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Abstract: In geostatistics, both kriging and smoothing splines are commonly
used to predict a quantity of interest. The geoadditive model proposed by Kam-
mann and Wand (2003) represents a fusion of kriging and penalized spline addi-
tive models. The fact that the underlying spatial covariance structure is poorly
estimated using geoadditive models is a drawback. We describe K-splines, an
extension of geoadditive models such that estimation of the underlying spatial
process parameters and predictions of the spatial map are performed with the
same accuracy and precision as in kriging.
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1 Introduction

The objective of geostatistics is to produce a map of a variable of interest on
a specified domain based on observations which are measured with or with-
out noise. Consider the geostatistical model y(si) = z(si)+ εi, i = 1, . . . , n,
where the y(si) are observed data values from the underlying true values
z(si). These data values are noise-corrupted by white-noise error terms εi.
The spatial locations si belong to a specified continuous domain D ⊂ R

d.
The idea of geostatistics is to use the data y(si) to make predictions of z(s0)
where s0 ∈ D. Both kriging and spline methods can be used to handle geo-
statistical problems. In kriging, the values z(si) are assumed to be the
realisations of an autocorrelated random process (Cressie, 1993). Smooth-
ing splines assume that the z(si) are the values of a smooth non-parametric
function (see e.g., Hutchinson and Gessler, 1994).
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2 Geostatistical Analysis using K-splines

In kriging, linearity of the covariate effects is usually assumed. Kammann
and Wand (2003) merged kriging and additive models to allow for non-
linear relationships between covariates and the response variable in geo-
statistics. Their so-called geoadditive model consists of a penalized spline
additive model with a geostatistical extension. The geoadditive model can
be expressed as a linear mixed model which allows for estimation and in-
ference using standard methodology. The drawback of their model is the
biased estimation of the underlying spatial process.
Vandendijck et al. (2015) introduced the concept of kriging-splines, ab-
breviated by K-splines, which extends geoadditive models such that the
estimation of the underlying spatial process and prediction of the map of
interest is performed with similar accuracy and precision as in kriging.
By showing a theoretical connection between kriging and K-splines, it is
presented how the spatial covariance structure (covariogram) implied by
K-splines is derived. K-splines are also embedded within the linear mixed
model framework and the estimation uses a two-step likelihood procedure.

2 K-splines

For simplicity, suppose the data are (yi, si, ai, bi) , 1 ≤ i ≤ n, where yi is
the value of the ith response, ai and bi are the values of two predictor
variables a and b, and si represents the geographical location. Suppose the
predictor a enters the model linearly and that the predictor b enters the
model non-linearly. The geoadditive model is

yi = β0 + βaai + f(bi) + S(si) + εi, 1 ≤ i ≤ n, (1)

where f is a smooth function of b and S is the geographical component
of the model. Both f and S are modelled using penalized spline functions.
We use the thin plate spline family to construct f . The spatial component
S is modelled through a set of radial basis functions and is of the form
S(s) =

∑Ks

k=1
us
i gφ(s − κ

s
k), where gφ can be any of the proper covariance

or generalized covariance functions used in kriging. The subscript in gφ
is used to denote a possible dependence on a spatial decay parameter φ.
An overview of the most important covariance functions gφ that can be
used are given in Table 1. The vector (us

1
, . . . , us

Ks

) contains the Ks un-
known knot coefficients that are penalized to overcome overfitting. The Ks

knots κ
s
1
, . . . ,κs

Ks

are a representative subset of (s1, . . . , sn) used for the
construction of the basis functions.
Kammann and Wand (2003) propose to choose φ via the simple rule φ̂ =
max

1≤i,j≤n
‖si − sj‖. We propose K-splines, a new estimation approach for

geoadditive models that allows for accurate estimation of the parameter φ.
This enables one to estimate the underlying spatial process accurately and
precisely. A two-stage iterative estimation approach is proposed to estimate
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TABLE 1. Some important and often used covariance functions gφ.

Exponential gφ(x) = exp
(

− ‖x‖
φ

)

Gaussian gφ(x) = exp
(

− ‖x‖2

φ2

)

Spherical gφ(x) =
(

1− 3

2

‖x‖
φ

+ 1

2

‖x‖3

φ3

)

Matérn (ν = 3

2
) gφ(x) = exp

(

− ‖x‖
φ

)(

1 + ‖x‖
φ

)

Circular gφ(x) = 1− 2

π

(

ϑ
√
1− ϑ2 + arcsinϑ

)

, with ϑ = min
(

‖x‖
φ

, 1
)

The parameter φ is positive for each function.

the parameters. At the first stage, the linear mixed model representation of
(1) is estimated fixing φ in gφ at its current value, and in the second stage
the parameter φ is optimized fixing the linear mixed model parameters. For
mode details on the estimation procedure and inference using K-splines, we
refer to Vandendijck et al. (2015).

3 Simulation Study

We consider as spatial domain the unit square. Data at a spatial location
s = (sx, sy) on this square is simulated using the model

ys = S(s)− 0.5x1s + sin(2πx2s) + εs, (2)

where εs ∼ N (0, σ2

ε = 0.10), x1s ∼ Unif[0 − 1], x2s ∼ Unif[0 − 1] and S(s)
is a zero-mean Gaussian Random Field (GRF) (Gelfand et al., 2010) with

a Gaussian covariogram without nugget, namely K(h) = cs exp
(

− ‖h‖2

τ2

)

.

We consider cs = 0.50 and τ = 0.15. We obtain 250 simulated realizations
from (2). From each realization we draw a random sample of size n = 500.
For each simulated dataset, the covariogram parameters (cs, τ) and the
measurement error parameter σ2

ε were estimated using seven different meth-
ods: (1) Direct maximum likelihood (D-ML) parameter estimation for GRFs;
(2) Direct restricted maximum likelihood (D-REML) parameter estimation
for GRFs; (3) Weighted least squares (WLS) estimation of the empirical
semivariogram; (4) Maximum likelihood estimation as described in Kam-
mann and Wand (2003) (KW-ML); (5) Restricted maximum likelihood esti-
mation as described in Kammann andWand (2003) (KW-REML); (6) Max-
imum likelihood estimation using K-splines (KS-ML); and (7) Restricted
maximum likelihood estimation using K-splines (KS-REML). In addition,
the prediction performance at five locations on the considered spatial do-
main was evaluated. D-ML, D-REML and WLS are kriging approaches in
which the covariates enter the mean function linearly. For KW-ML, KW-
REML, KS-ML and KS-REML, we use model (1) where 150 knots are used
to model the spatial component S.



4 Geostatistical Analysis using K-splines

Results are displayed in Table 2. It is observed that K-splines perform bet-
ter for the estimation of the covariogram parameters cs and τ . Because the
covariates enter the mean function linearly in D-ML, D-REML and WLS,
the measurement error parameter σ2

ε is not well estimated. The estimated
covariogram parameters for KW-ML and KW-REML are seriously biased.
This can be expected since the approach of Kammann and Wand (2003)
does not attempt to estimate these parameters well. In terms of prediction,
we see that K-splines perform the best.

TABLE 2. MSE results over 250 simulations for the covariogram parameters and
predictions with corresponding 95% confidence intervals coverage.

cs τ σ2

ε cs/τ pred. cov. cov.a

D-ML 1.67 0.02 3.76 58.97 23.65 57.2
D-REML 1.82 0.02 3.83 62.24 23.64 57.2
WLS 2.03 0.06 3.88 75.33 23.88 57.6
KW-ML > 103 148.52 3.71 > 103 14.61 63.4
KW-REML > 103 148.52 3.73 > 103 14.61 64.4
K-ML 1.51 0.01 0.01 49.11 2.39 94.8 95.0
K-REML 1.55 0.01 0.01 50.06 2.40 94.8 95.3

a: based on a bootstrap procedure (see Vandendijck et al., 2015)

4 Conclusion

K-splines offer a framework wherein the covariogram parameters in a geoad-
ditive model are estimated accurately and precisely. From simulation stud-
ies we can conclude that predictions benefit from this.
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