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Abstract
Stochastic efficiency is evaluated infive case studies: driven Brownianmotion, effusionwith a thermo-
chemical and thermo-velocity gradient, a quantumdot and amodel for information towork
conversion. The salient features of stochastic efficiency, including themaximumof the large deviation
function at the reversible efficiency, are reproduced. The approach to and extrapolation into the
asymptotic time regime are documented.

The concept of Carnot efficiency is a founding principle ofmacroscopic thermodynamics. It allows to introduce
entropy as a state function and to define theKelvin temperature scale. It states that, for a systemoperating
between two reservoirs at temperaturesTh andTc, the efficiency W Q¯ hη = , being the ratio of outputworkW
over input heatQh, is bounded by theCarnot efficiency ¯ Cη η⩽ with T T1 c hCη = − . Right from the start, the
questionwas raised about the efficiency of small scalemachines.Maxwell introduced a small-scale demonwhich
was deemed to rectify thermal fluctuations. A clarifying rebuttal was given by Smoluchowski, who proposed a
mechanical implementation of theMaxwell demon, the so-called ratchet and pawl. He stressed that this small-
scale devicewould eventually thermalize, after which any rectificationwould stop. Szilard introduced an
information driven enginewhich seemed to be able to extract work from a single reservoir, in violationwith the
Carnot prediction. Since he believed that this could not be true, he concluded that there had to be a
thermodynamic cost associated to the information gathering [1]. The Szilard engine gave rise to a prolonged
scientific discussion about the source of dissipation [2]. It is not themeasurement or computational process, but
the resetting process of thememory device that seems to be the dissipative step. The Smoluchowski enginewas
revisited by Feynman, who showed by an explicitmodel calculation that the efficiency of the ratchet and pawl in
contact with two reservoirs is indeed bounded by theCarnot efficiency. A subtle error in his analysis was
elucidated by Parrondo and Sekimoto [3, 4], indicating that the efficiencywas strictly belowCarnot efficiency in
thismodel. This was confirmed by amore detailed analysis on simplifiedmodels [5, 6], prompting the question
whether Carnot efficiency could at all be reached in such small devices [7]. These questions have led tomajor
interest in information towork conversion, both theoretically [8–18] and experimentally [19–25].

Thermodynamic efficiency can also be defined for other types of engines, notably for work towork and the
abovementioned information towork transformations. In the case of a transformation of input workWi to
outputworkWo, the thermodynamic efficiency is defined as W W¯ o iη = . The analogue of Carnot efficiency is
reached for a reversible operation leading toWo=Wi (since no heat is dissipated). Hence the second law
stipulates ¯ rη η⩽ , with the reversible efficiency is 1rη = . For information towork transformation, we note that
information about the system can be used to extract work. The reversible limit has been known since thework of
Szilard, namely k T ln 2B ofwork can be extracted per bit of information (in an environment operating at
temperatureT). One bit corresponds to a Shannon information of I ln 2= .More generally, in a transformation
of a Shannon information amount I into an amountW ofwork, the efficiency W k TI¯ ( )Bη = is upper bounded
by the reversible result 1rη = .

Over the past two decades, one has been able to reformulate thermodynamics to describe fluctuating small-
scale systems. Themost notable of the results is the fluctuation theorem, stating that the probability for a
stochastic entropy production siΔ is exponentiallymore probable than that of a corresponding decrease siΔ− in
an ‘inverse’ experiment:
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The tilde refers to the ‘time- inverse’ experiment. The above symmetry relation for the probability implies the
following integral fluctuation theorem:

k sexp( ) 1, (2)B iΔ− =

which in term implies the ‘second law’:

s 0. (3)iΔ ⩾

The detailed and integral fluctuation theorems (1) and (2) have been derived inmany different settings, see for
example the Jarzynski [26] andCrooks [27] equalities, and stochastic thermodynamics [28, 29].When
considering a finite time experiment, the interpretation of (1) is somewhat delicate, and theremay be
restrictions, for example on the initial and final states of the experiment, cf [30] for a recent discussion. The
fluctuation theoremhowever appears to have awide ranging validity, comparable to the second law,when
considering the asymptotic long time limit, inwhich case (1) reduces to a statement about the large deviation
properties of the entropy production. The theoremwas actuallyfirst derived in this context [31–34].
Surprisingly, the impact of these new insights on the efficiency, and in particular on its stochastic properties, has
only been considered very recently [35–43], and only inwork towork and heat towork converters.When
running a small-scale engine for afinite time, the corresponding cumulatedwork output and heat uptake,w and
qh, or work outputwo andwork inputwi, are stochastic quantities, and hence so is the corresponding stochastic
efficiency w qhη = or w wo iη = . Startingwith the detailed fluctuation theorem (1), it was pointed out that one
canmake universal statements about the stochastic efficiency η, as it approaches themacroscopic efficiency.
More precisely, for large butfinite times, values of the stochastic efficiency η different from themacroscopic
efficiency η̄ are exponentially unlikely, as described by the large deviation function J ( )η =

t Plim 1 ln ( )t t η− →∞ , J J( ) ( ¯) 0η η⩾ = . For the case of a thermodynamicmachine driven by a time-symmetric
protocol, it was shown that the reversible efficiency is the least likely, i.e., the large deviation function J ( )η has a
maximumat rη η= . Themacroscopic efficiency is reproduced as the value carrying all probability to dominant
order J ( ¯) 0η = . For time-asymmetric protocols, the large deviation curves of the stochastic efficiency for the
forward and backward experiment cross at the reversible efficiency [36, 37].

In this paper, we provide an explicit and comprehensive illustration of the stochastic efficiency infive
engines under a time-symmetric protocol. Providing possibly the simplest steady statemodels for work towork
and heat towork transformation, we consider a Brownian particle subject to competing forces [35] and effusion
between two compartments [38]. Even though these cases have been discussed in some detail in the literature,
they are introduced briefly for completeness and for comparisonwith the othermodels. The thirdmodel is a
thermal engine based on a quantumdot. It is of interest because its stochastic thermodynamic properties have
been discussed andmeasured, and because it is in principle richer than the effusionmodel, which can be
recovered in an appropriatemathematical limit. In the last two problems, we evaluate stochastic efficiency in
novel settings.We show that the universal features of stochastic efficiency are valid for energy tomomentum
transformation. This is illustrated on an effusionmodel withmomentum transfer. Finally, we discuss the
stochastic efficiency for information towork transformation. It is indeed possible to reformulate the fluctuation
theoremwhen dealingwith an information processing set-up, such as the one introduced by Szilard. In
particular one can introduce the stochastic efficiency w iη = for amachine transforming a stochastic amount
of input (Shannon) information i intoworkw.We show that its large deviation function again displays the same
general features. In particular, the reversible efficiency 1rη = is exponentially less likely than any other efficiency
in the asymptotic time limit (for time-symmetric protocols).We illustrate these features on theMandal–
Jarzynskimodel [8, 10].

1. Brownian engine

Consider an overdamped Brownian particle on a plane, subject to two external forces, a loading force F1⃗ , and a

driving force F2⃗ [35], cf figure 1(a). The (larger) driving force F2⃗ pushes the particle against the loading force F1⃗ .
The stochastic efficiency of such a device as awork-to-work converter was discussed in [35, 39]. The
mathematics are very simple. Considering for simplicity a two-dimensional set-up, the displacement x ⃗ of the
Brownian particle during a time t is characterized by a two-dimensional Gaussian distribution. Under influence

of the resulting force F F F1 2
⃗ = ⃗ + ⃗ the average displacement is x Ftμ⃗ = ⃗ , μ being themobility. The variance is

isotropic and uncorrelated in orthogonal directions, x x Dt2 1δ δ⃗ ⃗ = ⃗, whereD is the diffusion coefficient and 1 ⃗
the unitmatrix.

Wefirst turn to themacroscopic efficiency, which is very easy to evaluate, see alsofigure 1(b) for a colour-
coded illustration:
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where w F x·1 1= ⃗ ⃗ and w F x·2 2= ⃗ ⃗ are the stochastic amounts of work delivered by the loading and driving force
respectively. The engine regime, i.e., the regimewhere the driving force delivers a positive amount of work to the
loading force, is determined by:

F

F

F

F
cos , (5)

2

1

1

2

θ−
⃗

⃗
⩽ ⩽ −

⃗

⃗

with θ is the angle between F1⃗ and F2⃗. In combinationwith (4), it is clear from (5) that, in the engine regime, the
macroscopic efficiency is bounded by ¯ 1rη η⩽ = . The reversible efficiency 1rη = can only be reached in the

limit F F2 1
⃗ → − ⃗ while F F1

⃗⊥ ⃗ . This can also be seen in figure 1(b).
We next investigate the stochastic efficiency

w w F x F x· · . (6)1 2 1 2η = − = − ⃗ ⃗ ⃗ ⃗

Being the ratio of two correlatedGaussian variables, its probability distribution can be evaluated analytically, see
also [39]:

( )P
F F

F F
g g( )

e

( )
1 ( ) Erf ( ) e , (7)t

g1 2

1 2
2
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π η
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, (8)

0

2
1 2

2

2
1 2

2
η

η

η
=

− ⃗ × ⃗

⃗ ⃗ + ⃗

and xErf( ) is the error function. The characteristic time t D F2 ( )0
2μ= ∣ ∣⃗ determines the boundary between

diffusion dominated t t( )0≪ and drift dominated t t( )0≫ dynamics.We note in passing that it is easy to show
from equations (7) and (8) that P (0) 0t′ > and P (1) 0t′ < , implying that there exists at least onemaximum in
the interval [0, 1]η ∈ . This can indeed be seen in the simulation results for t t 2, 50 = and 10, shown in
figure 2(a).

Figure 1.Characteristics of the Brownian engine.
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Universal features of the efficiency fluctuations are revealedwhen studying the asymptotic time behavior via
the large deviation function of η [35]:

J
t

P

D

F F F F

F F

( ) lim
1

ln ( )

4

( ) · ( )

( )
. (9)

t
t

2
1 2 1 2

2

1 2
2
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η η

μ η

η

= −

=
⃗ + ⃗ ⃗ + ⃗

⃗ + ⃗

→∞

This function has aminimumat themacroscopic efficiency J ( ¯) 0η = , but also amaximumat the reversible
efficiency 1rη = , with equal asymptotes in the limits η → ±∞. To illustrate the approach to the large deviation
regime, P tln( ( ))t η− is plotted infigure 2(b) obtained from simulation results for t t 2, 5,0 = and 10, together
with the limiting expression (9).We also include the result of an extrapolation ansatz [38], described inmore
detail in appendix A. The extrapolation, based on the t t 2, 5,0 = and 10 curves, is in surprisingly good
agreementwith the exact asymptotic expression. Although thesefinite time results do not, in this particular
instance, exhibit amaximum close to the reversible efficiency 1rη = , it does showup by extrapolation.

2. Effusion engine

The effusion engine [38] consists of two reservoirs, exchanging heat and particles by effusion via one ormore
small holes in the separatingwall, cf figure 3(a). The reservoirs are supposed to be infinitely large and at
equilibrium. The holes are smaller than themean free path so that the equilibrium state is not disturbed by the
effusion process. In this set-up, the flux out of a reservoir is determined by the driving parameter k T( )Bμ .
Under properworking conditions, a netflux of particlesmoves from say the left compartment, at high
temperatureTh and low chemical potential hμ , to the right compartment at lower temperatureTc but higher
chemical potential cμ .

When a particlemoves from the hot to the cold reservoir, it delivers an amount of work w c h0 μ μ Δμ= − = ,
while extracting an amount of heat q u h0 0 μ= − from the hot reservoir, where u0 is the kinetic energy of the
transfered particle. Therefore, after a net transfer of n particles, the total amount of deliveredwork and extracted
heat,w and q are given by:

w n , (10)Δμ=

Figure 2.Efficiency fluctuations of a Brownian enginewith F (1, 0)1⃗ = , F ( 3 2, 1)2⃗ = − and ¯ 0.29η = .
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q u n , (11)hμ= −

with u the net energy transfer.
Particles with kinetic energyE transfer from the hot to the cold reservoir at rate [44]:

( )
T E

t

E

k T
( )

1
e , (12)h c

B h
0

2

E
kBTh=→

−

and from the cold to the hot reservoir at rate

( )
T E

t

E

k T
( )

1
e , (13)c h

B h

k T

0
2

E
kBTc

c
kBTc

h

B h=
μ

→
− + −μ

where ( )t m k T2 h B h0
2 2π σ ρ= is the average time between particle crossings from the hot to the cold reservoir,

σ is the surface area of the effusion hole andm is themass of the particles of the gas. Themacroscopic efficiency
can be easily obtained:

( )
( )( )

w
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k T k T

k T k T k T k T

¯

( ) e ( ) e

( ) 2 e ( ) 2 e
. (14)

h
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2 2

2 2

h
kBTh

c
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h
kBTh

c
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η

Δμ
μ

Δμ

μ μ

= 〈 〉
〈 〉

= 〈 〉
〈 〉 − 〈 〉

=
−

− − −

μ μ

μ μ

This function is plotted for Carnot efficiency 1 2Cη = infigure 3(b) in terms of k Tc B hμ and k Th B hμ . The
engine boundaries are given by T T k T T T2 ln ( )h c h c h B c c hμ μ μ< < − . Furthermore, themacroscopic efficiency
is bounded by theCarnot efficiency, and this boundary is only reached in the limit ,c hμ μ → −∞, which, for an
ideal gas, corresponds to zero density.

We next investigate the stochastic efficiency

w q. (15)η =

Since it is not possible to obtain the analytic expression of the probability distribution P ( )t η , we present results
from a numerical simulation of theMarkov process with the prescribed rates (12) and (13), cf figure 4(a). For the
parameter values under consideration, one clearly sees aminimum in the probability distribution developing in
the vicinity of the Carnot efficiency Cη , even at the rather short times represented here. The behavior around

0η = , and in particular the otherminimumaround 0η = , can be explained by the lownumber of particle
crossings for short times [38]: due to the fact that only a few particles will cross, small, non-zero efficiencies can

Figure 3.Characteristics of the effusionmodel.
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only be reached if particles cross with very high energies. As this is very unlikely, the finite time probability
distribution function shows aminimumaround zero.

Turning finally to the asymptotic time behaviour, we note that the large deviation function J ( )η of the
stochastic efficiency can be obtained from the joint cumulant generating function of work and heat ( , )φ λ ω , see
[37]. The latter is explicitly known for effusion [44] :

( )

( )

t

k T

m k T

k T

m k T

( , ) lim
1

ln e

2
1

exp

( 1 )

2
1

exp

( 1 )
. (16)

t

w q

h B h h

B h

c B c c

B c

2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
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⎞

⎠
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φ λ ω

σρ
π

λΔμ ωμ

ω

σρ
π

λΔμ ωμ

ω

=

= − −
− −

−

− −
+

+

λ ω
→∞

− −

The large deviation function of the stochastic efficiency is then given by:

J ( ) min ( , ). (17)η φ λ λη= −
λ

The contraction can be done numerically, and the comparisonwithfinite-time simulations is represented in
figure 4(b). Note that the extrapolation againworks quite well, except in the vicinity of 0η = , due to the
aforementioned short time effects.

3.Quantumdot

The quantumdotmodel, schematically represented infigure 5(a), has been investigated in detail in the context
of stochastic thermodynamics [45–48]. Two electron reservoirs are brought in contact with each other via one or
multiple quantumdots. In order to investigate its stochastic efficiency, we focus on the case of two quantum
dots, eachwith one ‘active’ energy level,E1 andE2 (E E1 2< ).We need to consider at least two quantumdots
since otherwise the engine is tightly coupled, i.e. the stochastic efficiencywill notfluctuate. Occupancy of a
quantumdot bymultiple electrons is forbidden because of Coulomb repulsion. Formathematical simplicity, we
also set all coupling constants between dot and reservoirs equal toΓ.

The operation of each quantumdot as a thermal engine is similar to that of the effusion engine: a netmotion
of electrons from a reservoir with low chemical potential to onewith higher chemical potential is induced by a

Figure 4.Efficiency fluctuations of the effusion engine, with 1 2Cη = , k Th B hμ = − , and k T3 4c B hμ = − . Themacroscopic
efficiency is given by ¯ 0.07η = .
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driving temperature gradient. For every particle transferring through the quantumdotwith the lower energy
levelE1, the heat taken from the hot reservoir is given by q E h1 1δ μ= − and the delivered amount of work is
w c h0 μ μ Δμ= − = . Furthermore, the rate of transfer between the hot reservoir and the quantumdot are given
by:

k
e

1 e
, (18)h

E h
Th

E h
Th

1

1

Γ=
+

+
−

−

μ

μ

−

−

k
1 e

. (19)h E h
Th

1

Γ=
+

−

− μ−

The rate of exchange between the cold reservoir and the quantumdot is obtained by replacingwithTh and hμ by
Tc and cμ , respectively. Analogous expressions hold for transfer through the other quantumdot, with E1 replaced
byE2. The total amount of deliveredworkw and consumed heat q after a net transfer of n1 particles through the
quantumdotwith energy levelE1 and n2 particles through the quantumdotwith energy levelE2 are then given
by:

( )w n n , (20)1 2Δμ= +

q q n q n . (21)1 1 2 2δ δ= +

Themacroscopic efficiency can nowbewritten as:

w

q
¯ (22)η = 〈 〉

〈 〉

( )
( ) ( )

n n

n E n E
, (23)

c c

1 2

1 1 2 2

Δμ

μ μ
=

+

− + −

where n1 and n2 are the (stochastic) net amount of particles transferred through respectively the quantumdot
with the lower and higher energy level. Their average value can be calculated from the rates given in
equations (18) and (19):

( )( )
n

2

e e

e 1 e 1
, (24)1

E c
Tc

E h
Th

E c
Tc

E h
Th

1 1

1 1

Γ= −

+ +

μ μ

μ μ

− −

− −

and an analogous expression for n2 withE1 replaced byE2. Themacroscopic efficiency of the engine is plotted

infigure 5(b) in function of k Th B hμ and k Tc B hμ . These results are comparable with the results of the effusion
engine. Again, Carnot efficiency is only reached in the limit of zero density.

Figure 5.Characteristics of the quantumdot.
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For the study of the efficiency fluctuations at finite time, we again first turn to numerical simulations. The
probability distribution P ( )t η , with

w

q
, (25)η =

is obtained by sampling the netfluxes n1 and n2 using the rates specified in equations (18) and (19). A typical
result is shown in figure 6(a). The results appear to be rather noisy, which is due to the fact that bothwork and
heat, and therefore the efficiency, are discrete variables. Nevertheless, theminimumat Carnot efficiency is very
striking, even at these short times. The convergence to themacroscopic efficiency on the other hand is rather
slow, which is, in this particular case, due to the small value of the large deviation function.

Due to the fact that this engine is driven by two independent, tight-coupled operating channels (namely the
two quantumdots), with heat consumption and efficiencies per particle qiδ and w qi i0η δ= respectively, i=1, 2,
the large deviation function for the efficiency J ( )η can bewritten in terms of the event large deviation functions

n( )iϕ , i=1, 2 (see appendix B):

J
x

q

x

q
( ) min

(1 )
. (26)

x
1

1
2

2

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟η ϕ α

δ
ϕ

α
δ

= + −

Here, ( ) ( )2 1 2α η η η η= − − , and n( )1ϕ and n( )2ϕ are the large deviation functions of the net number of
transferred particles through each of the channels. As these large deviation functions are known (see
appendix C), equation (26) allows to estimate the large deviation function of ηwith great precision. The
comparisonwithfinite time numerical simulations is shown infigure 6(b). Note that the extrapolation from
finite time results does notwork uniformlywell due to the aforementioned discreteness of the efficiency.

4. Effusionwithmomentum transfer

The effusionmodel, discussed in section 2, has also been studied in the presence ofmomentum exchange
between the reservoirs [49], see figure 7(a). In this set-up, the gasesmovewith overall average speedVh andVc

parallel to the separatingwall containing the effusion hole. For the purpose of illustration, we assume equal
densities and chemical potentials in both reservoirs, and consider a thermal engine, with temperaturesTh andTc

in the respective compartments, drivingmomentum exchange.

Figure 6.Efficiency fluctuations of the quantumdot, with 1 2Cη = , E k TB h1 = , E k T10 B h2 = , k Th B hμ = − , 0cμ = and

t 100
5 Γ= . Themacroscopic efficiency is given by ¯ 0.09η = .
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The definition of the efficiency is based on the identification of the additive contributions to the entropy
production. For a reversible process, their algebraic sumbecomes zero and the resultingmacroscopic efficiency
(being the negative ratio of the constitutive parts) is equal to 1. In the present case there are three contributions
related to energy, particle andmomentum exchanges, hence there is some freedom to specify which
contribution operates as input, contributing (on average) to a a positive entropy production, andwhich one is
the output generating a negative contribution.We focus here on the thermal engine regime, with the energyflux
as input:

A n A p

A u
, (27)

N p x

U

xη = −
+

with

A k
T

T

mV

T

mV

T

3

2
ln

2 2
, (28)N B

c

h

c

c

h

h

2 2⎛
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⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= + −

A
V

T

V

T
, (29)p

h

h

c

c
x

= −

A
T T

1 1
, (30)U

c h
= −

the affinities of the particle,momentum and energy transport, and n, px and u the amounts of particle,
momentum and energy transport. Themacroscopic efficiency then reads:

A n A p

A u
¯ , (31)

N p x

U

xη = −
〈 〉 +

〈 〉

with n〈 〉, px〈 〉 and u〈 〉, themacroscopic particle, energy andmomentumfluxes. The total entropy production is
given by [49]:

S A n A p A u 0. (32)i N p x Ux
Δ = 〈 〉 + + 〈 〉 ⩾

Hence the second law of thermodynamics dictates thatmacroscopic efficiency in the engine regime is smaller
than 1. This is illustrated for the parameter values considered infigure 7(b).

Following the discussion of the previous examples, we now turn to the efficiencyfluctuations. For the finite-
time probability distribution P ( )t η , we again rely on numerical simulations. The rates of particle transfer are
given by:

Figure 7.Characteristics of the effusion engine with transversalmomentum.
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x

x
h

0
2

2 1 2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝⎜
⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟

π
= −

× −

−

+ +

→

( ) ( )
( )T E p

t k T k T m
E

p

m

m

k T

E
p

m

m

p

m
V

,
1 2

2

exp
2

2
2

, (34)

c h x

B c B h

x

B c

x

x
c

0
3 2 1 2

2 1 2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝⎜
⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟

π
= −

× −

−

+ +

→

with t m k T2 ( )B h0
2 2π σ ρ= , the average time between particle crossings from reservoir h to reservoir c and ρ

the particle density inside the reservoirs. The results of the simulations are shown infigure 8(a). Theminimum
at the reversible limit is clearly visible. Note also that, in contrast to effusionwithoutmomentum transfer, the
probability distribution behaves smoothly around 0η = . The explanation is that, due to the possibility of
momentum transport alone, small efficiencies arise without net particle transport.

To evaluate the large deviation function of the efficiency, wefirst note that:

( )e e , (35)w q A N A p A UW Q W N px x q U=λ λ λ Δ Δ λ Δ− − − + −

and therefore the cumulant generating function of the producedwork and heat ( , )W Q0μ λ λ can bewritten in
terms of the cumulant generating function of the transferredmomentum, energy and particle numbers

( , , )U N p1 x
μ λ λ λ :

Figure 8.Efficiency fluctuations of effusionwithmomentum, for 1 2Cη = , V k T m5h B h= and V k T m5.5c B h= . The
macroscopic efficiency is given by ¯ 0.57η = .
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( )
( )

( )
( )

( )

( ) A A A

k

m
T

G A A A

k T A

k

m
T

G A A A

k T A

, , ,

2
1

, ,

1

2
1

, ,

1
, (36)

W Q N W p W U Q

B
h

h N W p W U Q

B h U Q

B
c

c N W p W U Q

B c U Q

0 1

1 2
1 2

2

1 2
1 2

2

x

x

x

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

μ λ λ μ λ λ λ

σ
π

ρ
λ λ λ

λ

σ
π

ρ
λ λ λ

λ

=

= −
+

+ −
−

with:

( ) ( )
G

mV k mT mV

k T
, , exp

2

2 1
, (37)h N p U N

h U B h p h p

B h U

2 2

X

x x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟λ λ λ λ

λ λ λ

λ
= − −

− +

+

and

( ) ( )
G

mV k mT mV

k T
, , exp

2

2 1
. (38)c N p U N

c U B c p c p

B c U

2 2

X

x x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟λ λ λ λ

λ λ λ

λ
= +

+ +

−

Aswas discussed for the effusionmodel, the large deviation can then be found by numerically contracting the
cumulant generating function:

( )J A A A( ) min ( , ) min , , . (39)N p U0 1 x
η μ λ λη μ λ λ ηλ= − = −

λ λ

The comparisonwith simulations is shown infigure 8(b). The extrapolation ansatz seems towork quite well
apart from an overshoot at the reversible efficiency.

5.Mandal–Jarzynskimodel

Recently, there has been considerable interest in the stochastic information-to-work conversion. To study this
issue in the context of stochastic efficiency, we focus on one of the simplestmodels, namely theMandal–
Jarzynski engine [10], cf figure 9(a). A particle, in contact with a heat bath at constant temperatureT, canmake
transitions between a number of energy levels, which aremultiples of Eδ . Apart from the thermal dissipative
transitions due to the bath, the particle undergoes transitions that are driven by the entries of a linear tape. This
interaction corresponds to a formof inputwork. The energy levels of the systems are numbered as shown in
figure 9(a). The input tape consists of a sequence of entry values, each referring uniquely to one of the possible
energies, which are presented subsequently to the system.During such an interaction, the particle ismoved to
the energy level with number equal to the initial value on the tape. In this way, work is delivered. After each entry
of the tape, the system is left to thermalize, and the new energy state of the particle is written into the tape, which
we call the final or exit value.Note that this will alter the Shannon entropy of the tape. The tapemoves on one
step and the process is repeated.Wemention a closely related implementation of theMandal–Jarzynskimodel,
shown infigure 9(b). A Brownian particle in contact with a thermal bath at temperatureT, canmake jumps on a

Figure 9.Possible set-ups for theMandal–Jarzynskimodel.
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discrete lattice with awall at position zero and a force gradient in the negative direction, inducing an energy
difference between twoneighbouring sites equal to Eδ . After the particle has thermalized, its position is
measured, and thewall is instantaneously brought to themeasured position. Next thewall is adiabaticallymoved
back to the original positionwith delivery of work, after which the process is repeated.While we studied both
versions, we focus in the following on the simplest situation giving nontrivial results for stochastic efficiency,
namely aMandal–Jarzynskimodel with three states, cf figure 9(a).

It is clear that the amount of deliveredwork after one entry (trit) of the tape is given by:

w E f i( ), (40)δ= −

where i and f are the initial and final state of the system, respectively. As is discussed in detail in [8, 18], the
Mandal–Jarzynski systemoperates as an information engine with time-symmetric drivingwhen considering the
following definition of the entropy production:

( )( )( )s k p pln ln , (41)B I i I ftape , ,Δ = −

with i and f the initial andfinal state of the trit and pI k, the probability for entry state k on the tape. The average
information entropy change upon processing one trit is thus given by:

( ) ( )s k p p pln . (42)B

j
I j F j I jtape , , ,∑Δ = −

Here:

(43)p e 1 e e ,F j
j E
k T

E
k T

E
k T

,
2

B B B

⎛
⎝⎜

⎞
⎠⎟= + +

δ δ δ− − −

is the probability that the trit leaves the system in state j ( j 0, 1, 2= ). The information entropywritten in this
way is the sumof the change in Shannon entropy and the entropy production of an auxiliaryMandal–Jarzynski
system if it were to bring the tape back to its original distribution [9].

The efficiency is defined as the ratio of the deliveredwork and the amount of information consumed. In
particular themacroscopic efficiency is given by:

( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

w

T s

E

k T

p p p p

p p p p p p p p p

¯

2

ln ln ln
. (44)

B

F I F I

I F I I F I I F I

tape

,2 ,2 ,1 ,1

,0 ,0 ,0 ,1 ,1 ,1 ,2 ,2 ,2

η
Δ

δ

=

=
− + −

− + − + −

A colour-coded plot is given infigure 10, for E k T 1Bδ = . Reversible efficiency ( ¯ 1η = ) can be reached in the
limit where p pI j F j, ,= , j=1, 2, with p P P P2( )I F F I,1 ,1 ,2 ,2− ≠ − , cf figure 10.

The joint probability distribution P n n( , )Init,N 1 2 of n1 and n2 incoming trits with value 1 and 2 respectively on
a total ofN trits is given by:

( )P n n
N

N n n n n
p p p p( , )

!

( ) ! ! !
1 (45)N I

n
I
n

I I

N n n
Init, 1 2

1 2 1 2
,1 ,2 ,1 ,2
1 2

1 2=
− −

− −
− −

Figure 10.Macroscopic efficiency of theMandal–Jarzynskimodel in the engine regime, with E k TBδ = . The black dot corresponds
to p 0.2I,1 = , p 0.1I,2 = and ¯ 0.68η = . The stochastic efficiency for the latter case is represented infigure 11(a).
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and the joint probability distribution of n1 and n2 outgoing trits with value 1 and 2 respectively on a total ofN
trits is given by:

( )P n n
N

N n n n n
p p p p( , )

!

( ) ! ! !
1 , (46)N F

n
F
n

F F

N n n
Final, 1 2

1 2 1 2
,1 ,2 ,1 ,2
1 2

1 2=
− −

− −
− −

which is independent of the distribution of the incoming trits. Using these distributions, numerical simulations
can be performed, to evaluate the probability distribution of the stochastic efficiency

w

T s
, (47)

tape
η

Δ
=

cffigure 11(a). Theminimumaround 0η = is analogous to theminimum in the effusionmodel, and disappears
in the large time limit. Furthermore, one observes theweak localminimumat reversible efficiency onewith, to
its right, amore clearly visiblemaximum.

The large deviation functions of x n NI1 ,1= and x n NI2 ,2= incoming trits with value 1 and 2 respectively,
is found from equation (45):

( ) ( ) ( )
x x x x x x x x x x

x p x p x x p p

( , ) ln( ) ln( ) ( 1 )ln( 1 )

ln ln ( 1 )ln 1 , (48)I I I I

Init 1 2 1 1 2 2 1 2 1 2

1 ,1 2 ,2 1 2 ,1 ,2

γ = + + − − − −

− − − − − − −

and a completely analogous expression for the large deviation function y y( , )Final 1 2γ of y n NF1 ,1= and
y n NF2 ,2= , with pI k, replaced by pF k, . From this, the large deviation function of the efficiency can be
calculated:

( )J x x y y( ) min ( , ) ( , ) , (49)
x x y y, , ,

Init 1 2 Final 1 2
1 2 1 2

η γ γ= +

where x1, x2, y1 and y2 are constrained to reproduce the efficiency ηunder consideration, i.e., they are related by:

( ) ( ) ( )
( )E

k T

y x y x

x y p x y p x y p

2( )

( ) ln ( ) ln ( ) ln
. (50)

B
I I I

2 2 1 1

0 0 ,0 1 1 ,1 2 2 ,2

η δ=
− + −

− + − + −

Thisminimisation can be done numerically, cf figure 11(b). In spite of the noise, which ismainly due to the
discreteness of the efficiency, the extrapolation seems towork quite well. Also, the telltalemaximum in the large
deviation function close to reversible efficiency is again reproduced.

Figure 11.Efficiencyfluctuations of theMandal–Jarzynskimodel, for E k TBδ = , p 0.2I,1 = and p 0.1I,2 = . Themacroscopic

efficiency is given by ¯ 0.68η = .
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6.Discussion

The concept of efficiency plays a crucial role in thermodynamics, especially when the efficiency is defined in such
away that is leads to universal system-independent statements, such as the one concerning Carnot efficiency.
With the advent of stochastic thermodynamics, it is natural to revisit such questions for stochastic efficiency.
Universal statements appear to be possible for the large deviation function characterizing the asymptotic time
regime. In particular, long-time realisations with reversible efficiency are exponentially least probable for time-
symmetric driving.One purpose of this paper has been to verify and document the salient features of the time-
asymptotic stochastic efficiency infive different settings, namely driven Brownianmotion, effusionwith a
thermo-chemical and thermo-velocity gradient, a quantumdot and amodel for information towork
conversion. In addition, we provide the analysis forfinite time including the approach to and extrapolation into
the asymptotic time regime. A revealing feature of our analysis is that the large deviation properties can be
obtained quite consistently by extrapolation from rather short finite time results. The other encouraging
message is that one can apply the analysis to awide variety of completely different implementations, some of
whichmay be easier to realize. Both observations imply that an experimental verification should not pose a real
problem. In particular, in view of existing experiments on the issue [21, 23, 50–52], the experimental
implementation for the stochastic efficiency of an information towork engine should be relatively
straigthforward.
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AppendixA. Large deviation functions fromfinite time results

The central object of interest in stochastic efficiency is its large deviation function. Unfortunately, the evaluation
of exponentially unlikely events is obviously very difficult. For this reason, we propose a simple and apparently
robustmethod to deduce the large deviation function J ( )η fromfinite time results. As inputwe give the
efficiency probability distributions for threefinite times t1, t2 and t3.We propose the following ansatz for P ( )t η :

P A t( ) ( ) e . (A.1)t
B tJ

Fit,
( ) ( )η η= η η− −

Here, A ( )η , B ( )η and J ( )η are threefitting parameters for each η. J ( )η shall be our estimate for the large
deviation function. Thefitting parameters can be obtained from the known values Pln ( ( ))ti

η− , with i 1, 2, 3= ,
since:

( )
( )
( )

( )
( )
( )

P t

P t

P t

t t t

t t t

t t t

J

A

B

ln ( )

ln ( )

ln ( )

1 1 ln

1 1 ln

1 1 ln

( )

ln ( ( ))

( )

. (A.2)

t

t

t

1

2

3

1 1 1

2 2 2

3 3 3

1

2

3

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

η

η

η

η
η

η

−

−

−

= −

Inverting thismatrix equality leads to an estimate of the large deviation function.

Appendix B. Efficiency calculations from event probability distributions

Consider amodel consisting of k tight-coupled processes (e.g. k channels for particle transport), where the ith
process undergoes ni events, i k1 ,..,= . Furthermore, the total delivered amount of work and heat can be
written asW n n( , , )k1 … and Q n n( , , )k1 … . Once the event probability distribution is known, the probability
distribution of η can bewritten as:

P P n n( ) ( , , ) , (B.1)t

n n

t k Q n n W n n

, ,

1 ( , , ), ( , , )

k

k k

1

1 1∑η δ= … η
…

… …

for discrete variables and

P n n P n n
W n n

Q n n
( ) d .. d ( , , )

( , , )

( , , )
, (B.2)t k t k

k

k
1 1

1

1

⎛
⎝⎜

⎞
⎠⎟∫η δ η= … −

…
…

for continuous variables, where P n n( , , )t k1 … is the probability that at time t, for process i, ni events have
occured. Using the corresponding event large deviation function
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( )( )n n t P n n( , , ) lim 1 ln ( , , )k t t k1 1γ … = − …→∞ , the efficiency large deviation function J ( )η can then be

calculated via the contraction principle:

J n n( ) min ( , , ), (B.3)
n n

k
, ,

1
k1

η γ= …
…

where n n, , k1 … are conditioned to:

W n n

Q n n

( , , )

( , , )
. (B.4)k

k

1

1
η =

…
…

This provides a good scheme for numerical calculations.
We proceed to show that there are, in this case, only two extrema of the efficiency large deviation function:

themacroscopic efficiency and the reversible efficiency. Using Lagrangemultipliers, we have:

J L x x( ) Extr ( ,.., , ), (B.5)x x k, , , 1k1η λ= λ…

with

( )L x x x x Q x x W x x( , , , ) ( , , ) ( , , ) ( , , ) . (B.6)k k k k1 1 1 1λ γ λ η… = … + … − …

Therefore, x x, , ,k1 λ… are constrained to:

x x

x

Q x x

x

W x x

x

( , , ) ( , , ) ( , , )
, (B.7)k

i

k

i

k

i

1 1 1
⎛
⎝⎜

⎞
⎠⎟

γ
λ η

∂ …
∂

= −
∂ …

∂
−

…
∂

for all i. As L x x( , , , )k1 λ… is an extremumof λ and xi, i k1, ,= … , we have

J
L x x

x

x L x x L x x

L x x

Q x x

d

d
( )

( , , , ) ( , , , ) ( , , , )

( , , , )

( , , ). (B.8)

i

k

i

i k k

k

k

1 1 1

1

1

∑
η

η
λ

η
λ

λ
λ
η

λ
η

λ
η

λ

=
∂ …

∂
∂
∂

+
∂ …

∂
∂
∂

+
∂ …

∂

=
∂ …

∂
= …

Note that Q x x( , , ) 0k1 … = corresponds to reversible efficiency due to thefluctuation theorem, and that 0λ =
corresponds to x x x( , , ) 0k i1γ∂ … ∂ = (using equation (B.7)) which is equivalent withmacroscopic efficiency
(aswe assume convex event large deviation functions). As one of these two equalities has to be fulfilled to be in an
extremumof J ( )η , we conclude that these are the only two extremums of the large deviation function.

Wefinally note that the expression for J ( )η can be further simplified if the processes are independent.We
shall illustrate this for systems consisting of two independent processes (with n1 and n2 events respectively). The
extension tomore independent processes is straightforward. The amount of deliveredwork per event in the ith
process is written aswi and the amount of extracted heat is qi, i=1, 2. The efficiency is then given by:

w n w n

q n q n
q n

q n q n
n

q n

q n q n

(1 ) , (B.9)

1 1 2 2

1 1 2 2

1 1

1 1 2 2
1 2

2 2

1 1 2 2
2

1 2

η

η η

αη α η

=
+
+

=
+

+
+

= + −

with

q n

q n q n
, (B.10)1 1

1 1 2 2

2

1 2

α
η η
η η

=
+

=
−
−

and w qi i iη = , i=1, 2. Therefore, the probability distribution of η at time t is given by:

( )

P w qP w q
w

q

n n w q w q P n P n

( ) d d ( , )

d d ( ) ( ) (1 ) . (B.11)

t t

t t1 2 1 2 2 1 1 2 1 2

⎛
⎝⎜

⎞
⎠⎟∫ ∫

∫ ∫

η δ η

δ η αη α η

= −

= − − − −

From large deviation theory, we can nowwrite the efficiency large deviation function J ( )η in terms of terms of
the large deviation functions of the event numbers n( )1 1φ and n( )2 2φ :

J
x

q

x

q
( ) min

(1 )
. (B.12)

x
1

1
2

2

⎛
⎝
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⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟η φ α φ

α= + −
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AppendixC. Event large deviation function of quantumdot-likemodels

Wepresent for completeness the large deviation function for the number of particles travelling through one
energy level of a quantumdot (with energyE and coupling constant 1Γ = ) .We only quote the final result, as
similar calculations can be found in the literature, see e.g. [53–56].We recall that the fluxes are given by
equations (18) and (19). The cumulant generating function is given by:

f k r q s( ) ( ) , (C.1)γ γ= + +

with

( )
k

k k k k
s k k k k

k k

k k

r k k k k k q

2
; ; ln

( ) e ; ; ( ) ( ) ( ) . (C.2)

L L R R

L R L R
L R

R L

L R R L

0

2 2 10

⎛
⎝⎜

⎞
⎠⎟γ

ρ γ γ ρ γ ρ γ

= −
+ + +

= =

= = − − = +γ γ

+ − + −
+ + − −

+ −

+ −

− + − + − −

The large deviation function reads:

h n f n n n( ) ( ( )) ( ), (C.3)γ γ= − −

with:

q n
n

s
r n s rn n¯ ( )

2
2 2 , (C.4)2 2 2 4= + + + +

n
q n q n

( )
2

ln
¯( ) 4 ¯ ( )

2
. (C.5)0

2⎛

⎝
⎜⎜

⎞

⎠
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γ
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