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Abstract

Stochastic efficiency is evaluated in five case studies: driven Brownian motion, effusion with a thermo-
chemical and thermo-velocity gradient, a quantum dot and a model for information to work
conversion. The salient features of stochastic efficiency, including the maximum of the large deviation
function at the reversible efficiency, are reproduced. The approach to and extrapolation into the
asymptotic time regime are documented.

The concept of Carnot efficiency is a founding principle of macroscopic thermodynamics. It allows to introduce
entropy as a state function and to define the Kelvin temperature scale. It states that, for a system operating
between two reservoirs at temperatures Tj, and T, the efficiency 7 = W/Qy,, being the ratio of output work W
over input heat Qy,, is bounded by the Carnot efficiency 77 < 5 with 5, = 1 — T./T;,. Right from the start, the
question was raised about the efficiency of small scale machines. Maxwell introduced a small-scale demon which
was deemed to rectify thermal fluctuations. A clarifying rebuttal was given by Smoluchowski, who proposed a
mechanical implementation of the Maxwell demon, the so-called ratchet and pawl. He stressed that this small-
scale device would eventually thermalize, after which any rectification would stop. Szilard introduced an
information driven engine which seemed to be able to extract work from a single reservoir, in violation with the
Carnot prediction. Since he believed that this could not be true, he concluded that there had tobe a
thermodynamic cost associated to the information gathering [1]. The Szilard engine gave rise to a prolonged
scientific discussion about the source of dissipation [2]. It is not the measurement or computational process, but
the resetting process of the memory device that seems to be the dissipative step. The Smoluchowski engine was
revisited by Feynman, who showed by an explicit model calculation that the efficiency of the ratchet and pawl in
contact with two reservoirs is indeed bounded by the Carnot efficiency. A subtle error in his analysis was
elucidated by Parrondo and Sekimoto [3, 4], indicating that the efficiency was strictly below Carnot efficiency in
this model. This was confirmed by a more detailed analysis on simplified models [5, 6], prompting the question
whether Carnot efficiency could at all be reached in such small devices [7]. These questions have led to major
interest in information to work conversion, both theoretically [8—18] and experimentally [19-25].

Thermodynamic efficiency can also be defined for other types of engines, notably for work to work and the
above mentioned information to work transformations. In the case of a transformation of input work W; to
output work W,, the thermodynamic efficiency is defined as 7 = W,/W,. The analogue of Carnot efficiency is
reached for a reversible operation leading to W, = W; (since no heat is dissipated). Hence the second law
stipulates 7j < 7,, with the reversible efficiency is 5, = 1. For information to work transformation, we note that
information about the system can be used to extract work. The reversible limit has been known since the work of
Szilard, namely k3 T In 2 of work can be extracted per bit of information (in an environment operating at
temperature T). One bit corresponds to a Shannon information of I = In 2. More generally, in a transformation
ofa Shannon information amount I into an amount W of work, the efficiency 7 = W/(kp TT) is upper bounded
by the reversible result , = 1.

Over the past two decades, one has been able to reformulate thermodynamics to describe fluctuating small-
scale systems. The most notable of the results is the fluctuation theorem, stating that the probability for a
stochastic entropy production 4;s is exponentially more probable than that of a corresponding decrease —A4; s in
an ‘inverse’ experiment:

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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P(A,‘S)

m = exp(kBA,-s). (1)

The tilde refers to the ‘time- inverse’ experiment. The above symmetry relation for the probability implies the
following integral fluctuation theorem:

(exp(—kpd;s)) =1, (2)
which in term implies the ‘second law’:
(4;s) = 0. (3)

The detailed and integral fluctuation theorems (1) and (2) have been derived in many different settings, see for
example the Jarzynski [26] and Crooks [27] equalities, and stochastic thermodynamics [28, 29]. When
considering a finite time experiment, the interpretation of (1) is somewhat delicate, and there may be
restrictions, for example on the initial and final states of the experiment, cf [30] for a recent discussion. The
fluctuation theorem however appears to have a wide ranging validity, comparable to the second law, when
considering the asymptotic long time limit, in which case (1) reduces to a statement about the large deviation
properties of the entropy production. The theorem was actually first derived in this context [31-34].
Surprisingly, the impact of these new insights on the efficiency, and in particular on its stochastic properties, has
only been considered very recently [35-43], and only in work to work and heat to work converters. When
running a small-scale engine for a finite time, the corresponding cumulated work output and heat uptake, wand
qn» or work output w, and work input w;, are stochastic quantities, and hence so is the corresponding stochastic
efficiency n = w/q,, or n = wy/w;. Starting with the detailed fluctuation theorem (1), it was pointed out that one
can make universal statements about the stochastic efficiency #, as it approaches the macroscopic efficiency.
More precisely, for large but finite times, values of the stochastic efficiency 7 different from the macroscopic
efficiency 7j are exponentially unlikely, as described by the large deviation function J () =

—lim,_, 1/t In B (), J () = J (i) = 0. For the case of a thermodynamic machine driven by a time-symmetric
protocol, it was shown that the reversible efficiency is the least likely, i.e., the large deviation function J (1) hasa
maximum at # = #,. The macroscopic efficiency is reproduced as the value carrying all probability to dominant
order J (77) = 0.For time-asymmetric protocols, the large deviation curves of the stochastic efficiency for the
forward and backward experiment cross at the reversible efficiency [36, 37].

In this paper, we provide an explicit and comprehensive illustration of the stochastic efficiency in five
engines under a time-symmetric protocol. Providing possibly the simplest steady state models for work to work
and heat to work transformation, we consider a Brownian particle subject to competing forces [35] and effusion
between two compartments [38]. Even though these cases have been discussed in some detail in the literature,
they are introduced briefly for completeness and for comparison with the other models. The third model is a
thermal engine based on a quantum dot. Itis of interest because its stochastic thermodynamic properties have
been discussed and measured, and because it is in principle richer than the effusion model, which can be
recovered in an appropriate mathematical limit. In the last two problems, we evaluate stochastic efficiency in
novel settings. We show that the universal features of stochastic efficiency are valid for energy to momentum
transformation. This is illustrated on an effusion model with momentum transfer. Finally, we discuss the
stochastic efficiency for information to work transformation. It is indeed possible to reformulate the fluctuation
theorem when dealing with an information processing set-up, such as the one introduced by Szilard. In
particular one can introduce the stochastic efficiency # = w/i for a machine transforming a stochastic amount
of input (Shannon) information 7 into work w. We show that its large deviation function again displays the same
general features. In particular, the reversible efficiency #, = 1is exponentially less likely than any other efficiency
in the asymptotic time limit (for time-symmetric protocols). We illustrate these features on the Mandal—-
Jarzynski model [8, 10].

1. Brownian engine

Consider an overdamped Brownian particle on a plane, subject to two external forces, a loading force 131 ,anda
driving force 132 [35], cffigure 1(a). The (larger) driving force 15; pushes the particle against the loading force 131 .
The stochastic efficiency of such a device as a work-to-work converter was discussed in [35, 39]. The
mathematics are very simple. Considering for simplicity a two-dimensional set-up, the displacement X of the
Brownian particle during a time ¢ is characterized by a two-dimensional Gaussian distribution. Under influence
of the resulting force F = 1_7; + l:“; the average displacement is < X > = uFt, ubeing the mobility. The variance is

isotropic and uncorrelated in orthogonal directions, < OX6X > = 2Dt 1, where D is the diffusion coefficient and T
the unit matrix.

We first turn to the macroscopic efficiency, which is very easy to evaluate, see also figure 1(b) for a colour-
coded illustration:
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(a) Schematic representation of a Brownian work-to-  (b) Colour-coded macroscopic efficiency of a Brow-
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work converter, with Fs the work performing driving  nian engine in function of Fy with F, = (1,0).

force, and F; the work receiving loading force. The black dot corresponds to Fy = (—3/2,1). The
stochastic efficiency for this case is represented in
Fig. 2a.

Figure 1. Characteristics of the Brownian engine.

; (4)

where wy = I:f -Xandw, = 1:“; - X are the stochastic amounts of work delivered by the loading and driving force
respectively. The engine regime, i.e., the regime where the driving force delivers a positive amount of work to the

loading force, is determined by:
7| £

——<cosO < ——, (5)
|7 7|

I

—

with € is the angle between E and 1:"; In combination with (4), it is clear from (5) that, in the engine regime, the
macroscopic efficiency is bounded by 77 < #, = 1. The reversible efficiency #, = 1 can only be reached in the

limit 1:"; - —l:f while F ¥ 1:"; . This can also be seen in figure 1(b).
We next investigate the stochastic efficiency

ﬂ=—W1/W2=—E‘)?/F2'£. (6)

Being the ratio of two correlated Gaussian variables, its probability distribution can be evaluated analytically, see
also [39]:

‘ﬁlxﬁz‘ e10

B () = (14 Jrg O Erf [ g () Jes ), ?)

x(F +nF))

with
(= - \2
¢ (1=n?(F x F)

=L
T TR 4R

; (8)

and Erf(x) is the error function. The characteristic time ¢, = 2D/ (u |f7 |)? determines the boundary between
diffusion dominated (¢ < f,) and drift dominated (¢ > #,) dynamics. We note in passing that it is easy to show
from equations (7) and (8) that P/ (0) > 0 and P/ (1) < 0, implying that there exists at least one maximum in
theinterval # € [0, 1]. This can indeed be seen in the simulation results for ¢/#, = 2, 5 and 10, shown in

figure 2(a).
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(b) Approach of —In P;(n)/t for increasing values
of t/ty (blue, red and green curve) to the large
deviation function J(n) (black curve). The purple
curve is obtained by extrapolation from the finite
time results. The black curve is given by equation

(9).

(a) Probability distribution P;(n) of the efficiency 7
for the Brownian engine.

Figure 2. Efficiency fluctuations of a Brownian engine with 1_51 = (1, 0), ﬁz = (—3/2, 1)and 7 = 0.29.

Universal features of the efficiency fluctuations are revealed when studying the asymptotic time behavior via
the large deviation function of 7 [35]:

J(n) = ~lim > In B ()

t—oof
- - N . 2
_ﬂz[(F1+’7F2)'(F1+F2)] 9)
- A N - 9 .
4D (F + 1k

This function has a minimum at the macroscopic efficiency J (57) = 0, butalso a maximum at the reversible
efficiency n, = 1, with equal asymptotes in the limits # — +o0. Toillustrate the approach to the large deviation
regime, —In (B (1) )/t is plotted in figure 2(b) obtained from simulation results for ¢/ty = 2, 5, and 10, together
with the limiting expression (9). We also include the result of an extrapolation ansatz [38], described in more
detail in appendix A. The extrapolation, based on the t/¢;, = 2, 5, and 10 curves, is in surprisingly good
agreement with the exact asymptotic expression. Although these finite time results do not, in this particular
instance, exhibit a maximum close to the reversible efficiency 5, = 1, it does show up by extrapolation.

2. Effusion engine

The effusion engine [38] consists of two reservoirs, exchanging heat and particles by effusion via one or more
small holes in the separating wall, cf figure 3(a). The reservoirs are supposed to be infinitely large and at
equilibrium. The holes are smaller than the mean free path so that the equilibrium state is not disturbed by the
effusion process. In this set-up, the flux out of a reservoir is determined by the driving parameter u/(kpT).
Under proper working conditions, a net flux of particles moves from say the left compartment, at high
temperature Tj and low chemical potential 4, to the right compartment at lower temperature T, but higher
chemical potential y .

When a particle moves from the hot to the cold reservoir, it delivers an amount of work wy = p. — ), = Ay,
while extracting an amount of heat g, = 1 — u;, from the hot reservoir, where uy, is the kinetic energy of the
transfered particle. Therefore, after a net transfer of n particles, the total amount of delivered work and extracted
heat, wand g are given by:

w = ndu, (10)
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(a) Schematic representation of the effusion model. (b) Macroscopic efficiency of the effusion engine in

terms of py/kpTy and p./kpTh, with ne = 1/2.
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pe/kpTh = —3/4. The stochastic efficiency for this
case is represented in Fig. 4a.

Figure 3. Characteristics of the effusion model.

q=u—ny, (11)

with u the net energy transfer.
Particles with kinetic energy E transfer from the hot to the cold reservoir at rate [44]:

1 E

Ty (E) = ———e"rm, (12)
o (kyT; )
and from the cold to the hot reservoir at rate
1 E _E K Fn
Tc—>h(E) =——,¢ k:TC-FkBTC kyTi, (13)
¢ 2
0 (ksTs)

where t, = \/ 2xm / ( azphz kg ]},) is the average time between particle crossings from the hot to the cold reservoir,

ois the surface area of the effusion hole and 1 is the mass of the particles of the gas. The macroscopic efficiency

can be easily obtained:
5= W)
ST
__ A
(u) = py(n)

A,u( (kBT;,)Zek;;;h - (kBTC)Zek;;z)
(14)

B (kBTh)z(ZkBTh - /lh)e% - (kBTC)z(ZkBT; - //th)ek/llii;: '

This function is plotted for Carnot efficiency 5, = 1/2 in figure 3(b) in terms of y /kp T, and u,/kp T;. The
engine boundaries are given by ), < . < p;, T./ Ty, — 2kp T, In (T./T;,). Furthermore, the macroscopic efficiency
is bounded by the Carnot efficiency, and this boundary is only reached in the limit 4., u, — —oco, which, foran
ideal gas, corresponds to zero density.

We next investigate the stochastic efficiency

n= W/q, (15)

Since it is not possible to obtain the analytic expression of the probability distribution P, (17), we present results
from a numerical simulation of the Markov process with the prescribed rates (12) and (13), cf figure 4(a). For the
parameter values under consideration, one clearly sees a minimum in the probability distribution developing in
the vicinity of the Carnot efficiency 7, even at the rather short times represented here. The behavior around

n = 0,and in particular the other minimum around # = 0, can be explained by the low number of particle
crossings for short times [38]: due to the fact that only a few particles will cross, small, non-zero efficiencies can

5
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function J(n) (black curve). The purple curve is
obtained by extrapolating the finite time results.
The black curve is given by equation (17).

Figure 4. Efficiency fluctuations of the effusion engine, with 5. = 1/2, ), = —kpTj, and . = —3 /4 kp T,. The macroscopic
efficiency is given by 77 = 0.07.

only be reached if particles cross with very high energies. As this is very unlikely, the finite time probability
distribution function shows a minimum around zero.

Turning finally to the asymptotic time behaviour, we note that the large deviation function J (1) of the
stochastic efficiency can be obtained from the joint cumulant generating function of work and heat ¢ (1, ), see
[37]. The latter is explicitly known for effusion [44] :

o, @)= limL In (&=

t—oof
_ opyJksTh : exp ( —AAu - a’ﬂh)
- 2mm (1 — kgTho)
onkpT, exp (lAﬂ + w,uc)
- 1 - (16)
V2rxm (1 + kpTow)*
The large deviation function of the stochastic efficiency is then given by:
J () = —ming (4, An). (17)

The contraction can be done numerically, and the comparison with finite-time simulations is represented in
figure 4(b). Note that the extrapolation again works quite well, except in the vicinity of # = 0, due to the
aforementioned short time effects.

3. Quantum dot

The quantum dot model, schematically represented in figure 5(a), has been investigated in detail in the context
of stochastic thermodynamics [45—-48]. Two electron reservoirs are brought in contact with each other via one or
multiple quantum dots. In order to investigate its stochastic efficiency, we focus on the case of two quantum
dots, each with one ‘active’ energy level, E; and E, (E; < E,). We need to consider at least two quantum dots
since otherwise the engine is tightly coupled, i.e. the stochastic efficiency will not fluctuate. Occupancy of a
quantum dot by multiple electrons is forbidden because of Coulomb repulsion. For mathematical simplicity, we
also set all coupling constants between dot and reservoirs equal to 7.

The operation of each quantum dot as a thermal engine is similar to that of the effusion engine: a net motion
of electrons from a reservoir with low chemical potential to one with higher chemical potential is induced by a

6
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(a) Schematic represetation of the quantum dot. (b) Macroscopic efficiency of the quantum dot, with
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Figure 5. Characteristics of the quantum dot.

driving temperature gradient. For every particle transferring through the quantum dot with the lower energy
level E;, the heat taken from the hot reservoir is given by g, = E; — p,, and the delivered amount of work is

Wy = . — u;, = Ap. Furthermore, the rate of transfer between the hot reservoir and the quantum dot are given
by:

_E-my

e~
+ _
ki = ——0 (18)
1+e
_ r
1+e 7

The rate of exchange between the cold reservoir and the quantum dot is obtained by replacing with Tj, and u, by
T.and p,, respectively. Analogous expressions hold for transfer through the other quantum dot, with E; replaced
by E,. The total amount of delivered work w and consumed heat g after a net transfer of 1 particles through the
quantum dot with energy level E; and 1, particles through the quantum dot with energy level E, are then given
by:

W=Au(n1 + nz), (20)
q = oq,m + 0q,n;. (21)
The macroscopic efficiency can now be written as:
w
= w) (22)
(q)

() + ()

= , (23)
<n1><E1 - llc) + <n2>(E2 - ﬂc)
where 1, and 1, are the (stochastic) netamount of particles transferred through respectively the quantum dot

with the lower and higher energy level. Their average value can be calculated from the rates given in
equations (18) and (19):

El—p ¢ El—-pp
r e T —e

Y T ) .

and an analogous expression for < n2> with E; replaced by E,. The macroscopic efficiency of the engine is plotted

in figure 5(b) in function of p,,/kp T, and p /kp Ty,. These results are comparable with the results of the effusion
engine. Again, Carnot efficiency is only reached in the limit of zero density.

7
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(26).
Figure 6. Efficiency fluctuations of the quantum dot, with 5o = 1/2, Ey = kT, E» = 10 kg T, p, = —kpTj,, y, = Oand
ty = 10°/I". The macroscopic efficiency is given by 77 = 0.09.

For the study of the efficiency fluctuations at finite time, we again first turn to numerical simulations. The
probability distribution B (1), with

w
q

is obtained by sampling the net fluxes ; and n, using the rates specified in equations (18) and (19). A typical
result is shown in figure 6(a). The results appear to be rather noisy, which is due to the fact that both work and
heat, and therefore the efficiency, are discrete variables. Nevertheless, the minimum at Carnot efficiency is very
striking, even at these short times. The convergence to the macroscopic efficiency on the other hand is rather
slow, which is, in this particular case, due to the small value of the large deviation function.

Due to the fact that this engine is driven by two independent, tight-coupled operating channels (namely the
two quantum dots), with heat consumption and efficiencies per particle 6g; and 1; = w,/8q, respectively, i=1, 2,
the large deviation function for the efficiency J (1) can be written in terms of the event large deviation functions
@;(n),i=1,2 (see appendix B):

J(n) = min| ¢, %]wz[% . (26)
x 1 2

Here, @ = (n — n,)/(n, — 1,),and ¢, (n) and ¢, (n) are the large deviation functions of the net number of
transferred particles through each of the channels. As these large deviation functions are known (see
appendix C), equation (26) allows to estimate the large deviation function of 77 with great precision. The
comparison with finite time numerical simulations is shown in figure 6(b). Note that the extrapolation from
finite time results does not work uniformly well due to the aforementioned discreteness of the efficiency.

4, Effusion with momentum transfer

The effusion model, discussed in section 2, has also been studied in the presence of momentum exchange
between the reservoirs [49], see figure 7(a). In this set-up, the gases move with overall average speed V;, and V.
parallel to the separating wall containing the effusion hole. For the purpose of illustration, we assume equal
densities and chemical potentials in both reservoirs, and consider a thermal engine, with temperatures T;, and T,
in the respective compartments, driving momentum exchange.

8
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(b) Colour-coded representation of the macroscopic
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stochastic efficiency for the latter case is represented
in Fig. 8a.

Figure 7. Characteristics of the effusion engine with transversal momentum.

The definition of the efficiency is based on the identification of the additive contributions to the entropy
production. For a reversible process, their algebraic sum becomes zero and the resulting macroscopic efficiency
(being the negative ratio of the constitutive parts) is equal to 1. In the present case there are three contributions
related to energy, particle and momentum exchanges, hence there is some freedom to specify which
contribution operates as input, contributing (on average) to a a positive entropy production, and which one is
the output generating a negative contribution. We focus here on the thermal engine regime, with the energy flux
asinput:

ANI’l + A P.
p=———— (27)
AUu
with
T. V2 V7
AN—ikBll’l— + mc_u’ (28)
Ty 2T, 2Ty,
i Vo
Ap =2 -, (29)
o T
1 1
Ay == - —, (30)
. T

the affinities of the particle, momentum and energy transport, and #, p, and u the amounts of particle,
momentum and energy transport. The macroscopic efficiency then reads:

_AN<”> + Apx<Px>

31
Ay (u) Gy

r_]:

with (n), (p,)and (u), the macroscopic particle, energy and momentum fluxes. The total entropy production is
given by [49]:

4iS = An(n) + Ay (p,) + Au(u) > 0. (32)

Hence the second law of thermodynamics dictates that macroscopic efficiency in the engine regime is smaller
than 1. This is illustrated for the parameter values considered in figure 7(b).

Following the discussion of the previous examples, we now turn to the efficiency fluctuations. For the finite-
time probability distribution B (1), we again rely on numerical simulations. The rates of particle transfer are
given by:
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Figure 8. Efficiency fluctuations of effusion with momentum, for 5o = 1/2, V;, = 5 \[kg T,/m and V. = 5.5 [k T;/m . The
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(b) Approach of —In P;(n)/t for increasing values of
t/to (blue, red and green curve) to the large deviation
function J(n) (black curve). The purple curve is
obtained by extrapolation of the finite time results.
The black curve is given by equation (39).

’I-il—’C(E);Dac):i \/E

fo (kBTh)ZIZ'M

X exp| —
P 2kp T},

1 V2

1/2
r
2m
2
g B
2m P 2
+ (—" + Vh) , (33)
m m

Tn(E p)=—

p2 1/2
tO(kBTc)”(kBTh)”znm[ i 2’”]

2
-5
m
+(p" ) , (34)

with tg = /2zm/ (kg T,6%p?) , the average time between particle crossings from reservoir h to reservoir cand p
the particle density inside the reservoirs. The results of the simulations are shown in figure 8(a). The minimum
at the reversible limit is clearly visible. Note also that, in contrast to effusion without momentum transfer, the
probability distribution behaves smoothly around n = 0. The explanation is that, due to the possibility of
momentum transport alone, small efficiencies arise without net particle transport.

To evaluate the large deviation function of the efficiency, we first note that:

<e—,1ww—/1Qq> - <e—/lw(ANAN+AprpX)—AqAUAU>) (35)

and therefore the cumulant generating function of the produced work and heat y, (A, A¢) can be written in
terms of the cumulant generating function of the transferred momentum, energy and particle numbers

ﬂ] (an /1N3 A[_&)'
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(a) Schematic representation of the Mandal- (b) Alternative physical implementation of the

Jarzynski model with 3 energy states. Mandal-Jarzynski model.

Figure 9. Possible set-ups for the Mandal-Jarzynski model.

o (2w Aa) = pi ( Andws Apdws Auiq)

_ 6( kB )l/szPll/2 L Gh<ANﬁw, Apx/lw, AU2Q>
2zm (1+ ks ThAuiq)

ks \" GC(ANAW, ApAws AUﬂQ)
+ a( ) pT?1 - . , (36)
2nm (1 - ksTAudg)
with:
mVidy — kBmThlﬁx + 2mVidp
Gi (4> Apy Aur) = exp| =Ax = , (37)
2(]. + kBThﬂU)
and
mVZiy + ksmT.Ap + 2mVid,,
G. (AN, Ay /IU) =exp| Ay + (38)

2(1 —kBmU)

As was discussed for the effusion model, the large deviation can then be found by numerically contracting the
cumulant generating function:

J(n) = —mﬂin,uo(/l, An) = —m/lin/l1 (ANA, Ap Ay AUJM). (39)

The comparison with simulations is shown in figure 8(b). The extrapolation ansatz seems to work quite well
apart from an overshoot at the reversible efficiency.

5. Mandal-Jarzynski model

Recently, there has been considerable interest in the stochastic information-to-work conversion. To study this
issue in the context of stochastic efficiency, we focus on one of the simplest models, namely the Mandal—-
Jarzynski engine [10], cf figure 9(a). A particle, in contact with a heat bath at constant temperature T, can make
transitions between a number of energy levels, which are multiples of SE. Apart from the thermal dissipative
transitions due to the bath, the particle undergoes transitions that are driven by the entries of a linear tape. This
interaction corresponds to a form of input work. The energy levels of the systems are numbered as shown in
figure 9(a). The input tape consists of a sequence of entry values, each referring uniquely to one of the possible
energies, which are presented subsequently to the system. During such an interaction, the particle is moved to
the energy level with number equal to the initial value on the tape. In this way, work is delivered. After each entry
of the tape, the system is left to thermalize, and the new energy state of the particle is written into the tape, which
we call the final or exit value. Note that this will alter the Shannon entropy of the tape. The tape moves on one
step and the process is repeated. We mention a closely related implementation of the Mandal-Jarzynski model,
shown in figure 9(b). A Brownian particle in contact with a thermal bath at temperature T, can make jumpson a

11



I0OP Publishing NewJ. Phys. 17 (2015) 065004 K Proesmans and C Van den Broeck

P2 020 1
015
010
005
. L)
0 ol 0.2 03 04
Pria
Figure 10. Macroscopic efficiency of the Mandal-Jarzynski model in the engine regime, with E = kT The black dot corresponds
to p;, = 0.2, p;, = 0.1and 77 = 0.68. The stochastic efficiency for the latter case is represented in figure 11(a).

discrete lattice with a wall at position zero and a force gradient in the negative direction, inducing an energy
difference between two neighbouring sites equal to SE. After the particle has thermalized, its position is
measured, and the wall is instantaneously brought to the measured position. Next the wall is adiabatically moved
back to the original position with delivery of work, after which the process is repeated. While we studied both
versions, we focus in the following on the simplest situation giving nontrivial results for stochastic efficiency,
namely a Mandal-Jarzynski model with three states, cf figure 9(a).
Itis clear that the amount of delivered work after one entry (trit) of the tape is given by:
w = S6E(f — 1), (40)

where i and fare the initial and final state of the system, respectively. As is discussed in detail in [8, 18], the
Mandal-Jarzynski system operates as an information engine with time-symmetric driving when considering the
following definition of the entropy production:

Astape = ks (ln (p) =0 (py) ) (41)

with i and fthe initial and final state of the tritand p, ; the probability for entry state k on the tape. The average
information entropy change upon processing one trit is thus given by:

<A5tape> = kg Z(pl,j - pF,j) In (pl,j)‘ (42)
j
Here:
_jOE _SE _,8E
prj=e kBT/(l + e kT + e kBT), (43)

is the probability that the trit leaves the system in statej (j = 0, 1, 2). The information entropy written in this
way is the sum of the change in Shannon entropy and the entropy production of an auxiliary Mandal-Jarzynski
system if it were to bring the tape back to its original distribution [9].

The efficiency is defined as the ratio of the delivered work and the amount of information consumed. In
particular the macroscopic efficiency is given by:

_w
T (Asipe)
_ OE (Z(Pp,z _Pl,z) + (PF,l - P1,1>>
kgT ((PI,O - PF,()) In (P],O) + (Pl,l - Pp)l) In (pm) + (pm _ pF,z) In (p1)2)>.

A colour-coded plot is given in figure 10, for SE/kz T = 1. Reversible efficiency (77 = 1) can be reached in the
limit where prj = pF)j,jz 1,2,with p; | — Pry # 2(Be2 — Br2), cffigure 10.

f]:

(44)

The joint probability distribution Bpi,n (#11, 112) of n; and 1, incoming trits with value 1 and 2 respectively on
atotal of Ntrits is given by:

N! —
Buien (1, n2) = PraPr) ( 1= pry = Pry

(N - ny — ﬂz)!n1!n2!

)N—nl—nz (45)
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(a) Probability distribution of the efficiency. (b) Approach of —In P;(n)/t for increasing values of
t/to (blue, red and green curve) to the large deviation
function J(n) (black curve). The purple curve is
obtained by extrapolating the finite time results.
The black curve is given by equation (49).

Figure 11. Efficiency fluctuations of the Mandal-Jarzynski model, for 6E = ks T,p; ; = 0.2and p; , = 0.1. The macroscopic
efficiency is given by 77 = 0.68.

and the joint probability distribution of #; and 1, outgoing trits with value 1 and 2 respectively on a total of N
trits is given by:

N!
PFinal,N(nla ”2) = PI?)I]P;)ZZ(I - Pp,l - pF’z

, (46)
(N— n — 1’!2)!111!1’12!

)N—Vll—ﬂz

which is independent of the distribution of the incoming trits. Using these distributions, numerical simulations
can be performed, to evaluate the probability distribution of the stochastic efficiency

w
= >
TAStape

n (47)

cffigure 11(a). The minimum around # = 0 is analogous to the minimum in the effusion model, and disappears
in the large time limit. Furthermore, one observes the weak local minimum at reversible efficiency one with, to
its right, a more clearly visible maximum.

The large deviation functions of x; = n;)/N and x, = nj,/N incoming trits with value 1 and 2 respectively,
is found from equation (45):

Yimit (X1 X2) = x1In(x;) + %2 In(x2) + (1 — x; — x2)In(1 — x; — x3)
- X hl(PI,l) - X2 ln<P1,z> — (1 —x - xz)ln(l — P11 _Pl,z)’ (48)

and a completely analogous expression for the large deviation function y,,.; (11, 5) of 3 = np1/N and
¥, = np/N,with p;  replaced by py ;. From this, the large deviation function of the efficiency can be
calculated:

T = min (py (% %2) + P 1 1)) (49)

X1,X2:))s

where x;, x5, y; and y, are constrained to reproduce the efficiency 7 under consideration, i.e., they are related by:

=5_E (Z(yz—xz)+y1—x1)
ksT (xo = ) In (pyo) + (i = ) I (pyy) + (2 = ) In (py,)

n (50)

This minimisation can be done numerically, cf figure 11(b). In spite of the noise, which is mainly due to the
discreteness of the efficiency, the extrapolation seems to work quite well. Also, the telltale maximum in the large
deviation function close to reversible efficiency is again reproduced.
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6. Discussion

The concept of efficiency plays a crucial role in thermodynamics, especially when the efficiency is defined in such
away that is leads to universal system-independent statements, such as the one concerning Carnot efficiency.
With the advent of stochastic thermodynamics, it is natural to revisit such questions for stochastic efficiency.
Universal statements appear to be possible for the large deviation function characterizing the asymptotic time
regime. In particular, long-time realisations with reversible efficiency are exponentially least probable for time-
symmetric driving. One purpose of this paper has been to verify and document the salient features of the time-
asymptotic stochastic efficiency in five different settings, namely driven Brownian motion, effusion with a
thermo-chemical and thermo-velocity gradient, a quantum dot and a model for information to work
conversion. In addition, we provide the analysis for finite time including the approach to and extrapolation into
the asymptotic time regime. A revealing feature of our analysis is that the large deviation properties can be
obtained quite consistently by extrapolation from rather short finite time results. The other encouraging
message is that one can apply the analysis to a wide variety of completely different implementations, some of
which may be easier to realize. Both observations imply that an experimental verification should not pose a real
problem. In particular, in view of existing experiments on the issue [21, 23, 50-52], the experimental
implementation for the stochastic efficiency of an information to work engine should be relatively
straigthforward.
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Appendix A. Large deviation functions from finite time results

The central object of interest in stochastic efficiency is its large deviation function. Unfortunately, the evaluation
of exponentially unlikely events is obviously very difficult. For this reason, we propose a simple and apparently
robust method to deduce the large deviation function J (1) from finite time results. As input we give the
efficiency probability distributions for three finite times #, t, and t;. We propose the following ansatz for B, (1) :

Biee () = A(n)t =B e=7 00, (A.1)

Here, A (1), B(n) and J () are three fitting parameters for each #. J (1) shall be our estimate for the large
deviation function. The fitting parameters can be obtained from the known values —In (P, (7)), withi = 1, 2, 3,
since:

—In (B,(n))/t 1 1/t In ()1 T
—In (B,(m)/t2| = |1 1ty In(ta)/t2 || =In (A(p) |. (A.2)
—In (PtS(ﬂ))/tj, 1 1/t3 ln(t3)/t3 B(I’])

Inverting this matrix equality leads to an estimate of the large deviation function.

Appendix B. Efficiency calculations from event probability distributions

Consider a model consisting of k tight-coupled processes (e.g. k channels for particle transport), where the ith
process undergoes n; events, i = 1,.., k. Furthermore, the total delivered amount of work and heat can be

writtenas W (ny, ..., ng)and Q (ny, ..., ny). Once the event probability distribution is known, the probability
distribution of # can be written as:
pt(ﬂ) = Z pt(nla cees nk)énQ(m ,,,,, k), W (n1,...,n5)> (Bl)
Niyenns nk

for discrete variables and

W (ny, ..., ny)
K@) = /dm wdm B (m, nk)t‘i(n - (B.2)
Q(nlr cees nk)
for continuous variables, where B (1, ..., n) is the probability that at time t, for process i, n; events have

occured. Using the corresponding event large deviation function
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y(ni, ..., ng) = —limt_m( 1/t In (B(nl, cees nk)) ),the efficiency large deviation function J (1) can then be
calculated via the contraction principle:

](”I) = min }/(nl) ey le), (B3)
Niy.enns nk
where ny, ..., ny are conditioned to:
W(ny, ..., 1g)
n= —— b0 T (B.4)
Q(nb ceey l’lk)

This provides a good scheme for numerical calculations.
We proceed to show that there are, in this case, only two extrema of the efficiency large deviation function:
the macroscopic efficiency and the reversible efficiency. Using Lagrange multipliers, we have:

](l’]) = EXtI'xl ..... xk,/lL(xl 3003 Xk> jf)a (B'S)
with
Lt ooy Xio ) =7 (1 oo ) + A (1Q 1y oy ) = W (1 oy x0)) (B.6)
Therefore, xi, ..., X, A are constrained to:
O (¥ .o X)) _ naQ(Xb o %) Wil o X)) (B.7)
ox; ox; 0x;
foralli.As L(xy, ..., xi, A)isanextremumofiandx;i =1, ..., k, wehave
d OL(x1, ..., X A) 0x;  OL(xp, ...y Xpp A) 04 OL(xyy ...y Xp A
Lim=¥% (%1, -0 Xpp A) O OL(X1, .y Xip 4) 04 OL(X1, -.os Xpo 4)
dn - ox; on 04 on on
_OL(xp, .05 Xpo A)
= po
= AQ(xp, ..., Xx). (B.8)
Note that Q (xy, ..., x;) = 0 corresponds to reversible efficiency due to the fluctuation theorem, and that 1 = 0
corresponds to dy (xy, ..., x;)/0x; = 0 (using equation (B.7)) which is equivalent with macroscopic efficiency

(as we assume convex event large deviation functions). As one of these two equalities has to be fulfilled to be in an
extremum of J (1), we conclude that these are the only two extremums of the large deviation function.

We finally note that the expression for J (1) can be further simplified if the processes are independent. We
shall illustrate this for systems consisting of two independent processes (with 71, and n, events respectively). The
extension to more independent processes is straightforward. The amount of delivered work per event in the ith
process is written as w; and the amount of extracted heat is g;, i = 1, 2. The efficiency is then given by:

winp + whty

a q,m + gq,n;
n n
= 7q1 ! 111 + nziqz 2 h
4m + g,n qim + 4,12
=an + (1 —a)n, (B.9)
with
n —
g=— M _n7m (B.10)
gmt gyn2 M-
and n; = w;/q;,1= 1, 2. Therefore, the probability distribution of 5y at time t is given by:
w
B(n)=/fdwdql§(w, q)é(f? - ;)
= f/dnldnz |W1q2 - qul‘ B(m)B(nz)é(ﬂ —ap —(1- a)ﬂz)- (B.11)

From large deviation theory, we can now write the efficiency large deviation function J () in terms of terms of
the large deviation functions of the event numbers ¢, (1) and @, (1,):

J () = min[qol(ﬁ] + qaz(w)]. (B.12)
x 4 q,
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Appendix C. Event large deviation function of quantum dot-like models

We present for completeness the large deviation function for the number of particles travelling through one
energy level of a quantum dot (with energy E and coupling constant I = 1) . We only quote the final result, as
similar calculations can be found in the literature, see e.g. [53—56]. We recall that the fluxes are given by
equations (18) and (19). The cumulant generating function is given by:

f) =k+Jr+4q@)s, (C.1)
with
(ki + ki +kif + k7)

+ -
k= > s s=Jkikikikis oy = 1n(';ﬁ’;€)
R™ML

py)=e?7  r=k*—kiky —kik;; q)=p() +pH) " (C2)

The large deviation function reads:

h(n) = —f (y (n)) — ny (n), (C.3)
with:
q(n) = z—n\/r +2n% + 22+ m? 4+ nt, (C.4)
N
_ 2 _
y(n) = % N A +24 Tam (C.5)
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