
Modelling High Dimensional

Dose-Response Data

Mgr. Martin Otava, MSc

Promotor: Prof. dr. Ziv Shkedy
Co-Promotor: Dr Adetayo Kasim

Co-Promotor: Prof. dr. Willem Talloen





Lubošovi, Evě, Radkovi a babičce Jarče. E à Renata.

"Bože, jak jednoduchý recept na štastný život - to, co děláme, dělat z lásky k věci."
Karel Čapek





Acknowledgements

I have met so many great people during past four years, both among the colleagues at
various places, as well as in personal life. Therefore, the acknowledgement would never
contain all of the things I am grateful for, nor the people I would like to thank. It will be
just the brief and incomplete summary.

I was very lucky to have Ziv Shkedy as the supervisor, because his working style
was just perfect for me. Especially, I am very grateful for his availability to set meeting
whenever I felt it is needed and also for his valuable advices on all the different aspects
of the PhD. He was also very supportive in "side-projects" that extended my experience
broadly, namely teaching in Ethiopia and teaching acivities for Master students in Hasselt.
Besides being great supervisor, Ziv is great person in general and it is indeed very easy
to study and work hard, if you can consider your supervisor being your friend. I am also
grateful to Adetayo Kasim for becoming my co-supervisor, although being very busy with
building his department at Durham University, and being of great source of inspiration,
and to Dan Lin who kept in touch after leaving the department, for good advices and
friendship.

I learned a lot during my visits to Beerse and I was very lucky to be able to get
experience from industry as well as academia. It was not only about direct interaction
with the great professionals there, but also about interaction with non-statisticians, huge
amount of presentations that we had to give and access to the network of specialists
and opportunity to learn from them (just for one example is unforgettable presentation
about R by José Pinheiro). My main thanks goes to Willem Talloen and Luc Bijnens
whom I collaborated most extensively and who taught me a lot. However, I would like to
extend my acknowledgement to the whole Nonclinical statistics team for providing such
a stimulating environment, as well as people collaborating on QSTAR and ExaScience
projects.

i



ii Acknowledgements

I was honored to have very good collaborators for various topics of the thesis. Dani
Yekutieli and Frank Bretz for permutation test of BVS, Ludwig Hothorn and Daniel
Gerhard for model selection problems, Geert Verheyen for pathway analysis and toxicoge-
nomics. Also, at our department, there were so many nice people: JOSS board, office
mates from B2 and E101, thanks for good times! Special thanks goes indeed to Martine
and Hilde for being incredibly helpful and efficient at any time!

Nolen, salamat! You were the best colleague ever and also great friend to me! I wish
you all the best wherever you go and I hope to visit you in Philippines one day.

Eva and Jimmy, thanks a lot for making me busy at the weekends! I admire your
attitude and I still do not fully comprehend, how can you make all the that stuff while full
time working. Koen, thanks for sharing all that different events all over the year and for
jogging! Yovanna, muchas gracias por ser gran amiga! Especially at the beginning, when
I missed my family a lot, visiting you, Miguel and Sulay always felt like coming home.
Emanuele, Fortunato, Donato, Consu, I will never forget the longest Easter dinner in my
life nor the great evening parties at Nierstraat and salsa in Genk! You made my stay here
so much more pleasant! As well as many others: thank you Caro, Kim, Sammy, Chella,
Kathy, Ambily, Tanya, Wibren, Ariel, Pia, Izabela, Nikolina, Wiebke, Farnoosh, Trishanta,
Yimer and many more for being such great friends.

Rád bych poděkoval všem přátelům doma, kteři na mě nezapomněli a zůstali v kon-
taktu. Pokoušel jsem se původně o jmenný seznam, ale začínal být neúnosně dlouhý a
stejně bych musel opomenout spoustu lidí. Veřte mi proto, ze jsem měl radost z každého
hovoru na Skypu, emailu a že jsem si nikdy nemohl stěžovat, ze bych v Čechách neměl co
dělat. Občas byla výzva spojení udržet a se spoustou z vás jsem mluvil a viděl se mnohem
méně, než bych si býval přál. Na druhou stranu, nevěřím, že bych to tady dostudoval,
kdybych někdy získal pocit, že ztrácím kontakt s vámi všemi. Doufám, že nám to vydrží
i nadále a že bude dost příležitostí se vídat. Samozřejmě, jste všichni zvaní na návštěvu!
Speciální poděkování pro Čendu, Zdendu a Jardu, což snad nemusím nijak vysvětlovat.
Hynkovi za tu hromadu hovorů a Kamče a Petrovi (nejen) za skvělou společnou dovole-
nou. Dalši velké poděkování patří všem, co se podílejí na letním táboře, ať už na straně
organizátorů či účastníků, za tu úžasnou atmosféru a to, jak moc jsem si tam vždycky
odpočinul. Dolly, Honzo, Martine, Jardo, Nathe, Vláďo a Kiki, díky za sdílení chatky ve
všech těch různých letech, byla to paráda.

Na závěr patří poděkování mé rodině. Děkuji za podporu, rady a starost za všech
okolností! Přijet sem mi dalo hodně, ale stejně tak jsem toho doma spoustu propásnul.
Mám vás moc rád a vždycky tu pro vás budu, ať budu jakkoli daleko!

Finalmente, muito obrigado, meu amor. Para tudo. Eu não iria ter sucesso sem você.
Te amo muito!



Publications

The materials presented here are based on the following publications and reports:

Manuscripts and book chapters

Kasim, A., Van Sanden, S., Otava, M., Hochreiter, S., Clevert, D.-A., Talloen, W.,
Lin, D. (2012) δ-clustering of Monotone Profiles. In Lin, D., Shkedy, Z,. Yekutieli,
D., Amaratunga, D., Bijnens, L. (ed.), Modeling Dose-response Microarray Data in
Early Drug Development Experiments Using R, Springer, Berlin, pp. 193-214.

Otava, M., Shkedy, Z., Kasim, A. (2014) Prediction of Gene Expression in Human
Using Rat in Vivo Gene Expression in Japanese Toxicogenomics Project. Systems
Biomedicine, 2:e29412. DOI:10.4161/sysb.29412.

Otava, M., Shkedy, Z., Lin, D., Göhlmann, H. W. H., Bijnens, L., Talloen, W.,
Kasim, A. (2014) Dose-Response Modeling Under Simple Order Restrictions Using
Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research,
6(3), 252-262. DOI: 10.1080/19466315.2013.855472.

Otava, M., Lin, D., Shkedy, Z., Kasim, A., Verbeke, T., Pramana, S., Bijnens,
L., Göhlmann, H. W. H., Talloen, W. (2015) δ-Clustering of Monotone Profiles for
Dose-response Gene Expression Data: The ORCME R Package. To be submitted.

Otava, M., Shkedy, Z., Talloen, W., Verheyen, G. R., Kasim, A. (2015) Identifica-
tion of in vitro and in vivo disconnects using transcriptomics data. BMC Genomics,
16, 615. DOI 10.1186/s12864-015-1726-7.



iv List of Publications

Otava, M., Shkedy, Z., Lin, D., Pramana, S.,Verbeke, T., Haldermans, P., Hothorn,
L. A., Gerhard, D., Kuiper, R., Klinglmueller, F., Kasim, A., (2015) IsoGeneGUI:
multiple approaches for dose-response analysis of microarray data using R. Submit-
ted to R-Journal.

Otava, M., Lin, D., Shkedy, Z., Bretz, F., Talloen, W., Yekutieli, D., Kasim,
A. (2015) Order restricted Bayesian inference under model uncertainty for dose-
response experiments. To be submitted.

Otava, M., et al (2015) Identification of the Minimum Effective Dose for Nor-
mally Distributed Endpoints Using a Bayesian Variable Selection Approach. To be
submitted to Journal of Biopharmaceutical Research.

Otava, M. (To be published 2016) Patterns Discovery in High Dimensional Prob-
lems. In Kasim, A., Shkedy, Z., Kaiser, S., Hochreiter, S., Talloen, W. (ed.), Applied
Biclustering Methods for Big and High Dimensional Data Using R. Chapman and
Hall / CRC.

De Troyer, E., Otava, M., et al (To be published 2016) The BiclustGUI Package.
In Kasim, A., Shkedy, Z., Kaiser, S., Hochreiter, S., Talloen, W. (ed.), Applied
Biclustering Methods for Big and High Dimensional Data Using R.

De Troyer, E., Otava, M., et al (To be published 2016) We R a Community
- Including a New Package in BiclustGUI. In Kasim, A., Shkedy, Z., Kaiser, S.,
Hochreiter, S., Talloen, W. (ed.), Applied Biclustering Methods for Big and High
Dimensional Data Using R.

Conference proceedings

Otava, M., Kasim, A., Shkedy, Z., Kato, B. S. (2012) Bayesian variable selection
method for modeling dose-response microarray data under simple order restrictions.
In Komárek, A., Nagy, S. (ed.), Proceedings of the 27nd International Workshop
on Statistical Modelling (IWSM), pp. 193-214.

Software development

Kasim, A., Otava, M., Verbeke, T. (2014) ORCME: Order Restricted Cluster-
ing for Microarray Experiments. R package version 2.0.1. http://CRAN.R-
project.org/package=ORCME.

http://CRAN.R-project.org/package=ORCME
http://CRAN.R-project.org/package=ORCME


List of Publications v

Pramana, S., Lin, D., Haldermans, P., Verbeke, T., Otava, M. (2014) Iso-
GeneGUI: A graphical user interface to conduct a dose-response analysis of mi-
croarray data. R package version 2.0.0. http://ibiostat.be/online-resources/online-
resources/isogenegui.

Aregay, M., Otava, M., Khamiakova, T., De Troyer, E. (2014) BcDiag: Diag-
nostics plots for Bicluster Data. R package version 1.0.7. http://CRAN.R-
project.org/package=BcDiag.

De Troyer, E., Otava, M. (2015) RcmdrPlugin.BiclustGUI: Rcmdr Plugin-in. R package
version 0.6.2/r48. http://R-Forge.R-project.org/projects/biclustgui/.

http://ibiostat.be/online-resources/online-resources/isogenegui
http://ibiostat.be/online-resources/online-resources/isogenegui
http://CRAN.R-project.org/package=BcDiag
http://CRAN.R-project.org/package=BcDiag
http://R-Forge.R-project.org/projects/biclustgui/




Contents

List of Abbreviations xi

1 Introduction 1
1.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Litter data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 The Ames data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 The Angina data . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 The Toxicity data . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Omics case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 The HESCA study . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 The Japanese Toxicogenomics Project . . . . . . . . . . . . . . . 6

I Bayesian Variable Selection Models for Order Restricted Prob-
lems 11

2 Introduction to Order Restricted Bayesian Variable Selection 13
2.1 Model uncertainty in dose-response modelling . . . . . . . . . . . . . . . 13
2.2 Testing the null hypothesis against a simple ordered alternative . . . . . . 17
2.3 Bayesian estimation under strict inequality constraints . . . . . . . . . . . 19
2.4 Bayesian variable selection models for dose-response modelling . . . . . . 22
2.5 Application to the case studies . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 The Ames data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 The Litter data . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 The direct posterior probability approach for multiplicity adjustment 28

vii



viii Table of Contents

2.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Inference for Bayesian Variable Selection 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Inference for BVS model . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Selection of the Minimum Effective Dose Based on the Posterior Probabil-
ities 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Model averaging techniques . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Order restricted estimation: hierarchical Bayesian approach . . . . 56
4.2.3 BVS model approach . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Robustness Against the Prior Configuration and Model Complexity 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Level probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Posterior expected complexity . . . . . . . . . . . . . . . . . . . 74
5.2.3 Choice of priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Posterior complexity . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.5 Varying noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Table of Contents ix

6 Exploring the properties of the Bayesian Variable Selection Modelling Ap-
proach: Simulation Studies 93
6.1 General setting for the simulation studies . . . . . . . . . . . . . . . . . . 93

6.1.1 Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Simulation studies: Estimation (Chapter 2) . . . . . . . . . . . . . . . . 102
6.3 Simulation studies: Inference (Chapter 3) . . . . . . . . . . . . . . . . . 116
6.4 Simulation studies: Model selection (Chapter 4) . . . . . . . . . . . . . . 122

II Microarray Experiments in Toxicogenomics 133

7 Prediction of Human Data Using Rat Data in Japanese Toxicogenomics
Project 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.1 Toxicogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.2 Prediction of human in vitro data . . . . . . . . . . . . . . . . . 136

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.1 Exploratory analysis: Analysis of variance approach . . . . . . . . 137
7.2.2 Main data analysis: Trend analysis approach . . . . . . . . . . . . 138

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.1 Analysis of variance . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.2 Trend analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Disconnected Genes in the Japanese Toxicogenomics Project 149
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.2.1 The fractional polynomial framework . . . . . . . . . . . . . . . . 150
8.2.2 Biclustering of genes and compounds . . . . . . . . . . . . . . . . 155

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3.1 in vitro disconnects . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3.2 in vivo disconnects . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

III Software Development for Dose-response Omics Data 163

9 Order Restricted Clustering for Microarray Experiments 165



x Table of Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Order restricted curve clustering . . . . . . . . . . . . . . . . . . . . . . 166

9.2.1 The δ-biclustering method . . . . . . . . . . . . . . . . . . . . . 167
9.2.2 The δ-clustering of order restricted dose-response profiles . . . . . 168

9.3 Introduction to ORCME package . . . . . . . . . . . . . . . . . . . . . . . 174
9.3.1 Example 1: δ-clustering for dose-response data . . . . . . . . . . 175

9.4 Choice of clustering parameter λ . . . . . . . . . . . . . . . . . . . . . . 183
9.4.1 Example 2: The choice of the clustering parameter . . . . . . . . 185

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10 A Community Based Software development: The IsoGeneGUI Package 191
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.2 GUI packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.3 Order restricted analysis of continuous data . . . . . . . . . . . . . . . . 194
10.4 The structure of the package . . . . . . . . . . . . . . . . . . . . . . . . 196
10.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.5.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.5.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.5.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11 Discussion 203
11.1 Bayesian variable selection . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.2 Toxicogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.3 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Bibliography 209

A Validation of Fractional Polynomial Method in the Context of the Discon-
nect Analysis 225
A.1 Simulation study I: Performance of proposed method . . . . . . . . . . . 226

A.1.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.2 Simulation study II: Multiplicity adjustment . . . . . . . . . . . . . . . . 232

Samenvatting 235



List of Abbreviations

AIC Akaike Information Criteria
ANOVA Analysis of Variance
BH Benjamini-Hochberg
BY Benjamini-Yekutieli
BIC Bayesian Information Criteria
BVS Bayesian Variable Selection
cFDR Conditional False Discovery Rate
CRAN The Comprehensive R Archive Network
DIC Deviance Information Criteria
DILI Drug Induced Liver Injury
EGF Epidermal Growth Factor
FARMS Factor Analysis for Robust Microarray Summarization
FDA Food and Drug Administration
FDR False Discovery Rate
FWER Family-wise Error Rate
GO Gene Ontology
GORIC Generalized Order Restricted Information Criterion
GUI Graphical User Interface
GVS Gibbs Variable Selection
HSD Honest Significant Difference
HESCA Human Epidermal Squamous Carcinoma
IC Information Criterion
I/NI Informative/Non-Informative
KEGG Kyoto Encyclopedia of Genes and Genomes
LRT Likelihood-ratio Test
MCMC Markov Chain Monte Carlo
MCT Multiple Contrast Test

xi



xii List of Abbreviations

MED Minimum Effective Dose
NMR Nuclear magnetic resonance
ORCME Order Restricted Clustering for Microarray Experiment
ORIC Order Restricted Information Criterion
ORICC Order Restricted Information Criterion-based Clustering
PAVA Pool Adjacent Violators Algorithm
pWSS Penalized Weighted Sum of Squares
Rcmdr R Commander
RNA Ribonucleic acid
RSS Residual Sum of Squares
SAM Significance Analysis of Microarrays
SCT Single Contrast Test
SD Standard Deviation
SSVS Stochastic Search Variable Selection
TGP Japanese Toxicogenomics Project



Chapter 1
Introduction

The work presented in this thesis is focused on dose-response relationships in a broad
sense. The proposed methods can be applied to any experiment with an ordered exposure
(such as time, dose, age, temperature, etc.) in which the response is continuous such as
drug development, ecological or economical studies. The natural ordering of the exposure
variable is the main characteristics of the experiment.

The methods discussed in this thesis lie on the border of biostatistics and statistical
bioinformatics. Although the focus is on methodological development in general, the
research has been conducted with high dimensional data as main application area in
mind. Upscaling the analysis to a high dimensional data implies that the analysis should
be carried over from the setting of a single experiment to the case in which thousands
of experiments under the same design are performed simultaneously. In such a case, it is
impossible to evaluate each experiment using visualization techniques or multiple models
fitting as it is typically done for a single experiment. From that reason, automated
methods which offer clear decision rules (and preferably account for model uncertainty)
should be preferred. Indeed, in case of thousands of experiments, multiplicity corrections
should be taken into account in order to provide protection against false findings, caused
by chance.

The thesis consists of three parts. The first part is focused on the methodological de-
velopments while the other two parts are focused on applications within the bioinformatics
domain. The connection between the three parts is the data structure and the modelling
approaches, i.e dose-response experiments and an order restricted modelling approach.

In the first part of the thesis, we present a state-of-the-art statistical framework in a
generic way so the methods are applicable in a general context. The aim is to elaborate

1



2 Chapter 1. Introduction

on the theoretical foundations as well as on the empirical evaluation of the proposed
methodology. An investigation of the methods’ properties is done through extensive
simulation studies within various settings. The focus of the first part is placed on the
order restricted Bayesian variable selection (BVS) modelling framework. The advantage
of the BVS approach is that the method allows for simultaneous estimation and model
selection, while adjusting for model uncertainty. Note that variable selection refers to
selection of which doses have an effect on response instead of selection of independent
variables to be included in the model. Analogously, model selection is related to selection
of underlying dose-response profile. In the first part of the thesis, the BVS method
is extended to allow inference using resampling based techniques. Hence, it offers an
unified framework for order restricted data analysis without necessity to apply any post
hoc methodology. Moreover, its Bayesian nature allows for incorporation of prior scientific
knowledge whenever available.

The BVS method is discussed over several chapters in the first part of the thesis.
Chapter 2 provides a detailed introduction to the topic. Chapter 3 introduces a resam-
pling based inference procedure within the BVS framework. Model selection and the
determination of the minimum effective dose (MED) are the main subjects of Chapter 4.
The MED is an example of importance of model selection framework. Any other quanti-
ties based on the dose-response profile can be computed in analogously, based on selected
model or using model averaging, taking into account model uncertainty. The robustness of
the inference, model selection and estimation procedures against the specification of prior
distributions is investigated in Chapter 5. In addition, model complexity is defined and its
properties within BVS modelling framework are analyzed in Chapter 5, as well. Finally,
Chapter 6 describes in detail the simulations studies conducted in order to investigate the
performance of the methods discussed in the previous chapters.

The second part of the thesis focuses on the analysis of one database. The target of this
part is developing a data analysis workflow in order to analyze complex multisource data
sets and to extract knowledge out of them. Rather then developing a new methodology,
the aim in the second part is to use known and validated methods in a novel and efficient
way. Although the focus is on the analysis of one particular database, the workflow can
be generalized further for similar problems in a broader sense within the research domain.

The case study analyzed in the second part is a large toxicogenomics database. Two
analysis frameworks are presented, each of them is focused on the translational research
from a different point of view. In the first analysis, the primary interest is the identification
of genes with similar dose-response profiles in two related data sets. In contrast, the second
analysis focuses on the identification of genes showing strong discrepancies between two
data sets. Both groups of genes are of interest under varying research questions and their
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identification pose different statistical problems. Therefore, methods used in the analyses
range from order-restricted dose-response modelling techniques to fractional polynomial
models that relax the monotonicity assumption. We used biclustering and visualization
methods to explore the data and to reveal interesting data patterns. Strong emphasis
is given to the interpretation of the results and to the identification of local patterns
in the output of the analysis. It is important to realize that both analyses represent
exploratory tools starting from general research questions and leading to sets of genes.
These resulting genes may have desired properties or relationships with the response,
but due to the exploratory nature of the algorithms, scientific knowledge needs to be
applied and further validation experiments need to be conducted to evaluate the obtained
findings. The case study demonstrates how statistical techniques can be applied to large
multisource data and how to interpret the results.

The analysis of the toxicogenomics project is presented in two chapters. In Chapter 7,
we search for the genes translatable between rat in vivo and human in vitro data. In
contrast, in Chapter 8, genes disconnected in their effects across platforms, i.e. rat in
vitro and rat in vivo, are identified.

Within the research work related to the PhD project an important effort was to provide
data analysis tools for the scientific community. We focused on software development in
R (R Core Team, 2014) for its high quality, wide availability and open access environment.
In the third part of the thesis we present two R packages. The first R package, ORCME,
presented in Chapter 9, performs an order restricted clustering for microarray experiments,
the framework that is typically used in the exploratory data analysis stage. The package is
available in the Comprehensive R Archive Network (CRAN, Hornik, 2012) repository and
its target users are scientist with at least basic experience with R. The second package
IsoGeneGUI introduced in Chapter 10 is implemented as a Graphical User Interface and
is available in Bioconductor to a wider community of scientists working on biostatistical
problems. The point-and-click nature of the package makes it usable to scientists with
very limited experience with R.

Chapter 11 concludes the thesis with summary of the work and discussion of possible
extensions and further topics for further research.

1.1 Case studies

Several data sets, used in the first part of the thesis, are presented in this section. All
datasets were used to illustrate different methods discussed in the first part and demon-
strate their proprieties. All the data sets are publicly available.
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Figure 1.1: Left panel: The Litter data set. Right panel: The Ames data set. Triangles represent
dose-specific means.

1.1.1 The Litter data

The Litter data set (Westfall and Young, 1993) is available as part of the R (R Core
Team, 2014) package multcomp (Hothorn et al., 2008). It contains data about pregnant
mice that were divided into four groups and the compound in four different doses was
administered during pregnancy. For a placebo, 20 mice were used, for active doses 19,
18 and 17 mice, respectively. The litters were evaluated for birth weights. We focus
on relationship between the birth weight and the dose. For the Litter data set, the null
hypothesis of no dose effect is tested against the nonincreasing alternative in order to
detect toxicity effects due to the used drug. The data set is shown in the left panel of
Figure 1.1.

1.1.2 The Ames data

The Ames data set (Bretz and Hothorn, 2003) contains the data about a mutagenicity
level of a compound, measured under increasing doses of the compound with the first
dose being a control (placebo). The mutagenicity is reflected by an increasing relationship
between dose level and frequency of visible colonies among plated salmonella bacteria.
Dose level is used as a covariate and a frequency of colonies as a response. Although
we suspect very high doses to lower number of microbes due to toxicity, in the following
analysis we assume only the nondecreasing profile. More detailed information about the
data can be found in Ames et al. (1975). Five observations are available for a placebo and
three for each of four active doses. The data set is shown in the right panel of Figure 1.1.
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Figure 1.2: Left panel: The Angina data set. Right panel: The Toxicity data set. Triangles
represent dose-specific means.

1.1.3 The Angina data

The Angina data set (Westfall et al., 1999, p. 164) represents dose-response study of
a drug to treat angina pectoris. The response is the duration (in minutes) of pain-free
walking after treatment relative to the values before treatment. Four active doses were
used together with a control dose with placebo only. Ten patients per dose were examined.
Large values indicate positive effects on patients. The data were used in Kuiper et al.
(2014) and are available under the name angina in the package mratios (Djira et al.,
2012) of the R software. Data set is displayed in left panel of Figure 1.2.

1.1.4 The Toxicity data

The Toxicity data set was introduce by Yanagawa and Kikuchi (2001, p. 320) and recently
used by Kuiper et al. (2014). It represents results of a chronic toxicity study on Mosapride
Citrate (Fitzhugh et al., 1964). Liver weight relative to the body weight was measured
for 24 dogs. Three active doses of Mosapride Citrate were used and a control dose was
added, six dogs were treated in each group. An increasing response suggests an increasing
toxicity of the drug.
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1.2 Omics case studies

The data sets presented in previous section could be considered as traditional data sets.
They consist of a response variable, some explanatory variables and number of indepen-
dent observations that allow us to estimate the parameters of interest. All these data
sets are outcomes of single experiments. The data presented in this section are outcomes
of microarray experiments, belonging to the family of ’Omics’ data. It typically com-
prises thousands of variables of interest while having only dozens of observations and it
encompasses several data sources or experiments. The standard framework of estimation
is disrupted, since the number of possible parameters far exceeds amount of information
in the data. Therefore, the sheer size of the data set is challenging to handle, leading to
necessity of dimension reduction techniques, multiplicity corrections and careful interpre-
tation of results. Moreover, integration of results of several experiments bring additional
challenges. Additionally, the data sets were often not collected in order to test specific
hypothesis of interest.

1.2.1 The HESCA study

The HESCA data set (Bijnens et al., 2012) describes results of a dose-response microarray
oncology experiment designed to better understand the biological effects of growth factors
in human tumor. Human epidermal squamous carcinoma cell line A431 (HESCA431) was
grown and cells were stimulated with the epidermal growth factor EGF at four concen-
trations (including placebo) for 24 hours. Gene expression levels were measured using
GeneChip (Affymetrix). The data set contains 12 arrays, three arrays for each of four
dose levels with 16,998 probe sets (we would refer to them as genes for simplicity). For
details about methodology and preprocessing including normalization, see Bijnens et al.
(2012).

1.2.2 The Japanese Toxicogenomics Project

The ’Toxicogenomics Project - Genomics Assisted Toxicity Evaluation system’ (TG-
GATEs, TGP, Uehara et al., 2010) is a collaborative initiative between Japanese Na-
tional Institute of Health Science, the National Institute Biomedical Innovation and fifteen
pharmaceutical companies. It was completed in 2007 after five years of research and it
represents a unique source of information for toxicology and safety studies. It offers a
rich source of transcriptomics data related to toxicology, providing human in vitro ex-
periments together with in vitro and in vivo rat experiments (Ganter et al., 2005, Suter
et al., 2011, Briggs et al., 2012). Almost 20,000 array of Affymetrix platform were gen-
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erated for liver tissue both in vitro and in vivo experiments, at various doses and time
point for 131 compounds. The compounds are mainly therapeutic drugs, comprising wide
range of chemotypes. The TGP contains four main experiments. Three experiments are
performed with independent samples: human in vitro, rat in vitro and rat in vivo exper-
iment. Last experiment contains repeated measures for rats in vivo and would not be
considered further in this thesis. Also, supportive histopathological, hematological and
blood chemistry data, obtained for in vivo experiments would not be used further. Several
toxicogenomics studies on the TGP data set concentrate mostly on network building for
rat in vivo (Kiyosawa et al., 2010) or the connection between rat in vivo and human in
vitro transcriptomics signatures, with special interest in drug induced liver injury (e.g.
Uehara et al., 2008, Clevert et al., 2012, Otava et al., 2014).

Both rat data sets were created using Affymetrix arrays chip Rat230_2. Six weeks old
male Sprague-Dawley rats were used for the experiments. Primary hepatocytes were used
for in vitro experiment; for in vivo experiment, each rat was administered a specific dose
of a compound and was sacrificed after a fixed time period. Liver tissue was subsequently
profiled for gene expression. For the in vitro experiments, a modified two-step collagenase
perfusion method was used to isolate liver cells from six weeks old rats. These primary
cultured hepatocytes were then exposed (in duplo) to a compound and gene expression
changes were investigated at multiple time points. Each compound was tested at four
different doses, three active doses and placebo (except three compound that were missing
either highest or middle dose). Instead of the numerical value of the dose level, expert
classification as ’low’, ’middle’ or ’high’ dose is used. This representation was created
to allow comparison of compounds with varying potency (and so different actual value
of dose). The experiment was conducted at three (in vitro, two, eight and 24 hours) or
four different time points (in vivo, three, six, nine and 24 hours). Each compound, dose
and time point combination was tested on multiple independent biological replicates to
evaluate variability: duplicates for in vitro and triplicates for in vivo experiment. Therefore,
in total, we have 24 arrays per compound (two biological replicates, four dose levels, three
time points) in vitro data set and 48 arrays per compound (three biological replicates,
four dose levels, four time points) in vivo data set.

The human gene expression was measured on primary hepatocytes using Affymetrix
chip HG-U133_Plus_2. The compound were tested on three to four dose levels and two
to three time points (two, eight and 24 hours), with two independent biological replicates
per combination. Therefore, the compound have 16-24 arrays per compound, in total.
Again, the expert classification as ’low’, ’middle’ or ’high’ dose is used. All the compounds
have at least 12 arrays, being tested on three dose levels (control, middle and high dose)
and two time points (eight and 24 hours).
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Additionally, the compounds were classified according their drug-induced liver injury
(DILI) potential in human, based on their FDA-approved (Chen et al., 2011). In total
101 compounds had the FDA labeling available, resulting in 41 compounds with high or
moderate severity of liver injury, 52 compounds with low severity liver injuries or adverse
reactions in liver and only eight compounds with no concern related to DILI.

The whole database, together with additional project TGP 2, is available on website
http://toxico.nibio.go.jp/english/index.html.

1.2.2.1 Translatability data

The data set is a subset of the TGP data set consists of 93 compounds that are common
in rat in vivo and human experiments and have DILI information available. In total,
4,440 Affymetrix microarrays that measured gene expression profiles are available for rats
(91 compounds with 48 arrays and two compound with 36 arrays) and 1,116 arrays
are available for humans (12 arrays per compound). We consider only genes that are
orthologous for rats and humans. Further, we filter the genes using the I/NI calls criterion
(Talloen et al., 2007). The preprocessed and filtered data set consists of 4,359 genes.
Response is computed as log ratio of the gene expression level against mean of expression
levels under control dose (vehicle). The gene expression values are based on FARMS
(Hochreiter et al., 2006) summarized data. Although the response of interest is a function
of gene expression values, we call it ’gene expression’ throughout the thesis, for the sake
of simplicity. Example of the data is given in Figure 1.3.

1.2.2.2 Disconnect data

The data set is a subset of the TGP data set and consists of 131 compounds that are in
common to rat in vitro and rat in vivo experiment. Three compounds are not suitable
for the analysis due to the absence of the data for one of the dose levels. Therefore, the
analysis is applied on 128 compounds, for which there are complete rat in vivo and in
vitro data. Only the last time point (24 hours) was considered for the analysis presented
in this data set, because there was much stronger signal across genes expressed at 24
hour than at the earlier time points (Otava et al., 2014).

Eventually, 1,024 arrays (eight arrays per compound) and 1,536 arrays (12 arrays per
compound) were used for in vitro and in vivo experiments, respectively. Using I/NI calls
filtering (Talloen et al., 2007, Kasim et al., 2010), 5,914 genes are considered reliable and
selected for further analysis. The response variable represents the logarithm of the ratio of
the original gene expression level against the mean of the gene expression of observations
under the control dose. The gene expression values are obtained through the FARMS

http://toxico.nibio.go.jp/english/index.html
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Figure 1.3: Compound omeprazole and gene Acsl1 in rat and ACSL1 in human, respectively, for
in vitro experiment. Left and right panels visualize same data. Left panels show for dose-response
relationship coloured by time and right panels show time-course data coloured according to dose
level.

summarization method (Hochreiter et al., 2006). Although the response of interest is a
function of gene expression values, we call it ’gene expression’ throughout the thesis, for
the sake of simplicity.

Since only one time point was used, the rat in vitro data comprises of eight arrays
per compound only (two biological replicates for each of the three active doses and the
control dose) and the rat in vivo data of 12 arrays per compound (same design, but with
three biological replicates per dose level). An example of a dose-response profile of the
gene A2m within compound sulindac is shown in Figure 1.4.
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Chapter 2
Introduction to Order Restricted
Bayesian Variable Selection

2.1 Model uncertainty in dose-response modelling

Dose-response experiments are an important part of a biomedical research to study rela-
tionships between increasing doses of a therapeutic compound and a variety of responses.
Typically, the response represents a phenotypical effect of a compound such as inhibition,
stimulation, toxicity, or expression level of a certain gene. The primary goal of such an
experiment is to detect a dose-response relationship and to determine the nature of the re-
lationship wherever it exists. In the following chapters, we focus on a continuous response
and an experimental design with a fixed number of doses. We further assume that the
dose-response relationship, if exists, is monotone, i.e. the compound effect (increasing or
decreasing) becomes stronger (or stays the same) with an increasing dose (Kuiper et al.,
2014). Such property is very common in real applications, especially when inhibition or
toxicity is measured. More general umbrella-shaped profiles (Bretz and Hothorn, 2003)
can occur within a context of an over-dosing and therefore a decreasing (increasing) effect
is expected after reaching some threshold dose. This setting will not be considered further
in this chapter.

There are two main approaches for the analysis of dose-response experiments. The
first approach uses parametric nonlinear models in order to estimate the dose-response
relationship (Pinheiro et al., 2006; Whitney and Ryan, 2009). The second approach
assumes an underlying one-way analysis of variance (ANOVA) model with order restricted
parameters (Robertson et al., 1988; Bretz and Hothorn, 2003; Peddada et al., 2005; Lin

13
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et al., 2012b) and can be used in order to test the null hypothesis of no dose effect against
an ordered alternative.

We consider the ANOVA setting in this chapter. The response is measured in K − 1
dose levels and a control dose (placebo). Let µ0 be the mean response under the control
dose and µ1, µ2, . . . , µK−1 represent the mean responses under increasing doses of a
therapeutic compound withK−1 dose levels. The primary interest is to detect a monotone
dose effect. We call the case in which the therapeutical compound does not have any
biological relevance to the response (e.g. a desired relationship for toxicity responses) as
"no dose effect". Note that the no dose effect can appear for subset of doses only (e.g.
some amount of compound is necessary to start the process or when all receptors become
occupied and increasing the dose does not change the response). Therefore, for a given
number of dose levels, the model space of an order restricted one-way ANOVA model
consists of 2K−1 models defined by monotone constraints. For example, for the dose-
response experiment with one control dose and three increasing dose levels (i.e. K = 4),
the model space is decomposed into 8 models presented in Table 2.1. The primary interest
is to test the null hypothesis of no dose effect given by

H0 : µ0 = µ1 = µ2 = . . . = µK−1, (2.1)

against an ordered alternative

Hup : µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK−1 or Hdn : µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µK−1,

(2.2)

with at least one strict inequality. Here, Hup and Hdn correspond to an upward and
downward directions of the order constraints, respectively (Shkedy et al., 2012b). Post
hoc pairwise comparisons of means (e.g. Tukey’s HSD, see Miller, 1981) lack power due
to ignoring the monotonicity assumption. Instead, the likelihood-ratio test (LRT, Barlow
et al., 1972 and Robertson et al., 1988) and multiple contrast tests (MCT, Mukerjee et al.,
1987, Bretz, 1999) are commonly used to test the null hypothesis of the no dose effect.
However, the inference of these testing procedures ignores the model uncertainty since
the best model among all the possible models is unknown. In fact, the inference for the
LRT is based on one specific model from all the possible models under the alternative (the
isotonic regression model that maximizes the likelihood under the order restrictions). The
inference for the MCT takes into account different contrasts that correspond to different
possible models under the alternative and the inference is based on one contrast only.
Such a contrast can represent multiple models from set of possible models (Bretz and
Hothorn, 2003). Both tests are post selection inference procedures that first select a
model (or contrast) and then perform the inference.
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Table 2.1: The set of eight possible monotonic dose-response models for an experiment with
four dose levels (including placebo). Denote µi the mean response of dose level. The model g0

represents the null model of no dose effect.

Model Up: Mean Structure Down: Mean Structure
g0 µ0 = µ1 = µ2 = µ3 µ0 = µ1 = µ2 = µ3

g1 µ0 < µ1 = µ2 = µ3 µ0 > µ1 = µ2 = µ3

g2 µ0 = µ1 < µ2 = µ3 µ0 = µ1 > µ2 = µ3

g3 µ0 < µ1 < µ2 = µ3 µ0 > µ1 > µ2 = µ3

g4 µ0 = µ1 = µ2 < µ3 µ0 = µ1 = µ2 > µ3

g5 µ0 < µ1 = µ2 < µ3 µ0 > µ1 = µ2 > µ3

g6 µ0 = µ1 < µ2 < µ3 µ0 = µ1 > µ2 > µ3

g7 µ0 < µ1 < µ2 < µ3 µ0 > µ1 > µ2 > µ3

Denote the whole set of models as GR. The problem of estimating dose-response
profile is equivalent to the selection of monotone models that best describe the data
given GR. When one particular model is selected and inference is done under the selected
model, the uncertainty due to the model selection is ignored (Claeskens and Hjort, 2008).
Such an approach can lead to bias in estimation of dose-specific means, especially when
two models are almost equally supported by data.

Approaches that address the model uncertainty within the dose-response framework
are discussed by Pinheiro et al. (2006), Bornkamp et al. (2009), Whitney and Ryan (2009)
and Pinheiro et al. (2014). Bornkamp et al. (2009) use multiple comparison procedures
to test candidate parametric models and base the estimates on weighted average of all
suitable models (Raftery, 1995, Burnham and Anderson, 2002). Their approach is a
synergy of parametric estimation and model selection frameworks. Generalization of the
framework is introduced by Pinheiro et al. (2014). Whitney and Ryan (2009) focus on the
estimation of a benchmark dose while taking into account the model uncertainty. They use
an approximation of posterior probabilities of the model (Buckland et al., 1997, Burnham
and Anderson, 2002) based on the Bayesian Information Criterion (BIC, Schwarz, 1978),
with non-informative priors for the set of R + 1 candidate models, g0, . . . , gR. This
implies that prior probability of the model is set to P (gr) = 1/(R + 1) for r = 0, . . . , R.
Specifically, the posterior probability of the model is given by P (gr|data) and estimated
by

P̄ (gr|data) =
exp

[
− 1

2 BIC(gr)
]
· P (gr)∑R

k=0 exp
[
− 1

2 BIC(gk)
]
· P (gk)

. (2.3)

Hereafter, we will refer to P (gr) as ’prior model probability’ and to P (gr|data) as ’pos-
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terior model probability’.

Pinheiro et al. (2006) focus on the estimation of the minimum effective dose. They
proposed to estimate the mean response at each dose level by a weighted average µ̄ =∑R
r=0 wrµ̂r, where µ̂r are the estimates under model gr and wr are the posterior model

probabilities given in (2.3). Similar methods for dose-response analysis for microarray data
are discussed in Lin et al. (2012c) and Pramana et al. (2012b). In general, these methods
are cumbersome due to necessity of a separate analysis for each model. Moreover, the
non-linear modelling approaches rely on parametrical assumptions about the dose-response
shape that does not have to apply in our framework. Such models can be difficult to fit
when a number of observations is small. Furthermore, the methods focus mainly on
the estimation, while we aim to address the inference as well, while taking the model
uncertainty into account. As alternative, we propose a Bayesian variable selection method
for an analysis of the dose-response experiments, the Bayesian approach to estimate
P (gr|data) instead of Equation (2.3).

The Bayesian variable selection (BVS) is a flexible modelling framework for dose-
response data. It implicitly accounts for model uncertainty and has broad range of appli-
cation areas (e.g. Clyde and George, 2004, Casella and Moreno, 2006, Kasim et al., 2012,
Otava et al., 2014, Rockova et al., 2012, Rockova and George, 2014). We apply the BVS
within the dose-response modelling setting, where order restricted one-way ANOVA model
is used to estimate the relationship between a continuous response and dose (Otava et al.,
2014). The BVS method performs simultaneous analyses of all the possible models, pro-
vides the parameter estimates based on model averaging and generates a model selection
tools using the posterior probability of each model. The approach is closely related to
Gibbs variable selection proposed by Whitney and Ryan (2009). However, in contrast with
the Gibbs variable selection approach, the BVS approach estimates the posterior probabil-
ity for each one of the models in GR. The posterior mean response at each dose level is a
weighted average of the posterior means of all models, weights being the posterior model
probabilities. In addition, the posterior probability of the null model is of the primary
interest, since it also represents a probability for false positives, i.e. wrongly rejecting the
null hypothesis, and therefore can be used for inference (Newton et al., 2007).

The chapter is organized as follows. The current frequentist procedures are discussed
in Section 2.2, formulation of the hierarchical Bayesian model for dose-response data in
Section 2.3 and the Bayesian variable selection approach are discussed in Section 2.4. In
Section 2.5, we present the results from the application of the methodology to the case
studies. A simulation study for the comparison between BVS and the frequentist methods
is introduced in Section 2.6 and the chapter is concluded with a discussion in Section 2.7.
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2.2 Testing the null hypothesis against a simple ordered
alternative

The basic setting we considered in this chapter consists of a response variable measured in
a sequence of dose levels. Let Yij represents the response for jth observation at dose level
i and µi denotes the mean response at dose level i. In order to model the relationship
between the response and the increasing doses of a therapeutic compound we formulate
the following linear model

Yij = µi + εij , εij ∼ N(0, τ−1), i = 0, . . . ,K − 1, j = 1, 2, . . . , ni (2.4)

For a given direction, the likelihood-ratio test (LRT) computes the maximum likelihood
estimates for the mean response under the two hypotheses formulated in Equation (2.2).
The maximum likelihood estimator computed under the null hypothesis H0 equals the
sample mean µ̂ =

(∑K−1
i=0

∑ni

j=1 Yij

)
/
∑K−1
i=0 ni. The maximum likelihood estimator

under the order restricted alternative Hup is the vector of isotonic means (Robertson
et al., 1988). The likelihood-ratio test statistic, proposed by Barlow et al. (1972), can be
expressed as

TLRT = RSS0 −RSS1

RSS0
= 1− RSS1

RSS0
, (2.5)

where RSS0 represents the residual sum of squares under the null hypothesis and RSS1

the residual sum of squares under the alternative Hup (or Hdn). The null hypothesis is
rejected for a large value of TLRT . The null distribution of TLRT is a mixture of Beta
distributions with mixture probabilities P (`,K,w), ` = 1, . . . ,K, that are also known as
the level probabilities. They represent the probability (under the null hypothesis) that the
number of unique isotonic means equals to ` in an experiment with K possible levels.
According to Barlow et al. (1972), the p-value can be calculated by

PH0(TLRT ≥ tLRT ) =
K∑
`=1

P (`,K,w)P
[
B 1

2 (`−1), 1
2 (N−`) ≥ tLRT

]
(2.6)

with N being the total number of observations, ` the number of final levels and
B 1

2 (`−1), 1
2 (N−`) denotes a Beta distribution with α = 1/2(` − 1) and β = 1/2(N − `)

and B0,β ≡ 0. The inverse w−1 = (w−1
0 , ..., w−1

K ) equals the variance of the response
at each dose. For K = 4 and equal weights w0, the probability for one level only
equals P (` = 1, 4,w0) = 0.25, P (` = 2, 4,w0) = 0.46, P (` = 3, 4,w0) = 0.25 and
P (` = 4, 4,w0) = 0.04 (Robertson et al., 1988). Note that level probabilities themselves
are related to the isotonic regression results and not to the testing of the null hypothesis.
They show the probability of obtaining certain number of the isotonic means under the
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null hypothesis. Hence, they do not depend on the variability of the data unless the
variability differs across the doses. For more details about isotonic regression and level
probabilities see Chapter 5.

A second approach to test the null hypothesis is multiple contrast test (MCT). The
motivation for developing multiple contrast tests by Mukerjee et al. (1987) was to achieve
tests with similar power to the LRT, but easier to use and interpret (Lin et al., 2012b).
The key idea is to perform as small number of comparisons as possible while covering
sufficiently the alternative hypothesis. The test is based on simultaneous use of V single
contrast tests (SCTs) defined as

TSCv =
∑K−1
i=0 ciµ̂i

s ·
√∑K−1

i=0
c2

i

ni

, (2.7)

where v = 1, . . . , V , µ̂i = 1
ni

∑ni

j=1 Yij , s =
√

1
ν

∑K−1
i=0

∑ni

j=1(Yij − µ̂i)2 and ν =∑K−1
i=0 (ni −K).
The contrast vector c = (c0, . . . , cK−1) fulfills the condition

∑K−1
i=0 ci = 0. Bretz

(2006) shows that, under normality assumption, the test statistic TSC follows an univari-
ate central t-distribution with ν degrees of freedom under H0. The MCT test statistic is
the maximum over these V SCTs:

TMC = max
v=1,...,V

{TSC1 , TSC2 . . . TSCV }. (2.8)

Covering the space of the alternative hypotheses translates into a choice of a combination
of vectors cv, v = 1, . . . , V (Lin et al., 2012b). The MCT for the set of the single contacts
tests (TSC1 , TSC2 . . . TSCV ) can be defined using a contrast matrix given by

CMC =


c1

c2
...
cV

 =


c10 c11 . . . c1,K−1

c20 c21 . . . c2,K−1
...

...
cV 0 cV 1 . . . cV K

 . (2.9)

Each row of the contrast matrix CMC corresponds to one contrast vector c of the SCT.
The choice of the set of the vectors cv determines properties of the test and distinguish
between the different MCTs (Hothorn, 2006). For further comparison, we use two of
them: Williams’ and Marcus’ MCTs (Bretz, 1999) based on the tests designed by Williams
(1971) and Marcus (1976). Designs of the tests determine the choice of cv, v = 1, . . . , V .
Williams’ MCT is based on the comparison between first (usually control) dose and the
weighted average over the last b (b = 1, ...,K−1) doses. It originates from a comparison
of the last dose mean µ̂∗K−1 computed using the isotonic regression, under the different
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possible profiles g1, . . . , gR, with an estimate of the mean of the first dose µ̂0. Hence,
due to the properties of the ’pool adjacent violators algorithm’ (PAVA) it holds that

µ̂∗K−1 − µ̂0 = maxCWilµ̂, (2.10)

where µ̂ = (µ̂0, . . . µ̂K−1)T and

CWil =


−1 0 . . . 0 1
−1 0 . . . nK−2

nK−2+nK−1

nK−1
nK−2+nK−1

...
... . . .

...
...

−1 n1
n1+...+nK−1

. . . nK−2
n1+...+nK−1

nK−1
n1+...+nK−1

 . (2.11)

The matrix CWil is called Williams-type MCT matrix and we use it to construct our set
of the MCTs through Equation (2.10).

Marcus’ MCT is a modification of Williams’ idea with replacing the estimate of the
mean of the first dose µ̂0 with the isotonic estimate µ̂∗0. Unfortunately, there is no general
close form solution for C for Marcus’ constraints, since its structure depends on the
number of the doses. It can be easily constructed using each element of the following
relationship as one contrast:

µ̂∗K−1−µ̂∗0 = max
{

0, max
0≤g,h≤K−1

{
ngµ̂g + ...+ nK−1µ̂K−1

ng + ...+ nK−1
− n0µ̂0 + ...+ nhµ̂h

n0 + ...+ nh

}}
.

(2.12)

The inference of Williams’ and Marcus’ MCTs can be based on the multivariate t-
distribution. For the details about the distribution and about both procedures, we rec-
ommend to see Bretz (2006) or Lin et al. (2012b).

2.3 Bayesian estimation under strict inequality con-
straints

The aim in this section is to estimate the parameters under a strict inequality constraints
µ0 < µ1 < µ2 < · · · < µK−1. The constraints can be achieved by constraining the
parameter space of µ = (µ0, . . . , µK−1), whereby the order restrictions are imposed on
the prior distributions. For a monotone upward profile we assume that for a profile function
ψ(i) it holds that ψ(i) = µbic and that ψ(i) is a right-continuous, nondecreasing function
defined on interval [0,K − 1]. We do not assume any deterministic relationship between
µi and the dose levels, instead we specify a probabilistic model for µi at each distinct
dose level.
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To estimate µ under the order restrictions, µ0 < µ1 < . . . < µK−1, theK dimensional
parameter vector is constrained to lie in a subset SK ∈ RK . The constrained set SK

is determined by the order among the components of µ. In this case, it is natural to
incorporate the constraints into the specification of the prior distribution (Klugkist and
Mulder, 2008). Let Y = (Y11, Y12, . . . , YK−1,nK−1) be the response value and η and τ
the hyperparameters for µ. Gelfand et al. (1992) showed that the posterior distribution
of µ, given the constraints, is the unconstrained posterior distribution normalized such
that

P (µ|Y ) ∝ P (Y |µ)P (µ|η, τ )∫
Sk P (Y |µ)P (µ|η, τ )dµ

, µ ∈ SK . (2.13)

Let SKi (µl, l 6= i) be a cross section of SK defined by the constraints for µi at a specified
set of µl, with l = 0, 1, 2, . . . , i− 1, i+ 1, . . . ,K − 1. In our setting, SKi (µl, l 6= i) is part
of the interval [µi−1, µi+1]. It follows from Equation (2.13) that the posterior distribution
for µi is given by

{
P (µi|Y ,η, τ ,µ−i) ∝ P (Y |µ)P (µ|η, τ ), µi ∈ SKi (µl, l 6= i),
0, µi /∈ SKi (µl, l 6= i).

(2.14)

where µ−i = (µ0, . . . , µi−1, µi+1, . . . , µK−1). Hence, when the likelihood and the prior
distribution are combined, the posterior conditional distribution of µi|Y ,η, τ ,µ−i is the
standard posterior distribution restricted to SKi (µl, l 6= i), i.e. restricted to the interval
[µi−1, µi+1] (Gelfand et al., 1992). As a result, the sampling from the full conditional
distribution can be reduced to the interval restricted sampling from the standard posterior
distribution. Following Klugkist and Mulder (2008), we formulate an order restricted
ANOVA model for which the mean response at the ith dose level is given by

E(Yij) = µi =


µ0, i = 0,

µ0 +
i∑

h=1
θh, i = 1, . . . ,K − 1

(2.15)

with the constraints that θh ≥ 0 for an upward trend or θh ≤ 0 for a downward trend. In
a matrix notation, the mean gene expression for an upward trend model (for K = 4 and
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n = 3) is given by

E(Y ) = Xβ′ =



1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1




µ0

θ1

θ2

θ3

 =


µ0, control,
µ0 + θ1, first dose level,
µ0 + θ1 + θ2, second dose level,
µ0 + θ1 + θ2 + θ3, third dose level.

(2.16)

In order to complete the specification of the hierarchical model, we assume the following
prior distribution for the unknown model parameters,

µ0 ∼ N(ηµ0 , τ
−1
µ0

),
θh ∼ TN(ηθh

, τ−1
θh
, 0, A), h =, 1, . . . ,K − 1.

(2.17)

Here TN(µ, σ2, a, b) is a truncated normal distribution with mean µ, variance σ2 and a, b
the limits of the truncation interval. A is a positive constant. The model is fitted using a
Markov Chain Monte Carlo (MCMC) simulation. The constant A is used to right truncate
the distribution to achieve better properties of the MCMC chains. Its value is context
dependent and has to be large enough not to influence the estimates. Practical way of
selection A is to set it as difference between minimum and maximum of the data, since
any reasonable estimate for any θh cannot exceed this number. The priors are further
determined by hyperparameters with a non-informative specification. Normal distribution
with large variance is used for the mean parameters, so the prior is as uniform as possible.
Similar consequence has choice of Gamma distribution for the variance parameters.

τ ∼ Γ(10−3, 10−3),
ηµ0 ∼ N(0, 106),
τµ0 ∼ Γ(1, 1),
ηθh
∼ N(0, 106), h = 1, . . . ,K − 1

τθh
∼ Γ(1, 1), h = 1, . . . ,K − 1.

(2.18)
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2.4 Bayesian variable selection models for dose-
response modelling

The Bayesian inequality model defined above cannot be used in our framework due to the
equality constraints on the means of the null model and some of the alternative models.
As pointed out by Dunson and Neelon (2003), since the priors of the components of
θ = (θ1, θ2, . . . , θK−1) are the truncated normal distributions, the mean structure µi =

µ0 +
i∑

h=1
θh implies an order constraints mean structure with the strict inequalities µ0 <

µ1 <, . . . , < µK−1. The equality constraints would, in practice, assign zero probabilities to
all other competing models except the model with the strict inequality constraints, model
gR (Klugkist and Hoijtink, 2007). In what follows we propose a Bayesian variable selection
model that can be seen as an extension of the informative hypothesis inference framework
discussed by Klugkist and Hoijtink (2007) to the setting in which equality constraints
can be incorporated in the mean structure. Then, all the different models under the
alternative hypothesis are taken into account for both inference and estimation. The
equality constraints can be incorporated in the model by setting some of the components
in θ to be equal to zero. Indeed, θi = 0 implies µi = µi−1.

The differences in the mean structures of the different models, therefore, depends on
which of the components in θ are set to be equal to zero or equivalently which columns
in the ordered design matrix X are excluded. Hence, the design matrix Xgr

for the
model gr is in fact a subset of the design matrix X. For example, for an experiment with
K = 4 dose levels and n = 3 replicates, the design matrices for all the models presented
in Table 2.1 are given, respectively, by

X(g0) =



1
1
1
1
1
1
1
1
1
1
1
1



, X(g1) =



1 0
1 0
1 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1



, X(g2) =



1 0
1 0
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
1 1
1 1



,
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X(g3) =



1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1



, X(g4) =



1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 1
1 1
1 1



, X(g5) =



1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1



,

X(g6) =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 1
1 1 1
1 1 1



, X(g7) =



1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1



.

The mean gene expression for each model gr is given by

E(Yij |gr) = Xgr
β′r, r = 0, . . . , R,
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where βr is the parameter vector for each model given by

β′r =



µ0, model g0,

(µ0, θ1)′, model g1,

(µ0, θ2)′, model g2,

(µ0, θ1, θ2)′, model g3,

(µ0, θ3)′, model g4,

(µ0, θ1, θ3)′, model g5,

(µ0, θ2, θ3)′, model g6,

(µ0, θ1, θ2, θ3)′ model g7.

As a result, the problem of the model estimation in the presence of equality constraints
is reduced to a problem of variable selection depending on which of the columns of X are
selected or deleted. This is related to the Bayesian variable selection approach (George
and McCulloch, 1993) which is used to determine an optimal model from a priori set of
R+1 known plausible models. As pointed out by O’Hara and Sillanpää (2009) the choice
of an optimal model reduces to the choice of a subset of variables which are included
in the model (i.e. model selection), or the choice of which parameters in the parameter
vector are different from zero (i.e. inference). This can be done by rewriting the mean
structure in (2.15), using δh and zh instead of θh (O’Hara and Sillanpää, 2009, Ohlssen
and Racine, 2015, Otava et al., 2014), as

E(Yij) = µ0 +
i∑

h=1
θh = µ0 +

i∑
h=1

zhδh. (2.19)

where zh, h = 1, . . . ,K − 1, is an indicator variable such that

zh =
{

1, δh is included in the model,
0, δh is not included in the model.

(2.20)

For the four dose level experiment (K = 4) discussed above, the triplet z = (z1, z2, z3)
defines uniquely each one of the eight plausible models. For example, for z̃1 = (0, 0, 0)
holds that E(Yij |GR, z = z̃1) = (µ0, µ0, µ0, µ0) (which corresponds to the mean of the
model g0) and for z̃2 = (1, 0, 0) we obtain E(Yij |GR, z = z̃2) = (µ0, µ0+δ1, µ0+δ1, µ0+
δ1) (which corresponds to the mean of the model g2). Hence, in our setting the BVS
model estimates the posterior probability of each model, P (gr|data), and in particular the
posterior probability of the null model, P (g0|data). For example, P [z = (0, 0, 0)|data] =
P [E(Yij) = µ0|data].

Kuo and Mallick (1998) approach was used for the specification of the prior models for
zh and δh. It assumes that zh and δh are independent, i.e. P (δh, zh) = P (δh)× P (zh),
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with a truncated normal prior distribution for δh, same as for θh in Equation (2.17). In
case of lack of any prior information about the models probability, non-informative priors
can be used for zh. Following Jeffreys (1961) (as discussed by Kass and Wasserman,
1996), we recommend to use equal weights for all the models. The prior specification is
defined as:

zh ∼ Bernoulli(πh),
πh ∼ U(0, 1).

(2.21)

The variable πh represents inclusion probability of zh and can be estimated by the
proportion of the zh = 1 within the Markov Chain Monte Carlo (MCMC) simulation run.

As pointed out by O’Hara and Sillanpää (2009), the posterior inclusion probability of
δh in the model is the posterior mean of zh. Further, for a given value of K, using the
indicator variables zh, we specify a transformation function that uniquely defines each one
of the plausible models (Ntzoufras, 2002), G = 1 +

∑K−1
h=1 zh2h−1. Thus, the posterior

probability of G = r + 1 defines uniquely the posterior probability of a specific model gr
(when gr defined as in Table 2.1). In particular (for K=4), the posterior probability of
the null model is given by

P̄ (G = 1|data) = P̄ [E(Yij) = µ0|data] = P̄ [z = c(0, 0, 0)|data] = P̄ (g0|data). (2.22)

Note that we omitted in Equation (2.22) the dependency on the models and we write
P̄ (G = 1|data) instead of P̄ (G = 1|data, g0, . . . , gR). This simplification of notation will
be used for the remainder of the thesis.

For K = 4 there are eight possible monotone models (for a given direction): seven
monotone models (given in Table 2.1) and the null model. It follows that G is given by

G =



1, for z = (z1 = 0, z2 = 0, z3 = 0), model g0,

2, for z = (z1 = 1, z2 = 0, z3 = 0), model g1,

3, for z = (z1 = 0, z2 = 1, z3 = 0), model g2,

4, for z = (z1 = 1, z2 = 1, z3 = 0), model g3,

5, for z = (z1 = 0, z2 = 0, z3 = 1), model g4,

6, for z = (z1 = 1, z2 = 0, z3 = 1), model g5,

7, for z = (z1 = 0, z2 = 1, z3 = 1), model g6,

8, for z = (z1 = 1, z2 = 1, z3 = 1), model g7.

(2.23)

Note that the estimation of mean vector µ is computed as its posterior mean µ̄ of
B MCMC simulations. It holds that µ̄ = 1

B

∑B
b=1 µ̂b, while in each iteration b, one

model gr is considered and estimate µ̂b is obtained. The model gr is selected ngr
times

over all the B iterations, with estimate µ̂gr
. Therefore µ̄ = 1

B

∑R
r=0 ngr

µ̂gr
. Since
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posterior probability P̄ (gr|data) = ngr
/B, i.e. it corresponds to proportion of selection

of the model, the equation can be rewritten as µ̄ =
∑R
r=0 P̄ (gr|data)µ̂gr

. Therefore,
mean estimates µ̄ are in fact model averaging based estimates, weighted by the posterior
probabilities of the models.

In summary, the BVS model provides a simultaneous framework for the estimation and
the model selection. The estimates at each dose level are represented by the posterior
means that are in fact a weighted Bayesian model average of all the plausible models.
The weights equal to the proportion of visits of particular model during the MCMC
simulation, i.e. the posterior model probability of the model gr is estimated as P̄ (G =
r + 1|data, g0, . . . , gR).

2.5 Application to the case studies

Three real life studies are used to illustrate the methodology discussed in this chapter.
All the case studies have the same data structure: response is measured under increasing
doses of the respective compounds with the first dose being a control (placebo). The
data sets are presented in Section 1.1 and Section 1.2. The data set from each study
was analyzed using the LRT, the MCT with Williams’ and Marcus’ contrast and the BVS
model. The BVS models were fitted in Winbugs 1.4 (Lunn et al., 2000) using MCMC
simulation with 20,000 iterations from which the first 5,000 were discarded as burn-in
period.

2.5.1 The Ames data

The results obtained for all the methods are presented in Table 2.2. All the frequentist
methods show an evidence against the null hypothesis. The posterior probability of the
null model obtained for the BVS model (6.7 · 10−5) indicates no evidence in favour of the
null model, but substantive evidence in support of an alternative model with monotone
relationship between the frequency of mutation and the increasing doses of the compound
(0.408).

Figure 2.1a reveals a close agreement between the posterior means obtained for the
BVS model and maximum likelihood parameter estimates obtained by the isotonic regres-
sion for the Ames study. Note that the posterior means obtained from the BVS model do
not correspond to the one specific model but it is the Bayesian weighted model averaging
of all competing models (for K = 5 there are 16 possible models, including the null
model). Interestingly, similar to the isotonic regression which pools together the means of
the last three dose levels, the inclusion probabilities (Figure 2.1b) obtained from the BVS
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Table 2.2: P-values for the frequentist methods and the posterior model probabilities for the BVS
model. "BVS null" shows the posterior probability of the null model and "BVS max" shows the
maximal posterior probability among the posterior probabilities of all the alternative monotone
models.

LRT MCT(W) MCT(M) BVS null BVS max
Ames 6 · 10−5 1.4 · 10−5 3.6 · 10−5 6.7 · 10−5 0.408
Litter 0.029 0.019 0.029 0.220 0.623
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Figure 2.1: The Ames mutagenity data. Left panel: Observed data, isotonic regression (solid
line) and posterior mean of the BVS model (dashed line). Right panel: Posterior mean of zh,
i.e. the inclusion probability of δh into the model.

model show little evidence in support of different dose effects for dose 3 and dose 4 (with
the estimated posterior probabilities of 0.11 and 0.09, respectively). Therefore, models
with increments between first two doses, g1 and g2 have highest posterior probability (see
Figure 3.1d).

2.5.2 The Litter data

The p-values and the posterior model probabilities for the Litter data are shown in 2.2.
The LRT and MCTs reject the null hypothesis. The posterior probability of the null
hypothesis obtained from BVS is 0.22, which implies that there is more support in favor of
the alternative hypothesis given the data. Specifically, the BVS shows more substantive
evidence in support of the alternative model g1 (defined in Table 2.1) whose posterior



28 Chapter 2. Introduction to Order Restricted BVS

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Dose

W
ei

gh
t

0 1 2 3

20
25

30
35

Isotonic regression
BVS
Model g_1

g_0 g_1 g_2 g_3 g_4 g_5 g_6 g_7

Model

P
os

te
rio

r 
pr

ob
ab

ili
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

delta_1 delta_2 delta_3

Parameter

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f i

nc
lu

si
on

 in
 m

od
el

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 2.2: The Litter data. Left panel: Observed data, isotonic regression (solid line) and
posterior mean of the BVS model (dashed line). Dotted line; the posterior mean obtained by
MCMC when only model g1, i.e. model with maximum posterior probability for BVS, was taken
into account. Dotted line coincides with solid line almost perfectly. Middle panel: Posterior
probability of null model g0 and alternative models gr, r = 1, . . . , 7. Notation corresponds to
the model numbers presented in Table 2.1. Right panel: Posterior mean of zh, i.e. the inclusion
probability of δh into the model.

model probability is 0.623 (see Figure 2.2b). This model has a common dose effects
for dose 1 to dose 3. This illustrates an important aspect of the BVS model which
simultaneously performs the inference and provides the evidence for all the possible models
given the data. Furthermore, the inclusion probabilities, shown in Figure 2.2c, indicate
that the δ2 and δ3 should not be included in the model which corresponds to the results
obtained from the isotonic regression.

Due to the fact that the posterior probability of model g1 is relatively high compared
to the other models, the posterior means of the BVS model are similar to those of the
isotonic means and the posterior means from g1 with the common mean for dose 1 to dose
3 and the different mean for control (Figure 2.2a). Note that model g1 is different from
the BVS model since its design matrix is fixed while the BVS fits all the possible models
simultaneously and produce the model averaging of the posteriors means for doses across
all the competing models, weighted by their respective posterior model probabilities, given
the data.

2.5.3 The direct posterior probability approach for multiplicity ad-
justment

The aim of the analysis of the HESCA data set (see Section 1.2) is to detect genes with
monotone expression profiles. Due to a high dimensionality of microarray data, the dose-
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response microarray analysis of the HESCA study requires multiplicity adjustment both
within and between genes. Typically, the family wise error rate (FWER) that represents
the overall Type I error, i.e. the probability of at least one false rejection of the null
hypothesis, and the false discovery rate (FDR), i.e. the expected proportion of the false
rejections among all the rejections, are used for the multiplicity adjustment. Following
Lin et al. (2012b) we apply the FWER method for the multiplicity adjustment within the
genes and the FDR for the multiplicity adjustment between the genes. In the following
section, we discuss the use of the posterior probability of the null model for the FDR
adjustment within the BVS framework.

Assume that there arem = 1, . . . ,M genes to analyze simultaneously and the aim is to
identify genes that exhibit a monotone relationship with increasing doses of a therapeutic
compound. The problem is equivalent to investigating if expression levels of each gene
show substantive evidence against the null model g0. The posterior probability of the
null model Pm(g0|data) holds dual properties as the likelihood of the null model and
simultaneously the probability of the false rejection of the null hypothesis, i.e. when there
is no dose-response relationship, but the gene is identified as following the monotone
profile (Newton et al., 2007). For a pre-specified threshold α, Pm(g0|data) represents
probability of the false positive for the gene m. Let Im be an indicator variable for
Pm(g0|data) ≤ α (i.e. indicator for including genem among genes with "significant" dose-
response relationship). The expected number of the false discoveries (cFD) is defined as

cFD(α) = E(cFD) =
M∑
m=1

Pm(g0|data)Im. (2.24)

Newton et al. (2007) define the conditional (on the data) false discovery rate as

cFDR(α) = cFD(α)
N(α) , (2.25)

where N(α) is the number of genes declared significant for a given threshold α. Then,
the cFDR(α) represents an expected error done by using the threshold α to identify
significant genes. Then, the cFDR(α) represents a mean error made by considering any
gene as significant using the threshold α. Hence, we select a value of α in a way to keep
the cFDR(α) under the pre-specified threshold ω.

Figure 2.3 shows the relationship between the false discovery rate, the number of
significant genes and the threshold for the HESCA case study. As expected, the higher
the threshold, the higher the cFDR and the number of significant genes. The implication of
this relationship is that in order to control for a certain level of the cFDR, the corresponding
threshold can be used as significance level for the posterior probability under the null
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Figure 2.3: Adjustment for the multiplicity for the HESCA data. Left panel: The relationship
between the conditional false discovery rate (cFDR) and the cut-off values. Right panel: The
relationship between the number of significant genes and the cut-off values.

model. Note that the concept of significance level used here is data dependent and
consequently, the cFDR control is conditional on the data.

Table 2.3 shows the number of genes with significant dose-relationships under the
upward and downward monotone profiles from the HESCA study. The number of genes
with significant dose-response relationships is higher for the frequentist methods than
the BVS model at 5% false discovery rate. At a fixed level of FDR, the higher number
of the significant genes for the frequentist methods may imply better power with these
methods than the BVS model since the power is often associated with the number of
significant genes. However, the FDR controlled by the frequentist methods and the cFDR
introduced for the BVS context are not entirely the same quantities, since one arise
from an adjustment of p-values and the other one from an adjustment of the posterior
probabilities of the null model. The comparison of the BVS model and the frequentists
methods in terms of Type I error and power is investigated through a simulation study
presented in the next section.

2.6 Simulation study

A simulation study was conducted in order to investigate the performance of the BVS
model in terms of Type I error and power. The data were generated according to the
order restricted one-way ANOVA model specified in Equation (2.4), Yij ∼ N(λµi, τ−1),
with τ = 1 and varying λ = 1, 2, 3. The parameter λ is used to control the magnitude
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Table 2.3: Number of rejected null hypotheses according to the frequentist methods and to the
BVS model while controlling the FDR and the cFDR on a 0.05 level, respectively.

Profile LRT MCT(W) MCT(M) BVS
Upward 2057 1772 1954 1634
Downward 2464 2053 2364 1798

of increment of the mean response from one dose level to another. The higher the value
of λ, the higher the increment. The null hypothesis is formed as the equality of means
µ0 = · · · = µK−1. The simulation settings corresponds to models shown in Table 2.1
and they are described in details in Section 6.1. For each setting, 1,000 data sets were
simulated. An experiment with K = 4, 5 dose levels and n = 3, 4, 5 observations per dose
was investigated. For K = 4 and n = 4, simulation was repeated with different choices of
variance of Gaussian distribution. In this chapter, we discuss in detail mainly the results
for the case of K = 4 and n = 3. All the remaining results are shown in Section 6.2.

The BVS model, one-sided LRT and one-sided MCTs were performed. Table 2.4 shows
the empirical Type I error obtained for each method. All the methods control Type I error
at 5%, while the MCTs are more conservative than the LRT. The BVS model seems even
more conservative. To achieve similar proportion of false rejections as in the case of the
LRT and the MCTs, i.e. 0.05, we can use a threshold as high as 0.35 for the BVS rejection
(see Table 2.4 and Figure 2.4).

Table 2.5 shows the power of the methods for K = 4. As expected the LRT seems
to be the most powerful test with both MCTs slightly worse and BVS with threshold
0.05 is about 0.10 behind the MCTs. The parameter λ represents increasing magnitude
of dose-response effect (see Chapter 6 for details). With an increasing λ, the difference
between the methods diminishes (this pattern is visualized in Figure 2.5 for n = 4). Such
result is expected, because with higher λ, the power approaches one for all the methods.
The improving performance of the BVS with an increasing threshold is natural, too. If
higher threshold is used, we achieve results comparable in terms of power with frequentist
methods (Figure 2.5), while still controlling Type I error at a pre-specified value. Similar
result was obtained for the cases of K = 5 and n = 5 (for details, see Chapter 6).
Figure 2.6 demonstrates visually the change in the power when the number of dose levels
increase from K = 4 to K = 5 which corresponds to a change from 1/8 to 1/16 for the
model prior probabilities, respectively. Note that the first seven models corresponds to
K = 4 (circles) while the last 15 models corresponds to K = 5 (filled circles). We can see
that a change in the power across the models and dose levels for the BVS model behaves
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Table 2.4: Type I error of the frequentist methods and the BVS model for K = 4 and K = 5.
Four BVS columns correspond to the choice of threshold used for rejection of H0.

LRT MCT(W) MCT(M) BVS 0.05 BVS 0.10 BVS 0.15 BVS 0.35
K = 4
n = 3 0.041 0.037 0.036 0.002 0.003 0.003 0.034
n = 4 0.044 0.044 0.048 0.002 0.002 0.005 0.027
n = 5 0.053 0.057 0.051 0.001 0.001 0.001 0.017
K = 5
n = 3 0.047 0.048 0.048 0.000 0.002 0.005 0.046
n = 4 0.056 0.051 0.052 0.000 0.002 0.003 0.030
n = 5 0.048 0.056 0.051 0.000 0.002 0.004 0.022

in a very similar way as the change in the power obtained for the LRT. Hence, the power
is influenced by additional information provided by the data (by adding more dose levels)
and not only by the change in prior probability of g0 (from 1/8 to 1/16). Similar patterns
were observed for different values of λ and n (e.g. Figure 6.10, Figure 6.11).
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Table 2.5: Results for K = 4 and n = 3. The columns RT and MCTs show estimation of the
power of the particular tests. The columns BVS shows proportion of posterior probabilities of
the null model given the data that are smaller then α = 0.05, 0.10, 0.15, 0.35.

MCT MCT BVS BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 0.35
1 g1 0.36 0.42 0.34 0.22 0.37 0.49 0.81

g2 0.38 0.31 0.36 0.22 0.37 0.48 0.80
g3 0.40 0.39 0.35 0.22 0.38 0.50 0.83
g4 0.36 0.26 0.35 0.22 0.38 0.50 0.83
g5 0.44 0.42 0.39 0.26 0.41 0.54 0.86
g6 0.41 0.33 0.38 0.22 0.36 0.49 0.82
g7 0.46 0.42 0.41 0.24 0.40 0.52 0.85

2 g1 0.85 0.90 0.85 0.74 0.88 0.93 0.99
g2 0.86 0.73 0.84 0.74 0.88 0.94 0.99
g3 0.89 0.88 0.86 0.81 0.90 0.95 0.99
g4 0.85 0.72 0.82 0.74 0.85 0.92 0.99
g5 0.90 0.91 0.87 0.80 0.92 0.96 1.00
g6 0.90 0.81 0.87 0.80 0.91 0.96 1.00
g7 0.90 0.88 0.87 0.82 0.93 0.97 1.00

3 g1 0.99 1.00 0.99 0.98 0.99 1.00 1.00
g2 0.99 0.98 0.99 0.99 1.00 1.00 1.00
g3 0.99 0.99 0.99 0.98 0.99 1.00 1.00
g4 0.99 0.97 0.99 0.97 0.99 1.00 1.00
g5 1.00 1.00 0.99 0.98 1.00 1.00 1.00
g6 1.00 0.98 0.99 0.99 1.00 1.00 1.00
g7 1.00 0.99 0.99 0.99 1.00 1.00 1.00
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2.7 Discussion

In many applications, an analysis of the dose-response data requires to test the null
hypothesis of no dose effect against an ordered alternative and to estimate the dose-
response curve. In this chapter, we focus on a Bayesian approach for an order constrained
one-way ANOVA models. The inequality constraints were incorporated as priors in the
Bayesian formulation of the model. We have shown that the approach of (Gelfand et al.,
1992) assigns zero probabilities to the models with equality constraints, so it is not suitable
in our setting. In order to overcome the problem of the zero probabilities for the equality
constraints, we introduced the BVS model formulation for the dose-response modelling.

The BVS model as presented assumes an independent prior model for the joint dis-
tribution of zi and δi, i.e. P (δi, zi) = P (δi)× P (zi) and non-informative priors for both
P (δi) and P (zi). An alternative approach is to formulate a model for P (zi, δi) by taking
into account the conditional distribution P (δi|zi). Dellaportas et al. (2002) proposed the
Gibbs Variable Selection (GVS) method which assumes a mixture model for the condi-
tional distribution P (δi|zi), i.e. P (δi|zi) = ziN(ηi, S)+(1−zi)N(0, τ−1). The Stochastic
Search Variable Selection (SSVS) by (George and McCulloch, 1993) assumes the following
mixture model for P (δi|zi) = ziN(0, τ−1) + (1− zi)N(0, gτ−1). In both GVS and SSVS
is necessary to specify priors for the tuning parameters (S and τ for GVS, g and τ for
SSVS). In both cases a prior knowledge about the increment is needed for specification.
The influence of the choice of the prior model for P (δi|zi) will not be investigated further
in this thesis.

We have shown that using the BVS model allows us to calculate the posterior prob-
ability for each one of the candidate models and in particular the posterior probability of
the null model. Therefore, the BVS model proposed in this chapter can be used for both
inference and estimation of dose-response curve. Further, the posterior mean obtained
from the BVS model is a model average of all the candidate order restricted one-way
ANOVA models for a given value of the dose levels.

The simulation study showed that the BVS can match the frequentist methods in
terms of power while controlling similar level of Type I error. The comparison is valid,
because we avoid to compare p-values and the posterior probabilities themselves, but
rather the results based on using any of these two quantities for answering a question of
the null hypothesis testing. The power of the BVS method indeed depends on chosen
threshold. The approach on how to avoid the necessity of threshold specification, while
keeping good operational characteristics, is introduced in Chapter 3.

The suggestion on how to automatize threshold specification for microarray data by
controlling conditional FDR was described in Section 2.5.3. However, control of the cFDR
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does not imply control of the FDR. This property arises from the fact that significant genes
tend to have P (g0|data) nearly zero, allowing to enter large amount of non-significant
genes with P (g0|data) around 0.6 (simulation not shown). Therefore, we do not focus on
this method further in this thesis and develop instead methodology described in Chapter 3.

Additionally, the BVS provides an evidence for the possible models under the monotone
constraints. The probability of identification of the true monotone profile based on the
posterior probabilities may bring further insight into the BVS model properties. Together
with the comparison between the posterior probability of the most likely model and the
posterior probability of other models, the BVS may also be used for model selection among
the alternative monotone models. This topic is further discussed in Chapter 4.

The presented BVS model was based on the use of non-informative priors for the
selection variables z1, . . . , zK . Strong scientific knowledge is typically rare in dose-response
modelling situations, but when it is present (e.g. if historical data are available), it can be
very easily incorporated. Adjustment of the hyperprior for πi or prior for zi translates into
change in the prior probabilities of the models. Indeed, such a change can highly influence
the posterior probability of the different models and so the estimated dose-specific means
(since they are in fact weighted average of model-specific means with weights equaled
to the posterior probability of the models). Hence, we suggest to use informative priors
only in cases, when scientific knowledge is really strong and to specify them very carefully.
Analysis of the effect of priors on posteriors in case of non-informative priors is investigated
in Chapter 5.

The proposed model and the analysis framework focus on normally distributed re-
sponse. Generalization in spirit of Pinheiro et al. (2014) for binary data, count data,
longitudinal data or clustered outputs can be achieved due to flexibility of the Bayesian
framework. The analysis workflow would stay the same, only the model specification and
the prior distributions on the mean structure would need to be modified. Similarly, the
order restriction assumption can be modified by varying truncation of the priors on the
mean structures.





Chapter 3
Inference for Bayesian Variable
Selection

3.1 Introduction

In this chapter, we focus on the inference procedures based on the posterior
probability P (g0|data, g0, . . . , gR) of the null model. In what follows, we show
that P (g0|data, g0, . . . , gR) equals the posterior probability of the null hypothesis
P (H0 is correct|data, g0, . . . , gR). Given an estimate P̄ (g0|data, g0, . . . , gR), we wish
to choose a threshold ω, so that P̄ (g0|data, g0, . . . , gR) < ω implies a rejection of the
null hypothesis. Instead of focusing on the choice of the threshold itself that could lead
to rather arbitrary decisions, as shown in previous chapter (and by Otava et al., 2014),
in this chapter we focus on the distribution of the posterior probability of the null model,
P (g0|data, g0, . . . , gR), under the null hypothesis. We introduce a permutation based
inference procedure that is objective in the sense that it is robust to a choice of config-
uration of priors of the models g0, . . . , gR. Hence, we are able to obtain a measure that
quantifies the evidence contained by the posterior probability that is not influenced by a
non-informative prior distribution specification. The procedure is based on permutation
tests and it is introduced in Section 3.2. The proposed BVS model and the inference
procedure are applied to the case studies in Section 3.3. A simulation study conducted to
assess the performance of the proposed method is presented in Section 3.4. Finally, we
discuss further properties of the method, advanced topics and possible future extensions
in Section 3.5.

39
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3.2 Methodology

3.2.1 Inference for BVS model

Our main interest is to test the null hypothesis of the no dose effect given in Equation (2.1)
against the ordered alternative. The quantity we propose to use as a test statistic is
the posterior probability of the null model P̄ (g0|data), given in Equation (2.22). We
first discuss the rejection rule in Section 3.2.1.1. In Section 3.2.1.2 follows a discussion
about a permutation method that can be used in order to approximate the distribution
of P (g0|data) under the null hypothesis.

3.2.1.1 Inference based on P (g0|data)

Bayesian inference for the null model has been based on a fixed threshold ω, such that the
null hypothesis is rejected whenever P̄ (g0|data) < ω (Do et al., 2006, Goldstein, 2006).
However, the choice of the appropriate threshold remains debatable. It is unclear how to
choose the value of ω in order to maintain a desirable level of Type I error and power.

To demonstrate the problem, let us focus on the results obtained for the Litter data
presented in Figure 3.1c. The posterior probability for g0 is estimated as 0.217. What
should be inference decision based on this value is, without a prior knowledge, very unclear.
Should we reject the null hypothesis since P̄ (g0|data) < P̄ (g1|data) or P̄ (g0|data) =
0.217 provides enough evidence in favour of the null hypothesis? Moreover, even if we
choose the value of ω, how can we choose this value in such a way that we control the
Type I error at a pre-specified level?

Otava et al. (2014) showed via simulations that rejection rules based on the poste-
rior probability can control the Type I error rate with higher thresholds than would be
corresponding frequentist choice (ω = 0.35 controls the same Type I error rate as the
frequentist significance level, α = 0.05, while achieving higher power). Of course, for an
analysis of a real life data one does not know which value of ω to choose and therefore
Type I error cannot be controlled in practice. Hence, for inference, our main focus is not
just P̄ (g0|data), but the distribution of P (g0|data) under the null hypothesis as well.

3.2.1.2 Permutation test based

The proposed method compares the estimated value of the posterior probability
P̄ (g0|data) with the distribution of posterior probability of the null model under the
null hypothesis, P (g0|H0). We propose to estimate the distribution of P (g0|H0) using
a permutation procedure based on permutations of the doses. The permuted data are
denoted as data∗. Specifically, we test how extreme is the value of the observed posterior
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probability in comparison to the posterior probabilities of the null model obtained from the
permuted data sets. The underlying principle for this approach is that if the null hypoth-
esis holds (i.e. no dose effect), the permutation of the doses and its associated probability
under the null model P̄ (g0|data∗) simulates drawing from the null distribution.

The above permutation test is also referred to as an exact test (Fisher, 1936), because
it evaluates all the possible permutations of the responses with respect to the dose levels.
However, such an approach is computationally intensive, e.g. for K = 4 and n = 3 there
are 369,000 possible permutations. Therefore, a random sampling of a fixed number of
permutations B from the permutation space is usually chosen to approximate an exact
distribution of the statistics (Dwass, 1957). Comprehensive summary of properties of the
permutation test can be found in Ernst (2004).

Once the null distribution of P (g0|data) is estimated, it will be compared with an
observed value of P̄ (g0|data) and a permutation p-value (pBayes) of the test for H0

against Hup
1 or Hdn

1 will be computed. The permutation p-value pBayes is robust against
the choice of the specification of the non-informative prior distribution, which is often a
desirable property in the dose-response analysis due to lack of strong prior believe about
the dose effects (we elaborate on the robustness and non-informative priors in Chapter 5).
The complete resampling based inference algorithm follows:

1. Permute the observed response vector Y B times to get Y (1), . . . ,Y (B).

2. For each permuted data Y (b), fit the BVS model (with the same prior distributions).

3. Estimate the posterior probability of the null model, P̄ [g0|Y (1)] . . . , P̄ [g0|Y (B)].

4. Denote Q =
∑B
b=1 I

{
P̄ [g0|Y (b)] < P̄ [g0|Y ]

}
, which measures how many times

permuted BVS results suggest stronger evidence against H0 than BVS results based
on observed data.

5. Calculate the p-value by

pBayes = Q

B
. (3.1)

6. Reject H0 if pBayes < α.

Note that pBayes = 0 has to be interpreted in the context of B, a number of the
permutations. It should be correctly stated as pBayes < 1/B, because it translates to
zero events among the B permutations. Using pBayes and α has substantial advantages
compared to using P̄ (g0|data) and ω. The quantity pBayes is robust with respect to the
choice of priors and it induces control of frequentist operating characteristics.
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Figure 3.1: The Litter data (left column, panel a, c, e) and the Ames data (right column,
panels b, d, f). Panels a, b show the observed data and the posterior means of the BVS
model (red solid line) with 95% credible intervals (dotted lines) and the isotonic regression
estimate of the means (blue dashed line). Panels c, d show the posterior probability of the null
model g0 and the alternative models gr, r = 1, . . . , 7 (r = 1, . . . , 15, respectively). Notation
corresponds to the model numbers presented in Table 2.1. Panels e, f show the distribution of the
posterior probabilities estimated by the permutation test with 1,000 permutations. Histogram is
supported with a smooth density estimate (blue solid line) and the estimate of posterior probability
P̄ (g0|data) is shown (green vertical solid line).
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3.3 Results

We applied the BVS methodology on the four data sets introduced in Section 1.1: Litter,
Ames, Toxicity and Angina data sets. The analysis was performed using the package
runjags (Denwood, In Review) of R software (R Core Team, 2013) together with the
JAGS software (Plummer, 2003). We performed the permutation test as discussed in Sec-
tion 3.2.1.2, with B = 1, 000 permutations. The results of the BVS model were compared
with the MCT (Bretz, 2006), based on Marcus’ (Marcus, 1976) and Williams’ (Williams,
1971) contrasts, and with the LRT. The p-values of these methods were denoted as
pMarcus, pWilliams and pLRT, respectively.

The results of the BVS method for the Litter data are shown in the left panels of
Figure 3.1 (panels a, c and e). Panel 3.1a shows the estimated dose-specific means based
on the BVS (red) compared to the isotonic regression estimates (blue). Although they
are very close to each other, they do not completely coincide. The isotonic regression
is based on one particular model only (model g1 here), while the BVS estimates are
weighted averages of all the possible models. The weights are defined as the posterior
probabilities of the respective models (panel 3.1c). The estimated posterior probability of
the null model P̄ (g0|data) is equal to 0.217 and it is greater than or equal to the estimated
posterior probabilities of the null model P̄b(g0|data∗) in 2.5% of the B = 1, 000 permuted
data sets, resulting in pBayes = 0.025. This is equal to the area to the left of a vertical line
in panel 3.1e. As the result, we reject the null hypothesis at the level of significance 5%.
We conclude that decrease in the litter weight is associated with increasing dose. Since
the null model of no dose effect is rejected, the estimate of the dose-response relationship
between the litter weight and the dose is based on the model average weighted by the
posterior probabilities of each model. Model g1 is particularly dominant in this specific
example. The result is comparable to the results obtained for the LRT and the MCTs:
pLRT = 0.028, pMarcus = 0.029, pWilliams = 0.018. The BVS method has an added
advantage of a unified analytical framework for the inference for the null model under the
model uncertainty, the model selection among the alternative models when the null model
is rejected and the model averaging of the estimated dose-response relationship across all
the possible monotone models.

The results for the Ames data set are shown in the right panels of Figure 3.1 (panels
b, d and f). The difference between the BVS model averaging based estimates and the
isotonic regression is slightly more pronounced than in the Litter data (panel 3.1b). This is
due to the fact that there is not one single dominating alternative model. In fact, there are
two models with almost equal posterior probabilities, the model g2 with P̄ (g2|data) = 0.42
and g3 with P̄ (g3|data) = 0.39 (panel 3.1d). The observed posterior probability of the
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null model g0 obtained for the the Ames data is equal to 3 · 10−5 (Figure 3.1d) with
pBayes = 0 (panel 3.1f). Such a results is expected, because the distribution of the
posterior probability P (g0|data∗) from the permuted data sets would be indeed rather far
from zero, i.e. observed P̄ (g0|data). The result corresponds to the frequentist p-values
pLRT = 3 · 10−5, pMarcus = 2.4 · 10−5, pWilliams = 3.3 · 10−5. We conclude a rejection of
the null model and consequently that an increase in the mutagenicity is associated with
the increasing dose. Higher dose is more likely to cause changes in genetic information
than lower dose.

The results obtained for the BVS model for Angina data, estimates and posterior
probabilities of particular models, are shown in Figure 3.2a, 3.2c and 3.2e. The posterior
probability of the null model P̄ (g0|data, g0, . . . , g8) is equal to 0 (see Figure 2c). The
BVS permutation test was applied with B = 1, 000 permutations. Equation (3.1) gives
pBayes = 0. The result is in agreement with the results obtained for LRT and MCTs:
pLRT = 3 ·10−5, pMarcus = 7.5 ·10−9, pWilliams = 1 ·10−8. The estimate of the empirical
distribution of the posterior probability of the null model g0 under the null hypothesis is
shown in Figure 3.2e.

For the Toxicity data set, P̄ (g0|data) = 0.122. The pBayes = 0.013 which corresponds
to frequentist p-values pLRT = 0.013, pMarcus = 0.026, pWilliams = 0.016. The visual
representation of results is presented in Figure 3.2b, 3.2d and 3.2f.

Note that P̄ (g0|data) = 0 is caused by the restriction of the length of MCMC chain
used. As mentioned above, 20,000 iterations were used to compute posterior probability
of null model and none of them selected the null model. Hence, correct statement about
the P̄ (g0|data) is that P̄ (g0|data) < 1

20,000 , i.e. 5 · 10−5. We typically do not address
this issue and keep P̄ (g0|data) = 0, because we are usually not interested in this level of
precision. If more accurate results are necessary, longer chain should be used.

In summary, results of all the case studies support the conclusion that pBayes behaves
in similar way as frequentist p-value, closely related to LRT test.
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Figure 3.2: The Angina data (left column, panel a, c, e) and Toxicity data (right column, panel
b, d, f). Panels a, b show observed data and posterior means of the BVS model (red solid line)
with 95% credible intervals (dotted lines). Panels c, d show posterior probability of null model
g0 and alternative models gr, r = 1, . . . , 7 (r = 1, . . . , 15, respectively). Notation corresponds
to the model numbers presented in Table 2.1 and Table 6.2. Panels e, f show distribution of
posterior probabilities estimated by permutation test with 1,000 permutations. Histogram is
supported with smooth density estimate (blue solid line) and estimate of posterior probability
P̄ (g0|data) is shown (green vertical solid line).
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3.4 Simulation study

A simulation study was conducted in order to investigate the performance of the per-
mutation based inference for the BVS method in terms of the Type I error rate and the
power. The data were generated according to the order restricted one-way ANOVA model
specified in Equation (2.4), Yij ∼ N(λµi, τ−1), with τ = 1 and varying λ. The parame-
ter λ is used to control the magnitude of increment of the mean response from one dose
level to another. The higher the value of λ, the higher the increment. The simulation
represented an experiment with K = 4 and K = 5 dose levels and followed the design
described in Section 6.1. The number of observations per dose level was equal to n = 3
and n = 4. The permutation test, introduced in Section 3.2.1.2, was performed using
B = 1, 000 permutations. The null hypothesis was rejected whenever pBayes < α, with
α = 0.05. The performance of the BVS model was compared with the Williams’ and
Marcus’ contrast based MCT and with the LRT.

Table 3.1 presents the simulation results for n = 3 and K = 4, Figure 3.3 displays
the result for λ = 2. We see that for all the methods the empirical Type I error rate is
slightly above 0.05. The larger simulation study that is presented in Section 6.3 shows
that the Type I error rate is well controlled by all the methods. The results of the power
analysis suggest a desirable behaviour of permutation method. The permutation test is
comparable with the LRT test, in general the most powerful method among the frequentist
tests. The results of the remaining simulations (i.e. for n = 4, K = 5) were consistent
with the results presented in this section and they are discussed in detail in Section 6.3.
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Table 3.1: Results of simulation study for n = 3, K = 4. First row shows the Type I error
rate. Each following row shows the power to reject the null hypothesis, if data were generated
under the particular profile and λ value. MCT were applied with Williams’ (W) and Marcus’ (M)
contrast.

λ Profile MCT (W) MCT (M) LRT BVS
g0 0.051 0.056 0.060 0.059

1 g1 0.436 0.350 0.376 0.365
g2 0.317 0.379 0.395 0.404
g3 0.414 0.385 0.433 0.440
g4 0.300 0.371 0.379 0.389
g5 0.429 0.406 0.439 0.449
g6 0.345 0.403 0.438 0.447
g7 0.413 0.411 0.465 0.479

2 g1 0.922 0.865 0.867 0.866
g2 0.782 0.856 0.856 0.867
g3 0.904 0.871 0.893 0.903
g4 0.758 0.846 0.869 0.866
g5 0.907 0.882 0.896 0.902
g6 0.821 0.864 0.888 0.899
g7 0.899 0.889 0.911 0.920

3 g1 0.998 0.993 0.991 0.991
g2 0.972 0.986 0.988 0.989
g3 0.994 0.992 0.993 0.993
g4 0.968 0.991 0.990 0.989
g5 0.996 0.991 0.995 0.995
g6 0.977 0.987 0.993 0.993
g7 0.992 0.993 0.994 0.995
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Figure 3.3: Results of the simulation study for n = 3 and K = 4, with λ = 2. Each set of bars
shows the power of rejecting the null hypothesis, if data were generated under the particular profile
g1, . . . , g7. In case of g0, displayed quantity is the Type I error rate. Grey scale distinguishes
among different tests: darkest for Williams’ MCT, then Marcus’ MCT, the LRT test and brigtest
for the permutation test.
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3.5 Discussion

The main difference between the BVS method, proposed in this chapter, and the fre-
quentist methods such as the LRT or the MCTs is the way of dealing with the model
uncertainty. The LRT and the MCTs focus mainly on providing information about the
rejection, not about the particular profiles. Moreover, only several profiles are actually
taken into account while the test is performed (actually only one model for LRT). In
contrast, the permutation test is using the BVS posterior probability, a quantity that
is estimated while all the possible models are taken into account. This feature is very
important, because our framework assumes that the zero effects of the increased dose
are meaningful and therefore there are several candidate models to be considered. The
LRT test cannot address this type of the model uncertainty, because it is only based on
the model that the maximizes likelihood under the order restrictions and ignores all the
other models. The MCTs represent compromise, because information about the contrast
leading to the rejection can be obtained. However, since more profiles can be related to
one contrast, the MCTs does not adjust for all the profiles as the BVS does.

Naturally, computing hundreds of permutations is more computationally intensive than
the LRT or the MCTs. The computational burden is the main drawback of the proposed
method. The time necessary for computation is partly dependent on the length of MCMC
chain when fitting the BVS model. Our experience suggests good convergence properties
across various settings and sample sizes already with about 20,000 iterations (after 5,000
iteration of burn-in period). For details, see Section 6.1.1. If necessary, the length of
chain can be shortened (or prolonged) for a particular data set. Computation burden of
the method also depends on the minimal value of pBayes that we can achieve. Such a
value is simply an inverse of number of iterations for the permutation test. Note that this
problem is embarrassingly parallel, so the computational time of the permutation test can
be reduced using a parallel programming.

The inference for the dose-response data, as proposed in this chapter, should be robust
towards prior misspecification when the priors for the null model are not specified close
to zero or one. The setting the prior of the null model as zero (or one) would lead
to P̄ (g0|data) = P̄b(g0|data) and so pBayes = 0 by definition and has nothing to do
with the evidence in the data. However, we aim to use the method in case of lack of
the prior knowledge. Situation of zero prior on the null hypothesis or the alternative
hypothesis clearly cannot be considered as the non-informative case. In the case of
common methods to establish the objective priors (equal priors, Jeffreys’ priors, Kass and
Wasserman, 1996), the robustness of pBayes should be retained. The exact quantification
of the prior dependency is be pursued further in Chapter 5.





Chapter 4
Selection of the Minimum
Effective Dose Based on the
Posterior Probabilities

4.1 Introduction

The selection of the minimum effective dose (MED) is an important concept in the drug
development process (European Medicines Agency, 2002 and Wang et al., 2011). It
translates into the identification of the lowest dose that causes a desired effect or adverse
events. The MED is often used in the context of the former case, while the latter is called
the lowest observed adverse event level (LOAEL, Kodell, 2009) or the maximum safe dose
(Hothorn and Hauschke, 2000). From a statistical point of view, there is no difference
between these two concepts, only the interpretation of the response and the findings differ.
An analogous framework arises when the determination of the maximum effective dose
is of primary interest (Kong et al., 2014). In this chapter, we restrict the discussion to
the MED. In some cases, the clinical significance is included in the definition of the MED
(Liu, 2010), while other cases are focused on statistical significance only (Kuiper et al.,
2014). Note that clinical significance of the result can be included in stages following the
analysis and treated separately.

The concept of the MED appears in multiple stages of drug development. If a large
number of doses is used or prior knowledge about the shape of the dose-response profile
exists, parametric methods can be applied (e.g. the four parameter logistic non-linear

51



52 Chapter 4. Selection of the MED Based on the Posterior Probabilities

regression model, Hill’s model, etc., Seber and Wild, 1989, Straetemans, 2012, Pramana
et al., 2012b). The MED is, in this case, based on a particular parametric model. Alter-
natively, methods can be used that combine model selection with parametric modelling,
such as MCP-Mod (Bornkamp et al., 2009). In our framework, there are only few dose
levels in which the response was measured and typically only limited knowledge about
the dose-response relationship exists. Therefore, parametric modelling of the whole pro-
file as a continuous function of dose is not suitable and an order restricted analysis of
variance (ANOVA) is preferred. Typically, the monotonicity assumption is a reasonable
choice, implying that a higher dose induces a stronger effect (positive or negative for
upward or downward trend, respectively). Note that this assumption is often made in
drug development studies (e.g. Bretz and Hothorn, 2003 or Ohlssen and Racine, 2015).

The goal of the analysis is to determine the lowest active dose with significant differ-
ence to a control. For example, in an experiment with a placebo and three active doses,
we would like to detect which of the three active doses is the MED. To achieve it, we
need to be able to determine the probability of being the best model among the eight
possible models (for each direction) shown in Table 2.1.

Within the frequentist framework, the MED can be viewed either in terms of inference
of particular increments between consecutive doses or as model selection problem. The
former approach is represented by multiple comparison procedures (Bretz and Hothorn,
2003), such as Dunnett’s test (Dunnett, 1955). This approach may require to pool
together some of the means in order to maintain a reasonable power, which does not
provide complete information about the MED and can eventually lead to biased estimates
(Hothorn and Hauschke, 2000). Multiple contrast tests are generally designed to preform
an inference rather than to determine the MED (Bretz and Hothorn, 2003). Closed tests
procedures can be applied instead, but they may lack overall power (Wang and Peng,
2015). Recently, Kuiper et al. (2014) suggested to focus on model selection methods
and specifically on information criteria (IC) based approaches (e.g. Lin et al., 2009, Lin
et al., 2012c). Within the IC approach, the posterior probability of each one of the
candidate models is calculated and used for the determination of the MED. It is crucial
to realize that the MED cannot be established through a classical model selection process
that focuses only on the best model (among a set of candidate models). The competing
models can have the same MED, i.e. the first dose showing significant effect compared
to the mean of control dose (e.g. the MED for models g1, g3, g5 and g7 in Table 2.1
is the first active dose, see Kuiper et al., 2014). Although a certain model can have
the highest posterior probability, it could be worse than posterior probabilities of all the
models with same MED pooled together. This reasoning suggests that IC is an appropriate
approach, since IC based methods compare all candidate models and their IC values can
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be easily converted into weights that can be pooled together for appropriate models
(Kuiper et al., 2014). Naturally, order restriction needs to be taken into account for IC
based methods (Anraku, 1999) which leads to the generalized order restricted information
criterion (GORIC, Kuiper et al., 2014). The advantage of the IC is that they provide
the probability for a particular model being the best model, given the data, among all
fitted models. Hence, multiple values of the MED can be computed together with their
corresponding posterior probabilities (Kuiper et al., 2014). The main disadvantage of this
approach is that it requires to fit all the models under consideration. This is feasible in
an experiment with relatively small number of dose levels, but it becomes infeasible for
an experiment with relatively large number of dose levels. For example, for an experiment
with five or six dose levels, there are 16 or 32 order restricted one-way ANOVA models that
need to be fitted, respectively. Procedures are available to reduce the number of models
either by an efficient search in the model space (e.g. stepwise methods) or by reducing
the model space itself (e.g. diversity index, Kim et al., 2014). However, they usually
require additional input parameters or criteria specification and the resulting amount of
models to be fitted can still remain prohibitive. In such a case, Bayesian variable selection
method (George and McCulloch, 1993, O’Hara and Sillanpää, 2009) becomes an attractive
alternative. In particular, for dose response experiments, the BVS approach (Kasim et al.,
2012, Otava et al., 2014) allows fitting all models simultaneously and provides posterior
probabilities for each of them, while computational time does not increase in a linear
fashion as in case of the IC approach.

This chapter continues as follows. The methodological background for both the IC
based methods and the BVS is summarized in Section 4.2. The methods are applied
for the two case studies in Section 4.3 and the results are evaluated. Further empirical
comparison is investigated via simulation study and presented in Section 4.4. Finally, the
findings are summarized and discussed in Section 4.5.

4.2 Methodology

We consider a dose-response experiment with a control group and K − 1 active dose
levels. Denote the set of observations by

Y = {Yij , i = 0, . . . ,K − 1, j = 1, . . . , ni} ,

where ni represents the number of observations of dose i. Our goal is to select the
lowest dose i that shows a statistically significant difference compared to the control
group. Such a dose is the MED. We denote such an event as MED = i and the
probability that this event occurs as P (MED = i). Let g0, . . . , gR be a set of R + 1
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candidate models which are used to determine the MED. Based on the observed data
and the models that are considered as plausible, the quantity of interest is the posterior
probability of the particular value of the MED, P (MED = i|data, g0, . . . , gR). The de-
termination of the MED can be translated into a model selection problem. For example,
for K = 4 it translates to a selection of the best model among all models for given
direction that are presented in Table 2.1. Note that multiple models induce the same
MED, e.g. for K = 4 the probability that the MED is the second dose level is equal
to P (MED = 2|data, g0, . . . , gR) = P (g2|data, g0, . . . , gR) + P (g6|data, g0, . . . , gR),
where P (gr|data, g0, . . . , gR) is the posterior probability of the model gr, r = 0, 1, . . . , R.
Therefore, the inference about the MED cannot be based on a single model only and our
aim is to estimate P (gr|data, g0, . . . , gR) for all the suitable models. The posterior prob-
abilities for the MED is obtained by summing appropriate posterior model probabilities.
To simplify notation, from this point onwards, we denote P (MED = i|data, g0, . . . , gR)
and P (gr|data, g0, . . . , gR) as P (MED = i|data) and P (gr|data), respectively.

4.2.1 Model averaging techniques

The likelihood based methodology addresses the problem of model selection through
information criteria (IC) approaches (e.g. Akaike, 1974, Burnham and Anderson, 2002,
Claeskens and Hjort, 2008, Lin et al., 2012c, Kuiper et al., 2014). All candidate models
are fitted and their corresponding IC values are computed. Based on the IC value, weights
are calculated for each of the fitted models (as explained in detail below). The resulting
weights can be considered as an approximation of posterior probabilities of the models
being the best model, among all fitted models given the data (Burnham and Anderson,
2002). Additionally, this approach enables us to incorporate prior knowledge if there is
any available.

As proposed by Burnham and Anderson (2002) and Claeskens and Hjort (2008), for
set of models g0, g1, . . . , gR, we can select as the best model such that maximizes the
posterior model probability given by

P (gr|data) = P (data|gr)P (gr)∑R
s=1 P (data|gs)P (gs)

r = 0, . . . , R. (4.1)

The term P (data|gr) is the model likelihood (Burnham and Anderson, 2002) corrected
with a penalization term and P (gr) is a prespecified prior probability of model gr. In this
section, we consider a vague prior knowledge and so we use P (gr) = 1/(R+ 1) for all r.
The model likelihood P (data|gr) is approximated by

PIC(data|gr) = exp(− 1
2 ∆ICr), (4.2)
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where ∆ICr = ICr − ICmin, with ICmin = minr=0,...,R ICr. Hence, combining equa-
tions (4.1) and (4.2) together and assuming equal prior probabilities, we get

wr = PIC(gr|data) =
exp(− 1

2 ∆ICr)∑R
s=0 exp(− 1

2 ∆ICs)
. (4.3)

The properties of this method depends on IC used.
An information criterion is a function of likelihood with a penalization term for model

complexity given by

IC = −2logL(θ|data) + τ. (4.4)

Here, θ represents the model parameters and τ is a penalization function. IC such as
Akaike’s information criterion (AIC, Akaike, 1974) or Bayesian information criterion (BIC,
Schwarz, 1978) can be applied. The AIC uses the penalty term τ = 2 · A, with A being
number of parameters in a model. The main criticism against the AIC is that it evaluates
the goodness of fit without taking into account sample size (Burnham and Anderson,
2004). Small-sample size modification of the criterion was developed (Sugiura, 1978),
but often the original version is used (Burnham and Anderson, 2004). The BIC uses the
penalty term τ = A · log(B), where B is the number of observations. Hence, the BIC
penalty is higher than for the AIC, if we have more than seven observations and the BIC
favours simpler models as sample size increases. Although the criteria seem to be very
similar, their motivation is grounded in very different principles. While the AIC arises from
information theory and tries to find the model with the smallest distance to a complex
true model, the BIC is related to an asymptotic Bayes factor and assumes that true model
is contained in available set of models (Schwarz, 1978). However, as pointed out by
Anraku (1999), none of these criteria is suitable in our framework, since they ignore order
restrictions.

The order restricted information criterion (ORIC, Anraku, 1999) uses an order re-
stricted likelihood in which the mean response at each dose level is estimated using
isotonic regression (Barlow et al., 1972) and a penalty term is given by

τ(ORIC) = 2 ·
K∑
`=1

`P (`,K,v). (4.5)

The level probabilities, P (`,K,v), represent the probability under the null model (of no
dose effect, i.e. under g0) that number of unique values of dose-specific means µi (i.e.
number of different dose means) equals to `, while there are K doses for an experiment
with a control and K − 1 dose levels (Robertson et al., 1988). The weights are given
by vi = ni/σi and they are constant for balanced experiment with equal variances. The
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generalized ORIC (GORIC, Kuiper et al., 2011) is an extension for more complicated
profiles than simple order restrictions. The GORIC uses maximum likelihood estimate
under given constraints and generalizes penalty term. In our framework, for normally
distributed data and monotonicity, the GORIC reduces back to the ORIC.

Within the hierarchical Bayesian framework, deviance information criterion (DIC,
Spiegelhalter et al., 2002) is often used for model selection. For the DIC, the goodness of
fit is measured by −2logL(data|θ̄), which is the likelihood of the observed data evaluated
using the posterior mean of θ. The penalty for complexity, τ , equals to τ = 2pD, where
pD is the effective number of parameters of the model. According to Spiegelhalter et al.
(2002), pD is a difference between posterior mean of the deviance and deviance evaluated
in posterior means of the parameters. Alternatively, Gelman et al. (2004) defines pD as
half of variance of the deviance. This estimate shows robustness and accuracy and it is
not affected by reparametrization of the model (Spiegelhalter et al., 2014).

The weights defined in Equation (4.3) can be used to estimate the dose-specific means
as weighted average of the means estimated by the R+1 candidate models. This approach
is closely related to model averaging techniques as discussed, in the context of dose-
response modelling, in Bretz et al. (2005), Pinheiro et al. (2006), Whitney and Ryan
(2009) and Lin et al. (2012c).

Note that it is necessary to fit all candidate models g0, . . . , gR in order to compute the
weights based on the IC described in this section. Therefore, with an increasing number
of candidate models (e.g. when the number of dose levels increases), the number of fitted
models increases as well.

4.2.2 Order restricted estimation: hierarchical Bayesian approach

As discussed in Chapter 2, we can formulate an order restricted Bayesian hierarchical model
to estimate the means. As explained in Section 2.3, in order to ensure monotonicity among
the means, the prior distributions of all components of vector θ = (θ1, θ2, . . . , θK−1) are
truncated (at zero) normal distributions. Note that P (θh = 0) = 0, a probability of
any of the components to be exactly zero is equal to zero. Hence, the parametrization
in Equation (2.15) implies that a Bayesian inequality model, i.e. a model with K − 1
(ordered) parameters θ`, is fitted (Dunson and Neelon, 2003). For example, for K = 4,
only model g7 can be fitted. Therefore, necessarily MED = 1. However, all the other
models g0, . . . , gR−1 can be fitted by a slight modification of the parametrization of the
mean structure, i.e. by fixing appropriate θ` to be equal to zero. The DIC, can be used
to select the best model and to determine MED, as described in previous section. This
approach, however, shares the disadvantage of all IC based methods, its necessity to fit
all the models separately.
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4.2.3 BVS model approach

The Bayesian variable selection (BVS) model, discussed in details in Section 2.4, is an
extension of Bayesian inequality model and it allows us to fit all candidate models at once
(through one MCMC chain) via the internal variable selection procedure. As mentioned
in Section 2.4 the configuration of the latent variable z determines uniquely all candidate
order restricted one-way ANOVA models. Therefore, it gains a clear advantage over any
IC based method, where all the models need to be fitted separately.

The posterior mean of zh, see Equation (2.22), represents the posterior inclusion
probability of δh in the model (O’Hara and Sillanpää, 2009). Due to the fact that the
configuration of the vector z determines unambiguously a particular model, the posterior
probability of a particular configuration of z translates into posterior probability of a
particular model (Table 2.1). For example, in case of K = 4, posterior probability of
model g1 equals to

P (g1|data) = P [z = c(1, 0, 0)|data] . (4.6)

Note that P (gr|data) is interpreted as posterior probability of model gr, given the data,
the priors and the set of all models. Naturally, prior specification can strongly influence
the results of the analysis. In this way, prior information allows us to include information
coming from scientific knowledge or previous experiments. Although we usually apply the
BVS in case that all models are of interest (e.g. all models from Table 2.1), if a subset of
the models is a priori considered impossible, it can be easily omitted by setting its prior
probabilities to zero. In case of lack of any prior information, non-informative priors can
be used instead, as in Equation (2.21).

Analogously to the previous section, the MED can be obtained by summing the pos-
terior probabilities of appropriate models. The resulting quantities represent the pos-
terior distribution of the MED, i.e. to each possible value of the MED the posterior
probability of being the true underlying MED is assigned. For example, for K = 4,
P (MED = 2|data) = P (g2|data) + P (g6|data). Hence, in terms of the inclusion vector
z, the posterior the posterior probability is given by

P̄ (MED = 2|data) = P̄ (z = (0, 1, 0)|data) + P̄ (z = (0, 1, 1)|data). (4.7)

As shown in Section 2.4, the posterior model probabilities play an important role in
the estimation of the dose-specific means as well. The means are computed as averaged
estimates of means under specific model weighted by posterior probability of that model,
that is

µ̄ =
R∑
r=1

P̄ (gr|data)µ̂gr
. (4.8)
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Figure 4.1: The Angina data. Left panel: Observed data, sample means (crosses) and posterior
means of the BVS model (solid line) and model g10 (dashed line). Right panel: Posterior
probability for gr, r = 0, . . . , 15. Notation corresponds to the model numbers presented in
Table 6.2, extended respectively for K = 5 (see Table 6.2).

4.3 Results

We apply the BVS model, the GORIC, the AIC and the BIC methods for the Toxicity and
the Angina data sets described in Section 1.1. The attention is given to the comparison
between the BVS and the GORIC, since they are both taking into account order con-
straints within the estimation procedure of the MED. The model weights based on the
IC are interpreted (in terms of Equation 4.3) as posterior model probabilities. In order
to distinguish between the results of the methods, we denote posterior probabilities as
P̄GORIC and P̄BV S for respective method. The analysis for all methods was done using
the R software (R Core Team, 2014) version 3.1.1. For the BVS model, the MCMC was
run using the package runjags (Denwood, In Review) together with the JAGS software
(Plummer, 2003).

The results for the BVS model are shown in Figure 4.1 and Figure 4.2 for the Angina
data and the Toxicity data, respectively. The left panels show the data, the BVS weighted
average of mean estimates (solid line) and the best model selected by BVS (dashed
line). For both case studies, the effect of model averaging is clearly seen. The right
panels of both figures show the posterior model probabilities. While there is much clearer
candidate for the best model for Toxicity data, g1 with P̄BV S(g1|data) = 0.38, the result
for Angina data supports nearly equally two models, g9 (P̄BV S(g9|data) = 0.249) and g10

(P̄BV S(g10|data) = 0.269).
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Figure 4.2: The Toxicity data. Left panel: Observed data, sample means (crosses) and posterior
means of the BVS model (solid line) and model g1 (dashed line). Right panel: Posterior proba-
bility for gr, r = 0, . . . , 7. Notation corresponds to the model numbers presented in Table 2.1.
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Figure 4.3: The Angina data. The BVS results (black) and GORIC results (grey) comparison.
Left panel: Posterior probability for gr, r = 0, . . . , 15. Right panel: Posterior probability for the
MED.

The posterior model probabilities obtained for the BVS and the GORIC for the Angina
data set are shown in left panel of Figure 4.3. For both methods, the highest posterior
probabilities were obtained for models with an increment between the last two doses.
However, the GORIC tends to prefer more complex models with smaller increments across
multiple doses (g13, g15), while the BVS selects models with just few larger increments (g9,
g10). The posterior probabilities of the MED are shown in the right panel of Figure 4.3.
Both the GORIC and the BVS assigned the highest posterior probability of being MED to
the first dose. However, there is a difference between the two methods. Since the GORIC
method selects models with more parameters, it gives higher probability to models with
increment already between first and second dose and therefore PGORIC(MED = 1|data)
is estimated with large posterior probability, P̄GORIC(MED = 1|data) = 0.741. It also
assigns nearly zero probability to P̄GORIC(MED = 4|data) = 0.002. In contrast, the
BVS method gives much lower posterior probability to P̄BV S(MED = 1|data) = 0.490
and the posterior distribution of the MED is more equally spread over all doses, i.e.
P̄BV S(MED = 2|data) = 0.325 and P̄BV S(MED = 4|data) = 0.041. The complete
results are presented in Table 4.1. We can see that the results obtained for the AIC and
BIC methods lie between the results obtained for the GORIC and the BVS methods. Note
that the results for the BIC are much closer to results of the BVS.
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Table 4.1: Estimated posterior model probabilities for the Angina data for GORIC, AIC, BIC
and BVS. First column: Order restricted log-likelihood.

Profile ORLL GORIC AIC BIC BVS
g0 -149.77 0.00 0.00 0.00 0.00
g1 -144.55 0.00 0.00 0.00 0.00
g2 -141.46 0.00 0.00 0.00 0.00
g3 -140.80 0.00 0.00 0.00 0.00
g4 -138.65 0.00 0.00 0.00 0.00
g5 -136.92 0.00 0.00 0.00 0.00
g6 -137.39 0.00 0.00 0.00 0.00
g7 -136.61 0.00 0.00 0.00 0.00
g8 -135.97 0.00 0.01 0.04 0.04
g9 -132.31 0.06 0.13 0.21 0.25
g10 -131.99 0.09 0.18 0.29 0.27
g11 -131.01 0.18 0.17 0.11 0.09
g12 -133.01 0.03 0.06 0.11 0.14
g13 -130.82 0.22 0.21 0.13 0.13
g14 -131.42 0.13 0.12 0.07 0.06
g15 -130.43 0.28 0.11 0.03 0.02
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Figure 4.4: The Toxicity data. The BVS results (black) and GORIC results (grey) comparison.
Left panel: Posterior probability for gr, r = 0, . . . , 7. Right panel: Posterior probability of the
MED.

Similar pattern can be seen for the Toxicity data in Figure 4.4. While the GORIC
prefers a more complex model g5 (having three different means) with MED = 1, the
BVS suggests that the best model is g1, while giving much higher posterior prob-
abilities to other models, such as g0, g4 and g5. Once again, both methods esti-
mated the highest posterior probability of being the MED for the same dose level,
with the GORIC estimate P̄GORIC(MED = 1|data) = 0.833 and the BVS estimate
P̄BV S(MED = 1|data) = 0.644. Similarly to the Angina data, the GORIC assigns very
high posterior probability to MED = 1 (see right panel of Figure 4.4), while BVS spread
probability more equally, estimating relatively high posterior probabilities for other doses.
Note that in Table 4.2 not all models were fitted for the GORIC, AIC and BIC. That
is caused by the violation of monotonicity assumption in the observed means between
dose 2 and dose 3 (see Figure 4.2). As mentioned above, isotonic regression was used to
estimate the order restricted means. While we incorporate the order restrictions for max-
imum likelihood estimation, the models with increase between dose 2 and dose 3 reduced
to models that have a flat mean profile between dose 2 and dose 3 (e.g. model g2 will
reduce to model g0). Therefore, only a subset of models g0, g1, g4, g5 with no increment
between the dose 2 and dose 3 can be actually fitted and estimated. This property does
not apply to the BVS model, because it does not use isotonic regression for the estimation
of the means.

In both data sets, the GORIC seems to support models with less equalities (i.e. more
complex models) compared to the BVS and therefore estimates the lower values of the
MED with higher probabilities. Both methods tend to select similar patterns, but small
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Table 4.2: Estimated posterior model probabilities for the Toxicity data for GORIC, AIC, BIC
and BVS. First column: Order restricted log-likelihood. Note that, as explained in Section 4.3,
some of the models were not fitted for IC; due to the incorporated order restrictions they reduced
to other models.

Profile ORLL GORIC AIC BIC BVS
g0 -82.98 0.04 0.08 0.16 0.12
g1 -80.32 0.33 0.42 0.46 0.38
g2 — 0 0 0 0.06
g3 — 0 0 0 0.05
g4 -81.28 0.13 0.16 0.18 0.16
g5 -79.51 0.50 0.34 0.21 0.21
g6 — 0 0 0 0.02
g7 — 0 0 0 0.01

differences between consecutive doses are treated as flat by the BVS but as increments
by the GORIC. The cause of this difference is due to the fact that the penalty of GORIC
is rather low when additional parameters are added to the model. Hence, the GORIC
supports more complex models and results in much higher P̄GORIC(MED = 1|data).
On the other hand, the results for the BVS suggest that a model reduction step is ad-
dressed automatically within the procedure and a relatively large difference among doses
is needed to include the increment in the model. As a consequence, the distribution of
P̄BV S(MED = i|data) is spread more equally across the doses. The AIC and BIC are
somewhere between the other two methods, AIC being closer to GORIC and BIC closer
to BVS. This is expected since compared to the AIC, the BIC has a tendency to select
less complex models due to a high penalty term. The values of penalties for Angina data
set are shown in Table 4.3 and for Toxicity data set in Table 4.4 (note that we list only
the models that were possible to fit for this particular data set).

As expected, the choice of the criterion determines the posterior distribution of MED.
Although the MED with the highest posterior probability could be the same for different
methods, substantial differences can be observed in the underlying posterior distribution
that quantifies the uncertainty in the choice of MED. On the other hand, the choice of the
criterion can incorporate our preference for a more or less complex model in the process
of the estimation of the posterior probabilities.
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Table 4.3: Penalties for different models fitted for the Angina data. First column: Order
restricted log likelihood. Remaining columns: Penalty term for respective IC.

Profile ORLL GORIC AIC BIC
g0 -149.77 2.00 4 7.82
g1 -144.55 2.50 6 11.74
g2 -141.46 2.50 6 11.74
g3 -140.80 2.79 8 15.65
g4 -138.65 2.50 6 11.74
g5 -136.92 2.86 8 15.65
g6 -137.39 2.77 8 15.65
g7 -136.61 3.03 10 19.56
g8 -135.97 2.50 6 11.74
g9 -132.31 2.92 8 15.65
g10 -131.99 2.86 8 15.65
g11 -131.01 3.14 10 19.56
g12 -133.01 2.79 8 15.65
g13 -130.82 3.14 10 19.56
g14 -131.42 3.03 10 19.56
g15 -130.43 3.28 12 23.47

Table 4.4: Penalties for different models fitted for the Toxicity data. First column: Order
restricted log likelihood. Remaining columns: Penalty term for respective IC.

Profile ORLL GORIC AIC BIC
g0 -82.98 2.00 4 6.36
g1 -80.32 2.50 6 9.53
g4 -81.28 2.50 6 9.53
g5 -79.51 2.89 8 12.71



4.4. Simulation study 65

4.4 Simulation study

4.4.1 Simulation setting

Considering the findings in Section 4.3, we conducted a simulation study to explore suit-
ability of various methods according to true underlying model. The data were generated
according to the model order restricted one-way ANOVA model specified in Equation (2.4),
Yij ∼ N(λµi, τ−1), with τ = 1 and varying λ. The parameter λ is used to control the
magnitude of increment of the mean response from one dose level to another. The higher
the value of λ, the higher the increment. The simulation represented an experiment with
K = 4 dose levels and n = 3 observations per dose and followed the design described in
Section 6.1. Magnitude of the dose-response effect was represented by varying parameter
λ = 1, 2, 3 (see Section 6.1). In total, N = 1000 data sets were generated for each
combination of a specific model and λ (i.e. in total 22 combinations were simulated, 7×3
for g1, . . . , g7 and one for g0, each 1000 times).

For all the methods, an assumption of a non-decreasing trend was made. As explained
in the previous section, not all the models can be fitted for the IC methods in each
simulated data set (when violation of monotonicity in simulated means occurs), while the
BVS provided posterior probability for all the models in each simulated data set. The
posterior model probabilities, P̄ (gr|data), were computed according to the BVS, AIC,
BIC and GORIC methods. The posterior probabilities for the MED, P̄ (MED = i|data),
were derived by summation of appropriate posterior model probabilities. The methods
were evaluated based on two criteria: the correct identification of the true underlying
model and the correct identification of the true underlying MED. Additionally, the setting
when the best model and the second best model are considered for evaluation is briefly
discussed in Section 4.5 and the full results are shown in Section 6.4.

4.4.2 Simulation results

As shown in Table 4.5, performance according to model complexity is profound in simu-
lation study results. While the BVS clearly performs better for simple models with only
one or two different mean levels (g0, g1, g2 and g4), the GORIC achieves better results for
complex models (g3, g6, g7). The result for model g5 highlights another interesting point.
While the magnitude of the difference is getting higher, the GORIC seems to prefer more
complex models (splitting high increment among more dose levels). Therefore, if λ = 3,
the BVS overtakes the GORIC in terms of correct selection of the model g5 and reduces
the difference for models g3 and g6. Clearly, the GORIC is better method for the detection
of model g7. On the other hand, it shows the worst performance for the simplest model g0



66 Chapter 4. Selection of the MED Based on the Posterior Probabilities

that can be of profound interest, representing absence of dose-response relationship. In-
terestingly, the AIC method performs well. While being always between BVS and GORIC,
it shows good performance, except for model g7. Performance of BIC is rather poor, being
among the worst methods for all the possible models (and except g0, being always worse
than AIC). The complexity of the models selected by a specific method depends on the
penalty term of that method. Typically, it holds that penalty of the GORIC is smaller than
penalty of the AIC that is (for n > 7) smaller than penalty of the BIC. Therefore, the AIC
and GORIC may select more complex models. The AIC and GORIC methods arise from
information theory and they estimate Kullback-Leibler divergence (Kullback and Leibler,
1951) between the true model and models under consideration. Therefore, they do not
assume that the true model is necessarily among the candidate models and they try to
approximate it. In contrast, the BVS model selects the best model among the candidate
models. Additional results for varying number of replicates within dose (n = 4, 5, 10)
indicate the same patterns and are presented in Section 6.4.

The main goal of the analysis is to estimate the MED. The evaluation of methods based
on correct identification of the MED, presented in Table 4.6, leads to different conclusions
than correct model selection based analysis. We can see an overall improvement in the
correct identification rate. This is due to the fact that if the true model is not selected, the
methods tend to select the model with the same MED. The clearest improvement occurs
for the GORIC, especially for model g1. The magnitude of the increment, represented by
λ, seems to be an important factor for a correct MED determination. Clearly, the GORIC
performs better for λ = 1 for most of the models, while the BVS outperforms the GORIC
for nearly all of the models if λ = 3. The model complexity factor stays clearly visible
only for model g4 (increment only in last dose) and g7 (increment in all doses). The AIC
seems very suitable for MED selection. It has never been the best method, but it has
never had worse performance than both BVS and GORIC simultaneously. The BIC does
not provide good results, in some cases it performed slightly better than other methods,
but it is often the worst method with rather poor overall performance. Similar results for
additional settings are presented in Section 6.4.
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Table 4.5: Comparison of estimated probability of the correct model selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 3.

λ Profile BVS GORIC AIC BIC
g0 0.73 0.59 0.76 0.81

1 g1 0.57 0.51 0.53 0.49
g2 0.46 0.42 0.47 0.46
g3 0.03 0.16 0.05 0.03
g4 0.55 0.48 0.51 0.48
g5 0.08 0.22 0.09 0.07
g6 0.02 0.16 0.04 0.02
g7 0.00 0.03 0.00 0.00

2 g1 0.83 0.63 0.78 0.80
g2 0.78 0.54 0.73 0.77
g3 0.22 0.48 0.30 0.23
g4 0.82 0.61 0.78 0.79
g5 0.43 0.54 0.49 0.42
g6 0.23 0.46 0.29 0.24
g7 0.01 0.28 0.04 0.02

3 g1 0.88 0.63 0.79 0.83
g2 0.84 0.55 0.76 0.81
g3 0.59 0.66 0.64 0.60
g4 0.86 0.62 0.80 0.83
g5 0.79 0.67 0.77 0.77
g6 0.57 0.65 0.63 0.59
g7 0.09 0.62 0.25 0.19
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Table 4.6: Comparison of estimated probability of a selection of the correct MED based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion with K = 4, n = 3.

λ Profile BVS GORIC AIC BIC
g0 0.73 0.59 0.76 0.81

1 g1 0.62 0.73 0.61 0.55
g2 0.47 0.51 0.49 0.47
g3 0.40 0.53 0.39 0.34
g4 0.55 0.48 0.51 0.48
g5 0.39 0.53 0.39 0.35
g6 0.32 0.40 0.36 0.34
g7 0.32 0.44 0.32 0.29

2 g1 0.96 0.99 0.96 0.94
g2 0.83 0.72 0.82 0.83
g3 0.61 0.81 0.65 0.59
g4 0.82 0.61 0.78 0.79
g5 0.70 0.85 0.74 0.71
g6 0.57 0.60 0.59 0.59
g7 0.48 0.70 0.53 0.48

3 g1 1.00 1.00 1.00 1.00
g2 0.91 0.72 0.86 0.90
g3 0.82 0.94 0.86 0.83
g4 0.86 0.62 0.80 0.83
g5 0.90 0.98 0.93 0.91
g6 0.75 0.69 0.76 0.76
g7 0.64 0.86 0.71 0.66
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4.5 Discussion

This chapter discusses the Bayesian variable selection method for the model selection and
the estimation of the minimum effective dose. A comparison with competing methods
based on information criteria GORIC, AIC and BIC was conducted in both case studies
and simulation study. One advantage of BVS is its unified framework for inference, es-
timation and model selection. While posterior probabilities P̄ (gr|data, g0, . . . , gR) can
be used as a model selection tool, the dose-specific means estimates are based on the
weighted average of model-specific estimates according to the posterior model probabili-
ties. As shown in Chapter 3, the posterior probability of the null model can be used for
inference. Therefore, the BVS model provides estimates for the dose-specific means while
taking model uncertainty into account. Similarly, the model averaged estimates can be
obtained for IC methods by using model-specific maximum likelihood estimates weighted
by appropriate model weights.

In terms of model and MED selection, the main advantage of BVS is that it fits all
the models simultaneously. It is not necessary to check which model can be actually fitted
to the data due to violations of monotonicity. In contrast with the IC based methods,
the number of fitted models does not increase with increasing number of dose levels. For
K > 5, the amount of models to be fitted can become prohibitive for IC based methods
that require to fit all candidate models separately in order to estimate the posterior model
probabilities.

The isotonic regression procedure used for all IC based methods raises an important
issue. As we have seen for the Toxicity data set, not all the models can be fitted due to
violation of monotonicity assumption. Analogously, we have seen in the simulation study
that it may happen (for single experiment) that the true model that generated the data
may not be fitted due to the variability in the data. Hence, the posterior probability of
true model may be zero for all IC based methods. Naturally, this issue carries over to
the MED estimation as well. The true MED can be missed, if the variability in the data
causes the violation of monotonicity in the dose-specific means.

The BVS model outperforms the other methods in case of less complex underlying
models or higher magnitude of overall difference. In case of small differences, it tends
to oversimplify the models, especially for the most complex model g7. On the other
hand, the GORIC method prefers complex models, leading to its poor performance in
case of high magnitude of difference and simplest models as g0 or g1. While taking into
account not only the best model, but also the second best model (with respect to posterior
probability), the BVS model performs much better, relatively to IC methods (additional
simulations supporting this claim are presented in Section 6.4). In particular, model g0
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can be interpreted in terms of the null hypothesis of no dose-response relationship. The
low sensitivity of the GORIC for this model suggests that the method should be used only
after an initial inference step. The performance for higher magnitudes is of main interest
from an application point of view. As mentioned in the Introduction, the MED is typically
related to the clinical significance as well as to the statistical significance. Therefore, cases
of small overall effects are not of imminent interest. The bigger the overall dose effect is,
the higher is the chance that MED would be relevant and its correct estimate is needed.



Chapter 5
Robustness Against the Prior
Configuration and Model
Complexity

5.1 Introduction

The aim of this chapter is to investigate influence of the choice of the prior model prob-
abilities on the estimation of the dose-specific means, model selection procedures and
the inference. Additionally, we define the model complexity within the BVS framework
as posterior expected complexity and we present an investigation about its properties.
This measure is analogous to the penalty for complexity used by information criteria (e.g.
AIC, BIC, DIC, etc.). Within the Bayesian framework, it represents the expected num-
ber of parameters of the true model, given the model uncertainty. Each model has a
known number of distinct dose-specific means and posterior model probability. Hence,
a weighted average of these quantities results in posterior complexity of the set of the
models. Analogously, the “prior complexity” can be obtained using prior model probabil-
ities. There is a clear link between the BVS model complexity and the likelihood-ratio
test (LRT) and the order restricted information criterion. All the quantities are related to
the level probabilities, i.e. probabilities of having certain number of levels under the null
model. This topics will be explained further in Section 5.2.

Clearly, estimation, model selection, inference and model complexity depend, to some
extent, on the configuration of the prior model probabilities. As explained in Chapter 3,
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we use for inference a permutation based procedure. In the first part of this chapter, we
investigate how sensitive is the inference to the choice of the prior model probabilities.
Note that we expect that the results of the inference procedure will not change when
the set of prior model probabilities changes. The reason is that permutation is done
conditionally on the prior, so the effect of the priors should be diminished when enough
permutations are conducted. As a consequence, the inference is expected to be robust
against the configuration of non-informative priors. This is desired property in case that
there is no prior information and non-informative priors are chosen, as will be explained
further. In contrary, model selection or the estimation of the minimum effective dose
(MED) should be strongly influenced by the choice of prior distribution, because both
procedures directly rely on posterior model probabilities. Dependency of the posterior
probabilities on the prior specification is related to amount of information in the data.
Especially in case of small sample size or relatively large noise, the posterior probabilities
will be dominated by the prior probabilities of the models. The behaviour of estimates for
the dose-specific posterior means is not clear a priori and is a subject for investigation in
this chapter. Although the estimates depend on the posterior probabilities of the models,
the model averaging process, discussed in Chapter 2, could compensate for the effect
of prior model probabilities. Even if the “true” model is not correctly identified, models
that are rather close to it could be selected instead. Therefore, the weighted average
of the models could still provide an accurate estimate of underlying dose-specific means.
Similarly, the complexity measure is based on a weighted average of the posterior model
probabilities, so it is not a priori clear, how much it would be influenced by configuration
of priors.

The methodological background of this chapter is described in detail in Section 5.2.
A motivating example in which the proposed BVS model with varying priors is applied to
the case study is shown in Section 5.3 and the influence on estimation, model selection,
inference and posterior expected complexity is evaluated. In Section 5.4, a simulation
study is conducted to investigate the influence of the choice of priors on the different
aspects of the BVS framework. Finally, a discussion is given in Section 5.5.

5.2 Methodology

Analogously to the previous chapters, let Y = {Yij , i = 0, . . . ,K − 1, j = 1, . . . , ni}
denote the set of the observations, where ni represents the sample size at dose i (i.e. j
represents the replicates within the dose). Further, it is assumed that the dose-specific
means µ0, . . . , µK−1 follow a simple order, i.e. a monotone order of the form µ0 ≤ · · · ≤
µK−1 or µ0 ≥ · · · ≥ µK−1, for an upward and downward trends, respectively. The aim



5.2. Methodology 73

is to model the relationship between dose and the response of interest, while accounting
for model uncertainty. Therefore, different types of profiles of dose-response relationship
are determined by the presence of equality or inequality between consecutive dose-specific
means, resulting in the set of {g0, . . . , gR, R = 2K−1} one-way order restricted ANOVA
models for control and K − 1 active dose levels. The model g0 represents null hypothesis
of equality of dose-specific means (see Equation 2.1 in Section 2.1). The union of all
the remaining models represents alternative hypothesis of at least one strictly monotone
relationship (see Equation 2.2). For example, for the dose-response experiment with
control dose and three increasing dose levels (i.e. K = 4), there are eight possible one-
way order restricted ANOVA models presented in Table 2.1.

5.2.1 Level probabilities

The estimation of dose-specific means under monotonicity assumption using the maximum
likelihood estimators leads to the isotonic regression (Barlow et al., 1972). Denote isotonic
means as µ̂∗0 ≤ · · · ≤ µ̂∗K−1. They can be estimated from dose-specific sample means
µ̂0, . . . , µ̂K−1 using the ’pool adjacent violators algorithm’ (PAVA). In first step, initiate
µ̂∗i = µ̂i for all i = 0, . . . ,K − 1. Afterwards, for any pair j and j + 1 for which
the order is violated, i.e. µ̂∗j > µ̂∗j+1, the isotonic means are updated as µ̂∗j = µ̂∗j+1 =
(nj µ̂∗j + nj+1µ̂

∗
j+1)/(nj + nj+1). The procedure is repeated until all the means comply

with monotone order restriction.
The level probabilities represent the probabilities of obtaining certain number of unique

isotonic means, i.e. ’levels’, if isotonic regression is applied to the data generated under the
null hypothesis. Let us denote P (`,K,w) level probability of obtaining ` levels for K dose
levels, while the inverse of w, w−1 = (w−1

0 , ..., w−1
K ), consist of variances of the response

at each dose. For example, for case of K = 4 and equal weights w0, the probability
for one single level are equal to P (` = 1, 4,w0) = 0.25, P (` = 2, 4,w0) = 0.46,
P (` = 3, 4,w0) = 0.25 and P (` = 4, 4,w0) = 0.04 (Robertson et al., 1988 and Shkedy
et al., 2012a). The last probability implies that the data generated under the null rarely
induce strictly monotone sequence of dose-specific means. More likely, two unique isotonic
means may occur which corresponds to the oscillation of dose-specific means around true
underlying mean. The level probabilities refer only to the number of unique estimates
for the means and not to the significance of the difference between particular means.
Therefore, they are independent on the variability of the data as far as the variance is
constant across all the doses.

The importance of level probabilities is obvious in order restricted setting, both in
inference and model selection framework. Consider the LRT of null hypothesis against an
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ordered alternative. The p-value for the test is given by (Barlow et al., 1972)

PH0(TLRT ≥ tLRT ) =
K∑
`=1

P (`,K,w)P
[
B 1

2 (`−1), 1
2 (N−`) ≥ tLRT

]
. (5.1)

Here, N is the total number of observations. B 1
2 (`−1), 1

2 (N−`) denotes Beta distribution
with α = 1/2(` − 1) and β = 1/2(N − `) and B0,β ≡ 0. The higher number of levels
under the null implies generally higher values of TLRT statistic. Therefore, the overall
distribution of the test statistics is a mixture of Beta distributions weighted by level
probabilities (Shkedy et al., 2012a).

Similarly, level probabilities play an important role in likelihood based approaches for
the model selection via information criteria. As shown in Chapter 4, an order restricted
information criterion, ORIC (Anraku, 1999) can be used for model selection. The ORIC
is derived from Kullback-Leibler divergence (Kullback and Leibler, 1951) minimization
accounting for order restriction. The criterion uses the order restricted likelihood that
is related to isotonic regression to measure the goodness of fit of the model. The level
probabilities are used in the penalty term as

ORIC = −2logL(θ|data) + 2 ·
K∑
`=1

`P (`,K,w). (5.2)

The weights wi = ni/σi are constant for balanced experiment with equal variances. The
use of level probabilities naturally reflects the model fitting via isotonic regression. The
penalty of IC depends on a number of distinct parameters. In case of the order restricted
framework, the number of parameters under H0, i.e. number of unique isotonic means,
varies based on the number of violations of monotonicity among the sample means. The
level probabilities express the probabilities of obtaining number ` of distinct means, so
their weighted average translates to expected number of distinct isotonic means for given
model (under H0). There is a clear analogy between the ORIC and the AIC that simply
takes as penalty term the number of parameters in the model.

5.2.2 Posterior expected complexity

In previous section, the penalty term of the ORIC is expressed in terms of an expected
number of levels, i.e. distinct isotonic means in the isotonic regression solution. Following
Equation (5.2), it is clear that the expected complexity (EC) equals to weighted sum of
number of levels:

EC =
K∑
`=1

P (`,K,w) · `. (5.3)
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For example, in case of K = 4, the result of EC = 2.083 suggests that we expect two
distinct isotonic means prior to looking at the data in case that the data were generated
under the null distribution. The level probabilities are computed under the null hypothesis,
when there is only one level of mean. However, variability in the sample means caused
by the noise in the data results in varying number of observed levels. For example, for a
small simulation in which 1,000 data sets with K = 4 and n = 3 were generated under
the null hypothesis and the means were estimated using isotonic regression, there were
226 experiments with one level only, 486 with two unique levels, 259 with three levels
and 29 experiments with four unique levels. As expected, the mean number of levels
across all data sets was 2.091, close to EC = 2.083. Note that the estimated rate of the
numbers of levels (e.g. 0.226 for one level) is close to theoretical level probabilities for
K = 4 mentioned in Section 5.2.1 (see Figure 5.1). As mentioned above, the EC is the
expected number of levels when isotonic regression is used to estimate the means and the
data are generated under the null hypothesis, i.e. the number of levels of the underlying
true model is one (pNL = 1), because the true model has exactly one dose-specific mean.

Within the Bayesian framework and under the model uncertainty, the generalized prior
expected complexity, pEC0, can be defined as weighted average of the prior probabilities
of the models g0, . . . , gR and their corresponding number of levels `0, . . . , `R. The word
’expected’ arises from the fact that pEC0 does not represent the number of levels that
can be actually observed in an experiment, but the average number of levels given the
prior probabilities. When the prior knowledge is combined with the data, the posterior
expected complexity pEC, can be obtained analogously. It can be defined as the sum
over the possible models g0, . . . , gR that weights the number of levels `gr of these models
with posterior model probabilities:

pEC =
R∑
r=0

P (gr|data) · `gr =
K∑
`=1

P (`|data) · `. (5.4)

The second sum corresponds to the definition in Equation (5.3), where P (`|data) is
the sum of posterior probabilities P (gr|data) of the models that have exactly ` levels. The
pEC reflect both the data and prior knowledge about the model probabilities. Therefore,
it represents posterior complexity, while pEC0 represents prior complexity.
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Figure 5.1: Distribution of number of levels in 1,000 simulated data sets (dark) compared to
theoretical level probabilities (light grey) for appropriate setting.
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5.2.3 Choice of priors

The priors for the BVS defined in Equation (2.20) implies the same prior for each of
the models g0, . . . , gR, , i.e. 1/(R + 1). This set of prior model probabilities is often
considered as non-informative priors. Changing the prior distribution of the models can
be easily done in practice by changing the prior distribution of z in the BVS model specified
in Equation (2.19) (see Section 2.4).

A formal definition for non-informative priors does not exists due to the fact that
non-informative priors can be viewed from different perspectives. The first view follows
the reasoning of Jeffreys (1961) by giving the same prior probability to any model under
consideration (denoted as EM for ’equal models’). In this case, we assign the prior
1/(R + 1) to any of the g0, . . . , gR models. This point of view centers on models as
most important entities and treats the null model g0 in same way as the other models.
However, such an approach assigns a prior probability of R/(R + 1) to the alternative
hypothesis, which, if inference is of primary interest, is an informative prior that favors the
alternative hypothesis. Therefore, a second configuration can be considered that assigns
a prior of 1/2 to g0 and distributes the remaining probability over alternative models
g1, . . . , gR as 1/2R (denoted as EH for ’equal hypotheses’). As third option, the number
of unique levels can be of primary interest, e.g. if the estimation of the minimum effective
dose (MED) is the goal. In this case, a prior of 1/K distributed over all the models
having k unique means, k = 1, . . . ,K, creates a non-informative prior with respect to the
number of levels in the model (denoted as EL for ’equal levels’). The last option to be
considered is the specification using level probabilities that represent priors under the null
model (denoted as LP for ’level probabilities’). The example of different prior values for
K = 4 is given in Table 5.1 and visualized in Figure 5.2.

The prior expected complexities pEC0 for the four choices of prior distribution are
equal to pEC0(EM ) = 2.5, pEC0(EH) = 1.857, pEC0(EL) = 2.5 and pEC0(LP ) =
2.083. The equality pEC0(LP ) = EC holds, because level probabilities are used as
priors. Note that pEC0(EM ) = pEC0(EL), but pEC0(EL) assigns higher prior weights
on ’extreme’ models, either with very low or very high number of levels. The smallest
pEC0 is observed for EH , the prior distribution with the highest weight assigned to the
null model g0, the model with the lowest number of levels.
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Table 5.1: Different priors configurations for K = 4. The model g0 represents the null model
of no dose effect, i.e. having same mean for all doses. Models g1, g2, g4 have two unique means,
models g3, g5, g6 three unique means and model g7 has four unique means.

Model Eq. models Eq. hypothesis Eq. levels Level prob. N. of levels
EM EH EL LP

g0 0.125 0.5 0.25 0.25 1

g1 0.125 0.071 0.083 0.153 2
g2 0.125 0.071 0.083 0.153 2
g3 0.125 0.071 0.083 0.083 3
g4 0.125 0.071 0.083 0.153 2
g5 0.125 0.071 0.083 0.083 3
g6 0.125 0.071 0.083 0.083 3
g7 0.125 0.071 0.25 0.042 4

g_0 g_1 g_2 g_3 g_4 g_5 g_6 g_7
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Figure 5.2: Different priors configurations for K = 4. The model g0 represents the null model
of no dose effect, i.e. having same mean for all doses. Models g1, g2, g4 have two unique means,
models g3, g5, g6 three unique means and model g7 has four unique means.
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5.3 Motivating example

We apply the BVS with varying priors to the Toxicity data presented in Section 1.1. The
resulting posterior probabilities are shown in Figure 5.3. The choice of priors has clear
impact on the posterior probabilities. As expected, P̄ (g0|data) is highest for EH which
assigns the highest prior probability to the null model. Otherwise, model g1 is preferred,
although for EL, its posterior probability is almost the same as probability of model g0.

Figure 5.4 shows that the effect on the estimates of the dose-specific means is visible
in the first and the last dose. The difference is mostly profound between the configura-
tions in EM and EH and it corresponds to the difference between the resulting posterior
probabilities of the models g1, g4 and g5, i.e. models that include an increment between
the first two and the last two doses. The more robust estimation (with respect to the prior
configuration) is observed for the middle doses. The order restriction allows to borrow
the information from neighbouring doses and therefore the uncertainty at the bordering
doses is much higher than the one in the middle. Analogous behaviour can be observed
for any type of regression of continuous variable.

As expected, the permutation test seems to be robust against changes of the prior.
The p-values obtained for the different configurations are pEM

= 0.021, pEH
= 0.025,

pEL
= 0.032 and pLP

= 0.032, respectively. Under all the priors, H0 is rejected in favour
of increasing trend.

Few questions arise now. The results presented in this section suggest that the infer-
ence procedure is robust against the configuration of the prior probabilities. Is this the
case for this specific data or can it be observed in general? Does the configuration have
an effect on the control of Type I error and the power of the test? We have seen that
different prior configurations lead to a different posterior expected complexity. How the
estimate of the posterior expected complexity changes under different prior configurations
and how much it differs from the number of levels obtained from the isotonic regression?
For the reminder of this chapter we present a simulation study in which all questions
mentioned above are investigated.



80
Chapter 5. Robustness Against the Prior Configuration and Model

Complexity

g0 g1 g2 g3 g4 g5 g6 g7

Model

P
os

te
rio

r 
pr

ob
ab

ili
ty

0.
0

0.
1

0.
2

0.
3

0.
4

EqualModels
EqualHypotheses
EqualLevels
LevelProbs

Figure 5.3: Posterior probabilities for different prior configurations. Each set of bars shows the
posterior probability of the particular model g0, . . . , g7. Grey scale distinguishes among different
prior configurations: darkest to lightest for EM , EH , EL and LP , respectively.
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Figure 5.4: Estimated posterior means with 95% credible intervals for different prior configu-
rations. Grey scale and line types distinguish among different prior configurations: darkest to
lightest for EM (solid), EH (dashed), EL (dotted) and LP (dash dotted), respectively.
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5.4 Simulation study

A simulation study was conducted in order to investigate the influence of the prior con-
figuration on the performance of the permutation based inference procedure for the BVS
method in terms of the Type I error rate and the power. The data were generated
according to the order restricted one-way ANOVA model specified in Equation (2.4),
Yij ∼ N(λµi, τ−1), with τ = 1 and varying λ. The simulation represented an experiment
with K = 4 dose levels and followed the experimental design described in Section 6.1.
The number of observations per dose level was equal to n = 3. The permutation test,
introduced in Section 3.2.1.2, was performed using B = 1, 000 permutations. The null
hypothesis was rejected whenever pBayes < 0.05. The performance of the BVS model was
compared with Williams’ and Marcus’ contrast based MCTs and with the LRT.

A second simulation study was conducted in order to evaluate the findings obtained
in Section 5.3 and to explore the dependency of the posterior expected complexity and
estimation on the specification of priors. The simulation consists of an experiment with
K = 4 dose levels with n = 3 observations per dose and followed the design described in
Section 6.1. The value of λ = 2 and σ2 = 1 were used. In total, N = 1, 000 data sets
were generated for each combination of mean structure and λ.

A third simulation study was conducted in order to explore the impact of noise on the
performance of BVS estimation, model selection and complexity. The inference was not
study further because of clear robustness against prior configuration and close correspon-
dence to LRT that were demonstrated in the first simulation study (see Section 5.4.1).
Analogously to the first two simulation studies, the different configurations of priors were
retained in order to compare the impact on model selection. The study design followed
the design of the first study, but the data were generated only under model g5, with λ = 2
and σ varying from 0.001, . . . , 5.

5.4.1 Inference

The aim of first simulation study was to explore the robustness of permutation test against
the prior configuration. The LRT and MCTs were compared with the BVS in terms of the
control of Type I error and the power of the test. For all the methods, an assumption of a
non-decreasing trend was made. The posterior probabilities for models, P̄ (gr|data), were
computed for the BVS model, considering all priors listed in Table 5.1. The permutation
test was applied in order to test the null hypothesis against an ordered alternative. The
null hypothesis was rejected whenever pBayes < 0.05. Figure 5.5 presents the simulation
results for λ = 2, displaying Type I error rate and power. It can be clearly seen that
both the Type I error and the power are not affected by the configuration of the priors.
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Figure 5.5: Type I error and power for different prior configurations. Results of the simulation
study for n = 3 and K = 4, with λ = 2. Each set of bars shows the power of rejecting the null
hypothesis, if data were generated under the particular profile g1, . . . , g7. In case of g0, displayed
quantity is the Type I error rate. Grey scale distinguishes among different BVS priors: darkest to
lightest for EM , EH , EL and LP , respectively.

As mentioned before, this results is expected and it is a consequence of conditioning the
inference procedure on the priors.
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Table 5.2: Results of simulation study for K = 4 and n = 3. Each row shows proportion of
true underlying model being selected as best model according to value of posterior probability.
The posterior probability was estimated with BVS model under varying priors and data were
generated under the particular profile and λ value. Result of each row is based on mean of 1,000
experiments.

λ Model Eq. models Eq. hypothesis Eq. levels Level probs.
g0 0.73 0.96 0.90 0.83

2 g1 0.83 0.70 0.78 0.86
g2 0.77 0.65 0.72 0.82
g3 0.21 0.21 0.18 0.10
g4 0.81 0.70 0.77 0.86
g5 0.42 0.40 0.38 0.26
g6 0.22 0.22 0.19 0.09
g7 0.01 0.01 0.17 0.00

Mean 0.50 0.48 0.51 0.48

5.4.2 Model selection

The first goal of the second simulation study was to evaluate the sensitivity of the model
selection procedure of the BVS to the configuration of the priors. For each simulated
data, the model with the highest posterior probability was selected. The results shown
in Table 5.2 reveal that, as expected, performance for given model strongly depends on
the chosen priors. Naturally, the correct selection rate increases with the higher prior
probability assigned to the true underlying model. Analogously, an assignment of high
prior probability for the competing models leads to a decrease in the probability of correct
selection of true model. Interestingly, there is absence of the overall best method, since
average performance across all models for any of the methods is around 0.5. This implies
that correct model will be identified in 50% of cases. In the remaining 50%, usually
models similar to the true model would be selected.
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Figure 5.6: Estimated posterior means for different doses under different prior configuration.
Results of the simulation study for n = 3 and K = 4, with λ = 2. Each set of points represents
estimates for data generated under the profile g0, . . . , g7. For each dose level, the leftmost points
(red) show the true value of means (according to simulation setting). Grey scale distinguishes
among different BVS priors: darkest to lightest for EM , EH , EL and LP , respectively.

5.4.3 Estimation

The second goal of the second simulation study was to evaluate the estimation of dose-
specific means. The results are evaluated visually and shown in Figure 5.6, where the
posterior means based on different prior configurations are compared to true values of
µ0, . . . , µ3 (red point in the left of each dose level). There are differences between
the values of estimates, most robust seem to be the estimate of µ1 and µ2 for most
models. This is expected due to fact that we have more information about the shape in
the central part then in the borders of the measurement space. The estimates for the
posterior mean of µ0 and µ3 are expected to be less precise than estimates for µ1, µ2.
Although the posterior model probabilities are strongly affected by choice of the priors,
the model averaging compensated for this sensitivity and resulted in a relative robustness
of dose-specific estimates.
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Table 5.3: Expected number of levels for different prior configurations. Results of simulation
study for K = 4 and n = 3, with data generated with given number of levels. In each iteration,
the random model with given number of levels was ran (i.e. for two levels one of the models
g1, g2, g4). Result of each row is based on mean of 1,000 experiments.

Level Eq. models Eq. hypothesis Eq. levels Level probs Isotonic regression
1 1.68 1.26 1.44 1.50 2.09
2 2.32 2.15 2.32 2.16 2.92
3 2.51 2.34 2.56 2.31 3.38
4 2.59 2.45 2.69 2.38 3.60

5.4.4 Posterior complexity

The third goal of the second simulation study was to evaluate the estimation of the
posterior expected complexity. In total 1,000 data sets were generated. For a given
level, one of the models with corresponding number of levels was randomly selected. For
example, for two levels, one of the models g1, g2 or g4 was randomly chosen and a data set
was generated according to the chosen model. The results are shown in Table 5.3. Note
that there is a relationship between the results presented in Table 5.3 and Table 5.2. High
proportion of correct selection implies that the model itself has high posterior probability
and complexity pEC should be close to that particular model. For example, for EH , we
have 0.96 probability of selecting g0 as the correct model. As a result, P̄ (g0|data) is high
under this setting and pEC is close to value of one, which is true number of levels under
model g0. In contrast, none of the methods is able to correctly identify model g7 with
high proportion, so pEC is much lower than the true number of levels under g7 which
equals to four.

Note the clear difference between results of the BVS methods and results of isotonic
regression. The isotonic regression performs maximum likelihood estimation and ignores
any model uncertainty. Consequently, the estimated models tend to have large number of
parameters regardless if the true underlying model is complex (relatively to other models
in set of candidate models) or if underlying model is simple.
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5.4.5 Varying noise

As expected, the correct identification of underlying model and true MED are improved
with decrease of the magnitude of the noise in the data, as is shown in Figure 5.7. Note
that the performance of the BVS model under different prior configuration is related to
the choice of model g5. The configuration EL performs consistently worse than EH and
EM for correct model specification. It is due to high prior probability assigned to model
g7 (see Figure 5.2) that is very similar to model g5, causing frequent selection of g7 as
the best model. In contrast, EL performs much better in terms of the MED selection.
Due to the the high prior assigned to g7, the BVS with priors EL prefers complex models
that have the same MED as model g5 (i.e. the MED is the first dose). Interestingly,
LP seems to work as the best choice for the correct model selection for lower σ, but it
performs as the worst for relatively higher levels of noise. The answer can be again found
in Figure 5.2: LP assigns very low prior on model g7, so there is a low misclassification
in the direction of this model. However, with higher level of noise, i.e. larger influence of
priors, high probabilities for g1 and g4 cause preference of simpler models then g5.

The most interesting findings are related to the estimation of dose-specific means.
In Figure 5.8, we can see how value of µ changes nearly monotonically with increasing
σ. While µ0 and µ2 increase, µ1 and µ3 decrease. This behaviour is related to the
shape of the model g5: increasing effect in first and third dose. With higher level of
noise and therefore higher uncertainty about the estimates, the means are shrunk to the
overall mean and the null model receives higher posterior probability. This process is
demonstrated in Figure 5.9, where whole profiles are shown for few values of σ. With
lower level of noise, model g5 seems to be the clear choice, but with increasing level of
noise, the model selection process is becoming more and more uncertain. Additionally,
the influence of prior specification increases with higher level of noise, since the amount
of information in the data decreases.

The behaviour of posterior expected complexity mirrors behaviour of all other prop-
erties. In Figure 5.10 is clearly seen that without the noise, model g5 is selected and
therefore correct number of levels estimated. With increasing σ, the model g7 is selected
in some cases, leading to an increment in posterior expected complexity. Note that with
higher level of uncertainty, the null model is selected more often and as a results the
posterior mean of the null model increases pushing down estimated posterior expected
complexity.
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Figure 5.7: Dependency of correct selection (based on the BVS model) on σ. Left panel: Correct
model selection. Right panel: Correct MED selection. Prior configurations: EM (solid line), EH

(dashed line), EL (dotted line) and LP (dash dotted line). Results are based on the simulation
study for n = 3 and K = 4, with λ = 2 for g5 and are derived as averages of N = 1, 000
experiments.
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(solid line), EH (dashed line), EL (dotted line) and LP (dash dotted line). Results are based
on the simulation study for n = 3 and K = 4, with λ = 2 for g5 and are derived as averages of
N = 1, 000 experiments.
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Figure 5.10: Dependence of posterior expected complexity pEC (based on the BVS model)
on σ. Prior configurations: EM (solid line), EH (dashed line), EL (dotted line) and LP (dash
dotted line). The vertical long-dashed line shows true number of levels. Results are based on
the simulation study for n = 3 and K = 4, with λ = 2 for g5 and are derived as averages of
N = 1, 000 experiments.
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5.5 Discussion

In this chapter, we presented an investigation about the influence of the specification of
non-informative priors on dose-response modelling using the BVS framework. We have
introduced four sets of prior configurations that can all be considered non-informative,
depending on the primary goals of the analysis. In addition to the estimation, model
selection and inference, we focused on expected complexity. Complexity measure was
based on ideas arising from information criteria framework.

The simulation study focused on case of K = 4 and n = 3 only. There was no need
for additional settings, because we focus on overall patterns and general robustness, not
particular results. Varying K and n would influence the results, but overall patterns shall
stay the same. Interesting extension would be to study the influence of the change of the
family of prior distributions, e.g. using weakly informative priors (Gelman, 2006).

Inference based on permutation test confirmed its robustness against any choice of
priors, since the the permutation procedure is conditioned on the prior configuration. In
contrast, model selection and MED specification were both strongly influenced by the
specification of the prior model probabilities. Any model selection procedure conducted
without strong prior knowledge need to take this fact into account. We have shown that
with increasing information in the data (i.e. decreasing noise and/or increasing sample
size), the influence of priors was naturally diminishing. Hence, the dependency would be
strongest in case of small size experiments. Similarly, the probability of selection of the
correct model as the best model decreased with increasing noise. Surprisingly, it exhibit
rather stable results for different priors, although the values of the posterior model prob-
abilities themselves changed dramatically across varying priors. Indeed, even when there
are severe changes in the values of posterior probabilities, the model with maximal poste-
rior probability could stay the same. Additionally, we expect stable results in the case of
low noise level that allows the data to provide enough information. The estimation of the
dose-specific means have proven to be even less sensitive to the choice of the priors. The
estimates benefit from the fact that if the correct model is not identified, a similar model
is often selected instead, providing estimates close to the true underlying means. The
Bayesian model averaging approach, considered in this chapter, seems helpful in compen-
sating both for model uncertainty and uncertainty in non-informative priors, leading to
stable estimates of dose-specific means. In contrast, posterior expected complexity did
not exhibit similar robustness. Its link to the posterior probabilities was much stronger
then in case of estimates, because the number of unique means differed across models
much more than actual values of dose-specific estimates. Moreover, the models close to
the correct model in terms of the profile shape and estimates of dose-specific means are
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often not close in terms of the number of levels.
In summary, the choice of non-informative priors may influence certain aspects of the

analysis, depending on the level of the noise in the data, the amount of observations,
the number of dose levels (i.e. the number of candidate models) and the sample size. In
case that no prior knowledge can be used and non-informative priors need to be chosen,
the absence of unique solution has to be recognized. The potential influence of possible
configurations of priors should be evaluated and compared to the amount of information
in the data set. If an influence seems strong, then focus on more robust quantities,
as dose-specific estimates or hypothesis testing, may be more appropriate. Procedures
relying on the posterior model probabilities should be used with extreme caution in such
cases. Moreover, even the quantities based on model averaging may be sensitive to the
choice of priors, as was demonstrated for the posterior expected complexity.





Chapter 6
Exploring the properties of the
Bayesian Variable Selection
Modelling Approach: Simulation
Studies

Multiple simulation studies were conducted in order to investigate the properties of meth-
ods presented in previous chapters. A short description of studies and their results were
explained in respective parts of the thesis. This chapter contains more detailed explana-
tion about simulations’ settings and provides additional results that were not presented
previously. Although each of the simulations studies was designed to evaluate a spe-
cific method or property, the core of all simulations’ settings was same, as described in
Section 6.1. Section 6.2, Section 6.3 and Section 6.4 provides additional results for the
methods presented in the Chapter 2, Chapter 3 and Chapter 4, respectively.

6.1 General setting for the simulation studies

The underlying model used to generate the data is the order restricted one-way ANOVA
model specified in Equation (2.4), Yij ∼ N(λµi, τ−1), with τ = 1. The value of λ
represents different magnitudes of the true dose effect. In the simulations, several values
of λ were used, λ = 0, 1, 1.5, 2, 2.5, 3. Note that λ = 0 implies that the underlying true
model is the null model with no dose effect. Number of observations per dose was set to

93
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n = 3, 4, 5.
The configuration for the mean structure µ0, µ1, µ2, µ3 for K = 4 was the same as

specified in Marcus (1976), except for the ordering of the models and more λ values. Eight
different configurations were used, corresponding to the models g0, . . . , g7. The profiles
are visualized in Figure 6.1 and presented in Table 6.1. Values for the mean response at
each dose levels were multiplied by λ to cover diverse relative differences among the dose
levels.

The configuration of the mean structure, µ = (µ0, µ1, . . . , µ4), for K = 5 was com-
puted following same formulas as for setting of K = 4. We defined a vector vr of
non-decreasing integers according to particular model gr (e.g. for model g5 it is vector
vr = (1, 2, 2, 3, 3)). Then, the final configuration is obtained through the equation

sr = vr ·
√
K√∑

j>i(vrj − vri)2
. (6.1)

For model g5, we get sr = (1, 2, 2, 3, 3) ·
√

5√
1+1+4+4+1+1+1+1 . In total, sixteen dif-

ferent configurations were used, corresponding to models g0, . . . , g15. Order restricted
relationships are shown in Table 6.2 (for an increasing and decreasing alternatives). The
configurations for K = 5 are shown in Table 6.3 and in Figure 6.2.

For each of the settings above, 1,000 data sets were generated. The appropriate
methods were applied on simulated data set and the results were evaluated. The BVS
model was fitted under the assumption of the non-decreasing trend as described in Sec-
tion 2.4. All frequentists tests were implemented as one sided tests to be consistent with
the monotonicity assumed for the BVS and significance level was set to α = 0.05.

All the simulations were performed using the package runjags (Denwood, In Review)
of R software (R Core Team, 2014) together with the JAGS software (Plummer, 2003).
We used for the analyses a Markov Chain Monte Carlo (MCMC) chain of total length
25,000 with a burn-in period of 5,000.
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Table 6.1: The configuration for all models was taken from Marcus (1976). The mean structure
for K = 4 and λ = 1 (rounded to two decimal places).

Profile Dose 0 Dose 1 Dose 2 Dose 3
g1 1.15 2.31 2.31 2.31
g2 1.00 1.00 2.00 2.00
g3 0.60 1.21 1.81 1.81
g4 1.15 1.15 1.15 2.31
g5 0.71 1.41 1.41 2.12
g6 0.60 0.60 1.21 1.81
g7 0.45 0.89 1.34 1.79

Table 6.2: The set of 16 possible monotonic dose-response models for an experiment with five
dose levels (including placebo). Denote µi the mean response of the dose level. The model g0

represents the null model of no dose effect.

Model Up: Mean Structure Down: Mean Structure
g0 µ0 = µ1 = µ2 = µ3 = µ4 µ0 = µ1 = µ2 = µ3 = µ4

g1 µ0 < µ1 = µ2 = µ3 = µ4 µ0 > µ1 = µ2 = µ3 = µ4

g2 µ0 = µ1 < µ2 = µ3 = µ4 µ0 = µ1 > µ2 = µ3 = µ4

g3 µ0 < µ1 < µ2 = µ3 = µ4 µ0 > µ1 > µ2 = µ3 = µ4

g4 µ0 = µ1 = µ2 < µ3 = µ4 µ0 = µ1 = µ2 > µ3 = µ4

g5 µ0 < µ1 = µ2 < µ3 = µ4 µ0 > µ1 = µ2 > µ3 = µ4

g6 µ0 = µ1 < µ2 < µ3 = µ4 µ0 = µ1 > µ2 > µ3 = µ4

g7 µ0 < µ1 < µ2 < µ3 = µ4 µ0 > µ1 > µ2 > µ3 = µ4

g8 µ0 = µ1 = µ2 = µ3 < µ4 µ0 = µ1 = µ2 = µ3 > µ4

g9 µ0 < µ1 = µ2 = µ3 < µ4 µ0 > µ1 = µ2 = µ3 > µ4

g10 µ0 = µ1 < µ2 = µ3 < µ4 µ0 = µ1 > µ2 = µ3 > µ4

g11 µ0 < µ1 < µ2 = µ3 < µ4 µ0 > µ1 > µ2 = µ3 > µ4

g12 µ0 = µ1 = µ2 < µ3 < µ4 µ0 = µ1 = µ2 > µ3 > µ4

g13 µ0 < µ1 = µ2 < µ3 < µ4 µ0 > µ1 = µ2 > µ3 > µ4

g14 µ0 = µ1 < µ2 < µ3 < µ4 µ0 = µ1 > µ2 > µ3 > µ4

g15 µ0 < µ1 < µ2 < µ3 < µ4 µ0 > µ1 > µ2 > µ3 > µ4
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Figure 6.1: The mean structure for simulation study for K = 4 and λ = 1.
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Table 6.3: The mean structure for simulation study with K = 5 and λ = 1 (rounded to two
decimal places).

Profile Dose 0 Dose 1 Dose 2 Dose 3 Dose 4
g1 1.12 2.24 2.24 2.24 2.24
g2 0.91 0.91 1.83 1.83 1.83
g3 0.56 1.12 1.68 1.68 1.68
g4 0.91 0.91 0.91 1.83 1.83
g5 0.60 1.20 1.20 1.79 1.79
g6 0.56 0.56 1.12 1.68 1.68
g7 0.40 0.79 1.19 1.58 1.58
g8 1.12 1.12 1.12 1.12 2.24
g9 0.71 1.41 1.41 1.41 2.12
g10 0.60 0.60 1.20 1.20 1.79
g11 0.44 0.88 1.32 1.32 1.75
g12 0.56 0.56 0.56 1.12 1.68
g13 0.44 0.88 0.88 1.32 1.75
g14 0.40 0.40 0.79 1.19 1.58
g15 0.32 0.63 0.95 1.26 1.58
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Figure 6.2: The mean structure for simulation study with K = 5 and λ = 1.
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6.1.1 Model diagnostics

The length of MCMC chains of L = 20, 000 (with additional 5,000 as burn-in period) is
mentioned as sufficient for presented cases of K = 4, 5 and n = 3, 4. In this section, we
present several diagnostic tools applied on Litter data, discuss their outputs and compare
with chains of length L = 50, 000 (with same burn-in period). Figure 6.3 shows the trace
plot of the MCMC chain and the density estimate for the posterior distribution of µ1

and suggests a good mixing properties for both values of L and indicates that there are
no convergence problems. This is supported by the values of the Gelman-Rubin statistic
(Gelman and Rubin, 1992) that compares between and within chain variability. A value
close to one indicates that the chains were convergent. The Gelman-Rubin statistic in our
application was below 1.05 for all parameters for both chain lengths L.

As shown in Figure 6.4, the estimates for the posterior means of model probabilities
of both runs (with L = 20, 000 and L = 50, 000) are virtually identical.

Prolongation of chain reduces MCMC standard error, i.e. uncertainty due to MCMC
simulation, but already for 20, 000 iterations, the error is lower than 4% of the estimated
standard error for all the parameters. This indicates that there is no need to focus on longer
chains in our framework. In general, when applying the BVS model in more complicated
cases, model diagnostic should be performed and MCMC chain’s length should be adjusted
if necessary.
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Figure 6.3: Litter data. Trace plots and density estimates for the posterior distribution of
µ1. The MCMC simulation for the BVS model is based on three chains of length 20,000 (upper
panel) and 50,000 (bottom panel). Left figures show mixing of the chains, right figures estimated
densities. Each chain is represented by different colour.
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Figure 6.4: Litter data. Diagnostic plots for estimates of posterior model probabilities
P (gr|data). The MCMC simulation for the BVS model is based on three chains of length
20,000 (left panel) and 50,000 (middle panel). The posterior model probabilities are compared
in right panel.
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6.2 Simulation studies: Estimation (Chapter 2)

The simulation study presented in this section was conducted in order to investigate the
performance of the BVS model in terms of controlling the Type I error and the power.
The simulation settings correspond to the setting described above for an experiment with
four and five dose levels. The BVS model was compared with a one-sided LRT and a
one-sided MCTs (with both Williams’ and Marcus’ contrasts).

Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 show comparison of p-values of
the frequentist methods and the posterior probabilities of the null model of the BVS for
K = 4. Both quantities are very different, so we do not expect their correspondence (i.e.
points around plotted diagonal line). The figures provides a visualization of the results
shown in Table 6.4, Table 6.5 and Table 6.6. The BVS posterior probabilities are higher in
absolute values comparing the p-values, hence to achieve similar results (in terms of the
power, the Type I error or the number of significant genes identified) the higher threshold
than 0.05 has to be used for the BVS. This finding led us to develop the resampling based
inference procedure presented in Chapter 3. Note that with an increasing n, the overall
power increases and the difference among the methods diminishes in a similar way as with
the increasing λ. Visualization of the results is shown in Figure 6.9 for all n = 3, 4, 5. The
behavior of Type I error was shown in Figure 2.4. The corresponding results for K = 5
are provided in Table 6.7, Table 6.8, Table 6.9, Table 6.10, Table 6.11 and Table 6.12.
The results of K = 5 show the same pattern as was discussed in Chapter 2. Figure 6.10
and Figure 6.11 demonstrate the change in the power when the number of dose levels
increase from K = 4 to K = 5 (for varying λ and n) which corresponds to a change from
1/8 to 1/16 for the model prior probabilities, respectively. The results are consistent with
the results presented in Chapter 2.
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Figure 6.5: The p-values for the LRT and the MCTs against the posterior probabilities of the
null hypothesis obtained by the BVS model. Example for K = 4, λ = 1 and g7. Top left: LRT
vs. BVS. Top right: MCT Williams vs. BVS, Bottom left: MCT Marcus vs. BVS.
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Figure 6.6: The p-values for the LRT and the MCTs against the posterior probabilities of the
null hypothesis obtained by the BVS model. Detail around the zero. Example for K = 4, λ = 1
and g7. Top left: LRT vs. BVS. Top right: MCT Williams vs. BVS, Bottom left: MCT Marcus
vs. BVS.
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Figure 6.7: Logarithm of the p-values for the LRT and the MCTs against the logarithm of the
posterior probabilities of the null hypothesis obtained by the BVS model. Example for K = 4,
λ = 1 and g7. Top left: LRT vs. BVS. Top right: MCT Williams vs. BVS, Bottom left: MCT
Marcus vs. BVS.
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Figure 6.8: Ranking of the p-values for the LRT and the MCTs against the ranking of the
posterior probabilities of the null hypothesis obtained by the BVS model. Example for K = 4,
λ = 1 and g7. Top left: LRT vs. BVS. Top right: MCT Williams vs. BVS, Bottom left: MCT
Marcus vs. BVS.
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Table 6.4: Power for the K = 4 and n = 3. The columns for the BVS show proportion of
the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15, 0.35. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all the possible models.

MCT MCT BVS BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 0.35 True m.
1 g1 0.36 0.42 0.34 0.22 0.37 0.49 0.81 0.55

g2 0.38 0.31 0.36 0.22 0.37 0.48 0.80 0.46
g3 0.40 0.39 0.35 0.22 0.38 0.50 0.83 0.01
g4 0.36 0.26 0.35 0.22 0.38 0.50 0.83 0.59
g5 0.44 0.42 0.39 0.26 0.41 0.54 0.86 0.07
g6 0.41 0.33 0.38 0.22 0.36 0.49 0.82 0.02
g7 0.46 0.42 0.41 0.24 0.40 0.52 0.85 0.00

1.5 g1 0.64 0.71 0.61 0.49 0.67 0.78 0.95 0.73
g2 0.68 0.56 0.62 0.51 0.70 0.81 0.96 0.68
g3 0.69 0.69 0.67 0.55 0.70 0.81 0.96 0.08
g4 0.64 0.51 0.61 0.49 0.65 0.76 0.95 0.75
g5 0.70 0.70 0.66 0.54 0.73 0.83 0.97 0.21
g6 0.72 0.59 0.67 0.53 0.72 0.82 0.97 0.09
g7 0.71 0.67 0.64 0.53 0.72 0.81 0.97 0.00

2 g1 0.85 0.90 0.85 0.74 0.88 0.93 0.99 0.84
g2 0.86 0.73 0.84 0.74 0.88 0.94 0.99 0.78
g3 0.89 0.88 0.86 0.81 0.90 0.95 0.99 0.22
g4 0.85 0.72 0.82 0.74 0.85 0.92 0.99 0.84
g5 0.90 0.91 0.87 0.80 0.92 0.96 1.00 0.42
g6 0.90 0.81 0.87 0.80 0.91 0.96 1.00 0.23
g7 0.90 0.88 0.87 0.82 0.93 0.97 1.00 0.01

2.5 g1 0.96 0.98 0.95 0.90 0.97 0.99 1.00 0.86
g2 0.96 0.90 0.95 0.90 0.96 0.98 1.00 0.80
g3 0.98 0.98 0.96 0.94 0.98 1.00 1.00 0.39
g4 0.96 0.90 0.96 0.92 0.97 0.99 1.00 0.87
g5 0.98 0.98 0.96 0.94 0.98 0.99 1.00 0.63
g6 0.97 0.93 0.96 0.95 0.98 0.99 1.00 0.39
g7 0.97 0.98 0.96 0.94 0.98 1.00 1.00 0.04

3 g1 0.99 1.00 0.99 0.98 0.99 1.00 1.00 0.89
g2 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.84
g3 0.99 0.99 0.99 0.98 0.99 1.00 1.00 0.57
g4 0.99 0.97 0.99 0.97 0.99 1.00 1.00 0.89
g5 1.00 1.00 0.99 0.98 1.00 1.00 1.00 0.79
g6 1.00 0.98 0.99 0.99 1.00 1.00 1.00 0.58
g7 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.11



106 Chapter 6. Simulation Studies for Bayesian Variable Selection

Table 6.5: Power for the K = 4 and n = 4. The columns for the BVS show proportion of the
posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column represents
the estimated probability of the correct model having the highest posterior probability among all
candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
1 g1 0.47 0.54 0.46 0.27 0.41 0.52 0.58

g2 0.46 0.38 0.45 0.27 0.40 0.52 0.50
g3 0.50 0.52 0.47 0.25 0.41 0.53 0.01
g4 0.47 0.36 0.47 0.28 0.42 0.53 0.61
g5 0.49 0.50 0.46 0.26 0.40 0.53 0.06
g6 0.52 0.42 0.49 0.28 0.43 0.54 0.02
g7 0.52 0.50 0.50 0.27 0.41 0.54 0.00

1.5 g1 0.78 0.83 0.78 0.58 0.75 0.82 0.82
g2 0.78 0.67 0.78 0.59 0.74 0.83 0.75
g3 0.80 0.81 0.78 0.63 0.77 0.84 0.10
g4 0.79 0.67 0.79 0.60 0.75 0.83 0.81
g5 0.81 0.82 0.79 0.61 0.77 0.86 0.26
g6 0.83 0.74 0.81 0.66 0.80 0.87 0.12
g7 0.84 0.82 0.80 0.64 0.80 0.88 0.00

2 g1 0.95 0.97 0.95 0.86 0.93 0.96 0.86
g2 0.95 0.88 0.95 0.84 0.94 0.97 0.84
g3 0.98 0.98 0.97 0.90 0.97 0.99 0.29
g4 0.96 0.89 0.96 0.88 0.95 0.97 0.86
g5 0.97 0.97 0.96 0.88 0.95 0.98 0.52
g6 0.96 0.92 0.96 0.88 0.96 0.98 0.27
g7 0.97 0.96 0.96 0.90 0.97 0.99 0.02

2.5 g1 0.99 1.00 0.99 0.98 0.99 1.00 0.91
g2 1.00 0.98 1.00 0.97 0.99 1.00 0.86
g3 1.00 1.00 1.00 0.99 1.00 1.00 0.50
g4 0.99 0.97 0.99 0.98 0.99 1.00 0.90
g5 0.99 1.00 0.99 0.97 0.99 1.00 0.74
g6 1.00 0.98 0.99 0.97 0.99 1.00 0.49
g7 1.00 0.99 0.99 0.98 1.00 1.00 0.06

3 g1 1.00 1.00 1.00 1.00 1.00 1.00 0.90
g2 1.00 1.00 1.00 1.00 1.00 1.00 0.87
g3 1.00 1.00 1.00 1.00 1.00 1.00 0.67
g4 1.00 1.00 1.00 1.00 1.00 1.00 0.90
g5 1.00 1.00 1.00 1.00 1.00 1.00 0.85
g6 1.00 0.99 1.00 0.99 1.00 1.00 0.67
g7 1.00 1.00 1.00 1.00 1.00 1.00 0.15
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Table 6.6: Power for the K = 4 and n = 5. The columns for the BVS show proportion of the
posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column represents
the estimated probability of the correct model having the highest posterior probability among all
candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
1 g1 0.55 0.62 0.54 0.31 0.45 0.55 0.62

g2 0.59 0.49 0.59 0.33 0.48 0.59 0.57
g3 0.66 0.66 0.64 0.37 0.52 0.65 0.01
g4 0.56 0.44 0.57 0.32 0.46 0.56 0.66
g5 0.63 0.64 0.59 0.32 0.48 0.61 0.08
g6 0.61 0.52 0.60 0.33 0.48 0.59 0.02
g7 0.64 0.62 0.61 0.36 0.50 0.62 0.00

1.5 g1 0.89 0.93 0.89 0.71 0.82 0.90 0.86
g2 0.90 0.81 0.90 0.74 0.85 0.91 0.83
g3 0.89 0.90 0.89 0.72 0.85 0.90 0.12
g4 0.88 0.77 0.88 0.70 0.81 0.87 0.87
g5 0.91 0.91 0.89 0.72 0.85 0.92 0.33
g6 0.90 0.82 0.90 0.74 0.85 0.91 0.16
g7 0.92 0.91 0.90 0.76 0.86 0.92 0.00

2 g1 0.99 1.00 0.99 0.93 0.97 0.99 0.91
g2 0.99 0.95 0.99 0.93 0.97 0.99 0.87
g3 0.99 0.99 0.99 0.94 0.98 0.99 0.37
g4 0.98 0.94 0.98 0.91 0.96 0.98 0.90
g5 0.99 0.99 0.98 0.94 0.97 0.99 0.60
g6 0.99 0.97 0.99 0.94 0.98 0.99 0.35
g7 1.00 0.99 0.99 0.95 0.99 1.00 0.02

2.5 g1 1.00 1.00 1.00 0.99 0.99 1.00 0.92
g2 1.00 1.00 1.00 0.99 1.00 1.00 0.90
g3 1.00 1.00 1.00 0.99 1.00 1.00 0.57
g4 1.00 0.99 1.00 0.99 1.00 1.00 0.90
g5 1.00 1.00 1.00 0.99 1.00 1.00 0.79
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.59
g7 1.00 1.00 1.00 1.00 1.00 1.00 0.09

3 g1 1.00 1.00 1.00 1.00 1.00 1.00 0.93
g2 1.00 1.00 1.00 1.00 1.00 1.00 0.90
g3 1.00 1.00 1.00 1.00 1.00 1.00 0.79
g4 1.00 1.00 1.00 1.00 1.00 1.00 0.93
g5 1.00 1.00 1.00 1.00 1.00 1.00 0.90
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.76
g7 1.00 1.00 1.00 1.00 1.00 1.00 0.23
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Figure 6.9: Comparison of the power between the BVS (with varying threshold) and the fre-
quentist tests for K = 4. Circles represent the results for the threshold α = 0.05, triangles
α = 0.10 and rectangles α = 0.15. Black colour is related to the setting of n = 3, red of n = 4
and blue of n = 5. Top left: LRT vs. BVS. Top right: MCT Williams vs. BVS, Bottom left:
MCT Marcus vs. BVS.
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Table 6.7: Power for the K = 5 and n = 3, part 1. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
1 g1 0.34 0.44 0.34 0.25 0.40 0.53 0.46

g2 0.35 0.29 0.34 0.25 0.39 0.51 0.40
g3 0.39 0.40 0.35 0.24 0.39 0.52 0.00
g4 0.35 0.25 0.32 0.22 0.39 0.52 0.39
g5 0.38 0.41 0.36 0.23 0.42 0.55 0.01
g6 0.48 0.37 0.43 0.32 0.49 0.60 0.00
g7 0.44 0.41 0.40 0.26 0.41 0.54 0.00
g8 0.36 0.28 0.36 0.26 0.41 0.52 0.52
g9 0.41 0.42 0.37 0.28 0.43 0.58 0.05
g10 0.42 0.34 0.36 0.26 0.40 0.54 0.02
g11 0.42 0.41 0.38 0.26 0.42 0.54 0.00
g12 0.40 0.28 0.37 0.22 0.39 0.50 0.01
g13 0.46 0.42 0.41 0.28 0.44 0.54 0.00
g14 0.48 0.38 0.43 0.27 0.43 0.57 0.00
g15 0.46 0.40 0.41 0.24 0.40 0.55 0.00

1.5 g1 0.63 0.73 0.62 0.52 0.70 0.80 0.71
g2 0.65 0.54 0.63 0.56 0.71 0.80 0.61
g3 0.66 0.67 0.62 0.54 0.72 0.82 0.03
g4 0.64 0.48 0.62 0.53 0.71 0.80 0.62
g5 0.70 0.72 0.67 0.61 0.77 0.85 0.09
g6 0.78 0.65 0.75 0.69 0.84 0.90 0.04
g7 0.72 0.70 0.68 0.62 0.77 0.86 0.00
g8 0.63 0.50 0.63 0.55 0.70 0.82 0.75
g9 0.69 0.72 0.66 0.60 0.76 0.84 0.22
g10 0.69 0.58 0.65 0.58 0.77 0.86 0.10
g11 0.72 0.71 0.66 0.61 0.79 0.88 0.00
g12 0.65 0.50 0.61 0.54 0.70 0.79 0.06
g13 0.73 0.69 0.69 0.62 0.78 0.87 0.00
g14 0.74 0.59 0.69 0.61 0.78 0.86 0.00
g15 0.73 0.67 0.67 0.60 0.75 0.85 0.00

2 g1 0.83 0.89 0.81 0.76 0.87 0.93 0.82
g2 0.86 0.76 0.85 0.81 0.91 0.94 0.76
g3 0.88 0.89 0.84 0.82 0.93 0.96 0.13
g4 0.87 0.71 0.86 0.82 0.92 0.96 0.73
g5 0.89 0.89 0.86 0.83 0.94 0.97 0.25
g6 0.94 0.86 0.92 0.91 0.96 0.98 0.13
g7 0.93 0.90 0.90 0.88 0.96 0.98 0.00
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Table 6.8: Power for the K = 5 and n = 3, part 2. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
2 g8 0.85 0.70 0.83 0.78 0.90 0.94 0.83

g9 0.88 0.91 0.86 0.82 0.92 0.95 0.43
g10 0.89 0.78 0.85 0.82 0.92 0.96 0.27
g11 0.92 0.90 0.88 0.86 0.95 0.98 0.01
g12 0.89 0.74 0.86 0.83 0.94 0.97 0.16
g13 0.90 0.87 0.86 0.84 0.94 0.97 0.01
g14 0.91 0.80 0.88 0.86 0.95 0.98 0.00
g15 0.91 0.87 0.86 0.86 0.94 0.97 0.00

2.5 g1 0.96 0.98 0.95 0.93 0.98 0.99 0.86
g2 0.95 0.89 0.94 0.93 0.97 0.99 0.78
g3 0.98 0.98 0.97 0.96 0.99 1.00 0.28
g4 0.97 0.86 0.97 0.95 0.98 0.99 0.78
g5 0.97 0.97 0.96 0.95 0.99 1.00 0.42
g6 0.99 0.95 0.99 0.99 1.00 1.00 0.28
g7 0.99 0.98 0.97 0.97 1.00 1.00 0.01
g8 0.95 0.87 0.94 0.92 0.97 0.99 0.86
g9 0.97 0.98 0.96 0.95 0.98 0.99 0.62
g10 0.98 0.94 0.97 0.97 0.99 1.00 0.45
g11 0.98 0.98 0.97 0.97 0.99 1.00 0.03
g12 0.98 0.91 0.97 0.97 0.99 1.00 0.31
g13 0.98 0.97 0.97 0.97 0.99 1.00 0.05
g14 0.99 0.94 0.97 0.98 1.00 1.00 0.01
g15 0.99 0.98 0.97 0.98 0.99 1.00 0.00

3 g1 0.99 1.00 0.99 0.99 1.00 1.00 0.88
g2 0.99 0.97 0.99 0.99 1.00 1.00 0.78
g3 1.00 1.00 0.99 0.99 1.00 1.00 0.46
g4 1.00 0.94 0.99 0.99 1.00 1.00 0.81
g5 0.99 0.99 0.99 0.99 1.00 1.00 0.61
g6 1.00 0.99 1.00 1.00 1.00 1.00 0.46
g7 1.00 0.99 0.99 1.00 1.00 1.00 0.04
g8 0.99 0.95 0.99 0.98 0.99 1.00 0.86
g9 1.00 1.00 0.99 0.99 1.00 1.00 0.77
g10 1.00 0.99 1.00 0.99 1.00 1.00 0.61
g11 1.00 1.00 1.00 1.00 1.00 1.00 0.10
g12 1.00 0.97 0.99 0.99 1.00 1.00 0.48
g13 1.00 0.99 0.99 0.99 1.00 1.00 0.12
g14 1.00 0.99 1.00 1.00 1.00 1.00 0.04
g15 1.00 0.99 1.00 1.00 1.00 1.00 0.00
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Table 6.9: Power for the K = 5 and n = 4, part 1. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
1 g1 0.44 0.54 0.44 0.28 0.42 0.54 0.52

g2 0.48 0.39 0.46 0.30 0.46 0.57 0.45
g3 0.49 0.51 0.47 0.29 0.45 0.56 0.00
g4 0.47 0.33 0.45 0.30 0.44 0.54 0.49
g5 0.56 0.55 0.52 0.34 0.50 0.61 0.02
g6 0.61 0.49 0.59 0.41 0.55 0.67 0.01
g7 0.57 0.54 0.54 0.33 0.51 0.62 0.00
g8 0.44 0.36 0.44 0.30 0.43 0.54 0.58
g9 0.52 0.55 0.49 0.31 0.47 0.60 0.08
g10 0.56 0.45 0.52 0.33 0.49 0.61 0.03
g11 0.56 0.54 0.53 0.33 0.50 0.61 0.00
g12 0.49 0.37 0.46 0.28 0.42 0.54 0.01
g13 0.54 0.50 0.50 0.30 0.47 0.57 0.00
g14 0.55 0.42 0.52 0.31 0.46 0.56 0.00
g15 0.53 0.49 0.50 0.28 0.44 0.56 0.00

1.5 g1 0.78 0.85 0.77 0.62 0.78 0.85 0.80
g2 0.79 0.68 0.78 0.65 0.81 0.87 0.69
g3 0.82 0.84 0.79 0.66 0.81 0.88 0.04
g4 0.77 0.60 0.76 0.65 0.78 0.85 0.69
g5 0.83 0.82 0.81 0.68 0.83 0.90 0.10
g6 0.90 0.78 0.89 0.80 0.90 0.93 0.06
g7 0.85 0.83 0.83 0.72 0.85 0.90 0.00
g8 0.77 0.63 0.76 0.63 0.77 0.84 0.81
g9 0.83 0.85 0.80 0.67 0.83 0.88 0.24
g10 0.82 0.72 0.79 0.67 0.81 0.88 0.17
g11 0.82 0.82 0.78 0.68 0.81 0.88 0.00
g12 0.81 0.67 0.79 0.68 0.81 0.87 0.06
g13 0.86 0.84 0.84 0.72 0.85 0.91 0.00
g14 0.83 0.70 0.81 0.68 0.82 0.88 0.00
g15 0.83 0.79 0.80 0.67 0.81 0.89 0.00

2 g1 0.94 0.97 0.95 0.89 0.95 0.97 0.88
g2 0.94 0.87 0.94 0.88 0.94 0.97 0.81
g3 0.95 0.96 0.94 0.90 0.96 0.97 0.17
g4 0.96 0.82 0.94 0.87 0.95 0.97 0.80
g5 0.97 0.97 0.96 0.90 0.97 0.99 0.30
g6 0.98 0.95 0.98 0.96 0.99 0.99 0.21
g7 0.97 0.96 0.96 0.93 0.98 0.99 0.00
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Table 6.10: Power for the K = 5 and n = 4, part 1. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
2 g8 0.96 0.86 0.96 0.90 0.95 0.98 0.87

g9 0.96 0.97 0.95 0.90 0.95 0.98 0.50
g10 0.96 0.91 0.96 0.91 0.97 0.98 0.34
g11 0.97 0.96 0.95 0.92 0.97 0.99 0.02
g12 0.96 0.87 0.95 0.90 0.96 0.98 0.19
g13 0.96 0.95 0.95 0.92 0.97 0.99 0.02
g14 0.97 0.91 0.96 0.94 0.97 0.99 0.00
g15 0.98 0.96 0.97 0.94 0.98 0.99 0.00

2.5 g1 0.99 1.00 0.99 0.98 0.99 1.00 0.88
g2 0.99 0.97 0.99 0.98 1.00 1.00 0.82
g3 0.99 0.99 0.99 0.98 1.00 1.00 0.36
g4 0.99 0.95 0.99 0.98 0.99 1.00 0.82
g5 1.00 1.00 1.00 0.99 1.00 1.00 0.56
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.40
g7 1.00 1.00 1.00 0.99 1.00 1.00 0.02
g8 0.99 0.96 0.99 0.98 0.99 1.00 0.87
g9 0.99 1.00 0.99 0.97 0.99 1.00 0.73
g10 1.00 0.98 1.00 0.99 1.00 1.00 0.55
g11 1.00 1.00 1.00 0.99 1.00 1.00 0.06
g12 0.99 0.96 0.99 0.98 0.99 1.00 0.40
g13 1.00 0.99 1.00 0.99 1.00 1.00 0.06
g14 1.00 0.99 1.00 0.99 1.00 1.00 0.02
g15 1.00 0.99 1.00 0.99 1.00 1.00 0.00

3 g1 1.00 1.00 1.00 1.00 1.00 1.00 0.89
g2 1.00 1.00 1.00 1.00 1.00 1.00 0.85
g3 1.00 1.00 1.00 1.00 1.00 1.00 0.59
g4 1.00 0.99 1.00 1.00 1.00 1.00 0.86
g5 1.00 1.00 1.00 1.00 1.00 1.00 0.71
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.57
g7 1.00 1.00 1.00 1.00 1.00 1.00 0.07
g8 1.00 0.99 1.00 1.00 1.00 1.00 0.89
g9 1.00 1.00 1.00 1.00 1.00 1.00 0.85
g10 1.00 1.00 1.00 1.00 1.00 1.00 0.69
g11 1.00 1.00 1.00 1.00 1.00 1.00 0.12
g12 1.00 1.00 1.00 1.00 1.00 1.00 0.58
g13 1.00 1.00 1.00 1.00 1.00 1.00 0.16
g14 1.00 1.00 1.00 1.00 1.00 1.00 0.07
g15 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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Table 6.11: Power for the K = 5 and n = 5, part 1. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
1 g1 0.54 0.65 0.53 0.31 0.46 0.58 0.62

g2 0.56 0.46 0.55 0.35 0.49 0.59 0.51
g3 0.60 0.63 0.58 0.36 0.52 0.62 0.00
g4 0.57 0.41 0.57 0.35 0.50 0.60 0.53
g5 0.62 0.63 0.60 0.40 0.54 0.64 0.02
g6 0.68 0.56 0.66 0.43 0.59 0.70 0.00
g7 0.64 0.59 0.61 0.34 0.50 0.64 0.00
g8 0.58 0.47 0.58 0.37 0.52 0.61 0.63
g9 0.59 0.63 0.56 0.35 0.50 0.61 0.07
g10 0.59 0.50 0.57 0.34 0.50 0.61 0.03
g11 0.64 0.62 0.60 0.35 0.53 0.64 0.00
g12 0.59 0.43 0.58 0.33 0.49 0.59 0.01
g13 0.63 0.59 0.61 0.39 0.53 0.63 0.00
g14 0.65 0.51 0.63 0.36 0.52 0.64 0.00
g15 0.64 0.60 0.60 0.35 0.50 0.61 0.00

1.5 g1 0.85 0.92 0.86 0.72 0.83 0.89 0.81
g2 0.88 0.76 0.87 0.75 0.84 0.90 0.75
g3 0.88 0.88 0.86 0.74 0.86 0.91 0.07
g4 0.85 0.69 0.84 0.71 0.82 0.88 0.73
g5 0.89 0.89 0.87 0.75 0.86 0.91 0.16
g6 0.94 0.86 0.94 0.85 0.93 0.96 0.07
g7 0.92 0.91 0.91 0.80 0.89 0.94 0.00
g8 0.86 0.70 0.86 0.71 0.83 0.87 0.82
g9 0.90 0.93 0.89 0.76 0.86 0.92 0.34
g10 0.91 0.83 0.90 0.79 0.88 0.93 0.18
g11 0.90 0.90 0.88 0.77 0.88 0.92 0.00
g12 0.89 0.76 0.88 0.74 0.85 0.92 0.07
g13 0.90 0.90 0.89 0.78 0.87 0.93 0.00
g14 0.92 0.82 0.90 0.79 0.89 0.94 0.00
g15 0.91 0.88 0.89 0.76 0.88 0.93 0.00

2 g1 0.98 0.99 0.98 0.93 0.97 0.98 0.91
g2 0.98 0.94 0.99 0.94 0.98 0.99 0.86
g3 0.99 0.99 0.99 0.95 0.99 0.99 0.23
g4 0.98 0.91 0.99 0.95 0.98 0.99 0.84
g5 0.99 0.99 0.99 0.96 0.98 0.99 0.40
g6 1.00 0.98 1.00 0.99 1.00 1.00 0.24
g7 0.99 0.99 0.99 0.96 0.99 0.99 0.00
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Table 6.12: Power for the K = 5 and n = 5, part 2. The columns for the BVS show proportion
of the posterior probabilities of the null model smaller than α = 0.05, 0.10, 0.15. Last column
represents the estimated probability of the correct model having the highest posterior probability
among all candidate models.

MCT MCT BVS BVS BVS
λ Profile LRT (W) (M) 0.05 0.10 0.15 True m.
2 g8 0.99 0.94 0.99 0.95 0.98 0.99 0.90

g9 0.98 0.99 0.98 0.94 0.97 0.99 0.63
g10 0.99 0.97 0.99 0.95 0.98 0.99 0.42
g11 0.99 0.99 0.99 0.96 0.98 1.00 0.02
g12 0.99 0.94 0.99 0.95 0.99 0.99 0.26
g13 0.99 0.99 0.99 0.96 0.99 1.00 0.02
g14 0.99 0.97 0.99 0.97 0.99 0.99 0.00
g15 0.99 0.99 0.99 0.97 0.99 0.99 0.00

2.5 g1 1.00 1.00 1.00 1.00 1.00 1.00 0.90
g2 1.00 0.99 1.00 0.99 1.00 1.00 0.88
g3 1.00 1.00 1.00 1.00 1.00 1.00 0.44
g4 1.00 0.99 1.00 1.00 1.00 1.00 0.85
g5 1.00 1.00 1.00 0.99 1.00 1.00 0.60
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.50
g7 1.00 1.00 1.00 0.99 1.00 1.00 0.02
g8 1.00 0.99 1.00 0.99 1.00 1.00 0.90
g9 1.00 1.00 1.00 1.00 1.00 1.00 0.81
g10 1.00 0.99 1.00 1.00 1.00 1.00 0.68
g11 1.00 1.00 1.00 1.00 1.00 1.00 0.08
g12 1.00 0.99 1.00 1.00 1.00 1.00 0.49
g13 1.00 1.00 1.00 1.00 1.00 1.00 0.09
g14 1.00 1.00 1.00 1.00 1.00 1.00 0.03
g15 1.00 1.00 1.00 1.00 1.00 1.00 0.00

3 g1 1.00 1.00 1.00 1.00 1.00 1.00 0.91
g2 1.00 1.00 1.00 1.00 1.00 1.00 0.88
g3 1.00 1.00 1.00 1.00 1.00 1.00 0.64
g4 1.00 1.00 1.00 1.00 1.00 1.00 0.87
g5 1.00 1.00 1.00 1.00 1.00 1.00 0.80
g6 1.00 1.00 1.00 1.00 1.00 1.00 0.69
g7 1.00 1.00 1.00 1.00 1.00 1.00 0.09
g8 1.00 1.00 1.00 1.00 1.00 1.00 0.92
g9 1.00 1.00 1.00 1.00 1.00 1.00 0.88
g10 1.00 1.00 1.00 1.00 1.00 1.00 0.81
g11 1.00 1.00 1.00 1.00 1.00 1.00 0.23
g12 1.00 1.00 1.00 1.00 1.00 1.00 0.70
g13 1.00 1.00 1.00 1.00 1.00 1.00 0.24
g14 1.00 1.00 1.00 1.00 1.00 1.00 0.08
g15 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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Figure 6.10: Comparison of the power between K = 4 and K = 5 for BVS (with varying
threshold) and LRT (top right panel). The plot is based on a simulation under λ = 1 and n = 3.
The models are ordered arbitrarily, seven models for K = 4 on the left (circles) and 15 models
for K = 5 on the right (filled circles).
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Figure 6.11: Comparison of the power between K = 4 and K = 5 for BVS (with varying
threshold) and LRT (top right panel). The plot is based on a simulation under λ = 2 and n = 4.
The models are ordered arbitrarily, seven models for K = 4 on the left (circles) and 15 models
for K = 5 on the right (filled circles).
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6.3 Simulation studies: Inference (Chapter 3)

The results of the simulation study presented in Section 6.2 indicate that the power
obtained for the BVS model and controlling of the Type I error are both dependent on the
cut-off point that was used for inference. This cut-off point is not equal to the significance
level often used within the frequentist approach. This led us to developed the resampling
based inference procedure presented in Chapter 3. The simulation study presented in this
chapter was conducted in order to investigate the performance of the resampling based
inference procedure for the BVS model in terms of controlling the Type I error and the
power.

The simulation settings correspond to the setting described in Section 6.1 and exper-
iment with four and five dose levels was investigated. A sequence of λ = 1, 2, 3 were
used to investigate the magnitude of the differences between the mean response across
the doses. Number of observations per dose was equal to n = 3 and n = 4. The BVS
model-based permutation test, one-sided LRT and one-sided MCTs were compared. The
permutation test, introduced in Section 3.2.1.2, was performed using B = 1, 000 per-
mutations. The null hypothesis was rejected whenever pBayes < α, with α = 0.05. The
performance of the BVS model was compared with the Williams’ and Marcus’ contrast
based MCT and with the LRT. For all the testing procedures the significance level was
set to α = 0.05.

Table 6.13 and Table 6.14 present the results of additional settings of simulation
study.The results are consistent with the results presented in Section 3. The results for
K = 4 and n = 4 are graphically displayed in Figure 6.12, the results for K = 5, n = 3
and λ = 1 are presented in Figure 6.13.

Additional simulation study was conducted that aimed to investigate the Type I error.
Therefore, 105 separate experiments were simulated, using same mechanism and evalua-
tion as previous studies. The 1,400 experiments were generated under each of the models
g2, . . . , g7, 1,500 under g1 and 90,100 experiments were generated under null model g0.
The magnitude parameter was fixed as λ = 2. The results show the BVS model controls
properly for Type I error. Permutation test reached a level of 0.0503, both MCTs 0.0489
and LRT 0.0501. With respect to power, the permutation test is comparable with LRT
test (Table 6.15 and Figure 6.14) and results are consistent with previous findings.
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Table 6.13: Results for the simulation study with K = 4 and n = 4. The first row shows
the Type I error. Remaining rows show power of rejecting null hypothesis for data that were
generated under a particular profile and λ value. Results presented in each row are based on
1,000 experiments.

λ Profile MCT (W) MCT (M) LRT BVS
g0 0.048 0.042 0.049 0.052

1 g1 0.568 0.486 0.472 0.465
g2 0.416 0.492 0.505 0.525
g3 0.553 0.514 0.541 0.545
g4 0.361 0.453 0.460 0.492
g5 0.569 0.521 0.549 0.543
g6 0.442 0.510 0.542 0.574
g7 0.546 0.542 0.572 0.586

2 g1 0.972 0.951 0.950 0.944
g2 0.896 0.944 0.955 0.959
g3 0.963 0.958 0.964 0.971
g4 0.870 0.947 0.951 0.953
g5 0.976 0.959 0.969 0.961
g6 0.914 0.957 0.966 0.973
g7 0.965 0.961 0.973 0.977
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Table 6.14: Results for the simulation study with K = 5 and n = 3. The first row shows
the Type I error. Remaining rows show power of rejecting null hypothesis for data that were
generated under a particular profile and λ value. Results presented in each row are based on
1,000 experiments.

λ Profile MCT (W) MCT (M) LRT BVS
g0 0.047 0.048 0.046 0.043

1 g1 0.439 0.332 0.369 0.356
g2 0.309 0.360 0.384 0.394
g3 0.417 0.384 0.413 0.398
g4 0.275 0.348 0.377 0.404
g5 0.410 0.381 0.423 0.420
g6 0.371 0.426 0.480 0.511
g7 0.416 0.406 0.448 0.458
g8 0.265 0.320 0.343 0.380
g9 0.424 0.375 0.410 0.401
g10 0.335 0.369 0.420 0.449
g11 0.413 0.392 0.436 0.445
g12 0.295 0.354 0.405 0.460
g13 0.400 0.388 0.435 0.465
g14 0.345 0.396 0.453 0.485
g15 0.396 0.394 0.445 0.476
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Figure 6.12: Type I error and power for the simulation study with n = 4 and K = 4, with
λ = 1 (upper panel) and λ = 2 (bottom panel). Each set of bars shows power of rejecting
null hypothesis, if data were generated under the particular profile g1, . . . , g7. In case of g0, the
displayed quantity is the Type I error. Grey scale distinguishes among different tests: darkest
for Williams’ MCT, then Marcus’ MCT, the LRT and brightest for the permutation test. All
estimates are based on 1,000 experiments.
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Figure 6.13: Type I error and power for the simulation study with n = 3 and K = 5, with
λ = 1. Each set of bars shows power of rejecting null hypothesis, if data were generated under
the particular profile g1, . . . , g15. In case of g0, the displayed quantity is the Type I error. Grey
scale distinguishes among different tests: darkest for Williams’ MCT, then Marcus’ MCT, the
LRT and brightest for the permutation test. All estimates are based on 1,000 experiments.
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Table 6.15: Results of the second simulation study with K = 4 and n = 3. First row shows
the Type I error. Remaining rows show the power of rejecting the null hypothesis, if data were
generated under the particular profile and λ value. All alternative models estimates are based
on 1,400 experiments (except g1 with 1,500 experiments), estimate for g0 is based on 90,100
experiments.

λ Profile MCT (W) MCT (M) LRT BVS
g0 0.050 0.050 0.050 0.050

2 g1 0.898 0.846 0.853 0.853
g2 0.767 0.862 0.881 0.877
g3 0.886 0.859 0.890 0.894
g4 0.735 0.843 0.846 0.854
g5 0.890 0.851 0.886 0.885
g6 0.789 0.866 0.891 0.909
g7 0.879 0.861 0.903 0.911
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Figure 6.14: Type I error and power for the second simulation study. Each set of bars shows
power of rejecting null hypothesis, if data were generated under the particular profile g1, . . . , g7.
In case of g0, the displayed quantity is the Type I error. Grey scale distinguishes among different
tests: darkest for Williams’ MCT, then Marcus’ MCT, the LRT and brightest for the permutation
test. All alternative estimates for alternative models are based on 1,400 experiments (except g1

with 1,500 experiments), estimate for g0 is based on 90,100 experiments.
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6.4 Simulation studies: Model selection (Chapter 4)

The simulation study presented in this section was conducted in order to explore suitability
of various information criteria according to true underlying model. The simulation setting
corresponds to an experiment with K = 4 dose levels with n = 3 observations per dose
and followed the design described in Section 6.1. As explained in Chapter 4, not all the
models can be fitted for ICs in each simulated data set (when violation of monotonicity
in simulated means occurs). Therefore, only suitable models are fitted. in contrast, BVS
provides posterior probability for all the models in each simulated data set.

As explained in Chapter 4, the posterior model probabilities can be calculated for all
information criteria according to Equation (4.3) as

PIC(gr|data) =
exp(− 1

2 ∆ICr)∑R
s=1 exp(− 1

2 ∆ICs)
.

For the BVS model, P (gr|data) is a part of the quantities estimated by the model
(see Section 2.4). The posterior probabilities for MED, P̄ (MED = i|data), are derived
by summation of appropriate posterior model probabilities. As in Chapter 4, the methods
are evaluated based on two criteria: the identification of correct true underlying model
and identification of correct underlying MED.

Table 6.16 shows the rate at which the true underlying model is selected as the best
or the second best model. In Table 6.17 and Table 6.18, we can see the probabilities that
models would be selected as the best model (or among top two models, respectively),
given the true underlying model. These tables show what is the most usual misclas-
sification of the models. The following six tables, Table 6.19, Table 6.20, Table 6.21,
Table 6.22, Table 6.23 and Table 6.24, show results of additional settings of simulation
study, analogous to the one presented in Chapter 4, but with varying value of n. The
results are consistent with the results presented in Chapter 4.
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Table 6.16: Comparison of the estimated probability of selection of true model as best or second
best model based on 1,000 simulated data sets for BVS, GORIC, AIC and BIC criterion for
K = 4, n = 3.

λ Profile BVS GORIC AIC BIC
g0 0.90 0.82 0.91 0.93

1 g1 0.77 0.70 0.73 0.74
g2 0.64 0.58 0.65 0.66
g3 0.23 0.37 0.25 0.20
g4 0.76 0.69 0.72 0.72
g5 0.32 0.39 0.30 0.25
g6 0.21 0.34 0.23 0.19
g7 0.00 0.13 0.02 0.01

2 g1 0.93 0.85 0.91 0.92
g2 0.89 0.78 0.87 0.89
g3 0.64 0.69 0.64 0.62
g4 0.93 0.85 0.89 0.91
g5 0.74 0.73 0.72 0.70
g6 0.63 0.68 0.63 0.60
g7 0.08 0.53 0.21 0.15

3 g1 0.97 0.88 0.95 0.96
g2 0.96 0.82 0.92 0.94
g3 0.86 0.86 0.86 0.85
g4 0.97 0.88 0.93 0.94
g5 0.91 0.89 0.91 0.91
g6 0.87 0.85 0.86 0.85
g7 0.41 0.84 0.63 0.54
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Table 6.17: Selection by the BVS for K = 4 and n = 3. The probability that a specified
model has the highest posterior probability among all candidate models. Rows: The true models.
Columns: Selected as the model with the highest posterior probability by BVS. Correct model is
shown in bold. Note that the probabilities on the diagonal correspond to the probabilities for the
BVS model presented in Table 4.5.

λ Profile g0 g1 g2 g3 g4 g5 g6 g7

g0 0.73 0.10 0.08 0.00 0.09 0.00 0.00 0.00

1 g1 0.21 0.57 0.10 0.02 0.07 0.03 0.00 0.00
g2 0.22 0.13 0.46 0.02 0.14 0.02 0.01 0.00
g3 0.19 0.32 0.30 0.03 0.10 0.04 0.01 0.00
g4 0.22 0.07 0.10 0.00 0.55 0.04 0.02 0.00
g5 0.18 0.30 0.14 0.02 0.27 0.08 0.02 0.00
g6 0.20 0.10 0.30 0.01 0.32 0.04 0.02 0.00
g7 0.17 0.24 0.27 0.03 0.22 0.06 0.02 0.00

2 g1 0.01 0.83 0.03 0.06 0.00 0.06 0.00 0.00
g2 0.02 0.03 0.78 0.06 0.03 0.02 0.06 0.00
g3 0.01 0.30 0.34 0.22 0.02 0.09 0.02 0.00
g4 0.01 0.01 0.02 0.00 0.82 0.08 0.06 0.00
g5 0.01 0.23 0.05 0.04 0.18 0.43 0.05 0.01
g6 0.01 0.02 0.34 0.03 0.29 0.08 0.23 0.00
g7 0.01 0.14 0.28 0.11 0.12 0.22 0.11 0.01

3 g1 0.00 0.88 0.00 0.07 0.00 0.05 0.00 0.00
g2 0.00 0.00 0.84 0.07 0.00 0.00 0.07 0.00
g3 0.00 0.15 0.17 0.59 0.00 0.06 0.01 0.02
g4 0.00 0.00 0.00 0.00 0.86 0.08 0.06 0.00
g5 0.00 0.06 0.01 0.03 0.05 0.79 0.03 0.03
g6 0.00 0.00 0.18 0.02 0.14 0.06 0.57 0.02
g7 0.00 0.03 0.16 0.20 0.02 0.32 0.18 0.09
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Table 6.18: Selection by the BVS. The probability that a specified model has one of the two
highest posterior probabilities among all candidate models. Rows: The true models. Columns:
Selected as the model with the highest or the second highest posterior probability by BVS. Correct
model is shown in bold. Results for n = 3.

λ Profile g0 g1 g2 g3 g4 g5 g6 g7

g0 0.90 0.42 0.24 0.02 0.38 0.03 0.02 0.00

1 g1 0.48 0.77 0.19 0.17 0.13 0.23 0.03 0.00
g2 0.42 0.26 0.64 0.17 0.24 0.07 0.18 0.00
g3 0.38 0.52 0.44 0.23 0.19 0.15 0.10 0.00
g4 0.48 0.15 0.17 0.02 0.76 0.24 0.18 0.00
g5 0.37 0.46 0.25 0.09 0.42 0.32 0.09 0.01
g6 0.39 0.20 0.45 0.10 0.49 0.15 0.21 0.00
g7 0.36 0.40 0.39 0.14 0.35 0.21 0.15 0.00

2 g1 0.09 0.93 0.05 0.44 0.02 0.46 0.00 0.01
g2 0.08 0.07 0.89 0.43 0.08 0.04 0.41 0.01
g3 0.04 0.46 0.48 0.64 0.05 0.20 0.10 0.04
g4 0.10 0.02 0.04 0.00 0.93 0.46 0.42 0.01
g5 0.04 0.43 0.11 0.10 0.37 0.74 0.12 0.09
g6 0.04 0.05 0.52 0.09 0.43 0.19 0.63 0.04
g7 0.03 0.26 0.40 0.31 0.24 0.39 0.28 0.08

3 g1 0.01 0.97 0.00 0.50 0.00 0.51 0.00 0.02
g2 0.00 0.01 0.96 0.52 0.01 0.01 0.47 0.02
g3 0.00 0.34 0.42 0.86 0.00 0.14 0.05 0.19
g4 0.01 0.00 0.00 0.00 0.97 0.52 0.48 0.01
g5 0.00 0.29 0.02 0.07 0.25 0.91 0.08 0.39
g6 0.00 0.00 0.45 0.05 0.32 0.13 0.87 0.18
g7 0.00 0.10 0.30 0.35 0.09 0.44 0.32 0.41
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Table 6.19: Comparison of the estimated probability of a correct model selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 4.

λ Profile BVS GORIC AIC BIC
g0 0.81 0.64 0.80 0.85

1 g1 0.63 0.56 0.61 0.58
g2 0.51 0.47 0.54 0.50
g3 0.03 0.22 0.07 0.03
g4 0.56 0.51 0.55 0.51
g5 0.10 0.25 0.13 0.08
g6 0.03 0.17 0.05 0.02
g7 0.00 0.05 0.00 0.00

2 g1 0.90 0.66 0.84 0.88
g2 0.84 0.57 0.79 0.83
g3 0.30 0.56 0.40 0.30
g4 0.88 0.62 0.80 0.86
g5 0.52 0.61 0.59 0.50
g6 0.26 0.51 0.35 0.26
g7 0.02 0.34 0.07 0.04

3 g1 0.92 0.66 0.84 0.89
g2 0.87 0.57 0.79 0.85
g3 0.67 0.73 0.74 0.69
g4 0.91 0.62 0.80 0.87
g5 0.88 0.70 0.85 0.86
g6 0.66 0.68 0.72 0.67
g7 0.15 0.72 0.35 0.23
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Table 6.20: Comparison of the estimated probability of a correct MED selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 4.

λ Profile BVS GORIC AIC BIC
g0 0.81 0.64 0.80 0.85

1 g1 0.66 0.79 0.68 0.62
g2 0.52 0.56 0.56 0.51
g3 0.42 0.59 0.44 0.38
g4 0.56 0.51 0.55 0.51
g5 0.41 0.60 0.44 0.37
g6 0.37 0.44 0.40 0.36
g7 0.32 0.48 0.35 0.29

2 g1 0.98 0.99 0.98 0.97
g2 0.88 0.72 0.86 0.88
g3 0.66 0.86 0.71 0.64
g4 0.88 0.62 0.80 0.86
g5 0.75 0.90 0.80 0.74
g6 0.60 0.63 0.64 0.63
g7 0.50 0.76 0.57 0.49

3 g1 1.00 1.00 1.00 1.00
g2 0.93 0.72 0.87 0.91
g3 0.85 0.97 0.90 0.86
g4 0.91 0.62 0.80 0.87
g5 0.95 0.99 0.96 0.95
g6 0.82 0.70 0.81 0.81
g7 0.68 0.90 0.78 0.70
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Table 6.21: Comparison of the estimated probability of correct model selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 5.

λ Profile BVS GORIC AIC BIC
g0 0.85 0.67 0.81 0.89

1 g1 0.67 0.62 0.68 0.62
g2 0.56 0.51 0.60 0.56
g3 0.03 0.25 0.06 0.03
g4 0.63 0.58 0.63 0.57
g5 0.10 0.29 0.17 0.08
g6 0.03 0.23 0.06 0.02
g7 0.00 0.07 0.00 0.00

2 g1 0.92 0.68 0.84 0.90
g2 0.88 0.57 0.81 0.88
g3 0.35 0.61 0.48 0.34
g4 0.91 0.65 0.82 0.89
g5 0.59 0.67 0.70 0.58
g6 0.34 0.59 0.46 0.33
g7 0.02 0.42 0.09 0.04

3 g1 0.93 0.68 0.84 0.90
g2 0.91 0.57 0.81 0.89
g3 0.78 0.73 0.83 0.79
g4 0.92 0.64 0.82 0.89
g5 0.90 0.73 0.88 0.89
g6 0.76 0.73 0.79 0.76
g7 0.21 0.83 0.45 0.29
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Table 6.22: Comparison of the estimated probability of a correct MED selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 5.

λ Profile BVS GORIC AIC BIC
g0 0.85 0.67 0.81 0.89

1 g1 0.70 0.85 0.75 0.66
g2 0.57 0.62 0.62 0.57
g3 0.42 0.62 0.44 0.38
g4 0.63 0.58 0.63 0.57
g5 0.41 0.63 0.47 0.38
g6 0.36 0.48 0.42 0.37
g7 0.31 0.49 0.36 0.29

2 g1 0.99 1.00 0.99 0.98
g2 0.91 0.75 0.88 0.91
g3 0.66 0.90 0.74 0.64
g4 0.91 0.65 0.82 0.89
g5 0.79 0.94 0.86 0.78
g6 0.66 0.69 0.71 0.68
g7 0.51 0.77 0.60 0.50

3 g1 1.00 1.00 1.00 1.00
g2 0.94 0.75 0.88 0.93
g3 0.89 0.98 0.94 0.90
g4 0.92 0.64 0.82 0.89
g5 0.96 1.00 0.98 0.97
g6 0.88 0.74 0.84 0.87
g7 0.69 0.94 0.81 0.72
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Table 6.23: Comparison of the estimated probability of correct model selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 10.

λ Profile BVS GORIC AIC BIC
g0 0.90 0.67 0.79 0.91

1 g1 0.82 0.65 0.80 0.80
g2 0.78 0.59 0.78 0.78
g3 0.05 0.38 0.18 0.05
g4 0.82 0.64 0.80 0.81
g5 0.17 0.49 0.35 0.17
g6 0.05 0.38 0.16 0.04
g7 0.00 0.16 0.01 0.00

2 g1 0.96 0.66 0.85 0.95
g2 0.94 0.61 0.84 0.94
g3 0.65 0.74 0.79 0.66
g4 0.94 0.65 0.84 0.93
g5 0.86 0.70 0.87 0.86
g6 0.64 0.75 0.78 0.65
g7 0.08 0.76 0.36 0.10

3 g1 0.96 0.66 0.85 0.95
g2 0.95 0.61 0.84 0.94
g3 0.96 0.76 0.92 0.96
g4 0.95 0.65 0.83 0.93
g5 0.97 0.71 0.90 0.96
g6 0.95 0.77 0.90 0.94
g7 0.57 0.97 0.86 0.64
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Table 6.24: Comparison of the estimated probability of a correct MED selection based on 1,000
simulated data sets for BVS, GORIC, AIC and BIC criterion for K = 4, n = 10.

λ Profile BVS GORIC AIC BIC
g0 0.90 0.67 0.79 0.91

1 g1 0.85 0.96 0.90 0.83
g2 0.79 0.75 0.82 0.79
g3 0.46 0.72 0.54 0.42
g4 0.82 0.64 0.80 0.81
g5 0.48 0.76 0.61 0.46
g6 0.46 0.59 0.54 0.49
g7 0.30 0.59 0.41 0.29

2 g1 1.00 1.00 1.00 1.00
g2 0.97 0.78 0.92 0.96
g3 0.79 0.97 0.90 0.79
g4 0.94 0.65 0.84 0.93
g5 0.93 1.00 0.97 0.93
g6 0.83 0.77 0.86 0.84
g7 0.60 0.90 0.74 0.61

3 g1 1.00 1.00 1.00 1.00
g2 0.97 0.78 0.91 0.96
g3 0.99 1.00 1.00 0.98
g4 0.95 0.65 0.83 0.93
g5 1.00 1.00 1.00 1.00
g6 0.97 0.77 0.91 0.96
g7 0.84 0.99 0.95 0.86
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Chapter 7
Prediction of Human Data
Using Rat Data in Japanese
Toxicogenomics Project

7.1 Introduction

7.1.1 Toxicogenomics

Pharmaceutical companies are facing urgent needs to increase their lead compound and
clinical candidate portfolios and satisfy market demands for continued innovation and rev-
enue growth (Davidov et al., 2003). However, in the last years, relatively small number
of drugs are being approved, while research expenses are increasing, patents are expiring,
and both governments and health insurance companies are pushing for low-cost medica-
tions (Scannell et al., 2012). Moreover, 20-40% of novel drug candidates fail because
of safety issues (Arrowsmith, 2011 and Enayetallah et al., 2013), increasing the costs of
bringing new drugs to the market (Paul et al., 2010). A significant part of such costs
could be prevented if undesirable toxic effects of a potential drug would be predicted in
earlier stages of the drug development process (Food and Drug Administration, 2004).
Integrating transcriptomics in drug development pipelines is being increasingly considered
for early detection of potential safety issues during preclinical development and toxicology
studies (Bajorath, 2001, Fanton et al., 2006, Baum et al., 2010 and Amaratunga et al.,
2014). Such an approach has proven useful both in toxicology (Pognan, 2007, Afshari
et al., 2011) and carcinogenicity studies (Nie et al., 2006, Ellinger-Ziegelbauer et al.,
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2008).
The approach can be viewed from the perspective of translational research. Translation

between rat and human data is an important topic (McGonigle and Ruggeri, 2014), due
to high costs and ethical considerations of clinical experiments in humans (Hobin et al.,
2012). Gaining strong scientific knowledge in animal models would prevent most risks.
Translational research gets attention in all medical fields (e.g. Andrews, 2013, Mestas and
Hughes, 2004) and genes are a valuable tool in revealing connections across species (e.g.
Seok et al., 2013, Rye et al., 2011).

This chapter and following Chapter 8 focus on translational research in context of
toxicogenomics. The Japanese Toxicogenomics Project (TGP) data set was introduced in
Section 1.2, where the elaborate description of the data set is given. In summary, the data
consists of human in vitro experiment and rat in vitro and in vivo experiments. For both
in vitro and in vivo, dose-response experiments at different time points were conducted.
In total, gene expression was measured for 131 compounds.

The TGP data allows to explore two directions of translation important within drug
development process: translation across species and across platforms. The former one is
import in safety studies to prevent avoidable toxicity in humans. To proceed from animal
research to treating patients, we have to assume that animal model predicts toxicity in
humans sufficiently well. We focus on this aspect in this chapter, while the translation
across platforms is addressed in Chapter 8.

7.1.2 Prediction of human in vitro data

The main topic that we address in this chapter is related to the prediction of drug-
induced liver injury (DILI) in humans using rat in vivo data (henceforth referred to as
rat data). The analysis can be viewed from the perspective of translational research.
Our aim is to explore the connection between humans and rats in terms of translatability
of gene expression. Particularly, our goal is to investigate the effect of a compound on
human in vitro toxicogenomic data (henceforth referred to as human data) using rat data.
Therefore, our method enables identification of genes with toxic effects in rats translatable
to humans. Successful prediction of a compound being toxic during rat experiments could
reduce the failure rate of efficacious compounds during the expensive phase III trials.

The core part of the rat data set is gene expression level information across multiple
compounds at multiple time points and dose levels. We focus on genes that are ortholo-
gous for rats and humans. Most of these genes are already annotated by biological pro-
cesses or diseases (e.g. Ashburner et al., 2000, Lamb et al., 2006). The analysis presented
in this chapter explores common dose-response pathways between rat and human genome
using gene expression. Identifying a subset of genes that show similar dose-response gene
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expression profiles in rats and humans would support the translation of gene expression
from rat in vivo experiments to human experiments. As in the case of DILI, this would
enable prediction of compounds’ toxicity in humans using rat in vivo experiments. The
discovery of such genes would create knowledge about underlying mechanisms and con-
nection between species which would significantly improve how rat toxicology is used as
a model for human toxicology in the later stages of drug development.

The Translatability data described in Section 1.2.2.1 are used for the analysis of this
chapter. Methodology is introduced in Section 7.2 and analysis is conducted in Sec-
tion 7.3. The results are put in context in Section 7.4 that concludes the chapter.

7.2 Methods

7.2.1 Exploratory analysis: Analysis of variance approach

For the exploratory analysis, a gene specific linear model with dose and time as covariates
is used. Interaction between covariates is also included. Let Yijk denotes the gene
expression level for the ith compound (i = 1, . . . , 93), jth gene (j = 1, . . . , 4359) and
kth observation (k = 1, . . . , 48 or 36) based on time-dose combinations. To test possible
dose effect, time effect and as well as their interaction, a two-way analysis of variance
(ANOVA) model is used:

Yijk = α0ij + βDijDoseijk + βTijTimeijk + γijDoseijk · Timeijk + εijk.

Parameters α0,βD,βT ,γ are gene (within compound) specific and the measure-
ment error εijk is considered to follow a Gaussian distribution εijk ∼ N(0, σ2

ij).
The parameter vectors βDij ,βTij ,γij represent the dose, time and interaction ef-
fects. In practice, each vector represents levels of explanatory variables, e.g. βDij =
(βDijCONTROL, βDijDOSE1, βDijDOSE2, βDijDOSE3). Note that the two-way ANOVA
model specified above is fitted as a gene specific model within each compound. Test-
ing if the parameters differ from null gives us an indication if the gene is differentially
expressed for a given compound, or not. However, gene specific omnibus test based on
F-distribution can also be used to test if there is any significant effect at all.

Whatever test is used, multiplicity adjustment have to be applied due to extensive
number of tests performed (4,359 per compound). Correction for multiplicity was applied
within each compound. In general, either Family Wise Error Rate (FWER, Hochberg
and Tamhane, 1987) or False Discovery Rate (FDR, Benjamini and Hochberg, 1995)
can be used. Controlling FWER translates into level of certainty that there is no false
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positive finding among all our findings, but controlling FDR assumes there is at least
one false positive finding while controlling for proportion of false positive amongst all
findings. Hence, FWER is a more conservative method than FDR. In our analysis, we
apply Bonferroni method to control FWER to prevent false positives entering later stages
of the analysis.

The whole procedure is conducted for both rat in vivo data and human data. Only
those genes that are significant (according to test we choose) for both humans and rats
are kept for further analysis. The resulting lists of significant genes are compared across
compounds to identify genes that are significantly expressed in multiple compounds. Indi-
cators of significance of a particular gene can be compared with DILI status of compounds
to find out if the genes’ appearance is connected with potential danger for the liver. In
general, any information about compounds can be used in this stage and can be compared
with indicator of genes’ significance. For example, pathological data available in the study
can be used, as well as information about compound chemical structure or grouping of
compounds based on their phenotypic effect.

7.2.2 Main data analysis: Trend analysis approach

A trend analysis is a common analysis in toxicology. The aim of such analysis is to identify
a subset of genes for which a monotone relationship with an increasing dose of a compound
can be detected (Lin et al., 2012b). Such an assumption of monotonicity allows us to
gain power and it is scientifically reasonable. For toxicological studies, this assumption
is typically used, since toxic effect usually gets stronger with increasing dose. Monotone
means are computed for each gene using isotonic regression method (Barlow et al., 1972,
Robertson et al., 1988, Shkedy et al., 2012a). Isotonic regression pools together the
means that violate assumption of monotonicity and makes these means equal. Figure 7.1
shows examples of the isotonic means µ = (µ0, µ1, µ2, µ3) for an experiment with control
dose and three active dose levels.

Hence, within the second modelling approach the null hypothesis of no dose effect is
tested against an ordered alternative in the following way:

H0 : µ0 = µ1 = µ2 = . . . = µK−1,

vs
Hup : µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK−1,

or
Hdn : µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µK−1,

with at least one inequality strict. We start with simple ANOVA model:

Yijlk = µ0ijl + δijlDoseijlk + εijlk,
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Figure 7.1: Examples of isotonic regression. Red triangles represent sample means and blue (and
green) lines resulting isotonic means, under either upward or downward monotone assumption.

where i represents compound, j gene, l specific time point and k observation within
each time point (within gene, within compound). The vector of parameters δijl =
(δ1ijl, δ2ijl, δ3ijl) represents the change of the mean in particular dose (compared to con-
trol dose) and parameters are either non-negative or non-positive (according to direction
of monotonicity assumption). The measurement error follows a Gaussian distribution,
εijlk ∼ N(0, σ2

ijl). An advantage of the model is absence of any parametric assump-
tion on dose-response relationship shape. Dose-specific means are modeled separately,
connected through values of δijl.

The analysis is done per compound and per time point (and separately for human
and rat). A multiple contrast test with Marcus’ monotone contrast (MCT, Mukerjee
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et al., 1987) is used to identify significant genes. The MCT is designed to cover space
of alternative models while using as few tests as possible (and so keeping power as high
as possible). It comprises of several single contrast tests, while different combination of
contrasts can also be used. We follow implementation arising from Marcus’ test statistics
(Marcus, 1976) proposed for MCT by Bretz (2006). Multiplicity adjustment is conducted
within each compound and time point combination using FWER approach (with Bonfer-
roni correction) within a gene and FDR adjustment across the genes (Lin et al., 2012b).

Finally, for each compound and time point combination, we create lists of genes
that show significant dose-response relationship. The time points with highest rate of
significant genes (if such exist) are identified and we focus on them. Then, genes are
listed that show significant dose-response relationship for such time points simultaneously
in both rats and humans. For a particular gene on the resulting list, isotonic means at all
doses are estimated and their values are compared between humans and rats. Hence, we
can identify such genes in rats that can be used in order to predict the gene expression
level in humans.

7.3 Results

7.3.1 Analysis of variance

Figure 7.2 shows the number of genes with significant interaction effect in both rats
and humans and reveals a heterogeneous pattern across compounds. For example, for
the compound sulindac there are 201 genes with significant interaction effect in both
rats and humans while for the compound perhexiline there is only one gene in common.
In total, only 54 compounds had at least one significant gene and only 10 compounds
had more than 25 significant genes on the list. An example of one significant gene
is shown in Figure 7.3. There exists a small set of genes that are significant in both
rat and humans data consistently across subsets of compounds, even in case of strict
multiplicity corrections. For the results presented in this chapter we applied Bonferroni
correction at significance level of 10%. The subset of compounds, identified through
common significant genes, consists of DILI related compounds only (if we convert the
DILI status into binary variable, by pooling together "most concern" and "less concern"
categories). Hence, the significance of the identified genes in rat in vivo could emphasize
possible danger of DILI in humans. These genes are typically connected with the liver
processes. Table 7.1 shows one of these genes, noted ASF1A (originally Asf1a in rat and
ASF1A in human), that is significant for multiple compounds with DILI concern and not
for any compound without DILI concern. Other genes from the identified set, FABP1,
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MCM4, SMC2, TXNRD1, show very similar behavior.

Number of genes with significant interaction 
				in both rat and human: Bonferroni, 0.10 level of significance
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Figure 7.2: Number of genes with significant interaction in two-way ANOVA model, for both rat
and human. The p-values are adjusted using Bonferroni’s method on significance level of 10%.

Table 7.1: Relationship between DILI concern status and simultaneous significance of interaction
for both rat and human data for gene ASF1A.

no DILI concern some DILI concern
non-significant interaction 8 62
significant interaction 0 23
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Figure 7.3: Example of gene with significant interaction in two-way ANOVA model, for both rat
and human. Compound omeprazole and gene Acsl1 in rat, respectively ACSL1 in human.
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Figure 7.4: Example of gene with monotone dose-response profile for all time points in rat.
Compound omeprazole and gene Mafg in rat (MAFG in human).

7.3.2 Trend analysis

As mentioned in the previous section, the second analysis consists of trend analysis per
time point. An example of gene complying with monotonicity assumption is shown in
Figure 7.4. Our aim in this section is to predict dose effect in humans using dose effect
in rat in vivo. All tests are based on MCT and p-values are adjusted using Bonferroni
correction using significance level of 10%.

At the first stage of the analysis, we identify, in the rat, the time point with the
strongest signal. Figure 7.5 presents the number of genes with significant dose-response
relationship per time point. It clearly shows that there are much more significant genes
in the last time point, both for rats and humans, than in any other time point. Hence,
for the remainder of this section, the dose effects in rats at the last time point are used
for prediction. Figure 7.6 reveals that the number of significant genes in rats does not
correspond with the number of significant genes in humans. For several compounds, there
are no genes significant both in rats and humans. Hence, we focus on two gene sets: (1)
genes significant in rats and (2) genes significant both in rats and humans.

The dose effect in both rats and humans were estimated using isotonic regression.
Only 91 compounds having high dose were considered for the analysis and we used the
change in isotonic means of rat (from the last to the first, i.e. control, dose level) in order
to predict the change in isotonic means of human. The example of resulting gene for the
compound omeprazole is presented in Figure 7.7. We can see one of the genes where the
translatability of rat data into human data is apparent. The mean at high dose for the rat
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Figure 7.5: Number of genes with significant dose-response relationship per time point. Green
compounds have maximum in last time point, red compounds in any other time point. Left
panel: Rat data results. Right panel: Human data results.

represents differential expression of almost six-fold change increase, while isotonic mean
for humans shows almost five log-fold change increase. Predictions of all dose effects in
humans using high dose effect in rats, when only genes significant in rats are used, are
explored in Figure 7.8. As expected, prediction of control dose shows very low correlation,
since all values for human control dose should be around zero. However, for higher doses
we can see that there are genes with (nearly) the same value of isotonic means both for
rat and human. Still, there is large amount of genes centered around zero. However, in
Figure 7.9, where only genes significant in both rat and human last time point are used,
the subset of genes around zero almost disappears. The resulting gene set reveals genes
that are both consistently significant across species and translatable between species with
respect to fold change induced by high dose of a given compound (omeprazole in this
case).
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Figure 7.8: Dose effect for the compound omeprazole: estimated isotonic mean in particular
dose in human against estimated isotonic mean in high dose in rat, both for last time point.
Genes with significant dose-response relationship for rat in last time point (significance in human
is not considered).
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Figure 7.9: Dose effect for the compound omeprazole: estimated isotonic mean in particular
dose in human against estimated isotonic mean in high dose in rat, both for last time point.
Genes with significant dose-response relationship for both rat and human in last time point.
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7.4 Discussion

According to the ANOVA results, the number of significant genes varied among the com-
pounds. This finding is not surprising since the data set contains very distinct compounds,
both with respect to their structural properties and biological effects. The data set con-
tains vitamin A next to ibuprofen or nicotinic acid. The analyses presented in this chapter
suggest that searching for overall differentially expressed genes can fail due to heterogene-
ity in the data set. Limiting ourselves to smaller subgroups of similar compounds can lead
to more efficient analysis and meaningful results. One of such subsets was identified by our
analysis, by grouping together 23 compounds with significant gene ASF1A. The presence
of subgroups of compounds questions the meaningfulness of the goal of identifying genes
useful for classification of compounds as DILI. If within given set of compounds would
exist latent subgroups of compounds (similar with respect to their overall behavior), then
particular genes could be good predictors of DILI in one subgroup, but not necessarily in
the other subgroups. In other words, genes that can be predictors for DILI within one sub-
group may lose its predictive ability by considering whole data set with several subgroups
of compounds. Besides, the DILI response is highly unbalanced, only eight compounds
out of 93 show "no DILI concern". Therefore, we propose to use a more specific response
variable instead and simultaneously focus on possible identification of subgroups among
compounds. These insights lead us to focus on translatability and means prediction in
the second part of the analysis.

The second part of the analysis was mainly focused on the translatability of genes
between humans and rats. The genes of interest are such that the fold change of their
gene expression (precisely its log ratio against control) is similar in rat and human data
and the dose-response relationship is statistically significant in both species. We have
shown that for some compounds, no relevant results were found. This is mostly due
to very low overall difference in expressions and high variability. However, for several
compounds, we were able to identify such gene sets. The interpretation of the findings
is clear: the value of gene expression observed in rats can be used as biomarker for the
corresponding gene expression value in humans. If we are able to connect these genes
with particular toxicological process, the signature made by these genes can serve as
early warning mechanism. The reliability of such genes as biomarkers will need to be
validated, but the fact that they are significant in both species may highlight a common
underlying biological mechanism in both species after exposure to the compounds. This
study may provide a leeway into more extensive studies on rats and humans toxicogenomics
connectivity in early drug developments.



Chapter 8
Disconnected Genes in the
Japanese Toxicogenomics
Project

8.1 Introduction

The importance of translatability research is described in detail in Section 7.1.1. This
chapter focuses on the translation from in vitro to in vivo within one species and it is
relevant in both rat and human studies. We will explore frameworks to identify genes that
shows discrepancies between rat in vitro and rat in vivo data. Identification of such genes
could help to explain differences between processes in living animals and in cell cultures.

Zhang et al. (2014) developed consensus early response toxicity signatures of in vitro
and in vivo toxicity in human and rat using time-dependent gene expressions. For the
hepatotoxicant hydrazine, Timbrell et al. (1996) show that the effects on various param-
eters do not always show a quantitative or qualitative correlation between in vivo and
in vitro data. Enayetallah et al. (2013) profiled nine compounds for in vitro and in vivo
cardiotoxicity, and reported that while there were common biological pathways for in vivo
and in vitro rat experiments for drugs like dexamethasone, most of the biological pathways
identified in vivo for the drug amiodarone were not detected in vitro. Early prediction of
safety issues for hit or lead compounds would benefit not only from consensus signatures,
but also from disconnect signatures between in vivo and in vitro toxicogenomics experi-
ments. These disconnect signatures can indicate which biological pathways are less likely

149
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to translate from a simplified in vitro model to a complex and holistic in vivo system.
Toxicity signatures developed from in vitro models most probably reflect protein mod-

ulations or pathway changes resulting from direct effects of compounds upon cells instead
of the more complex interactions found in in vivo systems. In vitro signatures could also
show excessive toxicity not to be detected in vivo due to compensatory mechanisms found
in in vivo systems. Thus the framework is proposed to detect genes that are disconnected
between in vitro and in vivo dose-dependent toxicogenomics experiments using fractional
polynomial models. Biclustering is applied to find subsets of disconnected genes that are
common to several compounds. Finally, the identified groups of disconnected genes are
interpreted by their most probable biological pathways.

The Disconnect data described in Section 1.2.2.2 are used for the analysis in this
chapter. Fractional polynomials and biclustering are introduced in Section 8.2. The
analysis workflow is described and results are discussed in Section 8.3. Further integration
of findings is explained in Section 8.4. The Section 8.5 summarizes the findings of the
chapter.

8.2 Methods

A flexible fractional polynomial modelling framework is proposed to: (1) identify genes
with significant dose-response relationships in an in vitro or in vivo experiments and (2)
identify genes that are disconnected between the two systems. The in vitro and in vivo
gene expression matrices were analysed jointly by compound and the resulting discon-
nected genes from the separate analyses were integrated using the Bimax biclustering
algorithm (Prelic et al., 2006) in order to identify subsets of disconnected genes that are
common to several compounds.

8.2.1 The fractional polynomial framework

The fractional polynomial modelling framework aims to capture non-linear relationship
between a predictor and a response variable. It assumes that most non-linear profiles can
be captured by a combination of two polynomial powers (Royston and Altman, 1994).
It is particularly appealing for modelling dose-response relationships since it does not
impose monotonicity apparent in most dose-response modelling methods (e.g. Ramsay,
1988, Lin et al., 2012d). For a single gene, let Yij denote gene expression in vivo, where
i = 1, 2, . . . ,m represents dose level and j = 1, 2, . . . , ni denotes number of replicates
per dose. The fractional polynomial framework assumes that the relationship between
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gene expression and doses can be captured by a polynomial function;

Yij = β0 + β1 · fij(p1) + β2 · gij(p1, p2) + εij , (8.1)

where εij ∼ N(0, σ2) and the polynomial powers p1, p2 ∈ P , P = {−3,−2.5, . . . , 1.5, 2},
while p1 ≤ p2. This range of values provides enough flexibility to capture different forms of
dose-response profile (Royston and Altman, 1994). The functions fij(p1) and gij(p1, p2)
are defined as

fij(p1) =
{

ip1 p1 6= 0,
log(i) p1 = 0,

and

gij(p1, p2) =


ip2 p2 6= p1, p2 6= 0,
log(i) · ip2 p1 = p2, p2 6= 0,
log(i) p2 6= p1, p2 = 0,
log(i) · log(i) p2 = p1 = 0.

(8.2)

Note that for p1 6= 0, p2 6= 0 and p1 6= p2, the fractional polynomial model is given by
Yij = β0 +β1 · ip1 +β2 · ip2 + εij . An example of fitting different combinations of powers
for one particular gene is shown in Figure 8.1.

Akaike’s information criterion (AIC, Akaike, 1974) is used to select the optimal com-
bination of p1 and p2 that best reflects the observed dose-response relationship. Optimal
solutions are denoted by {φ̂1, φ̂2} =

{
{p1, p2} ∈ P,AIC(φ̂1, φ̂2) = min[AIC(p1, p2)]

}
.

In order to identify genes with a significant dose-response relationship in vitro, a likelihood-
ratio test (LRT, Neyman and Pearson, 1933) is used to compare model (8.1) that best
fits the data and model (8.3), the null model that assumes no dose effect:

Yij = β0 + εij . (8.3)

This additional testing is necessary in order to identify genes with statistically significant
difference from the null model.
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Figure 8.1: Gene A2m for compound sulindac. Different combinations of powers are used
and the model is fitted to the data (red solid line). The model in top left panel does not
follow the data very well, the model in the bottom right panel is the best fitting model, given
p1, p2 ∈ {−3,−2.5, . . . , 1.5, 2}.

To identify disconnected genes when comparing in vitro and in vivo data, the optimal
fractional polynomial function selected per gene (with φ̂1, φ̂2, as fixed above) from in vitro
data set is projected to in vivo data set under the assumptions that both in vitro and in vivo
dose-response relationships are similar. For a single gene, let Xijk denote gene expression
in vitro and in vivo, where i = 1, 2, . . . ,m represents dose levels, j = 1, 2, . . . , ni denotes
number of replicates per dose and k = 1 or k = 2 depending on whether the data is
from in vitro or in vivo experiment. The in vitro - in vivo projected fractional polynomial
model is specified as

Xijk = β0 + β1 · fijk(φ̂1) + β2 · gijk(φ̂1, φ̂2) + εij , (8.4)

where εijk ∼ N(0, σ2). A LRT is used to quantify the dissimilarity in in vivo - in vitro
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dose-response relationships. It compares model (8.4), which assumes that dose-response
relationships from in vitro and in vivo experiments are the same, with model (8.5), which
assumes different dose-response relationships.

Xijk =


β0 + β1 · fijk(φ̂1) + β2 · gijk(φ̂1, φ̂2) + εijk in vitro,

(β0 + γ0) + (β1 + γ1) · fijk(φ̂1) + (β2 + γ2) · gijk(φ̂1, φ̂2) + εijk in vivo.

(8.5)

The comparison translates into testing if γ0 = γ1 = γ2 = 0 in model (8.5). An ex-
ample of a projected fractional polynomial model is shown in Figure 8.2. A significant
result obtained from LRT comparison of model (8.4) and model (8.5) can be interpreted
as a disconnect in gene expression between in vitro and in vivo rat experiments. The
significance level was specified as 10% after correction for multiplicity (Benjamini and
Hochberg, 1995). Resulting disconnected genes were subjected to fold change filtering
by excluding genes with maximal dose-specific fold change between in vitro and in vivo
data set less than 1. The fold change filtering further reduces false positives due to small
variance genes (Talloen and Göhlmann, 2009).

The empirical validation of the method in the context of in vitro and in vivo disconnects
was done through a series of simulation studies. In summary, the proposed projected
fractional polynomial method under the null model resulted in 90% specificity using the
same number of dose and the same number of observations per dose as in TGP data
set. When number of observations per dose was increased to four, specificity increased
up to 98%. Under the alternative hypothesis of a disconnected dose-response profiles
between in vitro and in vivo experiments, the method resulted in 100% sensitivity for the
disconnected linear profiles. For nonlinear profiles, sensitivity of 80% - 95% was achieved,
for the maximum fold change between the in vitro and in vivo settings greater than 1.2.
Sensitivity increased up to 98% - 100% when the fold change was greater than 1.6. The
method also resulted in 93% specificity and 95% sensitivity after multiplicity correction.
The simulation studies indicated that the method may perform better in other settings
than the reported results for the TGP experiment due to its limited number of replicates
per dose and the weak signals. The full description of the simulations’ settings and results
can be found in the Appendix.
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Figure 8.2: Gene A2m for compound sulindac. Consequences of forcing the same model to both
data sets. Red solid line shows the profile, if both data sets share parameters, i.e. model (8.4),
and blue lines show fits for model (8.5), i.e. we consider the same powers but separate parameters
for in vitro (dotted line) and in vivo data (dashed line). Circles represent in vitro and triangles
in vivo data. Clearly, for this particular gene, model (8.5) provides better fit.
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8.2.2 Biclustering of genes and compounds

A biclustering framework was introduced in order to find subsets of genes and conditions
with a similar pattern (Cheng and Church, 2000). Biclustering methods (Madeira and
Oliviera, 2004, Eren et al., 2013) are designed to cluster in two dimensions simultaneously
to produce sub-matrices of the original data that behave consistently in both dimensions.
The resulting sub-matrices are called biclusters. Based on the identified disconnected
genes from the fractional polynomial models, a disconnect matrix D(G×C) of binary values
was created with element dgc defined as:

dgc =
{

1 if gene g is disconnected for compound c,
0 otherwise,

(8.6)

where G is the number of genes that are significant for at least one compound (i.e.
G ≤ 5, 914) and C = 128 is the number of compounds. The Bimax algorithm (Prelic
et al., 2006) for binary data is applied to the disconnect matrix (G) to find subsets of the
disconnected genes that are common to several compounds.

8.3 Results

The data were analysed in two ways depending on the direction of the projected fractional
polynomial models. The first set of models (in vitro disconnects) defined the fractional
polynomial powers based on the in vitro data set and projected its dose-response profiles to
the in vivo data set. The second set of models (in vivo disconnects) defined the fractional
polynomial powers based on the in vivo data set and projected its dose-response profiles
to the in vitro data set. The analyses were performed in statistical software R version
3.0.1 (R Core Team, 2013).

8.3.1 in vitro disconnects

The final set of disconnect genes, identified using the fractional polynomial model, con-
sists of 3,348 genes that were disconnected for at least one compound. The number of
the identified disconnected genes per compound ranged from zero to 1,276 (with me-
dian 37.5), with maximal value for compound colchicine. There were ten compounds
with no disconnected genes and an additional 27 compounds with less than ten genes.
There are 1,022 genes that are disconnected only for a single compound. Three genes
(Aldh1a1, Cyp1a1 and Fam25a) were consistently identified in 56 compounds while 446
genes were detected in more than ten compounds. The 446 genes were analysed further
for common biological pathways using GO (Ashburner et al., 2000), KEGG (Kanehisa
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Figure 8.3: Number of genes with significant dose-response relationship for in vitro data only,
for in vivo data only and for both data sets simultaneously. The sum of all the numbers gives us
the number of genes significant at least for one data set in a given compound. Two compounds
are shown as examples.

and Goto, 2000) and Janssen pharmaceutica in-house gene databases. As expected,
many of the genes are involved in drug metabolism (e.g. acetaminophen metabolism,
Benzo[a]pyrene metabolism, CAR/RXR activation, PXR/RXR activation), as well as en-
dogenous compound metabolism (e.g. butanoate metabolism, alanine, cysteine and me-
thionine metabolism, nitrogen metabolism, fatty acid metabolism, cholesterol biosynthe-
sis). Additionally, some of the genes are also involved in toxicity related pathways such
as oxidative stress due to reactive metabolites, bilirubin increase, glutathion depletion
and phospholipidosis as well as complex pathways such as immune response, classical
complement and coagulation. Only pathways containing more than five genes and with
coverage of more than 10% (i.e. more than 10% of their genes were disconnected genes)
were considered.

The biclustering Bimax procedure was applied on binary matrix D(3348×128), with a
minimal bicluster size of four compounds. We identified 188 unique genes that were
consistently defined as disconnected genes in seven compounds based on the first ten
biclusters from the Bimax algorithm (left panel on Figure 8.4). Sulindac and diclofenac
are both anti-inflammatory drugs, acetic acid derivatives that are likely to damage liver
(Rodríguez et al., 1994). Naphthyl isothiocyanate was shown to cause direct hepatotoxi-
city (Williams, 1974). Among the 188 genes, the top genes (with respect to fold change)
are associated with liver toxicity. Genes A2m and Lcn2 were validated for being affected
in case of hepatotoxicity (Wang et al., 2008). Other toxicity associated genes found were
Cyp1a1, Pcsk9, Car3, Gstm3 or Ccnd1. Table 8.1 shows the results of pathway analy-
sis for the first bicluster (compounds: sulindac, naphthyl isothiocyanate, diclofenac and



8.3. Results 157

in vitro

bicluster

1 2 3 4 5 6 7 8 9 10

bromo 
 ethylamine

sulindac

azathioprine

ethionine

naphthyl 
 isothiocyanate

diclofenac

colchicine

in vivo

bicluster

1 2 3 4 5 6 7 8 9 10

methapyrilene

ethionine

naphthyl 
 isothiocyanate

acetamido 
 fluorene

ticlopidine

nifedipine

diclofenac

naproxen

indomethacin

sulindac

colchicine

Figure 8.4: Appearance of compounds across ten biclusters. Blue colour states that the com-
pound is the member of bicluster. Left panel: Analysis starting with in vitro data. Right panel:
Analysis starting with in vivo data.

Table 8.1: The genes showing disconnect that are members of bicluster 1 and their membership
in pathways. The pathways were identified using KEGG (Kanehisa and Goto, 2000).

Pathway Genes
Complement and coagulation cascades A2m C1s C5 C8a C4bpb Cfh F5
Chemical carcinogenesis Cyp1a1 Gstm3 Gsta5
Metabolism of xenobiotics Akr7a3 Cyp1a1 Gstm3 Gsta5
Pathways in cancer Ccnd1 Fn1 Lamc2

colchicine). Genes A2m, Gpx2 and Gstm3 were disconnected genes common to all the
seven compounds and other 16 genes (e.g. C5, Fam25a, Gsta5) appeared for six of them
simultaneously.

8.3.2 in vivo disconnects

The final set of disconnect genes contained 2,346 genes that were disconnected in vivo for
at least one compound. The number of the identified disconnected genes per compound
ranged from zero to 798 (with median 18), with maximal value for compound colchicine.
There were 25 compounds with no disconnect gene and another 29 with less than ten
genes. There were 992 genes that appeared only for a single compound. The gene Stac3
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showed disconnect for 54 compounds.
There were 175 genes that showed disconnect in gene expression from in vivo to in

vitro rat experiments for more than ten compounds. Similar pathways as in the previous
section (i.e projection from in vitro to in vivo) were also discovered, although more of the
pathways were related to exogenous compound metabolism. Oxidative stress endpoints
related pathways were more common in vivo. Complex pathways such as complement and
coagulation identified in the in vitro data set were not discovered in the analysis of the
in vivo data set, which may be due to differences between the prescribed dose and actual
exposure in liver tissue in vivo.

The Bimax algorithm as applied on the binary matrix D(2346×128), with a minimal
cluster size of four compounds. It identified 163 unique genes common to 11 distinct
compounds based on the first ten biclusters (right panel on Figure 8.4). Five compounds
were identified both in in vitro and in vivo analyses of disconnects: sulindac, colchicine,
diclofenac, ethionine and naphthyl isothiocyanate. The most interesting of the additional
compounds are indomethacin and naproxen. They are both members of a group of non-
steroidal anti-inflammatory drugs (NSAIDs), the former an acetic acid derivative and the
latter a propionic acid derivative. Both drugs are nonselective cyclooxygenase (COX)
isozyme inhibitors, i.e. with undesired targeting of COX-1 that leads to gastrointestinal
adverse effects (Rao and Knaus, 2008; Brune and Patrignani, 2015). Specifically, both
drugs are indicated as high risk drugs for general upper gastrointestinal complications
(Castellsague et al., 2012). All of the compounds are connected to toxicity events. Most
of the toxicity related genes (A2m, Lcn2, Car3, Pcsk9, Acsl1, Lamc2, Selenbp1 and
Serpina10) from the previous in vitro analysis were also identified from the analysis of the
in vivo data set. Other toxicity related genes were Cyp2e1 (Heijne et al., 2005), Upp1,
Gss, Ddc, Gstm7 and Srebf1. One gene was disconnected between in vitro and in vivo
for all the 11 compounds (A2m) and additional four genes appeared for more than eight
compounds simultaneously (Scd1, Srebf1, Stac3, Xpnpep2).

8.4 Discussion

The analytical framework identified three broad groups of genes from a joint analyses of
in vitro and in vivo rats toxicogenomic experiments. The first group showed a significant
dose-response relationship in both the in vitro and in vivo toxicogenomic experiments
(478 genes for sulindac, e.g. A2m, Car3, Lcn2). These types of genes are shown in the
top panels of Figure 8.5. While some of the genes in this group showed contradictory
dose-responses profiles between the in vitro and in vivo data, others showed similar dose-
response profiles, but with different magnitude of gene expression values. The second



8.4. Discussion 159

group contains genes that showed a significant dose-response relationship in in vitro ex-
periments, but not in in vivo experiments (205 genes for sulindac, e.g. Cd44, Gstm3,
Gsta5). Examples of such genes are presented in the top panels of Figure 8.6. This
set of genes may represent the difference in biological complexity between in vivo and
in vitro systems. The third group are those genes that showed significant dose-response
relationship in in vivo experiments, but not in in vitro experiments (30 genes for sulindac,
e.g. Akr1c3, Cyp2a2, Scd1). This set of genes may occur due to the mechanism of action
(MoA) in vitro of a drug candidate not being representative of in vivo. Examples of such
genes are presented in the bottom panels of Figure 8.6.

Most of the compounds in our specific case study that triggered the expression of the
identified disconnected genes are members of a group of anti-inflammatory drugs and all
of them are related to hepatotoxicity, nephrotoxicity or gastro-intestinal toxicity. Genes
that were shared across compounds were related to toxicity, drug metabolism and liver
or kidney development. In total, there were 188 genes discovered by the in vitro analysis
(e.g. Gsta5, Gstm3) and 163 genes by the in vivo analysis (e.g. Ddc, Scd1), focusing on
first 10 biclusters. Highly relevant may be the 63 genes (e.g. A2m, F5, Lcn2) that were
found by both analyses, i.e. showing disconnect while having significant dose-response
relationships both in vitro and in vivo.

If additional data about experiments are available both for in vitro and in vivo, such
data can be included in the proposed methodology. The adjustment can be done by adding
the new variables in the fractional polynomial model as covariates. Note that in this type
of gene expression studies, the rats are specially bred to ensure baseline comparability
across all rats.
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Figure 8.5: Example: compound sulindac. Two genes from Group 1. Top panels: gene Eppk1-
ps1 with same direction, but different magnitude of effect. Bottom panels: gene Gpx2 with
different direction of effect across systems. Left panels: in vitro. Right panels: in vivo.
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Figure 8.6: Example: compound sulindac. Top panels: gene Serpinb9 from Group 2, with effect
only in in vitro. Bottom panels: gene Junb from Group 3, with effect only in in vivo. Left panels:
in vitro. Right panels: in vivo.
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8.5 Conclusion

The findings demonstrated that substantial differences may be identified between in vitro
and in vivo gene expression. While this result is not surprising, the importance of the
analysis is in the identification of different groups of the disconnected genes. Genes were
identified that showed significant dose-response relationships with compounds in vitro
that were absent in vivo, and vice-versa. Moreover, there was a group of genes with a
different direction of dose-response relationship across the two systems. These finding
confirms possibility of important discrepancies between in vitro experiments and in vivo
experiments. Pathway analysis of the identifying disconnected genes between in vivo and
in vitro rat system may improve our understanding of uncertainties in mechanism of action
of a drug candidate in human, especially for early toxicity detection.
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Chapter 9
Order Restricted Clustering for
Microarray Experiments

9.1 Introduction

Dose-response analysis of microarray data is a fast growing area of scientific interest.
According to Ernst and Bar-Joseph (2006), in 39.1% of the 786 data sets in the Gene
Expression Omnibus of 2005 are studies with an ordered restricted design variable such as
age, time, temperature and dose. Among these data sets, 1% are dose-response studies.
Table 9.1 presents a list of free software developed for the analysis of gene expression
experiments with an order restricted design.

There is a substantial amount of overlap between the different packages presented
in Table 9.1 and the same or a similar analysis can be conducted using more than one
package. In R (R Core Team, 2013), there are several packages available. IsoGene (Lin
et al., 2013) and IsoGeneGUI (Pramana et al., 2012a; more detail about both packages
in Pramana et al., 2010 and Lin et al., 2012b) are CRAN R packages which can be used
for inference and data exploration of dose-response microarray data. ORIClust (Liu et al.,
2012) is a CRAN package for clustering of time-series and dose-response microarray data
(Liu et al., 2009 and Lin et al., 2009) using order restricted information criteria. Package
orQA (Klinglmueller, 2010) is a CRAN package for inference of order restricted for cross
platform microarray data. The ORIOGEN package (Peddada et al., 2003) is a Java-based
(Arnodl et al., 2000) interface which can be used for both inference and clustering of
dose-response and time-series data. In this chapter we present new methodology for
two stage clustering of dose-response microarray data under order restriction. This novel
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methodology is based on δ-clustering and has been implemented in the CRAN package
ORCME (Otava et al., 2014). The method and package are applicable in general framework
of order restriction, but main focus (and specific package functions) are related to the
special case, when monotone profiles are of primary interest.

In Section 9.2, we briefly review the original δ-biclustering method (Cheng and Church,
2000) and derived δ-clustering method for whole profiles clustering. The ORCME R package
is introduced in Section 9.3 and the use of the package is illustrated for a case study of
dose-response microarray data. The options for choice of homogeneity parameter are
described in Section 9.4 and the chapter is summarized in Section 9.5.

Package Type Location Reference
orQA R CRAN Klinglmueller et al. (2011)
IsoGene R CRAN Pramana et al. (2010)
IsoGeneGUI R Bioconductor Pramana et al. (2012a)
ORIOGEN Java website Peddada et al. (2003)
ORIClust R CRAN Liu et al. (2009)
STEM Java website Ernst and Bar-Joseph (2006)
ORCME R CRAN Otava et al. (2014)

Table 9.1: Software for dose-response and time course gene expression data.

9.2 Order restricted curve clustering

Denote a gene expression matrix Y , with dimension M × I, where number of genes and
conditions are denoted with M and I, respectively. The matrix entries are denoted as
ymi, where the index represents mth gene under condition (dose) i. Note that there is
only one entry per gene and dose combination. In case of replicates for the dose level, the
ymi represents the mean value. Define yMI as the overall mean of the expression matrix
Y , ymI as the mean expression of gene m and yMi is the mean expression of condition
i. In general, we assume some order restriction assumption about the ymi in the sense of
the increasing dose i. Specifically, we further assume the monotonicity of dose-response
relationship.

The two stage δ-clustering procedure discussed in following sections consist of im-
plementing the order restrictions and clustering itself. Prior to the method itself, the
inference-based filtering should be applied. The initial filtering step is necessary in order

http://www.niehs.nih.gov/research/resources/software/biostatistics/oriogen/
http://www.cs.cmu.edu/~jernst/stem
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to discard non-significant genes. The within gene variability is ignored by the δ-clustering
method and the clusters are constructed in order to reduce the between gene variabil-
ity (i.e. the within cluster variability). Without filtering, the non-significant genes (with
high within-gene variability) would enter the clusters and interpretation would be com-
promised. The filtering step could be done with any suitable method like t-test type
statistics: William’s (Williams, 1971 and Williams, 1972), Marcus’ (Marcus, 1976), Hu’s
(Hu et al., 2005) and modified Hu’s (Lin et al., 2007) test statistics or likelihood-ratio
test discussed by Bartholomew (1961), Barlow et al. (1972), and Robertson et al. (1988).
In the examples discussed below, we use the likelihood-ratio test that compares the ratio
between the variance calculated under the null hypothesis (the constant dose-response
profile) and the variance calculated under an ordered alternative. In case of a significant
test result, we can straightforwardly derive the direction of the monotonicity by comparing
the likelihood under upward or downward monotone alternative.

9.2.1 The δ-biclustering method

The δ-biclustering is a node deletion based algorithm introduced by Cheng and Church
(2000) to find a subset of genes and conditions with a high similarity score. The similarity
between members of a bicluster is defined in terms of the mean squared residue score.
The lower the mean squared residue score, the more homogeneous is the cluster. The
δ-biclustering method relies on the assumption that every entry in a gene expression
matrix can be expressed in terms of its row mean, column mean, the overall mean of the
expression matrix and random error. Hence, the residue of expression value of the mth
gene under condition (dose) i can be expressed as:

rmi = ymi − yMi − ymI + yMI , (9.1)

and the mean squared residue score of matrix Y and of gene m is defined as:

H(Y ) = 1
MI

M∑
m=1

I∑
i=1

r2
mi dm(Y ) = 1

I

I∑
i=1

r2
mi.

Note that the model for the residual in Equation (9.1) can be expressed in the form
of a two-way ANOVA model without an interaction term:

ymi = µ+ αm + βi + rmi, (9.2)

with µ = yMI , αm = ymI − yMI and βi = yiM − yMI .
As an illustration, we present an example of two expression matrices. Matrix A is

an example of a perfect cluster with coherent values and B is an example of a cluster
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for which the genes have coherent values except for the genes in the last two rows of
the matrix. Based on Equation (9.1), the mean squared residue score for A is zero since
the total variability of the cluster can be explained by the row means, column means and
overall mean of the matrix. However, for B the mean squared residue score is 8.11. This
means that genes in A are more similar than those in B. Suppose that the last two rows
of B are excluded, then the mean squared score becomes zero.

A =



1 2 3 4 5
2 3 4 5 6
30 31 32 33 34
32 33 34 35 36
81 82 83 84 85
91 92 93 94 95



B =



1 2 3 4 5
2 3 4 5 6
30 31 32 33 34
32 33 34 35 36
42 43 30 30 31
37 30 36 35 34


In microarray experiments, a perfect cluster/bicluster such as A is unlikely given the

noise level of the technology. It may therefore be sufficient to find clusters/biclusters of
genes whose mean squared residue scores are less than a pre-specified threshold δ. Cheng
and Church (2000) proposed the δ-biclustering method for gene expression data based on
a suit of node deletion algorithms that evolve in cycles. The algorithm starts from the
input gene expression matrix until a bicluster that satisfies the δ-criterion is found. Then
the members of this cluster are replaced with the random data and the node deletion is
applied again until another bicluster satisfying δ-criterion is found. Several cycles of the
algorithm are then applied to the data by replacing the found biclusters with random data
at the end of every cycle.

9.2.2 The δ-clustering of order restricted dose-response profiles

The goal of biclustering is to find subset of genes behaving similarly on subset of condi-
tions. However, in the usual experimental settings, the column effects β in Equation (9.2)
have an inherent ordering, which may be due to time, temperature, or, as in our example,
increasing doses of a therapeutic compound. The aim is to find clusters of genes that
have similar profiles represented by their dose-specific means. Therefore, the clustering of
whole profiles is of interest, rather than clustering according to subset of condition (which



9.2. Order restricted curve clustering 169

is output of biclustering procedures). To achieve this goal, we propose the δ-clustering, a
variant of δ-biclustering of Cheng and Church (2000).

First, we will explain the methodology of δ-clustering and then we will relate it to
the microarray experiment data. Note one important difference between the aim of bi-
clustering and clustering methods. If subsets are of interest (biclustering), appearance of
genes in more clusters is necessary property. Gene can show similarity to varying groups of
genes, depending on subset of interest. However, if whole profiles are of interest (cluster-
ing), gene should be member of one cluster of similar genes. Therefore, we are searching
for non-overlapping clusters. One consequence for procedure would be rather deleting of
already clustered genes from gene expression matrix then replacing them with random
numbers, as is done in original δ-biclustering method.

9.2.2.1 The δ-clustering method

Applying the δ-biclustering algorithm in only one dimension offers a δ-clustering method
for which the number of clusters is not required to be specified but implicitly controlled
by the degree of homogeneity assumed for a cluster. However, the choice of a δ value to
achieve a desired degree of homogeneity is not readily available (Prelic et al., 2006). We
propose a relative δ criterion, where a cluster is a subset of genes with a mean squared
residue score smaller than a certain proportion λ (0 ≤ λ ≤ 1) of the heterogeneity
in the observed data. Searching for cluster consists of two steps. First, single node
deletion algorithm is applied until heterogenous cluster is found, then nodes addition step
is performed to form final cluster (Cheng and Church, 2000). Deletion is based on gene
specific mean squared residue dm(Y ), the gene with highest dm is deleted in each step.
Node deletion is stopped, when the mean squared residue H of remaining genes is smaller
than λH(Y ). Due to nature of algorithm, some genes that actually fit in the resulting
cluster could have been thrown away during node deletion procedure. Therefore, we add
back the genes for which dm computed under reduced matrix Y ∗ is smaller than λH(Y ∗).
Then, the enriched cluster is considered complete. Before proceeding to search for another
cluster, the genes already clustered are omitted from the gene expression matrix. This is
the consequence of our interest in non-overlapping clusters. The procedure is described
in Algorithm 1 and mathematical details of the algorithm can be found in Cheng and
Church (2000).

To overcome the problem of local minima (Prelic et al., 2006), we introduce an
additional parameter φ that indicates the minimum number of genes in a cluster. Note
that for λ = 0, the algorithm searches for clusters of genes with mean squared residue
score of zero, which may result in as many clusters as the number of genes in the data
set. On the other hand, specifying λ to be one means to consider all the genes as one
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cluster. Any value of λ between zero and one reflects the degree of homogeneity expected
of a cluster. We define the algorithm to carry out this task as Algorithm 1.

Algorithm 1: δ-clustering

Input: Y , a matrix of real numbers; φ, minimum number of genes in a cluster; and λ:
0 ≤ λ ≤ 1.

Output: Set of K clusters Y sub
k , k = 1, . . . ,K. Clusters are sub-matrices with number

of rows smaller than or equal to the number of the rows of the original matrix Y .
The number of columns stays fixed, because we focus on whole profiles clustering.

Initialization: δ = λ ·H(Y ) , where H(Y ) is the mean squared residue score of the
observed data. Set Y A = Y and k = 1.

Iteration:

1. Define Y sub
k = Y A.

2. Denote dimension of H(Y sub
k ) as P × I, where P ≤ M . If H(Y sub

k ) < δ or
P ≤ φ, output Y sub

k to step 4.

3. Perform single node deletion step: delete gene with highest dm. Go to step 1 with
new (reduced) Y sub

k of row dimension P − 1.

4. Perform node addition step: add genes to Y sub
k if for their dm computed under

H(Y sub
k ) holds that dm ≤ H(Y sub

k ). Output updated Y sub
k as found cluster.

5. Update matrix Y A by deleting all the genes that are members of cluster Y sub
k . If

the matrix Y A is not empty, set k = k + 1 and go back to step 1 with new
matrix Y A.

Note that the Algorithm 1 allows to cluster subsets of genes with similar dose-response
curve shapes. It is fairly general and it can be applied to any setting of an ordered design
variable (time, temperature, dose etc.). It does not require particular order restrictions,
such as monotone gene expression profile. The order restriction has to be built in within
the first stage of our two-stage algorithm. In the following section, we discuss an algorithm
that will incorporate the monotonicity assumption through isotonic regression (Robertson
et al., 1988). Consequently, we would be able to cluster together genes with similar
monotone dose-response curve shapes. Note that the δ-clustering algorithm is usually
applied to an expression matrix after an initial filtering where genes with no significant
dose-response relationship are excluded from the analysis.



9.2. Order restricted curve clustering 171

9.2.2.2 The δ-clustering of dose-response monotone profiles

A typical dose-response microarray data Y has entries ymij corresponding to the ex-
pression level of gene m under dose i from subject/sample j. Usually, different sub-
jects/samples are used for different doses, denoted Nmi. Since only single value per
gene-dose level combination is considered for Algorithm 1, the dose-specific means are
computed for each particular gene as

ymi =
Nmi∑
j=1

ymij
Nmi

.

Computation of means is the moment when order restrictions are incorporated in the
procedure. In order to find clusters of genes with a similar monotone dose-response rela-
tionship, it is required that gene expression means under increasing doses are constrained
to be monotone. The isotonic regression (Robertson et al., 1988) is used if monotone
means are of interest. A new matrix Y ∗ of the isotonic means is obtained. The effect of
the mth row (gene) αm, the isotonic effect of the ith column (dose) (β∗i ) and the overall
mean (µ) can be defined as shown below:

µ =
∑M
m=1

∑I
i=1

y∗
mi

MI ,

αm =
∑I
i=1

y∗
mi

I − µ,

β∗i =
∑M
m=1

y∗
mi

M − µ.

The clustering algorithm is applied specifically to each direction in order to find clusters
of genes with monotone increasing or decreasing trends. The linear model for the δ-
clustering algorithm using a reduced gene expression matrix based only on the isotonic
means is given by the model in Equation (9.3) and is described in Algorithm 2.

y∗mi = µ+ αm + β∗i + r∗mi. (9.3)

Algorithm 2: Order restricted δ-clustering based on isotonic means

Input: Y ∗, a matrix of isotonic means, φ, minimum number of genes in a cluster; and
λ: 0 ≤ λ ≤ 1.

Output: Set of K clusters Y sub
k , k = 1, . . . ,K. Clusters are sub-matrices with number

of rows smaller than or equal to the number of the rows of the original matrix Y ∗.
The number of columns stays fixed, because we focus on whole profiles clustering.
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Initialization: δ = λ ·HP , where HP is the mean squared residue score of Y ∗.

Iteration:

1. Using the likelihood-ratio statistic, assign a direction to each gene.

2. Apply Algorithm 1 using the linear model in Equation (9.3) specifically to each
direction.

9.2.2.3 Robust δ-clustering

The δ-clustering method implemented in Algorithm 1 is based on the two-way ANOVA
model specified in Equation (9.2). As a consequence, the scores H(Y ) and dm(Y ) are
both computed based on residual sum of squares. As a result, similar to any least squares
method, the solution of the clustering algorithm is influenced by the presence of outlying
observations. In this section, we introduce the robust version of the δ-clustering method
which leads to a solution that is less sensitive to outliers.

The robust δ-clustering approach is based on the median polish method (Mosteller
and Tukey, 1977, Emerson and Hoaglin, 1983) and the sum of absolute residuals for the
estimation of row and column effects of the cluster and the cluster membership (instead
of the means and the residual sum of squares used for the δ-clustering method). The
median polish algorithm is a well known robust iterative procedure in which the row and
column effects are estimated by medians rather than means. Let αRm and βRi denote the
row and column effects, respectively, and rRmi the residuals. We consider the model

ymi = µR + αRm + βRi + rRmi. (9.4)

We define the matrix MP :

MP =


rR11 · · · rR1I αR1
...

. . .
...

...
rRm1 · · · rRmI αRm

βR1 . . . βRI µR

 .

The matrix MP is initialized with rRmi = ymi (i.e. αRm = βRi = µR = 0). Each iteration
consists of two steps. First, for each row m = 1, . . . ,M , we compute the row medians
and then update the matrix MP by either adding or subtracting the row medians as
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appropriate.

medrowm = median(rRm1, . . . , r
R
mI),

medrowM+1 = median(βR1 , . . . , βRI ),
rRmi = rRmi −medrowm ,

βRi = βRi −medrowM+1,

αRm = αRm + medrowm ,

µR = µR + medrowM+1

The first step removes the row effects from the main matrix, adds them into the αRm
parameters and decreases the residuals. The second step applies the same procedure to
the columns:

medcoli = median(rR1i, . . . , rRMi),
medcolI+1 = median(αR1 , . . . , αRM ),

rRmi = rRmi −medcoli ,

αRm = αRm −medcolI+1,

βRi = βRi + medcoli ,

µR = µR + medcolI+1

The two steps are repeated until there is no further change in the row and column
effects (Mosteller and Tukey, 1977). The resulting matrix contains all the parameters
and residuals of the model represented in Equation (9.4). The row and column effects
modelled by Equation (9.4) are based on medians and not the means and therefore are
more robust to outliers compared to the row and column effects modelled by Equation
(9.2).

We calculate a robust score for HR(Y ) and dRm(Y ). In contrast with the residual
sum of squares scores, discussed in Section 9.2.1, we calculate these scores using the sum
of absolute residuals given by

HR(Y ) = 1
MI

M∑
m=1

I∑
i=1
|rRmi| dRm(Y ) = 1

I

I∑
i=1
|rRmi|.

We follow Algorithm 1 and Algorithm 2 as described above, the only change is that we
use the modified residual scores, HR(Y ) and dRm(Y ).

As consequence, the relative weight of rmi is changed. A lower weight is put on
the most extreme residuals (i.e. outlying residuals) than in the δ-clustering approach.
This implies that the clusters will allow for greater deviations under the same degree of
homogeneity. This property is particularly useful when the underlaying residual distribution
has heavier tails than the normal distribution.
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Function Description
monotoneDirection() Calculates isotonic

means and classifies trends
ORCME() Clusters the genes following

the above mentioned Algorithm 1
plotCluster() Plots the profile of genes

belonging to given cluster
plotIsomeans() Plots the isotonic means

of the given gene
plotLambda() Plots the various measures

we can use to selecting the best
λ parameter value

resampleORCME() Applies the clustering Algorithm 1
for variety of λ values and
computes various measures for
λ selecting

Table 9.2: The main ORCME package functions.

9.3 Introduction to ORCME package

The δ-clustering method, discussed in the Section 9.2, is implemented in the R pack-
age ORCME. The genes are clustered according to the shapes of their profiles. Primary
focus is put on case of monotonicity assumption, although the clustering function can
be applied in more general settings. The first stage of analysis, implementation of or-
der restriction, is realized by function monotoneDirection(). It computes the isotonic
means for downward and upward trends and decides which one is the most likely using
the likelihood-ratio test. Isotonic means can be plotted with function plotIsomeans().
The δ-clustering stage is performed by the function ORCME() and its results can be visu-
alized with plotCluster(). The homogeneity parameter λ can be estimated from the
data set using the resampling procedure via function resampleORCME(). The results of
resampling can be graphically demonstrated by function plotLambda(). The summary
of the functions and their descriptions are presented in Table 9.2.

The ORCME package can be obtained from CRAN:
http://cran.r-project.org/web/packages/ORCME/index.html. The ORCME package re-
quires the package Iso (Lin et al., 2013).

http://cran.r-project.org/web/packages/ORCME/index.html
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9.3.1 Example 1: δ-clustering for dose-response data

In this section we illustrate the use of the package ORCME on the HESCA data set that is
described in Section 1.2. Note that the primary interest is to cluster genes with monotone
gene profiles and therefore, similar to Lin et al. (2009), we prefer to perform an inference
step before the actual clustering. Similar approach for order restricted, but not monotone
profiles, is discussed by Peddada et al. (2005). As mentioned above, the initial step for
dose-response microarray data is performed by applying likelihood-ratio test to establish
a dose-response relationship under order restricted constraints. Non-significant genes are
excluded and the significant genes are assigned to the monotone direction with higher
likelihood. In total, the null hypothesis was rejected for 2,910 out of the 16,998 genes
that were tested, with 1,321 upwards and 1,589 downwards regulated genes. Examples
of significantly increasing and decreasing trends are shown on Figures 9.1a and 9.1b,
respectively. Note that subset of this data set is used as example data in the package.
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(b) Downward trend.

Figure 9.1: Examples of two significant genes.

The first step in ORCME package is typically to distinguish between upward and down-
ward directions of significant genes. The function monotoneDirection() can be used
to identify the direction of the trend. The applying of monotoneDirection() can take
several minutes for large data sets.

R> library("ORCME")

R> dim(geneData)

[1] 2910 12
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R> geneData[1:5,1:6]

X1 X1.1 X1.2 X2 X2.1 X2.2

[1,] 6.923109 7.024719 7.170328 7.219297 7.076908 7.404949

[2,] 6.695870 6.687039 6.652153 6.503670 6.387794 6.698711

[3,] 3.976558 4.016001 4.631135 4.335205 4.264335 4.679793

[4,] 5.379032 4.961081 5.691166 5.193203 5.231240 5.496361

[5,] 6.097025 6.263939 6.217385 6.551656 6.632323 6.335757

R> doseData <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)

R> dirData <- monotoneDirection(geneData = geneData, doseData = doseData)

Secondly, after the determination of the trend direction, we create the R objects for
genes with upward and downward trends. The output contains list of monotone trend
direction for each gene, isotonic means for each gene and lists of isotonic means and
observed values for genes classified as upwards and downwards separately. Then, the
function plotIsomeans() can be used to produce gene-specific profile plot as is shown
in Figure 9.1.

R> Direction <- dirData$direction

R> Direction[1:5]

[1] "up" "up" "up" "dn" "up"

R> incData <- as.data.frame(dirData$incData)

R> dim(incData)

[1] 1321 4

R> incData[1:5,]

V1 V2 V3 V4

1 7.039385 7.233718 7.402824 7.795044

2 6.604206 6.604206 6.968700 8.992689

3 4.207898 4.414689 4.414689 5.006698

4 6.192783 6.396748 6.396748 7.029999

5 3.468541 3.468541 4.300872 9.086498

R> decData <- as.data.frame(dirData$decData)

R> decData[1:5,]

V1 V2 V3 V4

1 5.343760 5.306935 4.982664 4.083754

2 7.760716 7.462762 7.199676 6.812242

3 5.963389 5.963389 5.705701 5.198672
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4 7.000747 6.999338 6.815059 6.544177

5 7.155324 7.155324 6.987014 6.719862

R> obsIncData <- as.data.frame(dirData$obsincData)

R> obsIncData[1:5,1:6]

X1 X1.1 X1.2 X2 X2.1 X2.2

1 6.923109 7.024719 7.170328 7.219297 7.076908 7.404949

2 6.695870 6.687039 6.652153 6.503670 6.387794 6.698711

3 3.976558 4.016001 4.631135 4.335205 4.264335 4.679793

4 6.097025 6.263939 6.217385 6.551656 6.632323 6.335757

5 3.411178 3.776434 3.346341 3.436557 3.556874 3.283860

R> obsDecData <- as.data.frame(dirData$obsdecData)

R> obsDecData[1:5,1:6]

X1 X1.1 X1.2 X2 X2.1 X2.2

1 5.379032 4.961081 5.691166 5.193203 5.231240 5.496361

2 7.422136 7.674339 8.185674 7.330481 7.685623 7.372183

3 5.743115 5.910513 6.090424 5.753453 6.298518 5.984308

4 7.074718 7.052492 6.875032 6.778505 7.108147 7.111361

5 7.049960 7.091273 7.105668 7.175221 7.150928 7.358895

R> isoMeans <- as.data.frame(dirData$arrayMean)

R> isoMeans[1:5,]

V1 V2 V3 V4

1 7.039385 7.233718 7.402824 7.795044

2 6.604206 6.604206 6.968700 8.992689

3 4.207898 4.414689 4.414689 5.006698

4 5.343760 5.306935 4.982664 4.083754

5 6.192783 6.396748 6.396748 7.029999

R> plotIsomeans(monoData=incData, obsData=obsIncData,

+ doseData=doseData, geneIndex=10)

The main function for clustering is ORCME(). Based on the penalized within cluster
sum of squares (which will be discussed in Section 9.4), λ = 0.15 is chosen as the
optimum choice of λ for clustering the upward monotone genes (algorithm is described
in Section 9.4). In our example, for genes with upward trends we use following code (be
aware that computation can take several minutes) and the output is a matrix of genes in
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rows and found clusters in columns. Because one gene can be present only in one cluster,
there is only one TRUE value in each row.

R> ORCMEoutput <- ORCME(DRdata = incData, lambda = 0.15, phi = 2)

R> dim(ORCMEoutput)

[1] 1321 27

R> ORCMEoutput[1:5,1:6]

V1 V2 V3 V4 V5 V6

g1 FALSE TRUE FALSE FALSE FALSE FALSE

g2 TRUE FALSE FALSE FALSE FALSE FALSE

g3 FALSE TRUE FALSE FALSE FALSE FALSE

g4 TRUE FALSE FALSE FALSE FALSE FALSE

g5 TRUE FALSE FALSE FALSE FALSE FALSE

The δ-clustering method with λ = 0.15 results in 27 clusters for 1,321 upward mono-
tone genes. The first cluster contains 1,051 genes and the last ones contain only two
genes (this number was set as the minimal cluster size). The large size of the first cluster
is an inherent feature of the δ-clustering method. The first clusters from the δ-clustering
method often contain genes that are less expressed and less variable than those in the
later clusters. Figure 9.2 presents examples of clusters with upward monotone profiles.
The upper panel shows the raw gene expression values and the lower panel show gene ex-
pression values centered around gene specific means. Figure 9.2 clearly shows that genes
within a cluster have coherence in terms of similarities between their expression values and
trends. The function plotCluster() produces the isotonic mean profiles for a specific
cluster. The option zeroMean = TRUE centers the gene profiles around the gene-specific
means, as shown in the lower panels of Figure 9.2.

R> plotCluster(DRdata = incData, doseData = doseData,

+ ORCMEoutput = ORCMEoutput, clusterID = 3, zeroMean = FALSE,

+ xlabel = "Dose", ylabel = "Gene Expression")

The penalized within cluster sum of squares score suggests λ = 0.35 as the optimum
choice of λ for the downward monotone genes. The application of the δ-clustering method
results in 19 clusters for the 1,589 downward monotone genes. The first cluster contains
1,433 genes and the last cluster contains two genes. Figure 9.3 presents examples of clus-
ters with downward monotone profiles. Similar to the clustering of the upward monotone
genes shown on Figure 9.2, the clusters contain genes with coherent values. However, we
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(f) Cluster ID=9 (centered)

Figure 9.2: Examples of clusters from upward monotone genes. Top panels: Gene expression
profiles. Bottom panels: Centered gene expression profiles.
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(d) Cluster ID=2 (centered).
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(f) Cluster ID=6 (centered).

Figure 9.3: Examples of clusters with downward monotone profiles. Top panels: Gene expression
profiles. Bottom panels: Centered gene expression profiles.
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can notice situations where few members of a cluster show different dose-response trends,
although such deviations typically occur in one of the four doses in the experiment.

The robust version of the algorithm can be called with change of appropriate option
and results plotted as demonstrated before:

R> ORCMEoutputRobust <- ORCME(DRdata = incData, lambda = 0.55,

+ phi = 2, robust=TRUE)

R> plotCluster(DRdata = incData, doseData = doseData,

+ ORCMEoutput = ORCMEoutputRobust, clusterID = 4, zeroMean = FALSE,

+ xlabel = "Dose", ylabel = "Gene Expression")

The value of λ = 0.55 was selected to achieve an optimal balance between the within
cluster variability and the number of clusters. The robust algorithm was applied to the set
of 1,321 upward monotone genes resulted in 26 clusters (compared to 27 when ANOVA
was used). The first cluster contains 1,077 genes and several of the smallest clusters
containing only two genes (this number was set as the minimal cluster size). Figure 9.4
presents three examples of clusters with upward monotone profiles. Compared to the
non-robust version of the algorithm (Figure 9.2), the clusters contain genes with higher
within cluster variability. This is due to the fact that a lower penalty is given to extreme
outliers. Therefore, the method allows for higher dissimilarities within the cluster.

Finally, the results obtained from the δ-clustering method using the ORCME() package
for 1,321 upward monotone genes were compared with hierarchical clustering results in
order to understand the benefits of the δ-clustering method. The cosine similarity method
(Salton, 1988) was used to measure distance of the profiles. The cosine similarity takes
into account both scale and shape of the mean profile, a property that it shares with
the δ-clustering method. The hierarchical clustering with Ward’s linkage was applied and
resulting dendrogram was cut in order to obtain same number of clusters as produced
by δ-clustering (27 clusters). The following R code used to performed the hierarchical
clustering:

R> Y <- as.matrix(incData)

R> X <- as.matrix(Y/sqrt(rowSums(Y^2)))

R> cosD <- as.dist(1 - crossprod(t(X)))

R> out <- hclust(cosD, method = "ward.D2")

R> out <- cutree(out, ncol(ORCMEoutput))

R> id <- names(sort(table(out), decreasing = TRUE))

R> center <- function(X) t(X - rowMeans(X))

R> matplot(center(incData[which(out == id[1]),]), type = "l", col="black",

+ lty=1, axes=FALSE, xlab="Dose", cex.lab=1.5, ylab="Gene expression")
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(d) Cluster ID=3 (centered).
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(f) Cluster ID=13 (centered).

Figure 9.4: Robust δ-clustering. Examples of clusters with upward monotone profiles. Top
panels: Gene expression profiles. Bottom panels: Centered gene expression profiles.
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R> axis(2, cex.axis=1.5)

R> axis(1, at=seq(1:4), label=seq(1:4), cex.axis=1.5)

The first four clusters for both cosine similarity based hierarchical clustering and δ-
clustering are shown in Figure 9.5. The results seem to be similar, but the clusters
produced by δ-clustering seem to be more homogeneous (this difference is the most pro-
found in the fourth cluster, the panels in Figure 9.5). The δ-clustering is designed to find
clusters with similar dose-response shapes. The value of homogeneity parameter prevents
appearance of such clusters as on top right panel of Figure 9.5, as found by hierarchical
clustering method. In the context of dose-response experiments, the advantage of the
δ-clustering method is that it relies directly on the cluster-specific parameter estimates
for the monotone dose effects, βi, and gene effects, αm (i.e. Equation 9.3 and Equa-
tion 9.4) which are of primary interest for dose-response transcriptomics experiments. An
additional advantage of the δ-clustering is the use of correction mechanism (discussed in
Section 9.2.2 as node addition step) that adds additional genes into clusters that were
found in the previous step of the algorithm.
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Figure 9.5: Comparison between cosine similarity based hierarchical clustering (top panels) and
δ-clustering (bottom panels) results.

9.4 Choice of clustering parameter λ

How to estimate the optimal number of clusters is a major challenge in cluster analysis.
In most cases, the quality of such estimate determines the quality of the resulting clusters.
While the number of clusters is not required for the δ-clustering method, the optimum
choice for λ and φ is unknown and may be data dependent. We suggest that φ is fixed at
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a pre-specified value and the choice of lambda is explored based on the data (for details
see Section 9.5). The possible choice for λ can be based on the within cluster sum of
squares, which can be computed for λ in the range of zero to one. Let us assume that for a
specific value of λ the δ-clustering method results in n(λ) clusters denoted C1, . . . , Cn(λ).
Let R(λ) denote the within cluster sum of squares for this value of λ, then

R(λ) =
n(λ)∑
q=1

∑
m∈Cq

I∑
i=1

(y∗mi − µq − αm − β∗iq)2,

where µq and β∗iq are cluster specific parameters. Recall that M is the number of
genes to be clustered. The range for n(λ) lies between one and the number of genes,
i.e, 1 ≤ n(λ) ≤ M . When λ = 1, n(λ) = 1 and n(λ) ≤ M for λ = 0. Since R(λ) is a
decreasing function of n(λ) and an increasing function of λ, R(λ) will be minimal when
n(λ) = M and maximal when n(λ) = 1. Note that when n(λ) = 1, the within cluster
sum of squares equals the total sum of squares for the gene expression matrix. Our aim
is to find the value of λ when taking the trade-off between the within cluster sum of
squares and the number of resulting clusters into account. This criterion is referred to as
penalized within cluster sum of squares (pWSS) and it is defined as

pWSS(λ) = R(λ) + 2n(λ).

Following Tibshirani et al. (2001), other criteria for traditional clustering methods can
be considered as well. We can modify the Calinski and Harabasz (1974) index as

CH(λ) = B(λ)/n(λ)
W (λ)/(M − n(λ)) ,

where B(λ) and W (λ) are the between cluster sum of squares and within clusters sum
of squares, respectively. While the within cluster sum of squares is expected to increase
with increasing λ, the between cluster sum of squares is expected to decrease. Another
criterion is the Hartigan and Wong (1979) index, which is also modified as

H(λ) =
[
W (λ`)
W (λ`+1) − 1

]
· 1
M − n (λ`+1) ,

where ` is an index for the unique value of λ. The original definition for the H index is
based on the sequential increase in number of clusters. For our proposal, this is not the
case, as more than one value of λ may result in the same number of clusters. However,
the criterion can still be used to investigate the gain in within cluster sum of squares when
moving from a lower value of λ to an adjacent higher value.
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For the robust version of δ-clustering, we use a robust version for the within cluster
sum of squares:

RR(λ) =
n(λ)∑
q=1

∑
m∈Cq

I∑
i=1
|y∗mi − µq − αm − β∗iq|,

where the row and column effects are computed using median polish algorithm. Otherwise,
the procedure follows the same workflow. Note that the robust algorithm would generally
lead to lower number of clusters if pWSS is used. The use of the absolute value will result
in lower values of within cluster variability (compared to ANOVA method), therefore the
penalty term based on n(λ) will be relatively more influential compared to ANOVA case.

9.4.1 Example 2: The choice of the clustering parameter

9.4.1.1 The trade-off between clustering parameter λ and the number of clusters

The relative proportion (λ) of the mean squared residue score of the monotonised gene ex-
pression matrix is proposed as a clustering parameter for the δ-clustering method. Though
λ is bounded between zero and one, the choice of the optimum value of λ is unknown.
Similar to the resampling approach for random forest (Breiman, 1996) and ABC learning
(Amaratunga et al., 2008), we propose to generate 100 resampled data sets, with each
data set containing 100 genes randomly sampled with replacement from the reduced ex-
pression data. Reduced expression data means that the clustering is typically applied after
initial filtering of genes. For each of the resampled data sets, the δ-clustering method is
applied based on a set of values of λ ranging from 0.05 to 0.95. Note that the minimum
number of genes in a cluster is fixed at two. The resampling is done using the function
resampleORCME() and typically it can take several minutes. The output consist of within
cluster sum of squares, total sum of squares and number of clusters for particular lambda.

R> lambdaVector <- seq(0.05, 0.95, 0.05)

R> lambdaChoiceOutput <- resampleORCME(clusteringData = incData,

+ lambdaVector = lambdaVector)

R> lambdaChoiceOutput[[1]][1:10,]

lambda WSS TSS nc

[1,] 0.05 3.358893 43.61771 16

[2,] 0.10 4.448680 43.61771 10

[3,] 0.15 10.310378 43.61771 6

[4,] 0.20 8.090213 43.61771 6

[5,] 0.25 13.516462 43.61771 5

[6,] 0.30 12.772803 43.61771 5
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(d) Number of clusters (downward trends).

Figure 9.6: Within clusters sum of squares and the number of clusters as a function of λ.
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[7,] 0.35 14.942951 43.61771 5

[8,] 0.40 19.533244 43.61771 4

[9,] 0.45 22.261206 43.61771 4

[10,] 0.50 20.122818 43.61771 4

Figure 9.6 shows the relationship between the within cluster sum of squares, the
number of resulting clusters, and λ. Panels 9.6a and 9.6c show the relationship between
the within cluster sum of squares and λ for the upward and downward monotone genes,
respectively. Panels 9.6b and 9.6d show the relationship between the number of resulting
clusters and λ for the upward and downward monotone genes, respectively. The within
cluster sum of squares increases with an increase in λ, while the number of clusters
decreases with an increase in λ. It shows that a trade-off between the within cluster sum
of squares and number of clusters may be a criterion to choose an optimal λ. Diagnostic
plots were produced using the function plotLambda().

R> plotLambda(lambdaChoiceOutput, output = "wss")

R> plotLambda(lambdaChoiceOutput, output = "ncluster")

9.4.1.2 The choice of clustering parameter λ

The trade-off between the within cluster sum of squares and number of clusters is vi-
sualized in Figure 9.7. Penalized within cluster sum of squares (pWSS) is presented in
panels 9.7a and 9.7b for upward and downward monotone genes, respectively. The pWSS
reaches a minimum at λ = 0.15 for the upward monotone genes and at λ = 0.35 for
the downward monotone genes. Panels 9.7c and 9.7d show the relationship between the
CH values and λ for upward and downward monotone genes, respectively. The maximum
value of CH is reached at λ = 0.05 for both the upward and downward monotone genes.
It appears for our case study that the CH index is not an informative criterion. It favors
the λ value which results in the highest number of clusters. Panels 9.7e and 9.7f present
the relationship between the H value and λ for the upward and downward monotone
genes, respectively. The H values do not show a smooth pattern as observed from the
pWSS. However, it reaches its minimum at λ = 0.15 for the upward monotone genes and
at λ = 0.75 (note that second lowest value is at λ = 0.30) for the downward monotone
genes. Graphical output can be produced using the function plotLambda(). The option
output="..." determines which index will be plotted.

R> plotLambda(lambdaChoiceOutput, output="pwss")

R> plotLambda(lambdaChoiceOutput, output="ch")

R> plotLambda(lambdaChoiceOutput, output="h")
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(b) pWSS.
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(c) CH index.
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(d) CH index.
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(e) H index.
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(f) H index.

Figure 9.7: The choice of λ. Left panels: Upward trends. Right panels: Downward trends.
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9.5 Discussion

Gene clustering is one of the topics of interest in the analysis of the dose-response mi-
croarray experiments. The aim is to find clusters of genes with similar dose-response
relationships under an increasing dose of a therapeutic compound. In the ORCME package,
the δ-clustering method is proposed for the clustering of dose-response microarray data.
The method is motivated by the δ-biclustering method proposed by Cheng and Church
(2000), where they define a bicluster as a subset of genes and a subset of conditions with a
”high similarity score” using the mean squared residue score. For the δ-clustering method,
the δ value is modified to be data dependent. It is expressed as a relative proportion (λ) of
the mean squared error of the gene expression matrix (as if all genes are treated as if they
belong to a single cluster). The method shares some features with standard clustering
methods (it partitions genes into non-overlapping groups), but it also benefits from the
local structures of biclustering methods.

The δ-clustering procedure should be applied to a reduced expression matrix obtained
after initial (inference-based) filtering to keep only the significant genes in the cluster
analysis. The optimum choice of λ is explored with penalized within cluster sum of
squares, which offers a trade-off between the goodness-of-fit and the complexity of the
resulting clusters, for λ values ranging from zero to one. The goodness-of-fit is captured
by the within cluster sum of squares and the complexity is captured by the number of
clusters. Note that the within cluster sum of squares increases with an increase in λ and
the number of clusters decreases with an increase in λ. No optimization tool exists for
selecting an optimal value of φ. It is suggested that φ is fixed by the user bearing in mind
that φ can be interpreted as the smallest cluster size. φ is not related to the composition
of the cluster, but has a practical interpretation as the smallest cluster size of interest.
We expect that in general φ would be set to two in order to identify as many clusters as
possible. In contrast, interpretation of λ as the homogeneity parameter is more abstract
and it’s specification is therefore more difficult.

The method and package were introduced within the framework of order restricted
microarray experiments with special focus on the monotonicity assumption. As mentioned
earlier, the methodology can be applied to any other type of order restriction. Separating
the two stages allows the user to compute the means under any type of restrictions (such
as umbrella profiles), or without any restriction at all. Then, the function ORCME can
be applied without any change as described above. Moreover, the application is not
necessarily limited to microarray experiments. The δ-clustering method can be applied
to any data where whole-profile clustering is of interest. It can be other biological data,
from related fields (such as metabolomics, proteomics and RNAseq) or in the broader
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context (NMR data, immunological data or data from public health studies). In general,
the method can be applied in any situation where the aim is to cluster the observations
according to the behaviour of some response on ordered categories. As such, other areas
for potential application include, but are not limited to, environmental studies and financial
studies.

Other methods for the profile clustering are ORICC (Liu et al., 2009) and the method
implemented in the ORIOGEN package. ORICC is implemented in the R package ORIClust

and is based on the order restricted information criterion which implements the Akaike
information criterion (Akaike, 1974) idea in the case of monotonicity. The Java software
ORIOGEN is based on the idea of inference-based clustering using bootstrap resampling
described in Peddada et al. (2003). Note that both ORIClust and ORIOGEN cluster genes
with order restricted profiles, but not necessarily monotone profiles, such as umbrella
profiles. They are not designed to distinguish particular profiles within the monotone
profiles, instead they pool them in one cluster. In contrast, ORCME is a very suitable
clustering algorithm when the monotone profiles are of primary interest and subcategories
need to be distinguished.



Chapter 10
A Community Based Software
development: The IsoGeneGUI

Package

10.1 Introduction

Modelling dose-response relationship plays an important role in the drug discovery process
in the pharmaceutical industry. Typical responses are efficacy or toxicity measures that are
modelled with the aim of identifying the dose that is simultaneously efficacious and safe
(Pinheiro et al., 2006). The recent development of microarray technology introduced gene
expression level as an additional important outcome related to dose. Genes, for which
the expression level changes over the dose of the experimental drug, are of interest, since
they provide insight into efficacy, toxicity and many other phenotypes. Order restriction
is often assumed in the dose-response modelling, usually in terms of monotone trend
(Lin et al., 2012d). The restriction is a consequence of the assumption that higher dose
levels induce stronger effects in the response (either increasing or decreasing). However,
order restriction can also be related to umbrella profiles. In such a case, monotonicity
is assumed up to a certain dose level and the direction of the dose-response relationship
changes thereafter (Bretz and Hothorn, 2003).

Order restricted analysis received a lot of attention in previous years and several R (R
Core Team, 2013) packages were developed for this purpose. Specifically, the R packages
IsoGene (Lin et al., 2013 and Pramana et al., 2010) and orQA (Klinglmueller, 2010)
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IsoGeneGUI
Inference
IsoGene*

orQA

Clustering
ORCME*
ORIClust

Model Selection
goric

.Rdata
.xlsx
.txt

Output
Summary

Plots

Figure 10.1: The general structure of the IsoGeneGUI package. The ones notated by asterisk
were developed and maintained by same research group as the IsoGeneGUI, all the remaining
are work of different scientific groups.

were developed for inference, goric (Gerhard and Kuiper, 2012) for model selection, and
ORCME (Kasim et al., 2014) and ORIClust (Liu et al., 2012) were developed for order
restricted clustering of genes.

Inference consists of testing a null hypothesis of no dose-response relationship, against
an ordered alternative. Multiplicity correction needs to be applied due to the large number
of tests. The model selection framework quantifies the expected relative distance of a
given model to the true underlying model in order to select the best model among a set
of candidate models. The model selection approach is basis for the identification of the
minimal effective dose or lowest-observed-adverse-effect level (Kuiper et al., 2014). Order
restricted clustering is a data analysis approach which aims to form subsets of genes with
similar expression profiles. It is very useful when reference genes are available and the
aim of the analysis is to identify genes that behave in a similar way to the reference
genes. All the different methods were scattered across multiple specialized packages.
The IsoGeneGUI package is an envelope package in which all the methods are available
together in user friendly framework, allowing to explore the gene expression data set with
collection of state-of-the-art tools. The overview of the package structure is schematically
shown in Figure 10.1.

Not all scientists performing microarray experiment analysis are necessarily educated
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in using R. Hence, the package IsoGeneGUI (Pramana et al., 2012b) was originally cre-
ated as a graphical user interface extension of the IsoGene package. The large number of
IsoGeneGUI package downloads from the BioConductor (Gentleman et al., 2004) repos-
itory suggests that there is a demand for GUI data analysis tools for inference, model
selection, estimation and order restricted clustering. Therefore, the IsoGeneGUI package
was extended to embrace all currently available tools in one package. In addition to the
data analysis tools for inference, model selection, clustering and estimation the package
contains many tools for exporting results, their visualization and easy handling of pro-
duced figures. Therefore, IsoGeneGUI provides the most complete and simultaneously
user friendly data analysis tool dealing with order restricted microarray experiments that
is currently available in R.

In this chapter, we provide a brief introduction to the package, both underlying
methodology and its particular implementation. The general principles of GUI are ex-
plained in Section 10.2. Methods for estimation, inference, clustering and model selection
available in IsoGeneGUI package are introduced in Section 10.3. The structure of the
package is described in Section 10.4 and details about implementation of the methods are
given in Section 10.5, accompanied by multiple figures illustrating the GUI environment.
Final summarization in Section 10.6 concludes the chapter.

10.2 GUI packages

The IsoGeneGUI represents the connection of two principles in modern software devel-
opment in R: graphical user interface and envelope packages. Both of the principles aim
to improve the experience with R and provide the user with friendly and clear tool. The
general knowledge of the R software mechanisms is still necessary to use the package
properly, but large amount of details related to coding and technical part of R are not
relevant for the user of the GUI which significantly speed up learning process and simplifies
the analysis workflow.

The main advantage of GUI is intuitive specification of parameters and running the
functions with button clicks rather than typing commands. Not only it saves the user
from typos and programming mistakes, but it also allows him/her to use the functions
without knowing their exact name and command. The main disadvantage is the nec-
essary simplification of the analysis. Since most of the GUI originates from the usual
command line-based R packages, not all the functions can be easily converted into the
GUI environment. Typical example are functions that require prior specification of more
complex object as list or matrix to be used as input. The construction of such objects
would be overly complicated in windows-based environment and conflicting in targeted



194 Chapter 10. The IsoGeneGUI Package

clarity of the package. Therefore, some options of the original functions of converted
package may be omitted. Secondly, the simplification is related to omission of outputted
code. User does not see how his/her instructions were translated into the R code and
therefore cannot modify the commands for different purposes. However, both of these
simplifications are exactly following line of development of GUI: to keep the analysis as
simple and as user-friendly as possible. The users that require full flexibility of the original
packages or need to modify can always access the original packages through command
line and perform the analysis via basic R environment.

Multiple R packages are created as ensemble of the methods, providing whole range
of analysis options. Envelope packages are further extension, providing whole range of
packages within one GUI environment, without user necessarily knowing he needs to apply
multiple packages to preform analysis of interest. The Comprehensive R Archive Network
(CRAN, Hornik, 2012) and Bioconductor, two main R repositories, currently contain more
than 6,000 packages. The open source nature of R project does not allow for curation of all
added packages, so there are multiple packages dealing with same type of data or analysis
of interest, often taking slightly different perspectives, methodology and interpretation of
results. Searching for all the possibilities can be challenging for unexperienced user, as
well as evaluation of the quality of the particular package. Therefore, envelope packages
are developed. They combine several packages into one entity providing wide range of
methods and guaranteeing at least some degree of peer review of the methodology and
programming part.

Synergy of these two principles creates the envelope GUI packages, such as
IsoGeneGUI package. The final package then contains most of the available method-
ology dealing with the topic of interest, together with unified framework for evaluation,
interpretation, saving and visualization of results, everything in user friendly window-based
environment. The authors of the most of the particular original R packages were involved
in the late stage of development in order to check the performance of their package within
the IsoGeneGUI package and to advice on the exact implementation of the methods.

10.3 Order restricted analysis of continuous data

The functionality of the package can be divided into three areas: inference, clustering
and determination of the minimum effective dose. Additional tasks, such as estimation of
dose-effects, model selection and model averaging can be implemented within the package
as well.

The main goal of the inference framework is to test the null model of no dose effect
against an ordered alternative. Several test statistics for order restricted problems were
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developed over the last few decades. In the package, the following methods are available:
likelihood-ratio test (LRT, Barlow et al., 1972), Williams’ test statistic (Williams, 1971),
Marcus’ statistic (Marcus, 1976), M statistic (Hu et al., 2005) and modified M statistic
(Lin et al., 2007). Detailed elaboration about the methods, their usage and advantages
and disadvantages can be found in Lin et al. (2007) and Lin et al. (2012d). The distri-
bution of some of the test statistics cannot be derived analytically. Therefore, resampling
based inference is implemented to approximate distribution of test statistics under the null
model (Westfall and Young, 1993 and Ge et al., 2003). When the tests are performed
for a large number of genes, the multiplicity adjustment is necessary. Family Wise Error
Rate (FWER) can be controlled by Bonferroni (Bonferroni, 1936), Holm (Holm, 1979),
Hochberg (Hochberg and Benjamini, 1990) or Šidák single-step and step-down (Šidák,
1971) procedures. Alternatively, False Discovery Rate (FDR) can be controlled with the
Benjamini-Hochberg (BH, Benjamini and Hochberg, 1995) or Benjamini-Yekutieli (BY,
Benjamini and Yekutieli, 2001) procedures. A common issue in gene expression inference
is the presence of genes with relatively low variance that induce large values of the test
statistics under consideration, although the magnitude of the effect is negligible. Formally,
the genes are declared statistically significant, but from a biological point of view, these
genes will not be further investigated due to small fold change. Significance Analysis
of Microarrays (SAM, Tusher et al., 2001) was proposed as a solution for this issue by
inflating the standard error.

The IsoGeneGUI package provides two clustering approaches based on algorithms that
incorporate order restrictions. The ORCME package implements the δ-clustering algorithm
(Kasim et al., 2012) which is based on the δ-biclustering algorithm proposed by Cheng
and Church (2000). It is described in detail in Chapter 9. It is applied to isotonic means
and hence ignores the within dose variability and uncertainty about the mean estimation.
Therefore, it is advised that the algorithm is applied either to a filtered data set (i.e.
genes with fold change higher than given threshold) or on the genes showing significant
dose-response profile (i.e. after the inference step).

The ORIClust package implements the one or two-stage Order Restricted Information
Criterion Clustering algorithm (ORICC, Liu et al., 2009, Lin et al., 2012c) which is based
on an information criterion that takes into account order restrictions. The filtering step
can be addressed within the algorithm itself. The ORICC algorithm considers different
type of dose-response profiles, such as monotone profiles and umbrella profiles, that can
be used for clustering. Umbrella profiles assumes that the monotonicity holds up to a
certain dose and then the trend changes the direction. Practical example, when such
profiles are suitable, is overdosing with the drug, changing beneficial effect to the harmful
one. In contrast to the clustering approach implemented in the δ-clustering method, the
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ORICC algorithm pulls together all monotone profiles. Hence, it is not suitable for the
separation of non-decreasing monotone profiles with a true zero effect at some dose levels
(i.e. some dose-specific means are equal) from strictly increasing profiles. This is the main
difference between these two clustering algorithms proposed by Liu et al. (2009) and Lin
et al. (2012c) and the reason why they are both needed to provide a complete toolbox
for an order restricted analysis of microarray data.

A model selection based method is implemented in the package goric using General-
ized Order Restricted Information Criterion (GORIC, Kuiper et al., 2011). Similar to the
ORIC (Anraku, 1999) algorithm, the GORIC method incorporates the information about
the order constraints when calculating the information criteria. The minimum effective
dose can be selected based on GORIC weights (Kuiper et al., 2014) that can be interpreted
as posterior model probabilities (Lin et al., 2012c). Details about GORIC procedure and
model selection in general can be found in Chapter 4.

10.4 The structure of the package

The package IsoGeneGUI encompasses all the methods mentioned in previous section.
The summary is given in Table 10.1. The GUI was build using Tcl/Tk environment.

Package Analysis type Reference
IsoGene Inference Lin et al. (2012d)
orQA Inference Klinglmueller (2010)
ORCME Clustering Kasim et al. (2014)
ORIClust Clustering Liu et al. (2012)
goric Model selection Gerhard and Kuiper (2012)

Table 10.1: Packages for the analysis of order-restricted dose-response gene expression data
available on CRAN.

The IsoGeneGUI is freely available from Bioconductor repository. It can be down-
loaded and run from R with commands:

source("http://bioconductor.org/biocLite.R")

biocLite("IsoGeneGUI")

library(IsoGeneGUI)

IsoGeneGUI()

It worth noting that most of the dependencies of the package are on CRAN. Note that

http://www.bioconductor.org/packages/release/bioc/html/IsoGeneGUI.html
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in case of setting the repository with the setRepositories() command instead of the
biocLite() function, we need to select both Bioconductor and CRAN in order to install
the package properly.

The main window of the package is shown in Figure 10.2. The top tab lists several
submenus. First the submenu ’File’ (A in Figure 10.2) allows to load the data set and to
display the data values as table. The data compatible with package can be provided either
as plain text file, Microsoft Excel spreadsheet or the .RData file. The submenu ’Analysis’
(B) comprises the methods for inference, estimation and model selection, i.e. it contains
the packages IsoGene, orQA and goric. The clustering of the genes based on their
profiles can be performed in a separate submenu (C), using the methods implemented in
ORCME and ORIClust. Some of the plots can be obtained from the analysis windows, but
more general plots are listed in the visualization techniques submenu (D). The graphical
techniques listed in submenu D typically use outputs of the methods implemented in
other submenus. The plots can be saved in multiple file types. The last submenu ’Help’
(E) contains the help files for the IsoGene package, the IsoGeneGUI package and the
vignette for IsoGeneGUI. The box in the center of the main window (F) gathers the results
of the analyses and displays summary statistics of the results. Additionally, it serves as
indicator of which outputs are currently active (if analysis was run multiple times) and
will be plotted by visualization tools.

An example of the package interface is fully shown in Figure 10.3. We can see the
main window again (A), now with the box showing the properties of active data set (A1)
and a summary of results of a clustering procedure (A2). The window that was used for
clustering with ORCME method is displayed on the left side of the Figure 10.3 (B) and
the results are displayed in the table (C). One of the clusters was plotted using one of the
visualization options (D). Further examples are shown in following section.
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Figure 10.2: The IsoGeneGUI package main menu with highlighted submenus.

Figure 10.3: R with opened IsoGeneGUI package.
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10.5 Applications

The IsoGeneGUI implementation of the available methods is less flexible than in original
packages. That is natural trade-off between clarity and accessibility of options in GUI

compared to plain R packages that are more flexible but also more difficult to operate
without proficient experience with R. This section describes the implementation of the
methods for inference, clustering and model selection. The examples shown in Figure 10.4
to Figure 10.7 were obtained using the example data set dopamine that is part of the
IsoGeneGUI package. In each figure, one method is presented, accompanied with one of
available graphical displays.

10.5.1 Inference

The permutation test is implemented for all five test statistics discussed above, using the
functions from IsoGene package. For the LRT, a much faster implementation of the
permutation test is available from orQA. Both methods produce the same result (within
the sampling error), so the slower version should be used only in case that additional test
statistics are of interest. Additionally, there is an asymptotic solution available for the
LRT as well. Note that it is advised to avoid this option in case of small sample sizes.

The window that facilitates permutation test based on the IsoGene package is shown
in Figure 10.4. The left panel shows the window itself. The top part allows to select
the genes for which the raw p-values based on permutation test will be obtained. The
middle part of window offers seven multiplicity adjustment methods and computation of
significant genes based on any of the five test statistics. The last part produces three
types of plots. The right panel of Figure 10.4 shows an example of one of the plots:
the adjustment of p-value while controlling FDR. In this case, both BH and BY methods
agreed on same set of genes, but that is not necessarily case in general. For FDR equal
to 5%, we expect three false discoveries among the 62 null hypotheses that were rejected.
The left panel of Figure 10.5 shows the window for the LRT using the orQA package,
providing nearly same options as permutation method. The right panel of Figure 10.5
shows example of so called ’volcano plot’ that compares the -log(p-value) and fold change.
Note that the high value for -log(p-value) of genes with fold change around zero is often
caused by a small variance among the observations of these genes. This is an indication
that the SAM method should be applied (Lin et al., 2012d).
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Figure 10.4: Resampling based inference. Left panel: The window for performing permutation
test. Right panel: Plot of an effect of multiplicity adjustment.

Figure 10.5: Inference with orQA. Left panel: The window for performing LRT. Right panel:
Volcano plot.
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10.5.2 Clustering

Order restricted clustering is addressed by two algorithms, the δ-clustering from ORCME and
the ORICC from ORIClust. As mentioned above, the package contains two versions of the
δ-clustering method: clustering based on the least squares and a robust clustering based
on least of absolute residuals. The ORCME window and output is shown in Figure 10.3.
The window implementing ORICC is shown in left panel of Figure 10.6. All monotone and
umbrella profiles are automatically considered and the user cannot influence this setting.
However, this setting provides the flexible framework for clustering. The complete profile
can be included to the set as well. One or two-stage type of ORICC can be run and output
is automatically saved in both text and visual form. The clustering results are shown in
right panel of Figure 10.6 for case in which the top 30 genes are kept for final clustering
step.

Figure 10.6: Order restricted clustering using ORIClust. Left panel: The window for clustering.
Right panel: Plot of all the resulting clusters.

10.5.3 Model selection

The current implementation in IsoGeneGUI runs automatically GORIC for all possible
models for a given direction (upward or downward trends). Therefore, for an experiment
with control and K−1 dose levels, 2K−1 models are considered, including the null model
of no dose effect. In case that some of these models are not considered for the analysis,
the posterior weights can be easily normalized for the smaller set of models. Only one
gene at the time can be analyzed using the GORIC procedure, due to computational
intensity of the derivation of the model weights. The GORIC window is shown in left
panel of Figure 10.7. For the dopamine data, there are six dose levels and therefore,
for an upward trend that are 32 possible monotone non-decreasing models (including the
null model). We focus on the results obtained for gene 156_at (row 56 in the data set).
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The middle plot of Figure 10.7 displays the data and the model with highest weights,
M15, increasing in all doses except the last one. The right panel shows the weights for all
models, revealing that there are two models with almost equal weights (M15 and M31).
The difference between them is the the equality or increment between last two doses.

Figure 10.7: The GORIC method. Left panel: The window for performing analysis for one
gene. Middle panel: Dose-response relationship under model M15 for gene 156_at. Right panel:
GORIC weights for all the models fitted to gene 156_at.

10.6 Summary

The analysis of dose-response relationship for order restricted experiments is highly rel-
evant in the drug discovery process. Multiple R packages offer methodology within this
framework. The new version of the IsoGeneGUI package encompasses a wide range of
these packages in an unified way. The package contains data analysis tools for estima-
tion, inference, model selection and clustering. To our knowledge, it is the only software
package providing such a wide range of tools simultaneously. Additionally, the GUI im-
plementation of the package allows non-statisticians to conduct the analysis with only
minimal knowledge of R. In summary, the package IsoGeneGUI is a state-of-the-art col-
lection of methodologies covering a wide range of analyses that are meaningful for order
restricted microarray experiments. Moreover, the package can be used in a straightforward
way by the general scientific community.
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Discussion

The dose-response modelling is a common theme of this thesis, with a special focus on the
monotonicity assumption. Various aspects of dose-response modelling were introduced,
including estimation, model selection, inference, model complexity, clustering and model
uncertainty. We focused on methods suitable to be applied in microarray experiments
that are typical representatives of high dimensional problems. Multiple approaches to
analysis were explored and evaluated, grounded either in frequentist or Bayesian statistics
frameworks. The research of new methodologies focused mainly on Bayesian methods,
while frequentist procedures were used in applied work and software development.

Most of the methods introduced in the thesis are developed under order constraints.
They benefit from this partial knowledge about the dose-response shape and, as mentioned
in introduction of the thesis, there is wide range of applications when such an assumption
is suitable. However, most of the methodology presented here can be extended beyond the
order constraints, as in Chapter 8 where fractional polynomials are used. The value of the
presented analysis framework is the generality and flexibility. Straightforward modifications
allow for application in varying settings, without need of a tedious theoretical development.
This is especially evident in case of BVS, where changes in distributional assumptions or
prior knowledge are conducted via changes in hyperparameters’ distributions. Analogously,
analysis framework presented in second part of the thesis can be modified by replacing
statistical tests, filtering methods or integration methods to adjust for particular area of
application.

203
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11.1 Bayesian variable selection

The first part of the thesis was focused on Bayesian variable selection modelling and
demonstrated its suitability for conducting inference, estimation and model selection.
Our aim was to develop a complete Bayesian framework for order restricted analysis of
dose-response experiments which will be comparable to the LRT and the MCTs that are
commonly used in this setting. We consider the BVS concept appealing for two main
reasons. Firstly, it is possible to incorporate any available prior information in the model.
A better utilization of information obtained in the previous experiments is important
in current scientific reasoning. Data storage and linkage of different data sources are
currently developing rapidly, facilitating the use of prior information in daily practice.
For example, in drug development process, the data from early discovery stages can be
incorporated in later stages of the development. The second reason is the unified data
analysis framework provided by the BVS. The posterior model probabilities are obtained
simultaneously with the estimates for the unknown parameters of the model. When model
specific estimates are of interest, they can be obtained from the MCMC as transformed
variables. The overall performance of the BVS was shown to be as good as any competing
method in terms of inference and better in terms of model selection for specific profiles.

In the research presented in this thesis, the BVS was applied to independent and
normally distributed data. The BVS can be extended to more complex setting, i.e. incor-
porate multiple responses and their interrelationship, to take into account random effects
for correlated data or to use of non-Gaussian distributions. Applied in a microarray set-
ting, the posterior model probabilities can be used to cluster genes, rather than to relay
on the best model only. The computational speed for the basic BVS model is favourable
as well. The computational time will increase significantly, if permutation test is applied.
Nevertheless, the problem is ’embarrassingly parallel’, i.e. suitable to be run on multiple
cores. In fact, most of the simulations introduced in the thesis were conducted using su-
percomputers. However, it may remain challenging how to deliver the method to a broad
scientific public that does not have access to such resources. Ongoing research suggests
that the computational time will cease to be an issue in close future and the BVS model
may be applied on daily basis on high dimensional data sets. Alternative option is the use
of cloud computing. The conversion of the BVS model into user friendly environment in R
that would be suitable for application in high dimensional setting is currently an ongoing
research line.

The BVS framework provides interesting challenges for future research. Firstly, the
specification of the variable selection component of the model can be modified. The
approach introduced in this thesis followed Kuo and Mallick (1998), with independent
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variables δh and zh. The advantage of this approach is absence of any tuning parameter,
but it suffers from poor mixing of MCMC chains if the prior on δh is too vague. In our
case, truncation of the non-informative prior distribution of δh with constant A solves
this issue, but implies necessity of the determination of constant A in a way that does
not influence the results of the analysis. There is often enough knowledge about range of
possible values of response to set A prior to experiment takes place. Alternatively, A can
be set as the maximum of response in the data set or maximal increment observed in the
data.

Alternative specification of priors introduce dependency between δh and zh. Stochastic
search variable selection (George and McCulloch, 1993) can be applied that specifies δh
as following a mixture of normal distributions, i.e. δh ∼ (1− zh)N(0, τ2) + zhN(0, κτ2).
Truncation in zero will be added in our case. Parameters τ2 and κ are data dependent
and need to be tuned by the user. Such tuning may be complicated task and it is not
applicable for high dimensional data, but it can be applied for the single experiment
setting. Elaborated discussion about possible specification of variable selection can be
found in O’Hara and Sillanpää (2009).

The prior independence among increments δh, h = 1, . . . ,K can be relaxed, as seen
for example in Ohlssen and Racine (2015). The overall increment δ can be sampled first
and then separated into the dose-specific increments. Naturally, this approach reflects the
reality better than independence of increments, but its disputable if there is any practical
gain based on this change. Additionally, the prior distributions of hyperparameters can be
modified in order to improve the analysis. The hyperparameters for distribution of δh may
be omitted and non-informative distribution for δh themselves can be used. Alternatively,
’weakly informative priors’ introduced by Gelman (2006) can be used for hyperparameters.
Such priors use half-t family of distributions instead of inverse-gamma distribution. They
imply very vague information about the parameter, but simultaneously allow to restrict for
feasible parameter values only. Finally, if a strong prior scientific knowledge is available,
investigation of most efficient way how to incorporate it in the BVS model can be an
interesting topic for a future research.

Another topic for future development is related to posterior expected complexity pEC.
A model selection procedure within the Bayesian framework is a challenging task. The DIC
is commonly used, but it suffers from several issues, as dependency on reparametrization,
lack of consistency and generally weak theoretical justification of the criterion (Spiegel-
halter et al., 2014). Hence, its suitability is limited. The BVS model does not suffer
from such problems, because the variable selection approach uses indicator variables zh
that unambiguously determine particular model. Therefore, posterior model probabilities
can be obtained and consequently used for model selection. However, such an approach
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works only if a one-to-one relationship holds between configurations of the z and the can-
didate models. This is not a case if two different sets of models should be compared or if
the set of models is not hierarchically structured. In former case, the posterior expected
complexity may lead to a solution, representing complexity given the set of models, the
data and prior distribution, while accounting for model uncertainty (within each set of
models). The posterior complexity for each set may be computed, transformed into the
information criterion by adding the likelihood term and compared in order to select which
set of models should be preferred. However, the dependency of such criterion on prior
distribution needs to be carefully investigated. Additionally, it is not clear how to use
pEC to compare individual models that are not hierarchically structured.

As we mentioned before, the main goal in the first part of the thesis was to develop
the BVS model as an alternative to frequentist analysis of dose-response experiment,
while benefiting from Bayesian framework characteristics. In terms of inference, there
is a connection between multiple contrast tests and the BVS model. While achieving
generally high power, the BVS provides complete information about posterior distribution
of the models being the true underlying model. The flexibility of BVS allows to extend
the framework to topics that are typically addressed by frequentist method. For example,
the ratio parameters can be modelled instead of dose-specific means, as in Lin et al.
(2012a). The ratio of dose-specific means is important quantity because of its biological
interpretation as relative effect of the dose compared to the baseline value. Biological
significance may be incorporated in the analysis by testing if the ratio of the means is
higher (or lower) than some prespecified value ω > 1 (ω < 1, respectively).

As mentioned above, clustering of genes in microarray experiments based on informa-
tion criteria (Lin et al., 2012c) can be addressed via posterior model probabilities. In its
simplest form, gene can be grouped according to the model that has highest posterior
probability. Additionally, we can cluster genes based on whole distribution of posterior
model probabilities. For each gene, there is vector of posterior model probabilities than
can be used in order to cluster together genes with similar distribution of probability of
being true model across all possible models. This clustering is inherently different than
clustering based on best model only and also than clustering based on dose-specific means
that does not take into account variability. Alternatively, biclustering methods (Madeira
and Oliviera, 2004 and Kasim et al., to be published 2016) can be applied. The resulting
biclusters contain genes that have same posterior model probability for subset of models,
up to a multiplicative constant. Biclustering is useful if only similarity over subset of
models is important and in case that only the ratios of certain model probabilities are of
interest.

Finally, the method for specification of the threshold using the conditional FDR (New-
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ton et al., 2007) was described in Section 2.5.3. As discussed in Section 2.7, the cFDR
control does not extend to the FDR control, so the interpretation of the results of the
cFDR method interpretation can be confusing. The method that would determine the
threshold based on the FDR control would be very useful tool in a high dimensional set-
ting. In this thesis, the permutation test was used instead which allows for the FDR
control using the resulting p-values. The method that would allow for FDR control using
P (gr|data) itself could lead to significant reduction of computational speed.

11.2 Toxicogenomics

The analysis of Japanese Toxicogenomics Project data sets provides an analysis workflow
for translational research. It can be extended to any platform and context and different
modules in the framework can be modified (e.g. underlying model, multiplicity correc-
tion, performed statistical tests, selection procedure, clustering methods, etc.). The main
aim of the second part of the thesis was to illustrate such complete framework including
the interpretation of the results. The framework is of exploratory nature, so the results
need further evaluation, using scientific knowledge and follow-up experiments. If group of
translatable/disconnected genes would be identified with high confidence, a further exten-
sion of the workflow could be the prediction of the effects on one of the platforms/species
using the other. Such a step could reduce the number of animals per experiment and/or
the number of experiments.

11.3 Software development

A development of a methodology for data analysis needs to be accompanied by providing
of the acquired knowledge to the scientific community, both in terms of publication and
software products. Therefore, multiple software packages were produced in order to sup-
port the development, with main representatives being ORCME package and IsoGeneGUI

package. The ORCME package provides cluster analysis based on the δ-clustering method.
It is flexible tool for exploratory analysis of microarray data, identifying genes with similar
profiles.

The development of the second generation of the IsoGeneGUI package was based on
a community based software development. The idea was to develop an envelope package
that includes all available software in R related to the analysis of dose-response experi-
ments. The simplicity of GUI allows it to be used by researches with limited knowledge
of R and therefore to spread the valuable methodology beyond the borders of statistical
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community. The envelope nature ensures that state-of-the-art methodology is available,
putting together various groups of researches and offering as complete tool as possible.

Both concepts can be extended further. The GUI can be integrated into the ready-to-
use platforms, such as RCommander (Fox, 2005), that makes their use even simpler. Recent
development of Shiny framework (Chang et al., 2015) allows to create R based interactive
applications that are run in web browser. Typically, they can reside on server, so distant
user can access them without necessity of installing R or knowing how to work with it.
Naturally, such approaches can reduce flexibility, but support user friendly tools suitable for
scientists without deep knowledge of statistics. Envelope packages demonstrate collective
effort of broader scientific community. Therefore, it may be challenging to maintain them
as time goes by. The changes in packages that envelope package depends upon may
imply modification of the envelope package. Similarly, post hoc addition of new package
into the envelope package may be demanding. Solution to these issues is standardization
of the development processes and communication of standard development procedures to
the scientific community. Then, the preparation of the codes can be done by authors of
particular packages instead of maintainer of the envelope packages who merely combines
all materials. Excellent example of flexible standards for envelope packages can be seen
in the REST R package (De Troyer, 2015).
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Appendix A
Validation of Fractional
Polynomial Method in the
Context of the Disconnect
Analysis

In order to evaluate a performance of the modelling approach proposed in Chapter 8, two
simulation studies were conducted. As a measure of performance, we estimated sensitivity
and specificity. The specificity represents the rate of genes with no disconnect that are
correctly not identified as disconnected genes (i.e. related to Type I error). The sensitivity
represents the rate of truly disconnected genes being identified as disconnected (i.e. power
of the method). The closer to one both quantities are, the better is the performance of
the method. The first simulation study was focused on evaluation of sensitivity and
specificity on the single gene expression experiment. The second study generated the
data set resembling the structure of the data in the TGP and focused on the multiplicity
adjustment, i.e. testing on thousands of genes simultaneously.
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Table A.1: Simulation settings. The first two columns determine the type of profile and
identification of the setting. Following two columns states explicitly the model used for particular
setting and the values of parameters in model (8.1) (for case of p1 6= p2), in vitro in upper panel
of the table and in vivo in bottom panel. The specification of parameters p1, p2 is omitted if
β1 = 0 or β2 = 0, respectively.

Polynomial Setting Model in vitro Parameters in vitro
Null model A Yij = 0 + εij β0 = β1 = β2 = 0
Linear B Yij = (1− Q

3 ) + Q
3 D + εij β0 = 1− Q

3 , β1 = Q
3 , β2 = 0, p1 = 1

C Yij = 0 + εij β0 = β1 = β2 = 0
D Yij = 0− Q

3 + Q
3 D + εij β0 = −Q

3 , β1 = Q
3 , β2 = 0, p1 = 1

2nd order B2 Yij = 1 + Q
50D

2 + Q
5 D

−3 + εij β0 = 1, β1 = Q
50 , β2 = Q

5 , p1 = 2, p2 = −3
C2 Yij = 0 + εij β0 = β1 = β2 = 0
D2 Yij = 2

3 + Q
50D

2 + Q
5 D

−3 + εij β0 = 2
3 , β1 = Q

50 , β2 = Q
5 , p1 = 2, p2 = −3

Polynomial Setting Model in vivo Parameters in vivo
Null model A Yij = 0 + εij β0 = β1 = β2 = 0
Linear B Yij = (1 + 4Q

3 )− Q
3 D + εij β0 = 1 + 4Q

3 , β1 = −Q
3 , β2 = 0, p1 = 1

C Yij = 4Q
3 −

Q
3 D + εij β0 = 4Q

3 , β1 = −Q
3 , β2 = 0, p1 = 1

D Yij = 0 + εij β0 = β1 = β2 = 0
2nd order B2 Yij = 1− Q

50D
2 − Q

5 D
−3 + εij β0 = 1, β1 = − Q

50 , β2 = −Q
5 , p1 = 2, p2 = −3

C2 Yij = − 2
3 −

Q
50D

2 − Q
5 D

−3 + εij β0 = − 2
3 , β1 = − Q

50 , β2 = −Q
5 , p1 = 2, p2 = −3

D2 Yij = 0 + εij β0 = β1 = β2 = 0

A.1 Simulation study I: Performance of proposed
method

A.1.1 Simulation settings

In the first simulation study, data were generated according to seven possible scenarios.
The first setting (A in Table A.1) corresponds to the null model of no disconnect between
two data sets. The mean profile of the other settings are presented in Table A.1 and
shown in Figure A.1 (for choice Q = 1.5). They are generated either under a linear model
(B, C, D) or a second order fractional polynomial (B2, C2, D2). The settings correspond
to three groups described in the Section 8.4: genes with opposite direction of effect of
the dose for in vitro and in vivo data (B, B2), genes with dose effect only for in vivo data
(C, C2) and dose effect only for in vitro data (D, D2). For each setting, N = 10, 000
data sets were generated.

For setting A, the data were generated under varying noise, i.e. with εij ∼ N(0, SD2),
where SD = 0.01, 0.14, 0.25, 0.5, 1, 1.5. Additionally, the data were generated twice, once
with same amount of observations per dose as original TGP data (two for in vitro and
three for in vivo) and once with four observations per dose in both data sets.
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Figure A.1: The profiles used in the simulation study: means used for in vitro (solid line) and
in vivo (dashed line) for the four simulation scenarios. In scenario ’A’, both profiles overlap each
other.

All the remaining settings (B, C, D, B2, C2, D2) were generated with value of Q =
1.5, 2, 3 and εij ∼ N(0, 0.142). For settings B, C, D, the constant Q equals the fold
change (as defined in Chapter 8, i.e. maximal difference of dose-specific means between
the two data sets). The actual fold change for settings B2, C2 and D2 resulting from
values of Q is given in Table A.4 below. The standard deviation was used as SD = 0.14
which approximately correspond to 75% quantile of all variances across all compounds,
both for in vitro and in vivo data. The same number of observations as in the original
TGP data set were used.

When the data were analysed, both test for dose-response and test for interaction were
applied with level of significance 0.1. For all the settings was conducted analysis starting
with in vitro data set, except for settings C and C2, where analysis starting from in vivo
data set was conducted (otherwise, no disconnect would be detected, because there is no
signal for in vitro data in C and C2).

The results for sensitivity and specificity for all scenarios are shown in Table A.2,
Table A.3 and Table A.4, respectively. The specificity of separate LRTs (Table A.2) is
lower than value 0.9. It is caused by the AIC procedure that selects a model with the
optimal powers. The small amount of observations, especially for in vitro data, causes
fitting more complex models than necessary. However, we can see that using both tests
together (column ’Disconnect’) corrects specificity of disconnect determination (given
the 0.1 significance level used for testing). Additionally, a small increase of observations
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number per dose to n = 4 would improve the performance of individual tests.
The high sensitivity for LRT in case of linear model is apparent for any setting (Ta-

ble A.3). The effect of fold change of one (that was considered as lowest important in
our analysis) is found in all N = 10, 000 simulated data sets. Similar pattern can be de-
tected, when data were generated according to second order fractional polynomial models
(Table A.4). The detection of disconnect is driven by dose-response detection mainly,
because interaction is easily detected in all settings. For all settings, we can see high sen-
sitivity for the values close to fold change of one which was the lowest effect of interest
in our analysis and approaching maximal possible sensitivity already at fold change less
than two. The higher sensitivity in setting C2 compared to D2, while having same fold
change, occurs due to the dose-response effect estimated using three observations per
dose in vivo instead of only two for in vitro data set. The same sensitivity for model B2
and C2 is given by fact that their dose-response profile in vitro is parallel, i.e. the LRT
tests the same mean structure.
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Table A.2: Specificity of the methodology for single experiment. The first columns determine
the type of profile, number of observations per dose and the value of SD that was used to
generate noise. For number of observations, TGP denotes same setting as in original data set
and n = 4 four observations for both data sets. Following three columns show specificity of
LRTs. Third column shows specificity of LRT for significance of dose-response relationship in
vitro. Fourth column shows specificity of LRT for significance of interaction, i.e. projection of
optimal fractional to both data sets. Last column represents test for disconnect, i.e. gene being
significant in both LRTs for dose-response and interaction. All tests use significance level 0.1.
Results of each row are based on mean of 10,000 experiments.

Profile n SD in vitro dose-response Projection of FP Disconnect
A TGP 0.01 0.8 0.81 0.9

0.14 0.8 0.81 0.9
0.25 0.8 0.81 0.9
0.50 0.8 0.81 0.9
1.00 0.8 0.81 0.9
1.50 0.8 0.81 0.9

n = 4 0.01 0.85 0.93 0.98
0.14 0.85 0.93 0.98
0.25 0.85 0.93 0.98
0.50 0.85 0.93 0.98
1.00 0.85 0.93 0.98
1.50 0.85 0.93 0.98
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Table A.3: Sensitivity of the methodology for single experiment with underlying linear model.
The first two columns determine the type of profile and true underlying effect. Following three
columns show sensitivity of LRTs. Third column shows sensitivity of LRT for significance of
dose-response relationship in vitro (B, D) or in vivo (C). Fourth column shows sensitivity of LRT
for significance of interaction, i.e. projection of optimal fractional to both data sets. Last column
represents test for disconnect, i.e. gene being significant in both LRTs for dose-response and
interaction. All tests use significance level 0.1. Results of each row are based on mean of 10,000
experiments.

Profile Fold change Dose-response Projection of FP Disconnect
B 0.75 0.995 1.000 0.995

1.00 1.000 1.000 1.000
1.50 1.000 1.000 1.000

C 0.75 1.000 1.000 1.000
1.00 1.000 1.000 1.000
1.50 1.000 1.000 1.000

D 0.75 0.995 1.000 0.995
1.00 1.000 1.000 1.000
1.50 1.000 1.000 1.000
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Table A.4: Sensitivity of the methodology for single experiment with an underlying second
order fractional polynomial model. The first two columns determine the type of profile and
true underlying effect. Following three columns show sensitivity of LRTs. Third column shows
sensitivity of LRT for significance of dose-response relationship in vitro (B2, D2) or in vivo (C2).
Fourth column shows sensitivity of LRT for significance of interaction, i.e. projection of optimal
fractional to both data sets. Last column represents test for disconnect, i.e. gene being significant
in both LRTs for dose-response and interaction. All tests use significance level 0.1. Results of
each row are based on mean of 10,000 experiments.

Profile Q Fold change Dose-response Projection of FP Disconnect
B2 1.50 0.969 0.609 1.000 0.609

2.00 1.293 0.796 1.000 0.796
3.00 1.939 0.976 1.000 0.976

C2 1.50 1.151 0.802 1.000 0.802
2.00 1.313 0.951 1.000 0.951
3.00 1.636 0.999 1.000 0.999

D2 1.50 1.151 0.609 1.000 0.609
2.00 1.313 0.796 1.000 0.796
3.00 1.636 0.976 1.000 0.976
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A.2 Simulation study II: Multiplicity adjustment

The second simulation study mimics the structure of the TGP experiment. In total,
M = 6, 000 genes were generated to create one data set. Half of them followed the null
model for both in vitro and in vivo. The other half exhibits clear dose-response effect in
vitro and disconnect between in vitro and in vivo. Specifically, the model used for in vitro
was second order polynomial model

Yij = 2
25D

2 + 2
5D
−3 + εij .

The same model was used in vivo, disconnect was caused by increasing mean in second
dose by one and decreasing mean in last dose by 0.5. The mean profile of the setting is
displayed in left panel of Figure A.2. Such setting induce the fold change of one that was
the minimal fold change of interest in our analysis. The SD = 0.14 was used, as in first
simulation study, and the number of observations per dose was same as in TGP data set.
Within whole data set of M genes, LRTs for dose-response and interaction were applied
for each gene. The resulting p-values were adjusted for multiplicity using Benjamini-
Hochberg procedure to control false discovery rate (BH-FDR). The disconnect of the
gene was determined based on significance in both of the LRTs, with level of significance
0.1 used. The sensitivity and specificity was computed as amount of correctly identified
genes from both categories (null model and true disconnect). The whole procedure was
repeated for N2 = 1, 000 simulated data sets, computing sensitivity and specificity for
each of them.

ROC curve of one data set is shown in middle panel of Figure A.2, showing how the
sensitivity and specificity changes if significance level varies. For all N2 = 1, 000 simulated
data sets, average sensitivity and specificity were and 0.951 and 0.932, respectively. Min-
imal values across all 1,000 data sets were 0.930 for sensitivity and 0.915 for specificity,
suggesting consistently very good behaviour of the method when multiplicity adjustment
is applied. The boxplot of all the values of sensitivity and specificity for 1,000 simulated
data set is shown in right panel of Figure A.2. The specificity is well controlled, always
above value of 0.9, while sensitivity is maintained very high.

In summary, both simulation studies suggest very good behaviour of the method with
high sensitivity and specificity for effect of interest (fold change more than one).
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Figure A.2: Left panel: The profiles used in the second simulation study: means used for in
vitro (solid line) and in vivo (dashed line). Middle panel: Sensitivity and specificity of one of the
data sets when varying the significance level threshold. Right panel: Boxplot of sensitivity and
specificity of all 1,000 simulated data sets.





Samenvatting

Deze thesis focust zich op dosis-respons relaties in de ruime zin. De beschreven metho-
den kunnen toegepast worden op ieder experiment met categorische blootstelling en een
continue respons, zoals bijvoorbeeld bij de ontwikkeling van medicijnen en ecologische of
economische studies. De variabelen gerelateerd aan deze blootstelling kunnen tijd, dosis,
leeftijd, temperatuur enz. zijn. De natuurlijke orde is de belangrijkste eigenschap van het
experiment.

De beschreven methoden in deze thesis bevinden zich op de grens van biostatistiek
en statistische bio-informatica. Hoewel de focus vooral ligt op de algemene methodolo-
gisch ontwikkeling, werd het onderzoek uitgevoerd met data van hoge dimensionaliteit
in het achterhoofd. De analyse uitbreiden naar data van hoge dimensionaliteit impliceert
dat de analyse van een enkel experiment overgedragen dient te worden naar een situatie
waarbij duizenden experimenten met dezelfde studie-opzet gelijktijdig uitgevoerd worden.
In dergelijk geval is het onmogelijk om ieder experiment te evalueren door gebruik te
maken van visualisatie technieken of meerdere modellen te fitten zoals typisch gedaan
wordt voor een enkel experiment. Omwille hiervan zouden geautomatiseerde methoden
die duidelijke beslissingsregels bieden (en bij voorkeur rekening houden met modelonze-
kerheid) de voorkeur moeten krijgen. Immers, in het geval van duizenden experimenten
moeten multipliciteitscorrecties gebruikt worden voor een goede bescherming tegen arti-
ficiële bevindingen, veroorzaakt door toeval. Een voorbeeld van dergelijke techniek is de
false discovery rate met multipliciteitscorrectie, een typische methode die toegepast wordt
in transcriptomica.

De thesis omvat drie delen. Het eerste deel is gewijd aan de methodologische ontwik-
keling terwijl de andere twee delen focussen op toepassingen binnen het domein van de
bio-informatica. De structuur van de data en de modelleringsaanpak, i.e. dosis-respons
experimenten en een order-restrictie modelleringsaanpak, vormen de rode draad tussen de
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drie delen.
In het eerste deel van de thesis beschrijven we moderne statistische methoden op een

algemene wijze zodat de methodes algemeen toepasbaar zijn. We concentreren ons zo-
wel op de theoretische fundamenten als op de empirische evaluatie van de voorgestelde
methodologie. De eigenschappen van deze methoden zijn onderzocht door uitgebreide si-
mulatiestudies met verschillende situaties. De besproken methodologie is het Bayesiaanse
variabele selectie (BVS) kader in geval van order-restrictie modellering. Het voordeel
van de BVS techniek is het schatten en de model selectie gelijktijdig uitvoeren, rekening
houden met onzekerheid omtrent de modellen. Deze techniek is uitgebreid met inferentie
op basis van technieken die gebruik maken van het hertrekken van de steekproef. Aldus
vormt het een verenigd kader zonder de noodzaak om enige post hoc methoden toe te
moeten passen. Meer nog, de Bayesiaanse natuur laat toe om voorafgaande wetenschap-
pelijke kennis in rekening te brengen wanneer ze voor handen zijn. Zoals getoond zal
worden, presteren de operationele karakteristieken van de methodologie even goed als de
beschikbare frequentistische technieken.

De BVS techniek wordt over verschillende hoofdstukken van het eerste deel van de
thesis besproken. Hoofdstuk 2 bevat de inleiding tot het onderwerp. Hoofdstuk 3 intro-
duceert een inferentie procedure gebaseerd op het hertrekken van de steekproef binnen
het BVS kader. Model selectie en de bepaling van de minimale effectieve dosis is het
onderwerp van Hoofdstuk 4. De robuustheid van de inferentie, de selectie en de schatting
ten opzichte van de specificatie van de priors is onderzocht in Hoofdstuk 5. Daarenbo-
ven worden de model complexiteit en model eigenschappen gedefinieerd en geanalyseerd
binnen het BVS modelleringskader in Hoofdstuk 5. Tot slot behandelt Hoofdstuk 6 in
detail de opzet van de simulaties uit vorige hoofdstukken en toont bijkomende simulatie
resultaten.

Het tweede deel van de thesis focust zich op de analyse van een bepaalde databank.
Het doel is de ontwikkeling van de workflow om complexe data sets van meerdere bron-
nen te analyseren en er kennis uit te extraheren. In plaats van nieuwe methodologie te
ontwikkelen, is het de bedoeling om gekende en gevalideerde methoden op een nieuwe en
efficiënte wijze te gebruiken. Hoewel de aandacht gevestigd wordt op de analyse van een
bepaalde databank, is het mogelijk om de workflow te veralgemenen naar gelijkaardige
problemen binnen het onderzoeksdomein.

De studie die geanalyseerd wordt in het tweede deel is een grote toxicogenomische
databank. Twee analyse kaders worden gepresenteerd en ieder focust van een andere
visie op het translationeel onderzoek. In de eerste analyse ligt de interesse in de iden-
tificatie van genen die op dezelfde wijze reageren in twee gerelateerde datasets. Dit in
tegenstelling tot de tweede analyse, waar de interesse ligt bij de identificatie van genen
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die sterke verschillen tonen tussen twee datasets. Beide groepen van genen zijn interes-
sant voor verschillende onderzoeksvragen en hun identificatie zorgt voor lichtjes verschil-
lende statistische problemen. Hierdoor variëren de gebruikte methodes van order-restrictie
dosis-respons modelleringstechnieken tot de fractionele polynomen die de aanname van
monotoniciteit tot op bepaalde hoogte versoepelen. De biclustering en de visualisatie van
de data wordt gebruikt om interessante patronen in de data bloot te leggen. Als gevolg
van de resultaten leggen we een sterke nadruk op de interpretatie van de resultaten en de
identificatie van kleine interessante groepen, dit terwijl we de grote omvang van de data
in rekening brengen. Het is belangrijk in het achterhoofd te houden dat beide analyses
verkennende gereedschappen zijn die starten van algemene onderzoeksvragen en leiden
tot een verzameling van genen. De resulterende genen blijken gewenste eigenschappen
of een relatie tot de respons te bezitten, maar door de verkennende natuur van de al-
goritmes, dient wetenschappelijke kennis bekeken te worden en bijkomende bevestigende
experimenten uitgevoerd te worden om de bevindingen te evalueren. De studie toont hoe
statistische technieken succesvol toegepast kunnen worden op grote data van meerdere
bronnen met uitdagende interpretatie.

De analyses van de toxicogenomische projecten worden in twee hoofdstukken gepre-
senteerd. In Hoofdstuk 7 wordt gezocht naar de genen die vertaalbaar zijn van in vivo
rat naar in vitro mens data. In Hoofdstuk 8 worden genen met verschillende effecten over
platformen, d.w.z. in vitro rat en in vivo rat, geïdentificeerd.

Tijdens het onderzoekswerk gerelateerd aan het PhD project werden grote inspannin-
gen gedaan om data analyse technieken te voorzien voor de wetenschappelijke gemeen-
schap. De software ontwikkeling gebeurde in R (R Core Team, 2014), wegens zijn hoge
kwaliteit, brede beschikbaarheid van hulpmiddelen en de vrije beschikbaarheid van R. In
het derde deel van de thesis presenteren we twee R pakketten. Het eerste R pakket, ORCME,
wordt gepresenteerd in Hoofdstuk 9, waarmee men order-restrictie clustering voor micro-
array experimenten kan uitvoeren, het kader dat typisch gebruikt wordt in de verkennende
fase van de data analyse. Het pakket is beschikbaar in de Comprehensive R Archive Net-
work (CRAN, Hornik, 2012) bewaarplaats en de boogde gebruikers zijn wetenschappers
met minstens een basis kennis van R. Het tweede pakket IsoGeneGUI, geïntroduceerd in
Hoofdstuk 10, is anderzijds geïmplementeerd als een Grafische Gebruikers Interface en is
beschikbaar in Bioconductor voor een bredere gemeenschap van wetenschappers werkend
op biostatistische problemen. De punt-en-klik natuur van het pakket maakt het bruikbaar
voor wetenschappers met zeer beperkte kennis van R.
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