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Stochastic thermodynamics is formulated for variables that are odd under time reversal. The invariance under
spatial rotation of the collision rates due to the isotropy of the heat bath is shown to be a crucial ingredient. An
alternative detailed fluctuation theorem is derived, expressed solely in terms of forward statistics. It is illustrated
for a linear kinetic equation with kangaroo rates.
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I. INTRODUCTION

The second law of thermodynamics is arguably one of the
most general laws of nature. While originally stipulating the
increase of total entropy in a closed isolated system �Stot � 0,
it was reformulated by splitting the entropy change �S of an
open system into the sum �S = �iS + �eS of a nonnegative
entropy production term �iS � 0 plus an entropy exchange
contribution �eS. In particular when in contact with a single
heat bath at temperature T , the exchange is given by �eS =
Q/T , where Q is the amount of heat into the system. Over
the past two decades, a much deeper formulation of the second
law has been achieved by focusing on small open systems. One
can still define all the above-mentioned quantities, but they
will now fluctuate from one measurement to another. Using
lower case to distinguish the values from the nonfluctuating
macroscopic counterparts, one has �s = �is + �es, with
�es = q/T . The second law is replaced by a symmetry
property for the probability density P (�is) to observe an
entropy production �is. In its simplest form, the so-called
fluctuation theorem states that the probability for observing an
entropy increase is exponentially larger than that for observing
a corresponding decrease, P (�is) = exp(�is/kB)P (−�is),
being kB Boltzmann’s constant. The second law 〈�is〉 � 0
follows as a subsidiary result. The fluctuation theorem has
been obtained at different levels of description, ranging from
the microscopic laws [1,2], over thermostated systems [3,4]
to stochastic dynamics [5–7]. “Stochastic thermodynamics” is
easy to formulate in the context of a Markovian description,
both at the level of a Langevin and Fokker-Planck equation or
the more general Master equation [8–11], and its predictions
have by now been confirmed by numerous experiments. The
focus has been mostly on overdamped systems with variables
that are even under time-reversal. However, for variables,
such as velocities instead of positions, it was claimed that
the theory becomes more involved and hence loses some of
its appeal [12,13]. In this paper, we show that this is not the
case if the transition probabilities obey, in addition to detailed
balance, a symmetry property, reflecting the fact that the heat
bath is not in motion with respect to the system and that it
is isotropic. To demonstrate the role and importance of this
condition, we develop the stochastic thermodynamics, both at
the ensemble and trajectory level, for linear kinetic equations,
a field for which there is a large potential interest. We derive the

fluctuation theorem, including a new version expressed only in
terms of probabilities computed from the forward process. As
an application, we provide explicit illustrations for the special
case of kinetic “kangaroo” equations [14,15]. The role of a
general parity symmetry condition similar to the one used
here has also recently been pointed out in the context of the
quantum Jarzynski equality [16], in the sense that the equality
does not hold if parity is violated.

II. STOCHASTIC THERMODYNAMICS FOR
KINETIC EQUATIONS

We consider the simplest scenario of a system consisting of
a single stochastic Maxwell-Lorentz particle, cf. Refs. [17,18]
for a detailed analysis of a similar model, with mass m,
velocity v at position x in the constant external force field F

(acceleration a = F/m), and in contact with a single isotropic
heat reservoir at rest with temperature T . The stochastic
dynamics of the particle is characterized by a probability
density P (x,v; t), obeying the linear kinetic equation:[

∂

∂t
+ v

∂

∂x
+ a

∂

∂v

]
P (x,v; t)

=
∫

dv′[k(v′ → v)P (x,v′; t) − k(v → v′)P (x,v; t)]. (1)

Here k(v′ → v) is the transition probability per unit time (rate)
for a change of velocity from v′ to v. A stochastic kinetic
description has also been studied in detail for the so-called
adiabatic piston, for recent references see Refs. [19,20].

Formulation of the first law at the trajectory level is
straightforward. The energy e(t) of a particle in the constant
external force field F is

e(t) = −Fx(t) + 1
2mv2(t), (2)

where x(t) and v(t) are the position and velocity of the particle
at time t in the given realization. The “ensemble” version of the
first law is obtained by averaging with respect to the probability
density P (x,v; t):

E(t) = 〈e(t)〉 = −F 〈x(t)〉 + 1
2m〈v2(t)〉. (3)

In-between collisions, potential energy is converted into
kinetic energy following Newton’s law mv̇(t) = F , hence this
nondissipative process produces no net energy ė(t) = 0, and
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neither work nor heat are exchanged. The punctual collisions
with the heat bath, however, lead to an instantaneous exchange
of energy under the form of heat:

ė(t) = q̇(t), (4)

with q̇(t) a sum of δ functions at the instants of the collision
and with amplitude 1

2m(v2 − v′2) for a collision changing the
velocity from v′ to v. At the ensemble level, the resulting heat
flux Q̇(t) is obtained by averaging over the frequency of such
collisions:

Ė(t) = Q̇(t) =
∫∫

dvdv′k(v′ → v)P (v′,t)
1

2
m(v2 − v′2).

(5)
We next turn to the second law and formulate it first

at the ensemble level. In principle, the “ensemble” entropy
associated to the distribution P (x,v; t) is given by S(t) =
−kB

∫
dxdvP (x,v; t) ln P (x,v; t). However, when consider-

ing the time derivative of this quantity, we note that the
motion is purely Hamiltonian in-between collisions. Following
Liouville’s theorem, this part of the dynamics leaves the
entropy invariant [21]. Hence, we need only to focus on the
change of the entropy induced by the dissipative collisions,
affecting solely the velocity variables. From

S(t) = −kB

∫
dv P (v,t) ln P (v,t), (6)

we find in combination with the evolution equation for
P (v,t), obtained from Eq. (1), and following some simple
manipulations, that the rate of change of the entropy is given
by

Ṡ = kB

∫∫
dv dv′k(v′ → v)P (v′,t) ln

P (v′,t)
P (v,t)

. (7)

This rate of entropy change can thus be rewritten under
the standard form Ṡ = Ṡi + Ṡe with the rates of “entropy
production” and “entropy exchange” given by

Ṡi = kB

∫∫
dvdv′k(v′ → v)P (v′,t) ln

k(v′ → v)P (v′,t)
k(v → v′)P (v,t)

� 0,

Ṡe = kB

∫∫
dvdv′k(v′ → v)P (v′,t) ln

k(v → v′)
k(v′ → v)

. (8)

These results are mathematically exact, but in order to
achieve a correct thermodynamic interpretation of the entropy
production and exchange, one needs in addition proper
physical input about the collision mechanism, i.e., about the
collision rate. We focus here on the simplest case in which
the collision process represents energy exchange with a single
isotropic thermal reservoir at temperature T . As a result the
collision process must induce, in absence of an external force,
a relaxation to the Maxwell-Boltzmann distribution ϕ0; i.e.,
one has∫

dv′k(v → v′)ϕ0(v) =
∫

dv′k(v′ → v)ϕ0(v′), (9)

with

ϕ0(v) = e−v2/2σ 2

σ
√

2π
, σ 2 = mkBT . (10)

As was realized first by Onsager [21], microreversibility leads
to a more stringent condition of detailed balance:

k(v → v′)ϕ0(v) = k(−v′ → −v)ϕ0(−v′). (11)

This detailed balance relation involves velocity inversion and
seems to be at variance with the condition Eq. (9). The
discrepancy is solved by making the crucial observation that,
for a collision describing heat exchange with an isotropic
stationary bath, there is an additional symmetry requirement
of invariance under reflection (and more generally under
rotation [22,23]):

k(v′ → v) = k(−v′ → −v). (12)

With this extra condition, the detailed balance relation Eq. (11)
implies Eq. (9). We stress that this extra condition reflects a
property of the thermal bath. It is supposed to be isotropic,
quasistatic, and in rest with respect to the system. Otherwise,
other irreversible processes can take place and need to be
identified. For example, the case of a bath in relative motion
with respect to the system gives rise to momentum transfer with
a corresponding irreversible entropy producing contribution;
see, for example, Ref. [24]. Equation (11) allows us to make
the consistent connection between first and second laws: the
entropy exchange Ṡe can be rewritten [ϕ0(−v) = ϕ0(v)]:

Ṡe = kB

∫∫
dvdv′k(v′ → v)P (v′,t) ln

ϕ0(v′)
ϕ0(v)

= Q̇

T
, (13)

where Q̇ is the rate of energy (heat) exchange from the bath to
the particle, cf. Eqs. (5) and (9). The entropy production is zero
if and only if k(v′ → v)P (v′) = k(v → v′)P (v), implying
that P (v)/P (v′) = ϕ0(v)/ϕ0(v′) and hence P (v) = ϕ0(v). We
conclude that entropy production vanishes if and only if
detailed balance is satisfied.

We now show that both Eqs. (11) and (12) are crucial to
formulate the second law at the trajectory level. The stochastic
entropy for the velocity variables reads [9]

s(t) = −kB ln P [v(t),t]. (14)

Note that this entropy still retains an ensemble character, as
one needs to specify the probability distribution P (v,t), which
is the probability to observe the particle with velocity v at time
t starting from some specific initial probability distribution.
This so-called forward experiment is run from initial time t0
to some final time tf . We now write

ṡ = ṡi + ṡe, (15)

where the trajectory entropy exchange is the obvious analog of
the ensemble value given in Eq. (13): ṡe = q̇/T . The meaning
of the trajectory entropy production is most easily clarified
by integrating Eq. (15) over a finite time, leading to the finite
difference balance:

�s = �is + �es, (16)

with �es = q/T and q is the total amount of heat received
(by collisions) from the heat bath in the realization under
consideration. An elegant derivation of the celebrated fluctu-
ation theorem for the trajectory entropy production proceeds
with the consideration of the probability for a trajectory in
forward and reverse dynamics. We consider the simplest case
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FIG. 1. Forward and reverse trajectories. In the forward trajectory
� we start at time t0 with a velocity v0 and advance in time with
acceleration a until a collision with the bath occurs at time t1 where
the velocity before the collision is v1b = v0 + a(t1 − t0); then at time
t1 there is a collision that brings the velocity to v1a ; the process
repeats until a selected final time tf with a final velocity v4b = v3a +
a(t4 − t3) ≡ vf . In this particular example trajectory there were three
collisions at times t1, t2, t3. For the reverse trajectory �̃ we start at
time tf with the reverse velocity −vf and then advance in time with
the same acceleration a; at time t ′

3, which is such that t ′
3 − t4 = t4 −

t3, the velocity is v′
3 = −v4b + a(t ′

3 − t4) = −v3a ; then the collision
with the bath selects precisely speed −v3b and the velocity increases
with acceleration a until the time of the next collision t ′

2 − t ′
3 = t3 −

t2, etc., arriving at a time t ′
0 = tf + (tf − t0) at the reverse original

speed, −v0.

of steady-state operation, with the initial state of the forward
experiment under acceleration a sampled from the steady state
distribution Pst(v,a). The reverse trajectory proceeds under the
same acceleration a, starting with the final distribution of the
forward probability, but with inverted speeds. Its properties
will be identified with a superscript tilde. Let P (�) and P̃ (�̃)
denote the probabilities for a forward and reverse trajectory, �
and �̃, respectively; see Fig. 1. One now verifies the following
striking equality:

�is = kB ln
P (�)

P̃ (�̃)
. (17)

The proof goes as follows. The probability of a trajectory
involves the initial probability, the probability for not having
collisions in-between the transitions, and the probability for
transitions. Since the starting probability of the reverse dy-
namics is equal to the final probability of the direct dynamics,
the logarithm of the ratio of the initial probability contribu-
tions reproduces �s = −kB ln P (vf ,tf ) + kB ln P (v0,t0); cf.
Eq. (14). Due to the detailed balance condition Eq. (11),
the log ratio of probabilities for collisions in forward
and backward dynamics, cf. ln k(v′→v)

k(−v→−v′) = ln ϕ0(v)/ϕ0(v′) =
m(v′2 − v2)/(2kBT ), reproduces −�es = −q/T . Finally, due

to the reflection symmetry Eq. (12), the probability for
having no collisions, determined by the rates k(v′ → v)
and k(−v′ → −v) when we have a velocity v′ and −v′,
respectively, is the same in forward and backward trajectories.
Without the parity property, this is no longer the case, and as
mentioned in the introduction, the theory appears to become
much more involved [12,13]. Hence the corresponding terms
cancel out, and we have �is = �s − �es as required. We
conclude that both at the ensemble level and at the trajectory
level, the combination of detailed balance condition with the
reflection symmetry are essential for a consistent stochastic
thermodynamic interpretation.

The implications of Eq. (17) are well known [25]: the
probability distributions P (�is) and P̃ (−�is) for observing
an entropy production �is in the forward process and minus
this value in the backward process obey a detailed fluctuation
theorem:

P (�is)

P̃ (−�is)
= exp(�is/kB), (18)

from which follows the integral fluctuation theorem:
〈exp(−�is/kB)〉 = 1. A comment concerning the interpreta-
tion of Eq. (18) is in place; for more details see Refs. [10,11,26–
30]. In general, −�is is not the entropy production of the
reverse trajectory. This will only be the case if the inverse
“tilde” process is an involution, i.e., twice this operation
is equal to the identity. In particular, the final probability
distribution of the reverse process should be equal to the
initial distribution of the forward process. In the case of
even variables, a sufficient condition is that the forward
process starts and ends in a steady state. For odd variables,
this condition is not sufficient as is illustrated by the above
example: the velocity inversion at the end of the forward
process produces a probability distribution that is no longer
at the steady state when a �= 0. There is, however, a simple
albeit somewhat artificial procedure to cure this problem and
to obtain a detailed fluctuation theorem which is, just like
the integral fluctuation theorem, expressed solely in terms
of a (slightly modified) forward process. At the end of the
forward process, one performs an instantaneous switch of
the probability distribution from P (vf ) to P (−vf ), implying
and entropy change of �vis = ln P (vf )/P (−vf ). This is,
on average [with respect to P (vf )], an irreversible entropy
producing step. With this additional step, velocity inversion
at the end of the forward will reproduce the steady state
distribution, which is also in the case considered here the
initial distribution of the forward process. In conclusion the
corrected entropy production �isc = �is + �vis will obey a
symmetric detailed fluctuation theorem:

P (�isc)

P (−�isc)
= exp(�isc/kB), (19)

which has the advantage that it can conveniently be verified
by considering statistics of the forward experiment alone.
In Appendix A we present an independent proof of this
fluctuation theorem without the explicit use of direct and
reverse paths.
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III. KANGAROO PROCESSES

To illustrate the above formalism, we focus on the simple
case of a “kangaroo” kinetic equation with a rate k(v′ →
v) [15]:

k(v′ → v) = λ(v′)ϕ(v). (20)

One verifies that the detailed balance symmetry Eq. (11)
implies in this case that the collision rate λ = 1/τ is a
constant, independent of v′, and hence k(v′ → v) = ϕ0(v)/τ .
The reflection symmetry Eq. (12) is, in this case, an automatic
consequence of the detailed balance condition Eq. (11).
Numerical simulations of the stochastic process Eq. (1) (see
Appendix B for additional details about the simulations) allow
us to compute the probability distribution P (�isc). In Fig. 2 we
plot the probability distribution function P (�isc) at different
final times tf . The validity of the fluctuation theorem is shown
in Fig. 4, which collects data from all times. In the inset of Fig. 2
we plot the large deviation function �t (x) that results directly
from the fit P (�isc) ∼ exp [−t�t (�isc/t)], with t = tf − t0,
and test that the function �t (x) tends to the asymptotic limit,
the large deviation function, independent of time t . Note that
the lack of convexity of the large deviation function for large
values of the abscissa seems to disappear for increasing time
and, hence, appears to be a finite-time effect.

To stress the need for a correct physical interpretation of
the different expressions, we have also considered the case
λ(v) = α|v| but still ϕ(v) = ϕ0(v), the Boltzmann-Maxwell
distribution Eq. (11) for the velocities acquired from the bath.
As these rates satisfy the symmetry condition Eq. (12) it is

P( isc )

isc

t (x)

x

FIG. 2. (Color online) Probability distribution P (�isc) (main
plot) and large deviation function �t (x) (inset) obtained from a
numerical simulation of the stochastic process Eq. (1) for the case of a
kangaroo reaction rate Eq. (20) with a uniform rate λ(v) = 1/τ , and
operating under steady-state conditions. We have taken τ = 1, the
acceleration a = 1 and σ = 1 in Eq. (9) as well as the Boltzmann’s
constant kB = 1. From left to right in the main plot the curves
correspond to tf = 1, 10, 20, 50, 100, 200. In the inset we see that
�t (x) converges for large time to a time-independent curve, the
large deviation function. The histograms have been obtained after
averaging for 4 × 1011 realizations.

P( i )

isc

t (x)

x

sc

FIG. 3. (Color online) Similar to Fig. 2 for the case of a rate
proportional to the absolute value of the velocity λ(v) = α|v| with
α = 1. Same parameter values and time sequence as in Fig. 2.

possible to formally derive the fluctuation theorem Eq. (19).
The corresponding results for P (�isc) and the large deviation
function are shown in Fig. 3 whose data have been included
in the analysis of Fig. 4, serving as a numerical test of the
validity of the fluctuation theorem. However, the detailed
balance condition is violated. The steady-state solution is not
Maxwellian, and the interpretation of �isc as thermodynamic
entropy production is false.

IV. CONCLUSIONS

We close with a few remarks. In hindsight, it is not
surprising that a “parity” condition is required for a consistent
stochastic thermodynamic interpretation. Indeed, every source
of irreversibility has to be properly identified. The parity
symmetry could be violated by considering, for example,
a reservoir that is in motion with respect to the system.

isc

P( isc)

P( isc)
1015

1010

105

100

10-05

10-10

10-15

FIG. 4. (Color online) Test of the fluctuation theorem, including
the data from the histograms of Figs. 2 and 3.
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In such a case, there will however be momentum transfer
with a corresponding irreversible entropy production [24].
Stochastic thermodynamics has been developed in great detail
for Langevin equations, see, e.g., Refs. [9,31,32], both in
the over-damped and underdamped. A well-documented case
is a chain of harmonic oscillators in contact with two heat
baths; see Refs. [33–36]. One may wonder why the symmetry
property Eq. (11) has not been discussed in this context. By
making the diffusion approximation on the master Eq. (1) [14],
one easily verifies that Eq. (11) requires that the drift term
be uneven in the velocity and the noise term even. These
conditions are met in a generic Langevin equation, explaining
why this issue has not appeared in this context. The formalism

presented above can be easily extended to more complicated
situations, such as multiple particles with vectorial velocities in
contact with several reservoirs of heat, particles, or momentum
and with time-dependent external forcing. Also, the splitting of
the entropy production in several components, such as the adi-
abatic and nonadiabatic contribution, proceeds as before [25].
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APPENDIX A: DIRECT PROOF OF P(�i sc)
P(−�i sc) = e�i sc

We present now a direct proof of the fluctuation theorem for the corrected entropy production �isc, which does not involve
the consideration of a reverse trajectory. The only assumption we make in the derivation is that the rates satisfy the additional
symmetry condition as given by Eq. (12). For the sake of clarity we consider separately the case in which there are no collisions in
the trajectory and the case in which there is one collision. The case of an arbitrary number of collisions follows straightforwardly.

A. Case of no collisions

In the case of no collisions in the (0,t) time interval, the final velocity is vf = v + at , with v = v0 the initial velocity. The
corrected entropy production is �isc = ln Pst(v0)

Pst(−vf ) (we set kB = 1 in this appendix). To stress the dependence on the value of
the acceleration a we write Pst(v,a) for the stationary distribution and Pa(�isc) for the probability distribution of the corrected
entropy production. Using Pst(−v,a) = Pst(v, − a), the latter can be computed as

Pa(�isc) =
〈
δ

(
�isc − ln

Pst(v,a)

Pst(v + at, − a)

)〉
v

, (A1)

with the average understood over the (steady-state) distribution of initial velocities:

Pa(�isc) =
∫

dv Pst(v,a)δ

[
�isc − ln

Pst(v,a)

Pst(v + at, − a)

]
. (A2)

First we prove that P−a(�isc) = Pa(�isc), which makes complete physical sense. Using again Pst(v,a) = Pst(−v, − a),

P−a(�isc) =
∫

dv Pst(v, − a)δ

[
�isc − ln

Pst(v, − a)

Pst(v − at,a)

]
(A3)

=
∫

dv Pst(−v,a)δ

[
�isc − ln

Pst(−v,a)

Pst(−v + at, − a)

]
(A4)

=
v→−v

∫
dv Pst(v,a)δ

[
�isc − ln

Pst(v,a)

Pst(v + at, − a)

]
(A5)

= Pa(�isc). (A6)

Now in Eq. (A2) we insert e�isc e−�isc and use the δ function in the second term:

Pa(�isc) = exp(�isc)
∫

dv Pst(v,a) exp(−�isc)δ

[
�isc − ln

Pst(v,a)

Pst(v + at, − a)

]

= exp(�isc)
∫

dv Pst(v,a)
Pst(v + at, − a)

Pst(v,a)
δ

[
�isc − ln

Pst(v,a)

Pst(v + at, − a)

]

=
v+at→v exp(�isc)

∫
dv Pst(v, − a)δ

[
�isc − ln

Pst(v − at,a)

Pst(v, − a)

]

=
δ(x)=δ(−x) exp(�isc)

∫
dv Pst(v, − a)δ

[
− �isc − ln

Pst(v, − a)

Pst(v − at,a)

]
= exp(�isc)P−a(−�isc)

= exp(�isc)Pa(−�isc),
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the desired fluctuation theorem.

B. Case of one collision

We again call v the initial velocity at t = 0. Suppose that a collision takes place at time t1, when the velocity is v + at1. A new
velocity v1 is drawn from the distribution k(v + at1 → v1). The particle undergoes again the constant acceleration a, resulting
in a final velocity v1 + a(tf − t1) at the final time tf . The corrected entropy production including the collision term is [see also
Eq. (B2)], later,

�isc = ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

]
+ ln

[
k(v + at1 → v1)

k(v1 → v + at1)

]
. (A7)

Its probability density reads

Pa(�isc) =
∫

dvPst(v,a)
∫

dv1

∫ tf

0
dt1k(v + at1 → v1)

× δ

{
�isc − ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

k(v + at1 → v1)

k(v1 → v + at1)

]}
. (A8)

We first prove that Pa(�isc) = P−a(�isc). We use Pst(v,a) = Pst(−v, − a) and Eq. (12):

P−a(�isc) =
∫∫∫

dvdv1dt1Pst(v, − a)k(v − at1 → v1)

× δ

{
�isc − ln

[
Pst(v, − a)

Pst(v1 − a(tf − t1),a)

k(v − at1 → v1)

k(v1 → v − at1)

]}

=
∫∫∫

dvdv1dt1Pst(−v,a)k(−v + at1 → −v1)

× δ

{
�isc − ln

[
Pst(−v,a)

Pst(−v1 + a(tf − t1), − a)

k(−v + at1 → −v1)

k(−v1 → −v + at1)

]}

=
v → −v

v1 → −v1

∫∫∫
dvdv1dt1Pst(v,a)k(v + at1 → v1)

× δ

{
�isc − ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

k(v + at1 → v1)

k(v1 → v + at1)

]}
= Pa(�isc).

For the proof of the fluctuation theorem we insert e�isc e−�isc and replace inside the integral by using the δ function:

Pa(�isc) = e�isc

∫∫∫
dvdv1dt1Pst(v,a)k(v + at1 → v1)e−�isc

× δ

{
�isc − ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

k(v + at1 → v1)

k(v1 → v + at1)

]}

= e�isc

∫∫∫
dvdv1dt1Pst(v,a)k(v + at1 → v1)

Pst(v1 + a(tf − t1), − a)

Pst(v,a)

k(v1 → v + at1)

k(v + at1 → v1)

× δ

{
�isc − ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

k(v + at1 → v1)

k(v1 → v + at1)

]}

= e�isc

∫∫∫
dvdv1dt1Pst(v1 + a(tf − t1), − a)k(v1 → v + at1)

× δ

{
�isc − ln

[
Pst(v,a)

Pst(v1 + a(tf − t1), − a)

k(v + at1 → v1)

k(v1 → v + at1)

]}
.

Now we change v′ ≡ v1 + a(tf − t1) and v′
1 ≡ v + at1 (and drop the primes in the resulting expression),

Pa(�isc) = e�isc

∫∫∫
dvdv1dt1Pst(v, − a)k[v − a(tf − t1) → v1]

× δ

(
�isc − ln

{
Pst(v1 − at1,a)

Pst(v, − a)

k[v − a(tf − t1) → v1]

k[v1 → v − a(tf − t1)]

})
.
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We replace t ′1 ≡ tf − t1 and use
∫ tf

0 dt1 = ∫ tf
0 dt ′1 (and again drop the prime) to obtain

Pa(�isc) = e�isc

∫∫∫
dvdv1dt1Pst(v, − a)k(v − at1 → v1)

×δ

(
�isc − ln

{
Pst[v1 − a(tf − t1),a]

Pst(v, − a)

k(v − at1 → v1)

k(v1 → v − at1)

})

=
δ(x)=δ(−x) e�isc

∫∫∫
dvdv1dt1Pst(v, − a)k(v − at1 → v1)

×δ

(
−�isc − ln

{
Pst(v, − a)

Pst[v1 − a(tf − t1),a]

k(v1 → v − at1)

k(v − at1 → v1)

})

= e�iscP−a(−�isc)

= e�iscPa(−�isc),

again the fluctuation theorem.

APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS

The entropy production Si(tf ) − Si(t0) can be considered as
the ensemble average of the entropy trajectory production �is.
A single trajectory � consists of an initial velocity v0 taken
from the stationary distribution Pst(v), a series of collisions at
times t1,t2, . . . , and a final value vf at time tf ; see Fig. 1 for
details.

The trajectory entropy is defined as

�is = ln
Pst(v0)

Pst(vf )
+

∑
collisiontimesti ,i=1,2,...

ln
k(vib → via)

k(via → vib)
,

(B1)
where vib stands for vbeforecollision

i and via for vaftercollision
i . As

we have split k(v → v′) = λ(v)ϕ(v′) we can write

�is = ln
Pst(v0)

Pst(vf )
+

∑
collisiontimesti,i=1,2,...

ln
λ(vib)ϕ(via)

λ(via)ϕ(vib)
. (B2)

The corrected entropy production �isc = �is + �vis is

�isc = ln
Pst(v0)

Pst(−vf )
+

∑
collisiontimesti,i=1,2,...

ln
λ(vib)ϕ(via)

λ(via)ϕ(vib)
.

(B3)
A numerical simulation proceeds as follows:
Start with a value v0 at t0 = 0, obtained from Pst(v). For this

we use the technique of inverting the cumulative distribution
function, either analytically or numerically; see Ref. [37].
The stationary distribution is calculated for both the cases
of constant rate λ = 1/τ or a rate proportional to the speed
λ = α|v| as detailed in Appendix C. Then, compute t1 solving
the equation

1 − e− ∫ t1
0 λ(v0+at)dt = u1, (B4)

or equivalently ∫ t1

0
λ(v0 + at)dt = − ln(u1), (B5)

with ui independent random numbers uniformly distributed
in (0,1). Compute v1b = v0 + at1. Generate a new value v1a

sampled from ϕ0(v), i.e., a Gaussian distribution of zero mean

and variance σ 2. Compute t2 = t1 + �t2 solving∫ �t2

0
λ(v0 + at)dt = − ln(u2). (B6)

Set v2b = v1a + a(t2 − t1). Generate a new value v2a sampled
from ϕ(v). Keep on going until a prefixed time tf is surpassed.
Then, compute the change of entropy of that trajectory �is

using Eq. (B1).

APPENDIX C: STEADY-STATE DISTRIBUTION

Integrating Eq. (1) over the positions x and replacing the
kangaroo rates Eq. (20), we obtain[

∂

∂t
+ a

∂

∂v

]
P (v,t)=ϕ(v)

∫
dv′ λ(v′)P (v′,t)−λ(v)P (v,t).

(C1)
Note that if ϕ(−v) = ϕ(v) and λ(−v) = λ(v), then the above
equation in invariant under the transformation v → −v,a →
−a, and its solution will inherit this symmetry. The stationary
state solution of this equation is

Pst(v) =
{

C−1
∫ v

−∞ dv′ ϕ(v′)e− 1
a

∫ v

v′ dv′′ λ(v′′), a > 0,

C−1
∫ ∞
v

dv′ ϕ(v′)e− 1
a

∫ v

v′ dv′′ λ(v′′), a < 0,
(C2)

where C is a normalization constant. We focus below on the
cases of a constant collision rate and a rate proportional to the
speed.

A. Constant collision rate

For a constant collision rate λ = 1/τ , the evolution Eq. (C1)
reduces to[

∂

∂t
+ a

∂

∂v

]
P (v,t) = 1

τ
[ϕ(v) − P (v,t)], (C3)

and the full time-dependent solution for a given initial
condition P (v,t = 0) = P0(v) can be obtained. We mention
the following two equivalent forms,

P (v,t) = e−t/τP0(v − at) + 1

τ

∫ t

0
dt ′ ϕ[v − a(t − t ′)]e− t−t ′

τ ,

(C4)
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or [upon changing variables v′ = v − a(t − t ′) in the integral],

P (v,t) = e−t/τP0(v − at) + 1

aτ

∫ v

v−at

dv′ ϕ(v′)e− v−v′
aτ . (C5)

The first moment of the velocity is found to be

〈v(t)〉 = e−t/τ 〈v(0)〉 + (1 − e−t/τ )(aτ + 〈v〉ϕ), (C6)

where 〈.〉ϕ refers to an average with respect to ϕ. One finds, as
expected, that

lim
t→∞〈v(t)〉 = 〈v〉ϕ + aτ. (C7)

The general expression for the second moment is cumbersome,
and we only mention the stationary-state value:

lim
t→∞〈v(t)2〉 − 〈v(t)〉2 = 〈v2〉ϕ − 〈v〉2

ϕ + a2τ 2. (C8)

The stationary solution is obtained from Eq. (C2), or by
taking in Eq. (C4) the limit t → ∞:

Pst(v) =

⎧⎪⎨
⎪⎩

1
aτ

∫ v

−∞ dv′ ϕ(v′)e− v−v′
aτ , a > 0,

1
−aτ

∫ ∞
v

dv′ ϕ(v′)e− v−v′
aτ , a < 0.

(C9)

We finally mention the following explicit result for a

Maxwell-Boltzmann distribution ϕ = ϕ0 = 1
σ
√

2π
e
− v2

2σ2 :

Pst(v) =

⎧⎪⎪⎨
⎪⎪⎩

1
2aτ

e
σ2−2avτ

2a2τ2 erfc
(

σ 2−avτ√
2aστ

)
, a > 0

1
−2aτ

e
σ2−2avτ

2a2τ2 erfc
(

σ 2−avτ

−√
2aστ

)
, a < 0

⎫⎪⎪⎬
⎪⎪⎭

= 1

2|a|τ e
σ2−2avτ

2a2τ2 erfc

(
σ 2 − avτ√

2|a|στ

)
. (C10)

This expression displays the previously mentioned invariance
under the transformation (v; a) → (−v; −a).

B. Rate proportional to speed

For the case of a rate proportional to the speed, λ(v) = |v|, the integral appearing in Eq. (C2) is quite complicated. We therefore

focus immediately on the most relevant case of a Maxwellian distribution ϕ0(v) = 1√
2π

e− v2

2 . A cumbersome calculation yields
for a > 1,

Pst(v,a) = C−1(a) ×

⎧⎪⎪⎨
⎪⎪⎩

e
v2

2a

[
1 + erf

(
v
√

a+1
2a

)]
, v � 0,

e− v2

2a

[
1 +

√
a+1
a−1 erf

(
v
√

a−1
2a

)]
, v � 0,

(C11)

while the result for 0 < a < 1 is

Pst(v,a) = C−1(a) ×

⎧⎪⎪⎨
⎪⎪⎩

e
v2

2a

[
1 + erf

(
v
√

a+1
2a

)]
, v � 0,

e− v2

2a

[
1 +

√
a+1
1−a

erfi
(

v
√

1−a
2a

)]
, v � 0.

(C12)

The limiting case a = 1 is

Pst(v,1) = C−1(1) ×

⎧⎪⎨
⎪⎩

e
v2

2 [1 + erf(v)], v � 0,

e− v2

2

(
1 + 2√

π
v
)
, v � 0.

(C13)

The normalization constant is:

C(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
aπ
2 +

√
2a
π

[
arctanh

(
1√
1+a

)
+

√
1+a
a−1 arctan

(√
a − 1

)]
, a > 1

√
π
2 + 2√

π
+

√
2
π

arctanh
(

1√
2

)
= 3.08493 . . . , a = 1

√
aπ
2 +

√
2a
π

[
arctanh

(
1√
1+a

)
+

√
1+a
1−a arctanh

(√
1 − a

)]
, a < 1

. (C14)

For a < 0 we can use the property Pst(v,a) = Pst(−v, − a). A direct integration gives the first and second moments in the
steady state. While the expression for the second moment is too long to be reproduced here, the first moment is related to the
normalization constant as

〈v〉st = 2a

C(a)
. (C15)
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