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Abstract
Weuse kineticMonte Carlo simulations to investigate current fluctuations in boundary driven
generalized exclusion processes, in different dimensions. Simulation results are in full agreementwith
predictions based on the additivity principle and themacroscopic fluctuation theory. The current
statistics are independent of the shape of the contacts with the reservoirs, provided they are
macroscopic in size. In general, the current distribution depends on the spatial dimension. For the
special cases of the symmetric simple exclusion process and the zero-range process, the current
statistics are the same for all spatial dimensions.

1. Introduction

A system connected to two particle reservoirs at different densities relaxes to a nonequilibrium steady state
(NSS), with a particle current flowing through it. The description of the fluctuations of this current has recently
receivedmuch attention [1–15]. In equilibrium, thermodynamic potentials are related to exponentially unlikely
fluctuations away from the average [16], as was already discussed by Einstein [17]. Analogously, one can
construct nonequilibrium thermodynamic potentials from the study of exponentially unlikely current and
density fluctuations away from theNSS [18]. A theoretical framework for this approach is provided by the
macroscopic fluctuation theory (MFT) [19–23].

Using theMFT, Akkermans and co-workers studied current fluctuations in diffusive systems connected to
two reservoirs [24]. They showed analytically that for a systemof arbitrary (butfixed) dimension, the ratio of the
cumulants of the current distribution is independent of the shape of the system and the shape of the contacts
with the reservoirs. This derivation is valid if both the system and the contacts with the reservoirs are
macroscopic in size. The analytical predictionwas tested by numerically calculating the ratio of thefirst two
cumulants, called the Fano factor, for the symmetric simple exclusion process (SSEP). In two dimensions,
convergence to the analytical predictions was found for large system sizes by assuming a power-law behavior and
extrapolating the numerical data. In three dimensions no convergence was found. The numerical results were,
however, obtained for contacts that are notmacroscopic in size. Akkermans et al therefore argued that the
discrepancy between numerics and theorywas caused by too small contact sizes with the reservoirs.

Under certain conditions, the asymptotic current distribution of a one-dimensional system that is described
by theMFT can be calculated from an additivity principle (AP) postulated by Bodineau andDerrida [25]. The
validity of this AP has been confirmed in several one-dimensional systems, both analytically [25–29] and
numerically [2, 29–32]. An interesting question is if one can use the AP to predict the current distribution in
higher-dimensional systems. This is especially important becausemany experimental systems are higher-
dimensional. The results from [24] indicate that it is, indeed, possible to do this. So far, only a few studies have
addressed this question. Saito andDhar studied heat fluctuations in a deterministic system connected to
stochastic reservoirs [33]. They found that theAP can predict the current distribution in three dimensions, both
for diffusive and anomalous heat transport. Hurtado, Pérez-Espigares, del Pozo, andGarrido confirmed the
validity of theAP for the two-dimensional Kipnis–Marchioro–Presutti (KMP)model [2, 34].
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We study numerically the first three cumulants of the current distribution of boundary driven generalized
exclusion processes (GEPs) [35]. The dynamics is simulated using kineticMonte Carlo (kMC). The simplest
case of aGEP is the SSEP, where only one particle can occupy each lattice site. In our simulations of the SSEPwe
consider contacts with the reservoirs that aremacroscopic in size. Complete convergence of the Fano factor to
the analytical prediction of [24] is found in two dimensions. For three dimensions the data indicate convergence
for large system sizes.We proceedwith the study of the diffusion coefficient and the current fluctuations in a
GEPwheremaximally two (interacting) particles can occupy each lattice site. Thefirst three cumulants of the
current distribution are calculated by combining the APwith the results from [24]. In one and twodimensions
thefirst three cumulants obtained fromkMCare in agreement with the predicted values. In three dimensions
thefirst two cumulants are in agreementwith theAP. The statistics for the third cumulant is insufficient for a
reliable comparison. Because the diffusion coefficient depends on the dimension, the current statistics change
for different dimensions. The current statistics are independent of the spatial dimension for the SSEP and the
zero-range process (ZRP).

The paper is organized as follows. In section 2we introduce the quantities that are studied. It is explained
how to predict the current distribution in any dimension from theAP. In section 3we present the numerical
results for the SSEP. TheGEP is defined in section 4.1. The behavior of the diffusion coefficient in different
dimensions is discussed in section 4.2. Current fluctuations are studied in section 4.3. A conclusion is presented
in section 5.

2. Theory

Consider a one-dimensional systemof length L in contact with two particle reservoirs, calledA andB, at
densities ρA and ρB. The dynamics in the bulk of the system is diffusive, i.e., there is no external driving in the
bulk. The total number of particles that have passed through the system in the time interval t[0, ], in theNSS, is
denoted byQt. TomeasureQt one could, e.g., count the net number of particles entering the system from
reservoirA.Qt is a stochastic quantity and is described by a probability distribution P Q( )t .We study P Q( )t in
the limit ↑ ∞t and ↑ ∞L . Bodineau andDerrida showed that, by postulating anAP, one can calculate the
cumulants of P Q( )t in a one-dimensional system from the integrals Im [25, 26]

∫ ρ σ ρ ρ=
ρ

ρ −I D ( ) ( ) d . (1)m
m 1

B

A

ρD ( ) is the diffusion coefficient. It is defined by Fick’s first law

ρ Δρ= −j D
L
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where = 〈 〉j Q tt is the average particle flux (〈 〉· denotes the average over P Q( )t ), andwith Δρ ρ ρ= −B A
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The ratio of the first two cumulants is called the Fano factor
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Consider all density profiles ρ ′x t( , )j , with ⩽ ⩽x L0 and ⩽ ′ ⩽t t0 , that lead to the same particle flux j. In
the long-time limit ↑ ∞t , only themost probable (optimal) of these profiles is relevant for the current
distribution [23]. TheAP is valid as long as the optimal profiles are time-independent: ρ ρ′ ≡x t x( , ) ( )j j . The
point at which the optimal profile becomes time-dependent corresponds to a dynamical phase transition
[22, 36–38]. For example, for one-dimensional systems on a ring, large fluxes are created by travelingwaves [36–
38].One can show from theMFT that a sufficient condition on ρD ( ) and σ ρ( ) for the validity of theAP is [22]
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ρ σ ρ ρ σ ρ ρ″ ⩽ ′ ′ ∀D D( ) ( ) ( ) ( ), . (8)

Note that (8) is a sufficient but not a necessary condition.
A qualitative explanation of the AP goes as follows. The system is divided into subsystems. Their density

profiles are considered to be independent of each other, except at the contacts between them. The subsystems
should be so small that they are close to (local) equilibrium, but yet be large enough to allow for coarse graining.
In this case, each subsystemhasGaussian currentfluctuations around its deterministic behavior (2), which is
completely described by ρD ( ) and σ ρ( ). By calculating the optimal densities at the contacts between the
subsystems, onefinds the cumulant generating function (CGF) of the current distribution. From this CGF one
can calculate (4), (5), (6).Hence, the AP allows one to calculate the current distribution arbitrarily far from
equilibriumusing only the equilibriumquantities ρD ( ) and σ ρ( ).

We now consider systems in ⩾d 1dimensions. Fick’sfirst law is then given by

�ρ ρ⃗ = − ⃗j D( ) , (9)

with ρD( ) a symmetric ×d d matrix. If the diffusion is isotropic, which is the case considered here, one can
write ρ ρ= ,DD( ) ( )d d , with ρD ( )d a scalar function depending on the dimension. A sufficient condition that
excludes the possibility of a dynamical phase transition is (8)with the scalar functions ρD ( )d and σ ρ( )d [22].

Akkermans et al studied current fluctuations in higher-dimensional diffusive systems [24]. The shape of the
system and the contacts with the reservoirs are taken arbitrary, butmacroscopic in size. If the optimal density
and current profiles are time-independent, theMFTpredicts that the CGFof the system in d dimensions μ λ( )d
equals [24]

μ λ κμ λ=( ) ( ), (10)d 1

with κ a constant that depends on the shape of the system and shape of the contacts with the reservoirs. The
calculation of κ is explained in appendixD. μ λ( )1 is the CGF of a one-dimensional systemdescribed by ρD ( )d

and σ ρ( )d . Since one assumes that the optimal density and current profiles are time-independent, μ λ( )1 can be
calculated from theAP, by using ρD ( )d and σ ρ( )d in (1).

3. Symmetric simple exclusion process

The SSEP is a stochastic lattice gas where particles interact by exclusion, i.e., each site can containmaximally one
particle. Each particle attempts to hop to its nearest neighbors with unit rate. A hopping attempt is successful if
the site is empty. The distance between two sites is equal to one. For the SSEP ρ =D ( ) 1and σ ρ ρ ρ= −( ) 2 (1 )
in any dimension. (8) is therefore always satisfied.We consider reservoirs with densities ρ = 1A and ρ = 0B . A
calculation from theAP [25] or an exactmicroscopic derivation [39] shows that =F 1 3 in one dimension.
Since ρD ( ) and σ ρ( ) are independent of the dimension, =F 1 3 in any dimension. It is, however, important
that the size of the contacts scales with the system size, therebymaintaining afinite fraction of the boundary in
contact with the reservoirs. The numerical computation of the Fano factor in [24] was performed for systems
where this scaling is absent.We present simulations inwhich the contacts do scale with the system size.

The dynamics is simulated using a kMCalgorithm, see appendix A.How the Fano factor is computed from
the simulation data is explained in appendix B. In two dimensions we consider squares of size ×L L and in three
dimensions cubes of size × ×L L L. The contact between the system and the reservoirs ismodeled as lattice sites
whose densities arefixed and uncorrelated from the rest of the system, as in [24]. The shape of the contacts is
illustrated infigure 1.

The numerical results for the Fano factor are presented infigure 2(a). For two dimensions the Fano factor
has converged to 1/3 at ≈L 40. This extends the extrapolation presented infigure 3 of [24].We determined
numerically that κ ≈ L0.663 for the geometry infigure 2(a), see appendixD. The average current indeed
converges to 〈 〉 ≈L Q t L0.663t , compared to 〈 〉 =L Q t 1t in one dimension (data not shown). For three
dimensions convergence to 1/3 is not yet attained at L=15.However, the data indicate convergence to 1/3 for
larger system sizes. For the same distance L between the two reservoirs, the Fano factor in three dimensions is
lower than in twodimensions. One therefore expects convergence before L=40 in three dimensions. In
figure 2(b)we plot the Fano factor in three dimensions as a function of L1 2. There is no specific reason to
assume that this is the correct convergence law.We choose this scaling becausewewant to compare our results
withfigure 4 of [24]. A L1 2 fit indicates an → ∞L limit of F=0.3344, with one-sigma error bar σ = 0.0018.
Thefit was performed using themethod of least squares withweighted error bars [40]. The extrapolation is in
agreementwith the expected value of =F 1 3. Our numerical results validate the conjecture from [24] that the
observed discrepancy between numerics and theory is caused by too small contacts with the reservoirs.
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4.Generalized exclusion processes

4.1. Themodel
Recently, we have studied the diffusive behavior of a latticemodel of interacting particles [41–43]. The original
motivationwas the study of diffusion in nanoporousmaterials [44]. Some of thesematerials have a structure
consisting of cavities connected by narrowwindows [45], as illustrated in one dimension infigure 3. Each cavity
can be identified as a lattice site and can contain between 0 and nmax particles. The distance between two lattice
sites is taken equal to one. The length of the system is the distance between the two reservoirs = +L N 1, withN

Figure 1.The type of contacts used for the SSEP in two dimensions (a) and in three dimensions (b). The black dots are sites with a
particle density of 1 (A) or 0 (B), whose state is uncorrelated from the rest of the system. In twodimensions, 1 2 of the lower left is
connected to reservoirA and 1 2 of the upper right is connected to reservoirB. In three dimensions, 2 3 of the lower left is connected
to reservoirA and 2 3 of the upper right is connected to reservoirB.

Figure 2. (a) The Fano factor with one-sigma error bars for the SSEP, for squares ×L L and cubes × ×L L L as depicted infigure 1.
The lines are a guide to the eye. The two-dimensional results show a convergence to 1 3 at ≈L 40. The three-dimensional results have
not yet converged. (b) The three-dimensional data as a function of L1 2 for ⩾L 9. The thin black line is a L1 2 fit using themethod of
least squares withweighted error bars. The thick black lines are one-sigma error bars on the → ∞L limit predicted by thefit.

Figure 3.A latticemodel of a nanoporousmaterial. Each cavity (upper drawing) ismapped to a lattice site (lower drawing) and
contains between 0 and nmax particles (here =n 2max ). On the boundaries the system is connected to cavities that are uncorrelated
from the system. A cavity containing n particles has equilibrium free energy F(n).
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the number of cavities. A cavity containing n particles has an equilibrium free energy F(n) that depends solely on
the number of particles it contains. If the system is in equilibrium at chemical potential μ and inverse
temperature β = −k T( )b

1 (with kb the Boltzmann constant), the probability to observe n particles in any cavity is
equal to

μ μ= β μ− − −p ( ) [ ( )] e , (11)n
F n neq 1 [ ( ) ]

with  the grand-canonical partition function

 ∑μ = β μ

=

− −( ) e . (12)
n

n
F n n

0

[ ( ) ]
max

Averages over the equilibriumdistribution (11) are denoted by 〈 〉· , e.g.,

∑μ μ=
=

n np( ) ( ). (13)
n

n

n
0

eq
max

(Whether 〈 〉· denotes the average over μp ( )n
eq or P Q( )t is always clear from the context.) Particles jump from a

cavity containing n particles to a cavity containingm particles with rate knm. These rates obey local detailed
balance = + − + −p p k p p kn m nm m n m n

eq eq
1

eq
1

eq
1, 1. The reservoirs aremodeled as cavities whose probability distribution is

uncorrelated from the rest of the system. The rates at which a reservoir cavity at chemical potential μ adds ( +kn )
or removes ( −kn ) one particle from a cavity containing n particles are

∑ ∑μ μ= =+

=

−

=

−
k k p k k p( ); ( ). (14)n
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mn m n
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n
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1
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Thismodel is aGEP [35]with a stochastic thermodynamical interpretation for the equilibrium statistics and
dynamics.When defined like this it is an adequatemodel for the understanding of the equilibrium and diffusive
behavior of particles in nanoporousmaterials [41–43]. For =n 1max themodel reduces to the SSEP. AZRP [46]
is defined by rates that only depend on the cavity fromwhich the particle jumps.Hence, onefinds a ZRP for

= ∞nmax and =k knm n.
In the following, we fix the parameters to =n 2max and β = 1. The free energy can bewritten as

= + +F n n cn f n( ) ln ! ( ), with c a constant [41, 42]. Thefirst term accounts for the indistinguishability of the
particles. The linear term cn is the ideal gas contribution. f(n) is nonzero because of particle interactions, and is
called the interaction free energy. Note that a linear term in F(n) is equivalent to adding a constant to the
chemical potential μ (11). A linear termdoes therefore not influence the equilibrium statistics at a given particle
concentration. The rates we consider are

= − − + + − −k ne . (15)nm
f n f m f n f m[ ( 1) ( 1) ( ) ( )] 2

It is clear that a linear term in F(n) (or f(n)) also does not influence these rates. Hence, we can rescale F(n) so that
= ≡f f(0) (1) 0without loss of generality. All possible interactions are then described by f(2). In the following

we consider attractive particles <f (2) 0. In this case, the formof the transition rates (15) can be rationalized
from transition-state theory [42]. Furthermore, for this choice of rates the diffusive behavior agrees with
experiments of attractive particles in nanoporousmaterials [41].

Figure 4. ρD ( ) for = −f (2) 2.5 and =n 2max in one, two, three, and infinite dimensions. The error bars are smaller than the symbol
sizes.
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For an isothermal system, whichwe consider here, ρD ( ) and σ ρ( ) are related by the following fluctuation–
dissipation relation [47]

σ ρ ρ κ ρ ρ= k T D( ) 2 ( ) ( ), (16)b
2

with κ ρ( ) the isothermal compressibility. One knows from statistical physics that κ ρ( ) can bewritten as

κ ρ β= −V

n

n n

n
( ) , (17)

2 2

withV the volume inwhich the average 〈 〉n and particle fluctuations 〈 〉 − 〈 〉n n2 2 aremeasured. Because particles
in different cavities do not interact, one can take the averages over one cavity,V=1 and ρ = 〈 〉n . One thenfinds
for σ ρ( ) (16)

σ ρ ρ= −n n D( ) 2( ) ( ). (18)2 2

Regarding notation, since ρ = 〈 〉n weuse ρ and 〈 〉n interchangeably. Also, averages 〈 〉· are a function of the
chemical potential of the reservoirs. These can, however, be straightforwardly converted to densities via (13). In
this paper wewrite everything as a function of the density.

From (18) onefinds that Im (1) can bewritten as

∫= − −
I D n n n n( ) 2( ) d , (19)m

n

n
m m2 2 1

B

A ⎡⎣ ⎤⎦

where 〈 〉n A and 〈 〉n B are the average number of particles in, respectively, reservoir cavityA andB. One can
compute Im by numerically simulating 〈 〉D n( ) and analytically calculating 〈 〉 − 〈 〉n n2 2 from μp ( )n

eq .

4.2.Diffusion coefficient
Wehave studied ρD ( ) in thismodel both numerically and analytically [41–43]. From these studies one can
conclude that ρD ( ) is, in general, influenced by correlations (see also [48]). Since the effect of correlations
changes and is actually expected to diminishwith increasing dimension, the function ρD ( )depends on the
dimension [42, 48]. If the effect of correlations upon the diffusion is completely neglected one can show that

ρD ( ) is given by [41, 42]

∑∑ρ =
−

=D
k

n n
k p p k( ) , . (20)

n m
n m nm2 2
eq eq

This result is valid for a (hyper)cubic lattice in any dimension. Because one arrives at (20) by neglecting all
correlations, it could be argued that in the limit of infinite dimension ρD ( ) converges to (20). Althoughwe do
not have a rigorous proof of this statement, it is confirmed by numerical evidence given below (see also [42]).We
therefore denote the results that are calculated from (20) as the → ∞d limit. Note that in this limit the integral
(19) can be calculated analytically.

The uncorrelated result (20) is exact for the SSEP ( =n 1max ), which is easily checked by using that ρ=p1
eq

and ρ= −p 10
eq . It is also the same in any dimension [49]. (20) is also exact for the one-dimensional ZRP [43].

Since the particle distribution in theNSS factorizes in any dimension for the ZRP [50], the calculation from [43]
can be straightforwardly extended to higher dimensions to show that ρD ( ) is independent of the dimension. To
our knowledge, these are the only two cases where the uncorrelated result is exact forGEPs. It is, then, no
surprise that ρD ( ) is independent of the dimension.

We consider now = −f (2) 2.5. This is a concave f(n), signifying attractive particles [41].We choose this
interaction because correlations have a large effect for attractive particles. Infigure 4we plot ρD ( ) in one, two,
three, and infinite dimensions.We refer to appendix C for details on the simulations. ρD ( ) appears to converge
with increasing dimension towards the → ∞d result (20). The diffusion coefficient as a function of the
dimension for 〈 〉 ≈n 0.51and 〈 〉 ≈n 1.49 is shown in, respectively, figures 5(a) and (b). The behavior is well
approximated by a d1 dependence. Figure 5(c) shows the same quantity for the interaction =f (2) 0 at 〈 〉 =n 1
(data from [48]). Also here an approximate d1 dependence is found. This dependence can be understood as
follows. Correlations are the result ofmemory effects in the environment [42]. The strongest contribution
comes from the increased probability that a particle jumps back to its previous position. The probability to do so
is approximately d1 2 as there are d2 neighboring cavities. This simple argument indeed suggests that the effect
of correlationswill decrease approximately as ∝ d1 .

4.3. Currentfluctuations
The sufficiency condition (8) is not satisfied for = −f (2) 2.5, as shown in figure 6 for → ∞d (20). The
numerically simulated ρD ( )ʼs do not give smooth results for (8), since one has to calculate the second derivative
of an interpolated function. The qualitative behavior of (8) for finite dimensions is, however, the same as for

6
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→ ∞d . Starting from (20), one sees that (8) does not hold formanyGEPs. One can show analytically that all
GEPs with =n 2max and <f (2) 0 do not satisfy (8). Numerically, one finds that GEPs with =n 2max and

≳f (2) 2.917 also do not satisfy (8). Although (8) is not satisfied for the parameters considered here, we
expect that the AP is still valid. Dynamical phase transitions have only been observed for closed systems
[22, 36–38], not boundary driven ones [30–32]. Also, dynamical phase transitions do not occur for currents
close to the average current [23]. Currents created by time-dependent density profiles, if any, are therefore
highly unlikely, and their influence on the first threemoments of the current distribution is expected to be
negligible.

We study the current statistics for = −f (2) 2.5 and reservoir densities 〈 〉 = =n n 2A max (μ = ∞A ) and

〈 〉 =n 0B (μ = −∞B ). Plots of 〈 〉 =L Q t It 1 and 〈 〉 =L Q t I It c
2

2 1 as a function of the length are shown in,
respectively, figures 7(a) and (b). The values predicted by theAP are given by lines, which are the one-sigma
error bars. These error bars arise from the error bars on the simulated ρD ( )ʼs. Values fromdirect numerical
simulations are also givenwith one-sigma error bars, as explained in appendix B.

Let usfirst consider the one-dimensional data.We estimate convergence in length at ≈L 175. Howwe
check for convergence in time is explained in appendix B. The value for I1, see figure 8(a), is taken from the
highest considered length infigure 7(a). To achieve a good statistics for the second and third cumulant, we have
performed an extensive simulation for length L=251. The simulated values for 〈 〉 =L Q t I It c

2
2 1, =F I I2 1

2,
and 〈 〉L Q tt c

3 for this length are given in, respectively, figures 8(b), (c), and (d). I1 from theAP is slightly higher
than the directly simulated value ( ≈I I 1.00181

AP
1
sim ). Themost likely reason for this is that the simulated ρD ( )

slightly overestimates the real ρD ( ). The diffusion coefficient should bemeasured in the limit of an infinitely

Figure 5.The diffusion coefficient as a function of the dimension, for =n 2max . The data are normalizedw.r.t. the analytical
uncorrelated result (20), which is denoted by ∞D ( ). The black circles are from kMC simulations and the red squares are (20). The
error bars are smaller than the symbol sizes. d1 fits were performedwith themethod of least squares. In all three cases thisfit provides
a good estimate for the diffusion coefficient at infinite dimension, with a relative error ( ∞ ∞ −D D( ) ( ) 1fit ) of (a) 0.3%, (b) 2.0%,
and (c) 0.07%.

Figure 6.Plot of ρD ( ), σ ρ( ), and ρ σ ρ ρ σ ρ′ ′ − ″D D( ) ( ) ( ) ( ) for = −f (2) 2.5 and =n 2max in the limit → ∞d (20). The sufficiency
condition (8) is satisfied if ρ σ ρ ρ σ ρ′ ′ − ″ ⩾D D( ) ( ) ( ) ( ) 0 for all ρ.
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small concentration gradient, while of course the simulations are performed at a finite concentration gradient.
Similarly, one should in principle simulate an infinitely long system, so that all boundary effects have
disappeared. Both approximations cause the numerically simulated ρD ( ) to overestimate the real value [48].

Figure 7. (a) 〈 〉 =L Q t It 1 and (b) 〈 〉 =L Q t I It c
2

2 1, for = −f (2) 2.5, =n 2max , and different lengths in one, two, and three
dimensions. The lines are predictions from theAP, and represent one-sigma error bars. The points with one-sigma error bars are from
a direct simulation of the current. In two (three) dimensions, the directlymeasured cumulants are divided by Ly (L Ly z ), see
appendixD.

Figure 8. (a) I1, (b) I I2 1, (c) F, (d) 〈 〉L Q tt c
3 for = −f (2) 2.5 and =n 2max as a function of the dimension. Predictions from theAP

are denoted by blue error bars without symbol. The limiting case → ∞d is shown as a black line. Direct numerical simulations are
denoted by black diamonds. In two (three) dimensions, the directlymeasured cumulants are divided by Ly (L Ly z ), see appendixD.
Note that the error bar at d=3 in (d) spans approximately 7 times thewhole y axis.
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Furthermore, to calculate I1
AP one has to interpolate the simulated points of ρD ( ), and then integrate this

interpolated function. This could introduce a small numerical imprecision. Since the relative difference is less
than 0.2%we consider this result a very good agreement between I1

AP and I1
sim. Also the variance and the Fano

factor are in very good agreement with the value from theAP: ≈I I I I( ) ( ) 1.00072
AP

1
AP

2
sim

1
sim and

≈F F 0.9989AP sim .
Figure 8(d) shows the third cumulant. Although the error bars are significantly larger compared to thefirst

two cumulants, the data indicate agreement between theAP and the directly simulated values. Finally, we plot
P Q( )t obtained fromkMC togetherwith theGaussian prediction from the first twomoments of the AP in
figure 9. The small error on I1 from theAP is noticeable for determining 〈 〉Qt .When using the simulated 〈 〉Qt ,
one sees that P Q( )t is well approximated by aGaussian. Indeed, the skewness of P Q( )t is small

〈 〉 〈 〉 ≈Q Q 0.034t c t c
3 2 3 2 , i.e., P Q( )t is almost symmetric. Although the difference is small, one observes that for
<Q 320t the simulated P Q( )t is consistently lower than theGaussian, while for >Q 365t it is consistently

higher.
We now discuss the higher-dimensional systems. In contrast to the SSEP, all sites at the boundaries are in

contact with the reservoirs. If periodic boundary conditions are imposed in the y direction, ρD ( ) converges in
two dimensions to the ↑ ∞Ly limit at ≈L 3y . In the simulations we take = =L L 5y z with periodic
boundary conditions. The diffusion coefficient is simulated for the same concentration gradients and length
in the x direction as for the one-dimensional case. The different coupling to the reservoirs compared to the
SSEP is done for numerical reasons. The program for the GEP is too slow to simulate a convergence in both
the x direction and y (z) direction. The periodic boundary conditions employed here are equivalent to the

↑ ∞L L( )y z limit. All sites at the boundaries are coupled to the reservoirs because this gives the highest
particle flux. The higher the particle flux, the better the current statistics for a given simulation time. If all
boundary sites are connected to the reservoirs κ = Ly and κ = L Ly z in, respectively, two and three
dimensions. This is explained in appendix D.

For two dimensionswe assume convergence in length at ≈L 120. The error on I1 is comparable to the one-
dimensional case ( ≈I I 1.00101

AP
1
sim ). The second and third cumulants are determined from extensive

simulations at length L= 121. The variance and Fano factor are slightly underestimated by the AP:
≈I I I I( ) ( ) 0.99822

AP
1
AP

2
sim

1
sim and ≈F F 0.9971AP sim .We consider this a very good agreement between the

direct simulations and predictions from theAP. The relative difference is less than 0.3%, and all quantities show
a large overlapwithin their error bars. The third cumulant is also compatible with the APprediction, although
the error bar on the directly simulated value is rather large. The shape of P Q( )t is similar to the one-dimensional
case (data not shown).

For three dimensions the simulation times becomemuch longer.We therefore only simulate the current for
systems of length L=101 and L=121. Since the two-dimensional systemhas converged at L=121, one can safely
assume that this is also the case for the three-dimensional system. The cumulants from figure 8 are calculated for
L=121. The average, variance, and Fano factor are correctly predicted by the AP. There is insufficient data to
achieve a reliable estimate for the third cumulant. The obtained value shown infigure 8(d) agrees well with the

Figure 9. P Q( )t fromkMC (red) in one dimension for =n 2max , = −f (2) 2.5, L=251, and =t 8.104. AGaussian distribution
(black) with average and variance predicted by theAP (a) and the simulated average and variance from theAP (b) is also plotted. The
data is well approximated by aGaussian distribution.
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AP, but the error bar is very large: σ〈 〉 + =L Q t 0.438t c
3 and σ〈 〉 − = −L Q t 0.110t c

3 . The shape of P Q( )t is
similar to the one-dimensional case (data not shown).

5. Conclusion

To conclude, we have studied numerically current fluctuations in the SSEP and aGEP. For the SSEPwefind that
the Fano factor is independent of the spatial dimension and (macroscopic) shape of the contacts with the
reservoirs. For theGEPour numerical simulations are in agreementwith the predictions from theAP combined
with theMFT [24]. In one and two dimensions agreement is found for the first three cumulants. In three
dimensions thefirst two cumulants agreewith the AP, while the statistics for the third cumulant are insufficient
for a reliable comparison. The diffusion coefficient, and as a result the current statistics, depends on the
dimension.Only for the SSEP and the ZRP is the diffusion coefficient independent of the dimension.

Amore precise numerical determination of the diffusion coefficient fromFick’sfirst law is computationally
very time consuming, at least using themethods presented here. It would therefore be of interest tofind exact
analytical results for the diffusion coefficient for theGEP. Another interesting question concerns the simulation
of highermoments of the current distribution. This could be achieved using a sophisticatedMonte Carlo
algorithm to simulate rare events, see e.g. [51–53]. Both the SSEP and the ZRP satisfy the sufficiency condition
for the validity of theAP (8). However,manyGEPs do not satisfy (8).Hence, onemight observe deviations from
the predictions of the AP for large currentfluctuations. An analysis of the optimal density profiles, before and
(possibly) after the dynamical phase transition, is also of interest.

The quantities ρD ( ) [54] and σ ρ( ) [55] are experimentally accessible in nanoporousmaterials. The average
particle flux through a system in contact with two particle reservoirs can also bemeasured [56]. If it is possible to
measure the variance of the particle fluxwith a good precision, these techniques present an opportunity for an
experimental verification of the AP and, therefore, theMFT.
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AppendixA. Algorithms

Becausewe consider ρ = 1A and ρ = 0B for the SSEP, all transition rates are equal to one (also at the
boundaries). All n possible transitions are stored in a list. A random integer between 0 and −n 1decides which
transition takes place. The time between two events is taken from the distribution = −p t n nt( ) exp( ). For the
GEPwith =n 2max there are 12 different rates (four in the system and four at the contact with each reservoir).
Since this is a small number, one can use the algorithmdescribed by Schulze [57]. For afixed number ofMonte
Carlo steps, the computation time of both algorithms is constant for different system sizes.

Appendix B.Data analysis

The currentfluctuations aremeasured as follows. First the system is allowed to relax to its steady state, after
whichwe put the time at 0. The net number of particles that have entered the systembetween time 0 and t is
denoted by Qt ,1. The net number of particles that have entered between time t and t2 is denoted by Qt ,2, and so
on. In the simulationsQt is determined bymeasuring the particle current at the left and right boundary.One
then has a list Q{ }t withNl elements. The average is equal to

∑=
=

Q Q N . (B.1)t

i

N

t i l

1

,

l

For largeNl the average Qt is a good approximation for the average 〈 〉Qt over P Q( )t . The sample variance is
equal to
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∑= − −
=

( )S Q Q N( 1). (B.2)t

i

N

t i t l
2

1

,
2

l

For largeNl, St
2 converges to 〈 〉 − 〈 〉Q Qt t

2 2.
The one-sigma error bar on Qt is equal to (assuming the Qt i, ʼs are independent identically distributed

variables)

σ = S N . (B.3)t l
2

The variance of St
2 is equal to

σ σ= − −
−S

N

N

N
Var( )

1 3

1
, (B.4)t

l

l

l

2
4

4
⎛
⎝⎜

⎞
⎠⎟

with σ = 〈 − 〈 〉 〉Q Q( )t t4
4 the fourth centralmoment of P Q( )t (see for example exercise 7.45 in [58]).We

estimate σ by (B.3).We do not estimate σ4 directly from the simulation data, because our data do not allow for
an accurate prediction of the fourthmoment. Rather, we use the prediction for σ4 from theAP [25]. One-sigma

error bars on St
2 are equal to ( )SVar t

2 1 2⎡⎣ ⎤⎦ . Except for the third cumulant, all other error bars are obtained from

addition andmultiplication of Qt and St
2. The rules forfinding these error bars can be found in e.g. [59]. The

Fano factor is calculated by =F t S Q( ) t t
2 . The error bar on the third cumulant is found by bootstrapping the

simulated data.
By adding the currents pairwise + +Q Qt i t i, , 1 (with i odd), one can calculate Q t2 and S t2

2 for the time interval
t2 (with N 2l points), and so on.We study the Fano factor F(nt) for ⩽ ⩽n1 6.

We now explain howwe check if the data have converged in time. For clarity we consider the specific
example of the two-dimensional SSEP at L=40with =t 2.104. The autocorrelation (AC) of Qt i, and +Qt i, 1 is

∑
∑

=
− −

−
=

−
+

=

( )( )
( )

Q Q Q Q

Q Q
AC . (B.5)i

N
t i t t i t

i

N
t i t

1

1
, , 1

1 ,
2

l

l

TheAC is plotted infigure B1 (a), togetherwith the critical values (CVs) to reject the null hypothesis that AC=0
at 95 % significance level. All points are smaller than theCVs. The point at n=1 is, however, very close to the
lowerCV. This suggests that there is still a nonnegligible AC for times t1 . Indeed, for small times the AC is always
negative. For large times, when the Qt i, ʼs are uncorrelated, the ACfluctuates close to zero. The scale of ‘close to
zero’ is determined by theCVs.

The Fano factor F nt( ) is plotted infigure B1(b). F t(1 ) is slightly higher than the other 5 points, indicating
again that there is not yet convergence in time. Thefirst two point that are converged in time are F t(2 ) and
F t(3 ). A plot as a function of the number of simulated pointsNl for F t(3 ) is shown infigure B2 . After

≈N 25.10l
4 the datafluctuate around the end value Ffinal, indicating a good convergence for F t(3 ). The average

of F t(2 ) and F t(3 ) is taken as the final data point (as plotted infigure 2(a)). Formost points, thefirst two
converged values are averaged to calculate the final result. If computation times are exceedingly long, such as for

Figure B1.The two-dimensional SSEPwith =t 2.104, L=40, and the geometry of figure 1(a). (a) (Circles) autocorrelation (B.5).
(Red squares) critical values to reject the null hypothesis AC= 0 at 95 % significance level. (b) (Circles) F(nt). (Dashed line) average of
F t(2 ) and F t(3 ). This is the value of the data point infigure 2(a).
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the SSEP in two dimensions for L=50, only the first converged point is taken. In this case this point is F t(2 ).
F t(3 )has not yet converged as can be seen froma graph similar tofigure B2. This explains the large error bar for
L=50 compared to the other points for the two-dimensional SSEP.

AppendixC. Simulation of diffusion coefficient

ρD ( ) is simulated for 30 concentrations, see [41, 42] for details on the simulations and calculation of the error
bars. In this paper the length in the x direction is = + =L N 1 16 in two and three dimensions. In one
dimension the analysis was performed for L=21 and L=16. The predicted values of I1 were the same up to a
relative difference of 0.006%. The data in the paper are for L=21 in one dimension. The concentration gradient
for low andhigh concentrations is taken between Δρ = 0.05 and Δρ = 0.03. For the other concentrations we
take Δρ = 0.06. The values at ρ = 0 and ρ = nmax can be calculated analytically: =D (0) 1 and =D (2) 2. An
approximation for the continuous function ρD ( ) is achieved by interpolating these 32 points (using the
‘Interpolation’ function ofMathematica). For concentrations smaller than ρ ≈ 0.04 and higher than ρ ≈ 1.96
the interpolated values are higher than the uncorrelated result (20). Sincewe know that correlations lower ρD ( ),
we consider the uncorrelated results for these concentrations instead of the interpolated function.

AppendixD. CGF in >d 1

TheCGF μ λ( )d of a d-dimensional system is equal to (see the last equation in [24])

�∫μ λ μ λ= ⃗ ⃗ ⃗ ×− ( )L r v r L( ) d ( ) ( ) . (D.1)d
d 2 2

1
⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

μ λ( )1 is the CGF of a one-dimensional systemdescribed by ρD ( )d and σ ρ( )d . Consider a rectangular systemof
length Lx and height Ly. All sites at x= 0 are coupled to reservoirA and all sites at =x Lx are coupled to reservoir
B. L is the typical domain size, whichwe take equal to Lx. v x y( , ) is a function on the domain ⩽ ⩽x0 1,

⩽ ⩽y L L0 y x, that satisfies the Laplace equation Δ ⃗ =v r( ) 0, with =v y(0, ) 0, =v y(1, ) 1, andNeumann
boundary conditions otherwise. For the geometry we consider it is straightforward to show that =v x y x( , ) .
One thenfinds

∫ ∫μ λ μ λ μ λ= × =x y L L( ) d d ( ) ( ). (D.2)
L L

x y2
0

1

0
1 1

y x⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
The calculation for the same geometry in three dimensions shows that μ λ μ λ= L L( ) ( )y z3 1 .

The density ρ x y( , ) can be found from the one-dimensional profile ρ x( )1 (equation (33) in [24])

ρ ρ ρ= =x y v x y x( , ) ( ( , )) ( ). (D.3)1 1

Note that the only assumption required for these results is the time-independence of the optimal density and
current profiles. In the study of the two-dimensional KMPmodel with all the boundary sites connected to
reservoirs [2, 34], onemade the extra assumption that the optimal current profile is constant ⃗ ⃗ = ⃗⃗j r J( )J . This
extra assumption is unnecessary: it can be derived from the time-independence of the optimal profiles and the
MFT. Indeed, in one dimension time-independent profiles imply a constant current profile. A constant current

Figure B2.The two-dimensional SSEPwith =t 2.104, L=40, and the geometry of figure 1(a). (Thick black line) F t(3 ) afterNl

simulated points. (Thin grey lines) one-sigma error bars. (Dashed line) final value of F t(3 ).
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profile in two dimensions follows from (D.3). Note that formore general couplings to the reservoirs, such as in
figure 1, the optimal current profile need not be constant.

We have solved numerically the Laplace equation for ⃗v r( ) for the domain in figure 2(a). Onefinds
μ λ μ λ≈ L( ) 0.663 ( )2 1 . This agrees with our kMC results, as discussed in section 3.
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