations among different distance intervals. For instance, for class  1_HBWT, when d 

increases, the frequencies become higher, implying that more people conduct one home-

based-work-tour for more days. However, when d is larger than a certain value, e.g. 11km, 

people start to perform less home-based-work-tours. Instead, they tend to stay at home or only 

conduct 1 tour for non-work purposes, as reflected from the frequencies of  28.62% and 

7.87% in the interval of d>11km for classes 1_HBNT and H which are the highest probabilities 

over all distance intervals in these two classes. 

A further test on this table obtains a statistics of 30569.65 with a significant p-value (i.e. 

<0.0001), signaling considerable differences in the frequencies across various distance 

intervals. 
 

Table 2. The sequence frequencies of each class in each of the distance intervals (%) 

Distance(d) 1_HBWT 2_HBWT 3_HBWT 1_HBNT 2_HBNT 3_HBNT H Total 

 2 61.00 9.76 1.70 19.42 1.57 0.15 6.41 100 

2-6 66.69 5.14 0.77 20.05 1.68 0.21 5.47 100 

6-11 70.05 2.69 0.31 20.15 1.60 0.25 4.95 100 

>11 58.80 1.61 0.20 28.62 2.46 0.45 7.87 100 

Average 63.05 5.29 0.84 22.31 1.86 0.26 6.39 100 

 

 

4.3. Hidden Markov Model construction  

From all the trajectories in each cluster, a HMM is constructed and the corresponding 

parameters are estimated. Table 3 presents the transition probabilities for the model derived 

from the 1_HBWT cluster, with parameter Pesucount being tuned as  0.02.  Based on the 

structure of the model defined in Fig. 3, at the End state m3, transitions including )|(
2, mm kk

 , 

)|(
2,2, mm kk

  and )|(
2,1 mm kk

  are not expected, they are thus represented with  ‘Null’. 



Table 3. Transition probabilities of the HMM derived from the 1_HBWT cluster
 

Locations )|(
1, mm kk



 

)|(
2, mm kk

  )|( 1 mm kk

 

)|(
1,1, mm kk



 

)|(
1,mm kk



 

)|(
2,2, mm kk



 

)|(
2,1 mm kk



 

Start home 

(m1)  
0.02 0.29 0.72 0.02 0.02 0.38 0.62 

Work  

(m2) 
0.18 0.31 0.51 0.24 0.76 0.41 0.59 

End home 

(m3) 
0.05 Null 0.95 0.24 0.76 Null Null 

 

Regarding the emission probabilities pemit(x|state), in this study, as all activities at the other 

stop locations except the home and work places, are classified into a single type O, thus 

x=’O’ and pemit(x|state)=1 for all activities generated at these locations. 

4.4. Monte Carlo simulation  

Based on the derived distance-based-tour-class-distribution and HMMs, new sequences for 

users from the validation set who consist of different workers from those included in the 

training set, are simulated.  In this process, the home-work distance d is first derived from 

each of the users, and a tour class is chosen based on the probabilities described in the 

distance-based-tour-class-distribution. In this case study, only when the 1_HBWT class is 

selected, an entire sequence for the particular user is then further generated according to the 

HMM derived from the corresponding cluster. 

 

5. Comparison of the simulation results with the validation set 

 

To examine the performance of the proposed modelling approach, we compare the sequences 

simulated from the models with the original stop-location-trajectories drawn from the 

validation set. The comparison is carried out in two aspects, including the aspect of individual 

locations, e.g. the average number of locations visited each day, and the sequential aspect of 

the locations. 

 

5.1. The average number of locations each day 

Among all 156374 stop-location-trajectories observed from 18284 users in the validation set, 

61.91% of them fall into the 1_HBWT cluster. The average length of the sequences from the 

considered cluster is 2.79, and it increases to 4.55 after H is added to the two ends of the 

sequences.  

For all the 18284 users, the tour class is first simulated based on their home-work distances. 

This results in 62.92% of the users falling into the 1_HBWT cluster. For the obtained users, 

the entire sequences are generated according to the HMM built from this cluster; the average 

length of the simulated sequences is 4.72, a close match to the average length of the 

sequences in the validation set. 

 

5.2. The sequential aspect of the locations 

From all the validation sequences in the 1_HBWT cluster, 677 types which are formed by the 

various combinations of activity locations in particular orders, are found. While for the 

simulated sequences,  948 types are generated; 520 of them are also observed among the 

validation sequences. Table 4 lists the sequence frequencies for the 13 most prevalent  types, 

each of which accounts for more than 1% of the total number of sequences in the 

corresponding sets.  



The relationship of the sequence frequencies over all the types between the two data sets is 

shown in Fig. 7, with the coefficient R as 0.93. The high value of R suggests that the derived 

HMM model is able to capture the probabilistic distribution of the activity locations and their 

temporal sequencing revealed by the mobile phone data, and can properly represent workers’ 

travel behavior in a study area. As a result, the sequences generated from the derived models 

can accurately reflect  the travel demand in the region.  
 

Table 4. The sequence frequencies for the 13 most prevalent  types in each set (%) 

Types HWH HWOH HOWH HWOWH HWOOH HOWOH HOOWH 

Validation 41.38 11.38 7.97 4.60 3.53 3.26 2.21 

Simulated 35.09 12.29 8.39 4.79 4.92 2.99 3.13 

Types HWOWOH HWOOOH HWHOH HOWOOH HOWOWH HOOWOH  

Validation 1.83 1.34 1.33 1.21 1.12 1.01  

Simulated 1.75 2.01 1.42 1.24 1.12 1.18  

 

 

 
Fig. 7. The correlation of sequence frequencies for each type between actual phone location sequences and 

simulated ones 

 

 

6. Discussions and conclusions 

In this paper, we have developed a new method of modelling workers’ travel demand based 

on mobile phone data. The advantage of this approach is that it does not depend on 

conventional travel data survey methods. The data requirement is fairly simple and its 

collection cost is low. In addition, the massive mobile phone data monitors current travel 

behavior in a large proportion of the population over a long time period. The models derived 

from the data are thus capable of providing a more general and objective representation of 

current mobility demand. Apart from the benefits that are realized by the use of the mobile 

phone data, this approach also provides added value in taking into account the sequential 

constraints of activity-travel patterns into the modelling process. 

Once the models are developed in a region, they can be used to simulate activity-travel 

sequences for each of the employed people in the whole area, given the home and work 

locations of the individuals. The generated sequences can then be aggregated and 

subsequently be employed for travel demand analysis, e.g. the average number of trips made 

in the morning before going to work, on the commuting way, or in the evening after arriving 

at home. The models can also be utilized to forecast travel demand for future scenarios, e.g. 



the displacement of residential areas or the establishment of new industrial sites, which could 

cause changes in the home-work distances of the workers. Furthermore, travel sequences in a 

new region, where no phone data is available, can also be predicted by the models, under the 

assumption that these two regions share similar  activity-travel patterns of individuals, e.g. 

regions from a same country. 

With respect to the performance of the approach, data collected from people’s natural mobile 

phone usage in Senegal in the whole year of 2013 has been used, and the test results show the 

following major strengths of the proposed method. (i) While the average length of daily 

sequences from the 1_HBWT cluster in the validation set is 4.55, a close average value of 

4.72 is achieved for the simulated sequences. (ii) Among all the 677 different types of the 

validation sequences, 520 (e.g. 76.8%) are also observed from the simulated sequence set. 

Particularly, the distribution of sequence frequencies over the 13 most prevalent types shares 

a high level of similarity between these two sequence sets. (iii) An overall comparison on the 

frequency distribution over all the 677 sequence types between these sets reveals a correlation 

of  0.93. All the above results suggest that the derived HMM model is able to capture the 

probabilistic distribution of activity locations and their sequential orders revealed by the 

mobile phone data. As a result, the sequences generated from the models can properly 

represent workers’ travel behavior and lead to an accurate travel demand estimation in the 

region. 

Despite the promising experimental results,  the method could be enhanced and extended in 

the future research in terms of data processing, sequence clustering and model building. 

Concerning data processing, firstly, by using a fixed work period (e.g. 8am-20pm on 

weekdays in this experiment), individuals who work during night shifts are ignored. The 

prediction accuracy of home and work locations could be improved by taking into account the 

detailed information on individuals’ work regime. Secondly, in the process of stop location 

identification, two parameters, namely Tcall-location-duration  and Tmaximum-time-boundary are used. Tcall-

location-duration  defines the maximum time duration needed to traverse a single cell area;  while 

Tmaximum-time-boundary estimates the total time required for the travel from a previous cell to the 

current one and from the current one to the next cell. Instead of using overall threshold values 

of 30 min and 60 min for these two parameters respectively,  the settings could be tailored to 

each particular individual and cells, through the use of the individual’s travel speed and the 

size of the cell areas.  

In terms of sequence clustering, the number of home-based tours encoded in the sequences as 

well as the home-work distances of the corresponding individuals are used as the classifiers. 

However, travel behavior is shaped by a range of multiple factors including the conditions of 

land use and transportation network as well as the social-economic characteristics of 

individuals. The social-economic information of the phone users could be inferred based on 

the mobile phone data, and the information could be integrated into the clustering process. 

As to model building, improvement can also be made in terms of the following aspects. 

Firstly, in the designing of the HMM (see in Fig. 3), locations among different parts of the 

sequences are modelled independently, the correlation between these parts is thus 

unaccounted for. The interdependencies of activities performed on a day should be integrated 

in the modeling process, e.g. through conditional probabilities. Secondly, instead of 

considering only one-dimensional location sequences consisting of home, work and other stop 

locations, more dimensions of activity-travel patterns could be characterized using the 

emission probabilities pemit(x|state) at each state of the HMM, thus modelling the multiple 

aspects of travel behavior. For instance, the locations for other activities O can be 

distinguished among detailed activity categories. A number of research has been dedicated to 

annotating activity purposes on the mobile phone locations (e.g. Liu et al., 2013). Similar to 

activity types, other dimensions, e.g. travel start time and travel distances, can also be 



incorporated into the models. In particular, the travel distance at a stop location should be 

measured relative to the home or work place, and the distribution of the travel distances at this 

stop is characterized with the emission probability, i.e. pemit(x|state). Once the model is built 

and a new sequence is simulated for an individual, the specific geographic position of this 

stop location can be derived based on the obtained distance value, the home or work position 

of the corresponding individual,  as well as the land use data describing the distribution of 

activity locations surrounding the home or work place.  

When being faced with the challenge of acquiring both mobile phone data and real travel 

survey data from a same or similar study region, in this study the modeling results are tested 

using mobile phone data of users who are different from those involved in the model training 

process. However, due to the event-driven nature of the data collection, mobile phone data 

only reviews the presence of a user at a certain location and time point when his/her phone 

device makes GSM network connections. The places, where the individual has stayed but no 

calls were made, are missed. Thus, in the future research, the proposed method must be 

compared against a real travel survey from the study region or from a region with a similar 

context. The discrepancies between the simulated sequences and the actual travel sequences 

could be examined and handled e.g. through an overall scaling factor used by the research 

(Shan et al., 2011) described in Section 1. Alternatively, the technique developed in the study 

(Liu et al., 2014), which  transforms each of the stop-location-trajectories into actual travel 

sequences, could be adopted. The obtained actual travel sequences can subsequently be used 

for the construction of the HMMs. 

With the rapid development of mobile phone based services in the future (e.g. Liu & Chen, 

2013;  Monares et al., 2013), the amount of location data, which is recorded not only when 

people make calls but when they use the application services on their phones, will 

continuously grow. The data will reveal more activity locations and travel episodes, thus 

providing another prospect of improving the model performance and leading to an even better 

travel demand estimation. 
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