
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

2014•2015
FACULTY OF BUSINESS ECONOMICS
Master of Management

Master's thesis
Comprehension of Business Process Models: An evaluation of metrics for
understandability

Supervisor :
Prof. dr. Benoit DEPAIRE

Koen Van Eijk
Thesis presented in fulfillment of the requirements for the degree of Master of
Management

2014•2015
FACULTY OF BUSINESS ECONOMICS
Master of Management

Master's thesis
Comprehension of Business Process Models: An evaluation
of metrics for understandability

Supervisor :
Prof. dr. Benoit DEPAIRE

Koen Van Eijk
Thesis presented in fulfillment of the requirements for the degree of Master of
Management

I

Preface

Writing a master’s thesis is not a simple assignment: it requires a lot of effort, motivation and

responsibility. I am therefore very thankful for the support of the people who I would like to thank

in this preface.

Firstly, I want to thank my promoter, prof. dr. Depaire, for his support in the writing of this master’s

thesis in general. It was his valuable feedback and flexibility that made the writing of this research

project possible.

Secondly, I want to thank my parents for giving me the opportunity to pursue an academic degree.

It is thanks to their motivational, emotional and financial support that made me what I am today.

Lastly, I would like to thank my girlfriend for her loving support and for proofreading my writings.

I sincerely hope this master’s thesis can be as instructive and interesting for the reader as it was for

me writing it.

Koen van Eijk

Diepenbeek, June 2015

III

Summary

For a business it is important that all stakeholders can participate throughout all the phases of

business process design. Not only the way the business is currently working, but also the way it is

supposed to work are important topics that need to be communicated thoroughly between all parties

involved and this underlines the importance of understandability of business process models (BPM).

Understandability can be linked to the complexity of BPM. Complexity can be seen as cognitive

complexity (for humans) or structural complexity (for computers). This master’s thesis focusses on

the cognitive complexity of BPM.

The literature concerning BPM understandability has already adapted numerous metrics from

software engineering research. However, these metrics seem to measure different aspects of

cognitive and structural complexity. This master’s thesis tries to identify useful combinations of

metrics for assessing BPM understandability. Better metrics should lead to better conclusions, which

ultimately should result in better communication of BPM.

Firstly, a literature review is conducted. Popular theories from cognitive sciences are identified which

can be linked to BPM understandability. Furthermore, different aspects of both model and user are

discussed that might influence the understandability according to different studies. In the literature

review some popular complexity metrics are discussed which could serve as a proxy for BPM

understandability. Understanding of BPM is decomposed in the syntax, semantics and pragmatics

level.

Secondly, Van der Aalst’s Workflow Patterns are used as a basis for comparing the different

complexity metrics. The patterns are expressed using the BPMN notation and the complexity level

for the different metrics is computed. By the use of mean weighted values and rankings it was found

that the different metrics are not equally sensitive. They do however (overall) give the same ranking

to the patterns with regards to their complexity. By applying factor analysis on the data it was found

that the metrics address two different aspects of complexity. On the one side some metrics address

structural complexity and on the other side some metrics address functional complexity. It is

concluded that it is preferable to use combinations of metrics that address these two different

aspects.

Some guidelines are given for future research. Not much research has apparently been done yet on

the secondary notation of BPM (layout, colors, direction, …). BPMN 2.0 has capabilities of expressing

IV

actor responsibility and accountability, and what resources are used to complete tasks. How these

aspects relate to the comprehensibility of BPM has supposedly not been addressed yet. Lastly, in this

master’s thesis only Workflow Patterns have been discussed, which limits the research to the syntax

level. To my knowledge only limited research has been done for the two following levels, semantics

and pragmatics, which could be an interesting starting point for future research.

V

Table of contents

Preface .. I

Summary .. III

List of figures .. VII

List of tables... VIII

List of abbreviations ... VIII

Chapter 1: Introduction .. 1

1.1 Problem description .. 1

1.2 Research question .. 2

1.3 Research design .. 2

1.3.1 Goals ... 3

1.3.2 Methodology ... 3

1.3.3 Scope .. 3

Chapter 2: Theories on understandability ... 5

2.1 Why complexity matters .. 5

2.1.1 How complexity relates to understandability ... 5

2.2 Defining understandability ... 6

2.2.1 Cognitive Load Theory ... 6

2.2.2 The SEQUAL model and Semiotic Theory .. 7

2.2.3 Resource Allocation Theory .. 8

2.2.4 Cognitive Theory of Multimedia Learning .. 8

2.3 Levels of understanding .. 9

2.3.1 Syntax ... 10

2.3.2 Semantics .. 10

2.3.3 Pragmatics ... 11

2.4 Factors influencing understandability ... 11

2.4.1 Model aspects ... 13

2.4.2 Personal aspects ... 14

2.5 Conclusion .. 15

Chapter 3: Measuring complexity ... 17

3.1 Lines of Code (NOA, NOAC, NOAJS) .. 18

3.1.1 Computational aspects ... 19

3.2 Control-flow Complexity (CFC) ... 19

3.2.1 Computational aspects ... 22

3.3 Cognitive Weights (CW) .. 23

3.3.1 Computational aspects ... 24

3.4 Nesting depth (ND) .. 24

3.4.1 Computational aspects ... 25

3.5 Information Flow (IF) ... 26

3.5.1 Computational aspects ... 26

3.6 One for all, or all for one? .. 27

3.7 Conclusion .. 28

Chapter 4: Patterns .. 31

4.1 Introduction .. 31

VI

4.1.1 Methodology ... 33

4.2 Workflow Patterns .. 34

4.2.1 Basic Control Flow ... 34

4.2.2 Advanced Branching and Synchronization .. 38

4.2.3 Structural .. 42

4.2.4 Multiple Instances (MI) .. 44

4.2.5 State-based ... 46

4.2.6 Cancellation ... 49

4.3 Analysis ... 49

4.3.1 Descriptive statistics .. 49

4.3.2 Factor analysis.. 51

4.3.3 Pattern comparison ... 54

4.3.4 Conclusions .. 56

Chapter 5: Conclusions ... 59

5.1 Concluding remarks .. 59

5.2 Guidelines for future research .. 60

References ... 63

Appendix .. 67

Introduction to BPMN ... 67

Events ... 67

Tasks ... 68

Gateways ... 70

Flows and associations ... 72

Pools and lanes ... 72

Concluding remarks ... 73

Example BPM .. 74

VII

List of figures

Fig. 1: Loan approval BPM example ... 17
Fig. 2: Home Loan subprocess .. 18
Fig. 3: Student Loan subprocess ... 18
Fig. 4: Car Loan subprocess ... 18
Fig. 5: XOR-split and XOR-join in BPMN 2.0 .. 20
Fig. 6: AND-split and AND-join in BPMN 2.0 .. 21
Fig. 7: OR-split and OR-join in BPMN 2.0 .. 21
Fig. 8: Knots in a BPMN 2.0 model .. 25
Fig. 9: Sequence Pattern ... 34
Fig. 10: Parallel Split Pattern (option 1) ... 35
Fig. 11: Parallel Split Pattern (option 2) ... 35
Fig. 12: Parallel Split Pattern (option 3) ... 35
Fig. 13: Synchronization Pattern (option 1) .. 36
Fig. 14: Synchronization Pattern (option 2) .. 36
Fig. 15: Exclusive Choice Pattern .. 37
Fig. 16: Simple Merge Pattern (option 1) ... 38
Fig. 17: Simple Merge Pattern (option 2) ... 38
Fig. 18: Multi-Choice Pattern .. 39
Fig. 19: Synchronizing Merge Pattern .. 40
Fig. 20: Multi-Merge Pattern .. 40
Fig. 21: Discriminator Pattern according to White (2004) (1) ... 42
Fig. 22: Discriminator Pattern according to Wohed e.a.(2005) (2) .. 42
Fig. 23: Discriminator Pattern according to Wohed e.a. (2005) (3) ... 42
Fig. 24: Arbitrary Cycles Pattern ... 43
Fig. 25: Implicit Termination Pattern ... 43
Fig. 26: Multiple Instance Pattern with a priori Design-Time Knowledge 44
Fig. 27: Multiple Instance Pattern with a priori Run-Time Knowledge 44
Fig. 28: Multiple Instance Pattern without a priori Knowledge .. 45
Fig. 29: Multiple Instance Pattern Requiring Synchronization ... 46
Fig. 30: Deferred Choice Pattern ... 46
Fig. 31: Interleaved Parallel Routing Pattern ... 47
Fig. 32: Milestone Pattern by White (2004) (1) ... 48
Fig. 33: Milestone Pattern by Wohed e.a. (2005) (2) .. 48
Fig. 34: Cancel Activity Pattern .. 49
Fig. 35: Cancel Case Pattern .. 49
Fig. 36: Scree Plot from Factor Analysis ... 51
Fig. 37: Pattern comparison (unweighted values) .. 54
Fig. 38: Pattern comparison (weighted values) .. 55
Fig. 39: Pattern comparison (ranks) .. 55
Fig. 40: Elements of BPMN 2.0 ... 67
Fig. 41: Start events .. 68
Fig. 42: End events .. 68
Fig. 43: Intermediate events .. 68
Fig. 44: Tasks ... 69
Fig. 45: Looping tasks .. 69
Fig. 46: Sub-processes ... 69
Fig. 47: AND-gateway ... 70
Fig. 48: XOR-gateway ... 70
Fig. 49: OR-gateway .. 71
Fig. 50: Event-based gateways ... 71
Fig. 51: Example Event-based gateway.. 71
Fig. 52: Complex gateways .. 72
Fig. 53: Flows and association .. 72
Fig. 54: Pools and lanes .. 73

VIII

List of tables

Table 1: Cognitive Weights, weights according to control structure ... 23
Table 2: Cognitive Weights adapted by Gruhn and Laue (2006a) for BPM 23
Table 3: Summary of complexity metrics for (business) process models 28
Table 4: Descriptive statistics of the measurements ... 50
Table 5: Pearson Correlation Matrix ... 51
Table 6: Results from Factor Analysis: Total Variance Explained ... 52
Table 7: Results from Factor Analysis: Rotated Component Matrix .. 52
Table 8: Spearman Ranked Correlation Matrix... 53

List of abbreviations

BPM: Business Process Models, 1
BPMN: Business Process Models and Notation, 3
BSC: Balanced scorecard, 27
CFC: Control Flow Complexity (metric), 22
CTML: Cognitive Theory of Multimedia Learning, 8
CW: Cognitive Weights, 24

DPP: Domain Process Patterns, 32
EPC: Event Driven Process Chains, 1
IC: Interface Complexity (metric), 26
IF: Information Flow (metric), 26
IS: information systems, 4
LOC: Lines of Code (metric), 18

MaxND: Maximum Nesting Depth (metric), 26

MeanND: Mean Nesting Depth (metric), 25
NOA: Number of Activities (NOA), 18
NOAC: Number of Activities and Control flows (metric), 18
NOAJS: Number of Activities and Joins and Splits (metric), 18
UML: Unified Modeling Language, 1
UML AD: Unified Modeling Language Activity Diagrams, 25

WFP: Workflow Patterns, 32
YAWL: Yet Another Workflow Language, 25

1

Chapter 1: Introduction

1.1 Problem description

Within the research field of process modeling, complexity of business process models (BPM1) is a

criterion that has been a popular target of study. Process complexity, within the context of process

modeling, can be regarded in its simplest form as the amount of nodes and arcs in the graphical

representation of a model (Wil M.P. van der Aalst, 2011). However, there are two different sides to

the coin when it comes to BPM complexity. On the one side there is the level of complexity in a

mathematical sense (for computers) and on the other side the complexity for human beings. In

academic literature, the former is often referred to as structural complexity, the latter is referred to

as cognitive complexity (Cruz-Lemus, Maes, Genero, Poels, & Piattini, 2010).

Keeping grip on an acceptable level of process complexity is of great importance to keep the model

understandable and in turn usable. If a model cannot be understood, what is the point of generating

a model in the first place? It is therefore not only important to assess the level of necessary

complexity to select the appropriate model, but also selecting the right language in which the model

is expressed to its users (Nordbotten & Crosby, 1999). The users might not be entirely familiar with

the language and might interpret the BPM differently, which may cause confusion or unintended

behavior (Eriksson & Penker, 1998). The notational language is only one of the many design choices

that the designer of a BPM can make. For a business it is important that all stakeholders can

participate throughout all the phases of business process design, whether it is to communicate how

the business is currently working (as-is modeling) or how it is supposed to work in the future (to-be

modeling) (Burton-Jones & Meso, 2008). Therefore in a logical sense it is of uttermost importance to

keep the business processes understandable, not only to business process model specialists but also

with regards to novices or people who are not confronted with them on a regular basis.

There are already many different modelling languages available today (List & Korherr, 2006): UML

2.0 Activity Diagrams, Business Process Modeling Notation, Event Driven Process Chain (EPC)

(Scheer, 2000), Petri Nets (Murata, 1989) … Each language has its user base and followers because

they have different origins and are aimed at different domains. This study however tries to identify

properties that transcend the language in which the BPM is expressed.

1 The abbreviation ‘BPM’ is used for business process models throughout the rest of the text to
increase readability.

2

In order to improve communication of BPM, this study is an evaluation of different available metrics

for assessing process model understandability. These metrics are applied to Van der Aalst’s Workflow

Patterns (2003) as a basis for evaluation.

1.2 Research question

The general research question of this master’s thesis is:

“What are useful metrics or combinations of metrics for assessing business

process model understandability?”

To find an answer to this general research question, it is divided into smaller questions:

 Are all metrics equally sensitive?

 Do the metrics give similar ranking to patterns?

 Do the metrics measure the same thing?

 What patterns are more complex? Why could this be the case?

1.3 Research design

This master's thesis consists of two major sections. One section being a literature review, which

consists of an exploration within the field of cognitive process model complexity and process model

understandability based on theory and metrics. The literature review is an important prerequisite for

this master’s thesis. It should offer the opportunity to gain insights from past research which allows

to build conclusions on well-grounded theory. Therefore the preference is to employ resources that

are peer-reviewed and enjoy high reliability in the academic world. One specific goal of the literature

review is to find out what past research has already contributed to the domain of process model

understandability. This is done to get an overview of what has, and more importantly what has not,

been addressed so far in academic literature.

The other section tests the metrics discussed in the literature review at the syntactical level of Van

der Aalst’s Workflow Patterns (2003). The different patterns are compared with regards to their

measured complexity and what the implications might be for the understandability of the usage of

such patterns in BPM. Then another comparison is made at the metric-level: what metrics might be

useful for estimating cognitive complexity of BPM and which combinations of metrics make sense

and which do not.

3

1.3.1 Goals

A lot of research has already been done on the understandability of BPM in general, and some

notations in particular. In the past, evidence has been found of significant variation in model

interpretation when different graphic styles are used (Nordbotten & Crosby, 1999). For a business,

changing ‘the way things are done’ with regards to process modeling can be a costly enterprise.

Improving the communication of business process models is a win-win situation for all parties. If the

business process is understood in a better way, the transition from process understanding to process

improvement will be easier.

1.3.2 Methodology

To find interesting literature, search engines like Google Scholar and EBSCOhost were used.

Examples of search terms used were: process model understandability, process model complexity,

cognitive complexity process model, understanding process models, business process models,

business process modeling, BPM understanding, BPM complexity, … The snowball method is applied

in both directions. Interesting studies can lead to interesting references, but Google Scholar is used

to find more recent studies that refer to the literature that is found. More recent studies might lead

to newer and better conclusions with better testing methods.

Popular metrics for BPM complexity are identified, discussed and tested for Van der Aalst’s Workflow

Patterns which are translated in BPMN 2.0. A comparison is then made on the level of the patterns

(which patterns are more complex?) and another comparison is made on the level of the metrics.

This should allow us to answer the research questions formulated above.

When graphical representations of BPM are given, the preference is given to the BPMN 2.0 notation

as it is the most popular notation for business process modelling. These examples are designed in

the Bizagi Modeler2, part of the Bizagi software suite.

1.3.3 Scope

The entire research is conducted with a business context in mind. The conclusions of this master's

thesis should contribute to the pool of knowledge that is readily available to be applied in practice

and propose a framework that can be used as a foundation for further research.

2 More information on the Bizagi software suite can be found on http://bizagi.com/

4

Applicability of research results

The conclusions drawn from this master’s thesis could be used in practice to evaluate the

understandability of BPM and to more easily identify and tackle the factors that negatively influence

it. This allows businesses to increase the comprehension and allow better communication of BPM,

which are frequently used to communicate various stages in information systems (IS) design.

Applicable situations can be systems analysis, communication design, organizational re-engineering,

project management, end-user querying and many others (Recker, Rosemann, Indulska, & Green,

2009).

If more time (money) is saved in the understanding stage of a BPM, more time (money) can be spent

on the subsequent stages (business process improvement, restructuring, …). This makes any study

in the field of BPM which contributes to the creation of higher quality models indeed relevant (Davies,

Green, Rosemann, Indulska, & Gallo, 2006).

Compared to research on complexity in software engineering, the amount of research done in the

field of BPM complexity is still limited despite its importance. This is why any further research in this

field can be considered useful.

5

Chapter 2: Theories on understandability

2.1 Why complexity matters

In the discovery phase of process model mining, it has been suggested that there are certain quality

criteria which greatly affect the usability and understandability of the end result: fitness,

generalization, precision and last but not least simplicity (Wil M.P. van der Aalst, 2011). According

to Van der Aalst it is hard to find the right balance between these dimensions when conducting

process discovery. He states that increasing simplicity (or lowering complexity) might lead to lower

fitness or reduced precision. Fitness being the level of 'fit' that the model has with the traces that

have been used in the discovery phase. He also states that over-fitting could lead to overly complex

process models which are harder to understand. In turn, this might lower usability within a business

management context.

2.1.1 How complexity relates to understandability

Communicating a 'simplified' version of a process model might be easier than a more complex

interpretation of the same model. One might suggest that the greatest importance in evaluating

between these quality criteria is the purpose of the model. If the actual purpose of the model is to

check for nonconformity or deviations in a risk-aversive setting, then every trace within the model

is of equal importance and should not be left ignored. One deviation in a business context might be

enough to indicate that the internal control of a process has failed which may possibly have led to

theft or fraud concerning company assets (Rozinat & van der Aalst, 2008). The particular deviation

probably should lead to further investigation on the level of the specific case.

However, if the model is intended to be used for communicating an overall view of a business process

between disciplines in a company, not all deviations should be considered as important. There is a

certain danger of over-fitting the model with the trace log data which might lead to what Van der

Aalst refers to as the extreme of the so-called flower model. In this type of model every trace in the

log can be played out perfectly, however it does not have any useful implications with regards to

generalizability: everything is still possible within the model (Wil M.P. van der Aalst, 2011). This

unnecessarily complicates the model which in turn makes it harder to understand and communicate

in a business context (Figl & Laue, 2011).

6

2.2 Defining understandability

In order to define the concept of understandability, one could adapt Biggerstaf’s definition within the

context of a software program:

“A person understands a BPM when they are able to explain the BPM, its

structure, its behavior, its effects on its operational context, and its relationships

on its application domain in terms that are qualitatively different from the tokens

used to construct the BPM in a modeling language.”

(Biggerstaff, Mitbander, & Webster, 1994)

This definition can be linked to semiotic theory (Burton-Jones, Wand, & Weber, 2009) and the

SEQUAL model (Lindland, Sindre, & Solvberg, 1994), as well as Cognitive Load Theory (Sweller &

Chandler, 1994). These concepts with the addition of Resource Allocation Theory (Kanfer, Ackerman,

Murtha, Dugdale, & Nelson, 1994) and the Multimedia Theory of Learning (Mayer, 2002) will be

further discussed below. These theories, often borrowed from cognitive sciences, are popular target

of reference for the field of study in BPM complexity and understandability. Firstly, every theory is

shortly summarized and explained. Secondly, the link is made with BPM understandability.

2.2.1 Cognitive Load Theory

A popular assumption to make the conceptualization of comprehensibility more tangible, is that a

BPM is harder to understand as the number of elements in the model increases. This assumption is

grounded by Cognitive Load Theory (Sweller & Chandler, 1994). According to this theory,

comprehension is negatively affected if the amount of information that needs processing exceeds the

working memory (Paas & Ayres, 2014). Cognitive Load Theory distinguishes between two different

kinds of memory, namely the limited short-term working memory and the unlimited long-term

memory. The short-term memory is limited in such a way that it only allows for (approximately)

seven items of information at a given time. This theory has implications in what ways a user will

have difficulty in understanding (complex) BPM. When the user is confronted with new theory (for

instance a BPM describing a business process) this generates a load on his working memory. If he

cannot fall back on long-term memory (experience, theoretical knowledge, …) this burden will be

greater, according to the theory (Sweller & Chandler, 1994). Following this logic, someone with

7

extensive knowledge and/or experience (expertise) will have an easier time understanding a BPM

than someone who is a novice with the practice.

Implications for BPM understandability

Cognitive Load Theory implies that when more elements are added to the BPM, it should become

more difficult to understand. Experimental studies in the past have already shown that increased

model size and complexity affect understanding of the model (Aguilar, García, Ruiz, & Piattini, 2007;

H. A. Reijers & Mendling, 2011). It has been shown by Mendling e.a. (2012) that for example real

activity labels decrease the syntactical process model understanding. This means that if labels with

‘meaning’ are added rather than abstract letters or numbers the syntactical understandability of the

model decreases. The user has a harder time understanding the syntax of the BPM when labels with

significant meaning are added. For application in practice this means that if the designer of a process

model wants to check the syntactical logic of his BPM he should make abstraction of the labels. This

would ‘free up memory’ by eliminating the labels of nodes and arcs which in turn should make the

analysis of the syntax of the model easier (Mendling e.a., 2012).

2.2.2 The SEQUAL model and Semiotic Theory

The SEQUAL model (Lindland e.a., 1994) proposes three levels of model quality, namely the

syntactic, semantic and pragmatic level. The syntactic level of a BPM can be seen as the language

that is used for the graphical notation of the process. These are the various nodes and arcs showing

the control flow of the process. When, for instance, labels and icons are added, the semantic level is

reached. The nodes and arcs gain semantic meaning because they demonstrate real activities and

their decision logic. Lastly, if the context is added (be it a business context) the pragmatic level is

reached and the process model can represent knowledge for action (Krogstie, Sindre, & Jørgensen,

2006). According to semiotic theory, understanding precedes communicating (Burton-Jones e.a.,

2009). This relationship can be seen as a ‘ladder’: before semantics can be understood, the user

firstly has to understand the syntax of the model. When both syntax and semantics are understood,

then operational context can come in to support the pragmatic level of understanding.

Implications for BPM understandability

When applied to BPM, the syntax can be seen as the graphical representation of arcs and nodes.

When labels are added, the model is elevated to the semantic level. It gives logical meaning to the

different arcs and nodes. When the context is then added, for example a production plant striving

for cost leadership, the model is elevated to the pragmatic level (Mendling e.a., 2012). This ‘ladder’

8

of Burton-Jones e.a. (2009) also gives us the reason why BPM understandability is so important: if

syntax and semantics are not understood, knowledge for action cannot be attained.

2.2.3 Resource Allocation Theory

According to resource allocation theory, understanding something you have experience with is easier

than without any past experience with the subject (Kanfer e.a., 1994). This is due to the fact that

the demand for cognitive attention is reduced which results in freed up cognitive resources which in

turn can be used to improve task production or outcome production (Kanfer e.a., 1994). This allows

someone with a higher amount of experience to more easily understand complex concepts than

someone with lesser experience. This is due to the fact that the person with lesser experience does

not have a long term memory to fall back on and therefore has to allocate all his mental resources

to understanding the concept.

Implications for BPM understandability

In terms of understanding BPM this would imply that the user can understand the model better and

faster if he has experience with BPM: he can assign all his cognitive resources on actually

understanding or improving the process instead of understanding just the syntax or semantics of the

BPM. According to experiments by Mendling e.a. (2012) theoretical knowledge and process modeling

expertise are important factors on the formal comprehension of process models. The ‘task’, to use

Kanfer’s terminology, is understanding the BPM. The ‘outcome’ is whether or not the user acts as is

instructed by the BPM, assuming voluntariness. In his research, Mendling therefore stresses the need

for education and introduction to the usage and advantages of BPM to increase the understanding of

more complex models.

2.2.4 Cognitive Theory of Multimedia Learning

Continuing from the ‘ladder’ of semiotic theory, going from solely syntactic factors influencing the

understandability of a BPM to the semantic level, one could apply the Cognitive Theory of Multimedia

Learning (CTML) (Mayer, 2002). The CTML suggests that there are three actors involved when it

comes to understanding explanative information:

 The content or the message (the business process)

 The presentation: the way the content is presented (notational aspects, …)

 The user: the personal characteristics of the viewer

The actual level of understanding achieved afterwards is also divided into three groups:

9

 No understanding at all

 Surface understanding

 Deep understanding

These levels are achieved by the product of two variables as defined by Mayer: retention and transfer.

Retention is defined as understanding the learning material, and transfer is defined as the ability to

use the deeper understanding gained from the material to apply it in different situations. No

understanding is achieved when both of these elements are low. Surface understanding is achieved

when retention is high, but transfer is low. This means that the information is received but does not

find integration with knowledge gained in the past. When both are high, the level of deep

understanding is attained and the knowledge is integrated in the long-term memory where it can be

accessed to solve new problems (Burton-Jones & Meso, 2008).

Implications for BPM understandability

CTML has a lot of implications for the understandability of BPM. For starters, the different actors can

influence the level of cognitive complexity of the BPM. Firstly, the content that is being communicated

as learning material is the business process which the BPM represents. If the business process is

complex, the model that has to communicate this process will most likely be complex as well.

Secondly, the presentation style has influence on the level of understanding according to CTML. This

means that the way in which the BPM is presented has an important role in the level of understanding

the user will achieve. Lastly, the individual characteristics of the user have their impact on the

understandability of the BPM. If the user has more experience working with BPM, he will most likely

understand it more easily. The levels of understanding as defined by Mayer (2002) can be linked

with the syntactical, semantic and pragmatic understanding. The user needs to understand the

syntax and semantics to achieve surface understanding, but to reach deep understanding he needs

to understand the BPM at the pragmatic level.

2.3 Levels of understanding

The three levels of understanding are based on the SEQUAL model by Lindland e.a. (1994) and

semiotic theory (Burton-Jones e.a., 2009) as discussed earlier. Here they are assumed as a ladder

with levels rather than independent dimensions. The user firstly has to understand the syntax before

he can understand the semantics. When the user understands the semantics of the model he can

achieve ‘deep’ understanding and reach the pragmatics level (Mayer, 2002). These relationships are

rather straightforward and the analogy can be made with a story. If you cannot read the letters and

10

words (syntax), you cannot understand the plot (semantics). If you cannot understand the plot, you

cannot understand the underlying message intended by the author of the story (pragmatics). For

BPM specifically, this means that the syntactical aspect of the model is of greatest importance. If the

syntax is misunderstood, the interpretations of the user of the model are most likely flawed as well

(H. A. Reijers & Mendling, 2011; H. Reijers & Mendling, 2008). This however does not imply that the

other levels should be neglected: their mere presence is crucial for the good understanding of BPM.

This necessity can be illustrated by the fact that a BPM does not have much meaning without labels

(semantics) and without the business environment context (pragmatics).

2.3.1 Syntax

The syntax of a BPM is the graphical notation (language) it is written in and the logic that is expressed

by the way activities and gateways interact with each other through control flows (Mendling e.a.,

2012). As discussed before, the user firstly has to understand the syntax of the BPM before he can

get to the other different levels of understanding. This means that the user must be somewhat

familiar with the notational language and its logic and that the designer of the BPM should avoid

making syntactical errors (Figl, Mendling, & Strembeck, 2013) and avoid the use of anti-patterns

(Laue & Awad, 2010). Anti-patterns are specific patterns that are known to be harder to understand

or have other negative consequences. The term originates from software design research

(Gustafsson, 2000), however it can be adapted to BPM. The detection of these anti-patterns can be

an indication of poor BPM design and understandability (Gruhn & Laue, 2006b). Use of the anti-

pattern might seem logical at first sight, but the disadvantages outweigh the advantages in the long

run. Some examples of these anti-patterns are discussed in a paper of Laue and Awad (2010). The

importance of syntax is partly demonstrated in the amount of research that has been done into

syntactical comprehension with regards to BPM and metrics that measure it (Figl & Laue, 2011;

Genon, Heymans, & Amyot, 2011; Gruhn & Laue, 2009; H. A. Reijers & Mendling, 2011).

2.3.2 Semantics

Semantics are the meaning of the activities. The semantic level of the BPM is reached when labels

are added to the various activities and gateways (Mendling e.a., 2012). Mendling e.a. conclude their

research into activity labels that in the designing phase of a BPM it can be useful to temporarily hide

or abstract the activity labels to evaluate the BPM for syntax errors. They found that on the syntactical

level users could more easily comprehend the BPM when activity labels were abstracted as letters

(A, B, C, …). A BPM is however more than simply syntax logic, it needs meaning as well (semantics).

11

2.3.3 Pragmatics

When context is introduced to the BPM, the pragmatics level is reached. So far not much knowledge

has been generated by the literature with regards to the pragmatic factors of business process

modelling (Burton-Jones e.a., 2009). The reason for this can probably be found in the fact that the

preceding levels (at least according to semiotic theory) have not been studied thoroughly yet.

2.4 Factors influencing understandability

One important aspect of models is that they should be easily understandable and that they are

intuitive (Davies e.a., 2006). Apart from the obvious positive relationship between size and

complexity of business models, this paragraph describes other phenomena that might have their

impact on the understandability of BPM. In this master thesis we employ the definition for BPM

understandability as given by Reijers and Mendling (2011): “the degree to which information

contained in a business process model can be easily understood by a reader of that model”. The

literature demonstrates different points of view with regards to BPM understandability. This

paragraph attempts to harmonize these views which should result in a framework that can be used

as a cognitive ‘map’ for BPM understandability.

Figl and Laue (2011) identified three relevant factors that influence the understandability of business

process models: relations between elements, element interactivity and element separateness. The

relations between elements refer to the different control structures within the BPM. Some structures

might be harder to understand (order, concurrency, repetition and exclusiveness) than others

(Melcher, Mendling, Reijers, & Seese, 2010). The element interactivity is defined as the way the

elements interact with each other and whether they occur in serial or parallel. The higher the

parallelism of these interacting elements, the higher the cognitive load for the reader of the BPM

(Figl & Laue, 2011). Figl and Laue measure this by computing the distance of the elements in a

process structure tree. The higher this distance, the more complex the interactions between elements

are to understand for the model reader. Lastly, element separateness is addressed as the amount of

cut-vertices in the BPM. The further two elements are removed from each other, the more easily the

model reader creates reference points and he can more easily understand the model (Mendling &

Strembeck, 2008).

Reijers and Mendling (2011) apply a cognitive dimensions framework that has been empirically

confirmed for the understandability of software and visual notations (Green & Petre, 1996). The

12

cognitive dimensions they apply to BPM are: abstraction gradient, hard mental operations, hidden

dependencies and secondary notation. With abstraction gradient the framework refers to the

capability that a notation can handle the grouping of elements. This means that if the model gets

more complex it becomes harder to understand because it is harder to identify relations within the

BPM. Reijers and Mendling (2011) presume that this is why expert modelers are better at finding

related parts within the BPM, and thus understand it better than a novice would. The hard-mental

operations refer to the fact that BPM become over-proportionally harder to understand as their size

increases. Again, according to Reijers and Mendling (2011), experts should be more capable of

decomposing the model in smaller chunks to deal with size issues. The hidden dependencies are the

dependencies between the BPM elements that are not directly visible. Reijers and Mendling associate

these hidden dependencies with the relations between split and join connectors in BPM. They propose

that expert modelers make use of heuristics to easily understand a BPM’s behavior. Lastly, the

secondary notation is the part of the BPM that is not formalized by a standard. For example, BPMN

2.0 does not define standards related to the empty space between elements, or how long flow

connectors should be. This extra information in the BPM is not part of the formal notation, but is

added by the designer of the model. Intentionally, this can be done through applying labeling

conventions as addressed by Mendling e.a. (2010) or by following specific layout strategies as

discussed by Ware e.a. (2002). Mendling and Reijers (2011), next to model factors, also address the

importance of personal factors with regards to BPM understandability. They identify expertise and

personality as the two most important personal factors. They conclude their research that expertise

can overcome even the poorest designed BPM. They propose that it might be more interesting for

companies to invest in training staff rather than put effort in reducing the cognitive complexity of

their process models.

Schrepfer e.a. (2009) distinguish two important aspects to the process of reading and understanding

BPM. Firstly they identify the aspect of graphical readership. This describes the user’s ability to read

a BPM. This means that the user has to see the graphical elements of the model and interpret their

meaning (Petre, 1995). This part of the process with regards to BPM is not much impacted by

intuition, but it is closely linked to the notation that is used to express the model. It is therefore of

great importance to think about the notation and layout style employed in the BPM. Secondly they

identify the aspect of pattern recognition. Using patterns much like described in Van der Aalst’s

Workflow Patterns (2003) allows the user to understand the BPM better. However, if these patterns

are torn apart or distorted by bad layout decisions this advantage is lost (Schrepfer e.a., 2009).

13

Characteristics of the notation have a direct impact on comprehension of the model (Hahn & Kim,

1999). This leads to the conclusion that it is important to use the right notation for the right purpose.

Within the literature a lot of different influence factors are identified with regards to BPM

understandability. These different views are tricky to combine because they either overlap or are so

different. In the following paragraphs we attempt to make a clear overview of these different factors.

The distinction is made between model aspects and personal aspects, very much like the divergence

made by Reijers and Mendling (2011).

2.4.1 Model aspects

On the one side different model aspects influence BPM understandability, on the other side personal

aspects have their effect as well. The model aspects that were identified in the literature are further

discussed in this paragraph.

Lay-out

For example in the BPMN specification, there are no specifications made with regards to positioning

of elements within the model. Since there are however specifications for the logic, two very different

looking BPM (layout-wise) can actually withhold the same logic and elements and thus mean the

same thing. Cognitive research in program understandability makes the distinction between the first

notation and second notation of a program (Schrepfer e.a., 2009). The first notation of a modeling

language can be seen as the specifications that are predefined in the language standards. The second

notation is anything that the designer can decide for himself upon designing the BPM that are outside

of the specifications of the standard. For BPMN there are no specifications with regards to positioning

of the elements or in what direction the flow of the process should go. It has been proposed in

research of process model understandability that the second notation can be expressed as the

amount of line crossings, edge bends, symmetry and use of locality in the process model, however

these aspects have not been empirically confirmed yet (Schrepfer e.a., 2009). Closely related to the

second notation is the importance of flow direction in BPM (Figl & Strembeck, 2014). The authors

propose a theoretical perspective on why a left-to-right direction is preferable for a BPM to a different

direction, however the empirical evidence still needs to follow.

Granularity

A characteristic of BPM that distinguishes them from other forms of process modelling is that the

description of activities are written in natural language (Gruhn & Laue, 2006a). This would imply that

14

not every activity has the same level of cognitive complexity. Gruhn and Laue make the assumption

however that there should be an agreed-upon vocabulary that is used to express certain activities.

Using some kind of glossary could increase the understandability of the BPM.

Modularity

Business process models can have specific parts of that can be regarded as a sub-process. Applying

modularity to a BPM simply means dividing the large BPM into smaller chunks that can be seen as a

subpart of the process. This way of designing should not only increase the comprehensibility of the

model, but it should also make it easier to reuse parts of the model and make it more scalable (H.

Reijers & Mendling, 2008). The advantages of the design mentality of modularity have already been

demonstrated by the rapid growth of the computer industry (Carliss, Baldwin, & Clark, 1997). The

findings of Reijers and Mendling (2008) in controlled experiments resulted to the conclusion that

there seems to be a positive connection between the presence of modularity and the

understandability of a process model. The effect seemed to be the most significant for larger BPM

and if the design mentality is applied to a high extent. They found that the use of modularization

techniques specifically increased comprehension of specific parts (locality) of the model. This

modularization can be done in part automatically by software, and research results indicate that the

use of sub processes increases the understandability of complex BPM due to the fact that they “hide”

information from the user (H. A. Reijers, Mendling, & Dijkman, 2011).

2.4.2 Personal aspects

Not only the model aspects have their effect on the understandability of BPM. Since the

understandability itself occurs at the user of the BPM, it would be nonsensical not to address any

personal aspects. A popular personal aspect in the literature with regards to BPM understanding is

expertise. Expertise can be regarded from two directions in BPM. From the one side, if the designer

of BPM has a higher level of expertise he will probably produce higher quality models. A study by

Bandara (2007) points out that if the user has more expertise in reading BPM or designing them, he

will more easily understand complex BPM and thus make less errors when designing them. From the

other side, if the user has more experience working with BPM he will understand them better.

Defining expertise in the context of BPM seems to be a difficult task (Schrepfer e.a., 2009). Expertise

not only consists of experience, but also theoretical knowledge (Mendling & Strembeck, 2008; H. A.

Reijers & Mendling, 2011). In research around expertise the comparison between novices and experts

is often made. However, this distinction does not offer much granularity when it comes to determining

15

the level of expertise. Experience with one graphical syntax or notation does not necessarily mean

that the user will understand models in other notations (Nordbotten & Crosby, 1999). Nordbotten

and Crosby (1999) refer to this as a carry-over effect between experience in different graphical

syntaxes. Their research also indicated that more experienced users of a notation differ in reading

strategy from their novice counterparts. However, this reading strategy did not seem more effective

nor efficient for graphic-heavy models.

2.5 Conclusion

In the literature review we have uncovered the importance of BPM understandability and the

relationship between BPM complexity and understandability is illustrated. This relationship has been

the target of many studies in the field of process modelling and there seems to be a consensus about

the positive correlation between the complexity of BPM and their level of understandability. Theories

from cognitive sciences have been a popular reference point for the studies that attempt to address

this relationship: Cognitive Load Theory, the SEQUAL model, semiotic theory, Resource Allocation

Theory and the Cognitive Theory of Multimedia Learning have been reviewed on the level of their

interpretation by researchers and what their conclusions imply for the understandability of business

process models in general.

There are different factors that might influence the understandability of BPM according to the

literature. In this review, the factors identified have been categorized as being either personal- or

model-specific aspects. Model aspects that can influence the understandability are, amongst others,

lay-out, granularity and modularity. A personal factor that has been identified by research is

expertise,

17

Chapter 3: Measuring complexity

Understandability of a BPM is very closely linked to its complexity, as has been shown in the previous

chapter. Therefore it is important to measure the complexity of a model in order to make sound

estimations of its understandability. This paragraph gives an introduction into metrics that have so

far been applied for measuring complexity of BPM, or process models in general. Most of these

metrics are heavily inspired by equivalents used in software engineering. The preference is given to

metrics using ‘high-level’ information of the BPM, because they make abstraction of the modeling

language used. This increases the scope of their applicability which makes them more interesting for

application in practice. However, these metrics often focus on just a few of the elements that actually

influence the complexity of a BPM and therefore it is hard to pinpoint the single best metric. Using a

combination of these metrics seems to be the preferred way to go (Gruhn & Laue, 2006b).

The different metrics that were identified from an extensive literature review are discussed as follows.

Firstly, the metrics are discussed with regards to their origins and applicability to BPM. Secondly, for

each metric a demonstration is given for the computational aspects using a fictive BPM example, that

of a loan approval process. The example (Fig. 1) might seem arbitrary, but it is designed in such a

way that it allows for demonstration of the computational aspects for each metric. It contains three

subprocesses, being the Home Loan (Fig. 2), Student Loan (Fig. 3) and Car Loan Approval (Fig. 4)

processes. Because of the limited space in a printed document we have opted for contracted subtasks

in the main process model and the subprocesses are displayed separately in their full form. For the

computation of the various metrics we however assume that the process model is displayed in its full

form as it can be found in the Appendix on page 74.

Fig. 1: Loan approval BPM example

18

Fig. 2: Home Loan subprocess

Fig. 3: Student Loan subprocess

Fig. 4: Car Loan subprocess

3.1 Lines of Code (NOA, NOAC, NOAJS)

The Lines of Code (LOC) metric is probably the easiest of all metrics discussed in this chapter.

However, its simplicity does not impede its usefulness. It is a basic metric well known from its

applicability in software engineering for detecting errors. The name of the metric says it all: the

amount of lines of the code gives an indication of the complexity of the software. This metric is easily

translated in a form in which it is applicable for BPM. One possible definition for the LOC metric is

given by Cardoso (2005). According to him, the elements of a BPM can be assigned to these subsets:

Number Of Activities (NOA), Number Of Activities And Control-flows (NOAC) and lastly Number Of

Activities, Joins and Splits (NOAJS). The metric can also be linked to Cognitive Load Theory, as

discussed earlier, as the number of elements in a BPM create a cognitive load on the working memory

of the user. It is the long-term memory (expertise) that enables the user to recognize patterns and

this way reduce the cognitive load on his working memory to free up resources for understanding

the model. Which in a way is linked to Resource Allocation Theory (Mendling e.a., 2012). The LOC

metric might be a decent metric for complexity, however, it does not offer that much depth as a

measure of cognitive complexity. In a BPM there are many more factors (logic, lay-out, notation, …)

19

that increase the cognitive complexity and far better metrics have been established by research in

this subject. Some examples are discussed further on.

3.1.1 Computational aspects

Since there are no lines of code in a graphical representation of a BPM, we resolve to the metrics

that were adapted from LOC for BPM by Cardoso: number of activities (NOA), number of activities

and control flows (NOAC) and number of activities, joins and splits (NOAJS).

The NOA can be easily computed for the loan request process as can be found in Fig. 1 on page 17.

To find the value for the NOA we simply count the number of tasks, which are the equivalent form

of activities, in the BPM. With the calculations for this metric the assumption is made that an ‘activity’

refers to the task element in the BPMN notation. We make this assumption because of the simple

reason that if it would refer to both tasks and gateways, the NOA would be equal to the NOAJS. This

assumption, however, is not made for all the other metrics. For this reason we explain for each metric

individually what is meant with the abstract concept of ‘activities’. The main process consists of 9

tasks and the subprocesses consist of respectively 5, 4 and 4 tasks. This results in a value of 22 for

the NOA metric.

The computation of NOAC is very similar to the NOA metric. We can recycle the 22 value of the NOA

metric and simply add the total amount of control flows in the BPM. The control flow amount is

computed by simply counting the amount of arrows in the BPM found in Fig. 1. The main process

contains 18 control flow arrows. The subprocesses contain respectively 10, 8 and 8 control flow

arrows. This leads to a total of 44 control flow arrows. When we add this to the 22 tasks (NOA) we

end up with a value of 66 for the NOAC.

For the calculation of the NOAJS we yet again recycle the value for the NOA metric (22). We then

add the number of joins and splits. In BPMN these joins and splits are represented by gateway joins

and splits. The main process has two XOR-gateways and two AND-gateways, both splits and joins.

The subprocesses have two XOR-gateways each (again split and corresponding join). This brings the

total splits and joins of the BPM to 10. The value for the NOAJS can be seen as the sum of the amount

of tasks and gateways in the BPM, which is then 32.

3.2 Control-flow Complexity (CFC)

Based on McCabe’s Cyclomatic complexity (McCabe, 1976), a popular metric from software

engineering, the Control-flow Complexity metric measures the complexity of process models

20

(Cardoso, 2005). This metric is based on the amount of XOR/OR/AND-splits and joins in the process

model and it counts the total states that are possible due to these splits and joins. The amount of

states of the model is equal the different paths or flows that are possible in the model. XOR-splits

represent an activity that only allows the control flow to go in one of many possible directions. The

XOR-join is an activity that can have multiple incoming directions, but is started as soon as one token

arrives at the join. The AND-split only starts execution when all incoming connections are completed

and then starts all outgoing connections. The OR-split can enable any amount of outgoing flows and

can be enabled from any amount of incoming flows.

Fig. 5: XOR-split and XOR-join in BPMN 2.0

As can be seen in Fig. 5 the XOR-split is represented in BPMN and many other process modelling

languages as a gateway with an X in it. The logic of the XOR should have additional information what

single path should be chosen. This means that only the activity B or C or D can be executed when

the process comes to an end. The XOR-join continues the flow as soon as one incoming flow is

registered, meaning if either B, C or D is completed the flow will continue, and in this case will reach

the end of the process.

The way the XOR-split’s complexity is measured correspondents with the number of fan-outs of the

split. With ‘fan-out’ is meant the amount of flows go from the XOR-split to other activities. Cardoso

(2005) sees these fan-outs as the number of states that the designer of the BPM needs to keep in

mind and analyze. These states are the number of different possibilities or paths that the process

model allows for.

21

Fig. 6: AND-split and AND-join in BPMN 2.0

As demonstrated in Fig. 6, the AND-split and join are illustrated in BPMN 2.0 as a gateway with a

plus-sign in it. The logic of the AND-gateway dictates that all outgoing flows are started as soon as

the gateway is reached. This means that activities B, C and D will be executed in parallel. The AND-

join will only activate (and continue the flow) when the activities B, C and D are finished.

The complexity of an AND-split is easily measured as being equal to 1. This is due to the fact that

the AND-split does not increase the number of states, since all the fan-outs (flows) from the AND-

split are followed and no other possibilities are allowed by the model.

Fig. 7: OR-split and OR-join in BPMN 2.0

The OR-split in BPMN 2.0 looks like a gateway with an O inside it. The OR-split works differently than

the AND or the XOR-split. The OR-split works in such a way that it needs to be defined in the logic

of the activity which of the outgoing flows should be continued. In this case it can be one, two or

three different flows. The same goes for the OR-join, the flow will continue when the amount of

incoming flows needed is reached.

The OR-split is probably the most complex of the different types of splitting in process models

according to Cardoso. The complexity of the split is equal to 2f-1 where f equals the amount of fan-

outs that start from the split. The reason for this is because there are more paths possible within the

model due to the use of the OR-split.

22

Cardoso has validated the metric by applying Weyuker’s formal list of properties (Weyuker, 1988).

These properties were constructed to give an analytical approach to validate software metrics for

their quality. The metric satisfied seven out of a total nine properties and therefore it can be

considered as valid. Furthermore it has been confirmed by an experiment that resulted in the

conclusion that the metric is very highly correlated with the user’s perceived complexity. This makes

the metric also an interesting one with regards to the understandability of BPM. There is a

disadvantage to the metric however according to the author. It lies in the fact that there is no real

objective meaning to the actual CFC-value of a process model. To give meaning to the value it needs

to be a subject of empirical studies or real-world experience to give classifications of (for example)

risk associated with specific levels of CFC. This would be very likely as what has been done around

the McCabe complexity metrics: certain values for the metric would indicate higher amounts of

complexity and risk associated with the software program.

The metric is also further criticized by Gruhn and Laue (2006b): the metric does not account for the

structural complexity of the model. Two models with the same CFC-value but different structures or

lay-outs are demonstrated and there seems to be an obvious difference in the level of cognitive

complexity, even though the CFC-values are completely the same. Although the CFC-metric can be

useful to gain insight of the complexity with regards to logic and maybe give an idea of the cognitive

complexity, it should be used with caution to measure the overall cognitive complexity of a BPM.

3.2.1 Computational aspects

The CFC metric as proposed by Cardoso is a little less straightforward than his NOA, NOAC and NOAJS

metrics. For the XOR-gateways we need to count the total amount of fan-outs Within BPM, these

fan-outs are the number of control flows leaving the exclusive choice gateway. The example as given

in Fig. 1 has one XOR-gateway split with a corresponding join in the main process. Since there are

three different control flows leaving the gateway, we should assign the value of 3 to the CFC metric

for this XOR-gateway. Next up (in the main process) is an AND-gateway. According to the metric’s

specification, the AND-gateway represents a CFC of 1. This results in a CFC value for the main process

of 4. The subprocesses have one XOR-gateway split and join each. However, the fan-outs are not

the same. The first subprocess has a gateway with three control flows leaving, which means a value

of 3 should be added to the total CFC. The other two subprocesses have gateways with two control

flows leaving, which means that a value of 2 should be added for both subprocesses. This results in

23

a total CFC of 11 for the complete BPM example. This calculation is based however on the assumption

that the total CFC of the BPM is the sum of the main process and its subprocesses complexity.

3.3 Cognitive Weights (CW)

As a result from empirical studies, Shao and Wang (2003) defined a metric to measure the

comprehensibility of a piece of software. They do this by assigning varying weights to different control

structures. These weights are ordered by difficulty of understanding, as demonstrated in Table 1.

The total cognitive weight of a software component is then defined by the sum of the structure

weights, assuming there are no nested control structures.

Table 1: Cognitive Weights, weights according to control structure

Structure Weight (Wi)

Sequence 1

Branch with if-then or if-then-else 2

Embedded function call 2

Branch with case 3

Iterations 3

Embedded recursion 3

Concurrency 4

The cognitive weights metric can be applied to BPM, however some considerations should be made

in order to adapt the metric (Gruhn & Laue, 2006b). For example, recursion has no meaning in the

context of BPM. There are also aspects inherent of BPM that are not represented by a cognitive

weight. An example of this is a cancellation within a BPM. The adoption by Gruhn and Laue (2006a)

of the Cognitive Weights for BPM can be found in Table 2.

Table 2: Cognitive Weights adapted by Gruhn and Laue (2006a) for BPM

BPM Control Structure Weight (Wi)

Sequence 1

XOR-split, one of two chosen, with join 2

XOR-split, one of ≥ 3 chosen, with join 3

AND-split with join 4

OR-split with join 7

24

Subtask 2

Multiple Instance Activity 6

Cancellation 1, 2 or 3

Gruhn and Laue (2006a) point out however that the Cognitive Weight metric should be used with

caution when the BPM is unstructured. A structured BPM is one in which each gateway split (AND,

XOR, …) is matched with the corresponding join gateway and that the split-join pairs are properly

nested (Liu & Kumar, 2005). Various studies however have pointed out that unstructured BPM could

be translated into well-structured BPM most of the time (Kiepuszewski, ter Hofstede, & Bussler,

2000; Liu & Kumar, 2005). This could increase the usefulness of CW as a metric to assess BPM

complexity and thus understandability.

3.3.1 Computational aspects

Calculating the value for CW of a BPM is pretty straightforward since the specifications made by

Gruhn and Laue (2006a) are very clear. For specific parts of the BPM a weight is assigned. The sum

of these weights results in the value of CW for the BPM, as can be seen in Table 2 above. We apply

this to the example as given in Fig. 1. A sequence (Wi = 1) can be seen as a sequence of tasks in

BPMN. We have one sequence in the main process model and none in the subprocesses. The main

process has one XOR-split-gateway with one of ≥ 3 chosen, which results in a Wi of 3. It also has an

AND-split with join which accounts for a Wi of 4. There are three subtasks in this model which results

in a Wi of 6. There are no Multiple Instance Activities, Cancellations or OR-gateways in this BPM so

we do not have to add weights for these types of structures. The subprocesses however do contain

XOR-gateways. The first subprocess (Fig. 2) has a XOR-gateway with one of three possible control

flows, which results in a Wi of 3. The other two subprocesses have a XOR-gateway with one of two

possible control flows, which results in a Wi of 2. This brings the grand total CW of the BPM to 21.

Again, just as with the CFC metric, the assumption is made that the total CW of the model is the

sum of the CW of the main process and its subprocesses.

3.4 Nesting depth (ND)

Following from (again) research in software development, it has been found that both the mean and

maximum nesting depth have a strong correlation with structural complexity (Schroeder, 1984). This

metric is easily adopted for BPM, since both metrics (mean nesting depth, maximum nesting depth)

25

can be easily defined (Gruhn & Laue, 2006b). The depth of an activity can be seen as the amount of

decisions that have to be made to get to this activity in the BPM. Although it should be noted that

some business modeling languages (UML AD, YAWL) do not need ‘proper’ nesting of activities (Gruhn

& Laue, 2006b). With proper nesting the authors mean that not every split or join needs to occur in

pairs. According to Gruhn and Laue this is comparable with GOTO-jumps in software programming

languages as being unstructured, and WHILE and FOR-loops being structured loops. When a lot of

these jumps occur it affects the structure of a BPM and the occurrence of a ‘spaghetti’-model might

take place (Holl & Valentin, 2004). Another metric that is proposed by Grun and Laue (2006b) is the

knot count of a BPM. A knot occurs when the control paths intersect with each other, as demonstrated

in Fig. 8.

Fig. 8: Knots in a BPMN 2.0 model

The amount of knots in a BPM could have an impact on the understandability of the model, however

in this domain (to my knowledge) no specific research has been done. One would expect that the

relationship between the amount of knots and the understandability of a BPM is negative, however

this assumption would need to be validated through empirical research.

3.4.1 Computational aspects

Firstly we compute the mean nesting depth (MeanND) of the example BPM as can be found in Fig.

1. We can do this without any problems because the example fits the proper nesting criterion as

described above. We look at the tasks (which are here considered as ‘activities’) in the BPM and how

far they are nested within the model. As explained earlier, the nesting depth is the amount of

decisions that need to be made before the activity is reached. For the “receive loan request” task,

no decisions need to be made for the activity to start. The other tasks in the main process model

have a nesting depth of zero: no decisions need to be made for them to be reached, they are not

nested. However, the nesting depth is different for the tasks in the subprocesses. Since the

subprocess itself is nested within an XOR-gateway split and join, all the tasks within the subprocess

26

already have a floor of 1 nesting depth. For example, in the Home Loan Approval subprocess (Fig.

2), the “Check home loan” task is not nested in the subprocess, but since the subprocess itself is

nested it attains a nesting depth value of 1. The “Accept”, “Reject” and “Accept Conditionally” tasks

however are yet again nested inside XOR-gateways. This means for example that in order to reach

the “Accept” task, two specific decisions need to be made. This results in a nesting depth value of 2

for these tasks. The same can be said for the other subprocesses (Fig. 3 and Fig. 4). We then sum

up these nesting depths and divide them by the total amount of tasks in the BPM. The total nesting

depth for this BPM is then 20 and the total amount of tasks is 19. This results in a mean nesting

depth of 1,05.

The maximum nesting depth was found for the tasks nested within the XOR-gateways in the

subprocesses. This results in a value of 2 for the MaxND.

3.5 Information Flow (IF)

Based on earlier research by Henry and Kafura (1981) in software development, Gruhn and Laue

(2006b) adapt the fan-in and fan-out metrics for application to BPM. Fan-in in terms of software

systems means how many times a piece of the software is being addressed by other pieces of the

same software. Vice versa, the fan-out is the amount of other modules of the software are being

addressed from a specific module. This way both metrics give an idea about the structural complexity

of the software since it addresses in which degree it is modularized (Henry & Kafura, 1981). The

same can be said for a BPM: if a node has a lot of different incoming and outgoing flows, this increases

the complexity of the BPM. If the structural complexity is high due to this metric, it most likely means

that the designer of the model did a poor job (Gruhn & Laue, 2006b). Based on earlier work from

Shepperd (1989), Sun & Hou (2014) define a new metric (Information Flow) for measuring

complexity of process models. The individual IF of an activity is calculated by multiplying the fan-in

with the fan-out then taking the square. This metric is very close to how Cardoso e.a. proposed the

concept of Interface Complexity (IC), but it is much easier to compute than Cardoso’s alternative.

3.5.1 Computational aspects

For the IF metric we regard both the tasks and gateways as activities, this in contrast to the

NOA/NOAC/NOAJS and ND metrics. We make this assumption because we want to employ the same

computation method as was used by the authors who proposed this metric (Sun & Hou, 2014). The

calculation of the IF of sub-activities or sub-processes is the sum of the IF of all the activities

27

contained. To calculate the total IF all the individual elements’ IF are summed up. When we look at

the main process (Fig. 1) and the subprocesses (Fig. 2, Fig. 3, and Fig. 4), we can already see that

all the tasks only have one control flow coming in and going out. This means that the flow is

controlled. This results in an IF of 1 for all the tasks in the model. The first XOR-split-gateway has

one incoming flow and three outgoing flows. This means that the IF for the first gateway is (1+3)²

or 16. The same value is computed for the XOR-join-gateway. Up next we still have an AND-split and

join-gateway, for which the same IF is computed (16). This results in a total IF for the main process

of 50 (6 for the tasks, 16+16 for the XOR-gateways and 16+16 for the AND-gateways). This

demonstrates that the metric does not distinguish between AND or XOR-gateways. This could be

seen as a disadvantage of the metric. AND-gateways can introduce parallelism into the BPM and

even multiple instances when they are not merged properly (synchronization). Intuitively one would

expect that a BPM with either parallelism or even multiple instances within the same process flow

would increase the cognitive complexity of the BPM. Since this metric does not account for this

increased cognitive complexity it would seem straightforward that additional metrics are needed that

do address this aspect of complexity. The subprocesses have a total of 13 tasks that have one

incoming and outgoing flow. The first subprocess (Home Loan Approval) has a XOR-split with one

incoming and three outgoing and a XOR-join with three incoming and one outgoing flow, which

implicates an IF value of 32. The second and third subprocess have XOR-gateways with only two

outgoing and incoming flows. This means that for each of the two subprocesses the gateways account

for an IF value of 9. The grand total of the IF metric for this BPM is the sum of the main process and

subprocess IF. This can be easily computed by adding 50 (main process), 13 (tasks subprocesses),

32 (XOR join-split first subprocess), 18 (XOR join-split second and third subprocess) which results in

an IF value of 113.

3.6 One for all, or all for one?

As has been pointed out above, different metrics can address different aspects of the complexity of

BPM. However, with regards to total cognitive complexity of a BPM it makes little sense to apply only

a single metric. An interesting point of view by combining metrics is presented using the Goal-

Question-Metric (Abd Ghani, Koh, Muketha, & Wong, 2008). GQM is a paradigm based on defining

project goals and then constructing questions that need to be asked in order to achieve said goals.

The next step is then to fit the questions with metrics such as those that have been mentioned in

this chapter. This approach is comparable to that of a Balanced scorecard (BSC): in a BSC various

28

financial and non-financial metrics are gathered in a small report for management to assess the

current status of operations. Other interesting combinations have been proposed in the literature,

such as combining Cardoso’s Control-flow Complexity with Nesting Depths (H. A. Reijers e.a., 2011).

While the CFC-metric expresses the overall logical complexity, the ND-metric measures the structural

complexity. Gruhn and Laue (2006a) also expressed their concerns about using the metrics

individually in assessing complexity of a BPM. They too suggest that the individual metrics should

complement each other and should be used within a metrics suite to gain insight of the overall

cognitive complexity of a BPM.

For a summarization of all the complexity metrics discussed above, see Table 3.

Table 3: Summary of complexity metrics for (business) process models

Metrics Authors Usage

NOA,

NOAC,

NOAJS

Cardoso (2005) NOA: Count number of activities/tasks

NOAC: Count tasks and control flows

NOAJS: Count activities and joins and splits

CFC Cardoso (2005) Total states XOR/OR/AND-splits/joins

CW Shao and Wang (2003) Adding weights to elements of the model

ND Gruhn & Laue (2006b) Mean nesting depth, maximum nesting depth, knot count

IF Sun & Hou (2014) Information flow, product of individual Fi and Fo squared.

3.7 Conclusion

Since the complexity and understandability of BPM seem to be so closely related, some of the most

popular metrics for process model complexity are summarized and reviewed. These metrics, due to

the close relationship between complexity and understandability, could give sound estimations of the

understandability of BPM. Some of the metrics seem intuitively more suitable for measuring BPM

complexity than others and sometimes even combinations might be preferable. Combining the

metrics can be done for example through the Goal-Question-Metric methodology, which is

comparable to the popular Balanced Scorecard method. This leads to the question whether some of

these metrics actually measure the same thing, which would make their concurrent use nonsensical.

However, the combination of some of these metrics might actually make sense. This leads us to the

29

next chapter, where the metrics are evaluated on the basis of Workflow Patterns (Van der Aalst)

expressed in BPMN 2.0.

31

Chapter 4: Patterns

4.1 Introduction

To make the link with the previous chapter, the different levels of understanding (syntax, semantics

and pragmatics) are discussed in this chapter according to specific patterns that have been identified

in the literature. The use and reuse of patterns can help make the BPM more understandable because

it allows the user to divide the model into sizeable “chunks” (Cardoso e.a., 2006). The metrics from

Chapter 3 are applied as a basis for evaluation of their cognitive complexity. The results of this

comparison should give insights into the understandability of BPM and can be regarded as an

evaluation on the usefulness of metrics. Three popular streams for patterns were identified in the

literature, namely Workflow Patterns, Activity Patterns and Domain Process Patterns. These groups

of patterns can be linked to the levels in the theoretical ladder of Burton-Jones e.a. (2009) as

discussed in Chapter 2: Theories on understandability. According to the authors, understanding has

to go through different levels: syntax, semantics and pragmatics. The three groups of patterns that

were identified can be linked correspondingly to these levels and will be individually discussed below.

Workflow Patterns are often-recurring patterns that address business requirements in a workflow-

like expression but not in any specific notational language (W. M. P. van der Aalst e.a., 2003). The

reason the authors refrained from expressing the patterns in a specific notation is because they

wanted to create a basis for comparing modeling languages and workflow management systems.

The 20 different patterns described in their paper (W. M. P. van der Aalst e.a., 2003) range from

rather simple to complex. This collection of workflow patterns has been expanded and revised (N.

Russell, 2006). The total of 43 identified patterns have been documented and their ability to be

expressed in various notations was tested by Russel (2006). These patterns provide insights at the

syntax-level of the BPM. Use and re-use of these patterns might increase the understandability of

BPM since the users will recognize them and this might reduce the cognitive load with regards to

syntax (Cardoso e.a., 2006)

While Van der Aalst’s (2003) Workflow Patterns focus on the syntactical level of process models,

Activity Patterns (AP) are aimed at the semantic level of BPM (Thom, Reichert, & Iochpe, 2009). The

authors address semantics because they identify key business activities from frequently recurring

BPM-patterns. The goal of their research is to encourage re-use of BPM patterns which would allow

for the design of higher quality BPM. In their paper they bring a revised version of the seven activity

32

patterns. The distinction between Van der Aalst’s WFP and Thom, Reichert and Iochpe’s AP can be

easily made. While WFP are primarily aimed at the most fundamental syntactical structures in a BPM,

AP add more meaning to often recurring patterns of activities in BPM. Examples of such patterns can

be approval processes, notification processes, question-answer processes… By the use of semantics

(send notification, deny request, …) meaning is added to the patterns. This places AP higher on the

ladder in semiotic theory of understandability (as discussed in Chapter 2: Theories on

understandability) than WFP. This is logical, because WFP are far more abstract in their definition.

in their paper “Improving the process of process modelling by the use of Domain Process Patterns

(DPP)”, Koschmider and Reijers (2015) introduce process patterns for specific business domains.

These process patterns differ from Van Der Aalst’s Workflow Patterns (WFP) in such a way that WFP

focus at the syntactical level, as described in the previous chapter, while the DPP focus at the content

of the process. At the semantics level, Thom e.a. (2009) proposed Activity Patterns. With these

patterns typical business functions were associated. For example, according to the authors a decision

could be identified by a XOR-split. With DPP the focus is at the activity level in a modeling domain.

This means that the context is important for the pattern, bringing it to the pragmatic level. The goal

of DPP is to assist designers in the creation of BPM by supplying predefined content in the form of

reusable process patterns. The domains of focus are order management and manufacturing, however

the collection of DPP is obviously extendable to other domains. This is what distinguishes DPP from

AP: DPP adds context to recurring patterns, allowing it to reach a higher level on the semiotic ladder:

the pragmatics level.

Due to the constraints on time and resources associated with the master’s thesis, the scope will be

limited to the original set of Workflow Patterns (20) by Van Der Aalst (2003). The link with the

literature review can be made with the various complexity metrics that were discussed and how they

influence the syntax level of understanding. Since the complexity metrics discussed in the previous

chapter are closely related to the syntax of process models, it makes sense to apply these metrics

to patterns that make syntax the focal point. The WFP contain frequently returning arrangements

found in BPM. These patterns range from very simple, to very complex, and therefore are an

interesting subject of study in comparing different cognitive metrics for process model

understandability. Future research could address higher levels of understanding: semantics and

pragmatics. Correspondingly, Activity Patterns and Domain Process Patterns could be an interesting

starting point for these higher levels of understanding.

33

4.1.1 Methodology

Firstly, the different patterns are described and a fictive business situation is given to explain their

functionality. Secondly, the various metrics discussed in Chapter 2 will be applied to the different

patterns. For the notation of these patterns, where possible, BPMN 2.0 is used3. Because the patterns

are not explicitly expressed in a language, they need to be ‘translated’ to BPMN in order to apply the

metrics. Some of the process diagrams are inspired by or transcribed from Steven White’s paper on

BPMN-diagrams (2008). A table is then constructed summarizing the results of this analysis. Firstly,

a conclusion is drawn from the results of these metrics. Secondly, the patterns are discussed with

their applicability to the syntax level of understandability and how their usage can improve the

understandability of BPM. It could be that some patterns have higher-than-necessary complexity and

should therefore be avoided or replaced in the design phase of BPM to increase understandability.

Thirdly, results of the metrics applied to the different patterns are compared based on their

correlation coefficient and a factor analysis is conducted. Higher correlations between metrics could

indicate that they measure the same aspect of BPM complexity, therefore concurrent usage of the

metrics would be nonsensical and could or should be avoided.

The following metrics are applied:

Abbreviation Metric

NOA Number of Activities

NOAC Number of Activities and Control Flows

NOAJS Number of Activities and Joins and Splits

CFC Control-Flow Complexity

CW Cognitive Weight

MeanND Mean Nesting Depth

MaxND Max Nesting Depth

IF Information Flow

3 For the BPMN 2.0 specifications the reader is referred to the website of the Object Management
Group (http://www.omg.org).

34

4.2 Workflow Patterns

The Workflow Patterns (WFP) originally identified by Van Der Aalst have been divided under six

categories: basic control flow, advanced branching and synchronization, structural, multiple instance,

state-based, and lastly cancellation patterns. The different patterns range from very simple to very

complex and they try to cover popular returning arrangements in business process models. Every

pattern is briefly explained and the pattern’s translation into BPMN is given in a figure. Then a table

is shown with the value for each metric that was computed. For the computational aspects for each

metric the reader is referred to Chapter 3: Measuring complexity.

4.2.1 Basic Control Flow

Sequence

The Sequence pattern is by far the simplest of all the workflow patterns. It consists of two or more

activities that are executed consecutively. A practical business process example could be that the

activity Send invoice is executed after Ship order. These activities are done in sequence and they are

connected with arrows in BPMN. In Fig. 9 an example is shown. Activity B cannot start until A has

ended, and C will start when B has ended.

Fig. 9: Sequence Pattern

Parallel Split

The Parallel Split pattern allows the process to have multiple activities executed simultaneously. In

comparison with the previous example, when the customer’s order is shipped (Ship order) not only

should the invoice be sent (Send Invoice), but at the same time the customer should be informed of

the shipment (Inform Customer). Sending the invoice and informing of the shipment should happen

in parallel and thus a control flow pattern is needed to express this relationship in BPM. There are

three ways to design such a pattern in BPMN, as can be seen in Fig. 10, Fig. 11 and Fig. 12. The first

example is simply forking the control flow from A to B and C. The user has to know what the BPMN

guidelines dictate with such a fork in order to understand the parallel relationship of B and C. The

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Sequence 3 5 3 1 1 0 0 3

35

second option in Fig. 11 is seen as a ‘best practice’ (White, 2008). The AND-gateway dictates that

the control flow is split up in two parallel threads that can be executed simultaneously. These multiple

threads can be synchronized later on with the Synchronization pattern. The third option (Fig. 12) is

perhaps a bit far-fetched, but still valid according to the BPMN specification. It makes use of a sub-

process to start two new threads and supports the same functionality as the options in Fig. 10 and

Fig. 11. The downturn of using this construction is however, that the parent-process will not continue

until all threads in the sub-process have ended and this could introduce errors in the design phase

of the BPM.

Fig. 10: Parallel Split Pattern (option 1)

Fig. 11: Parallel Split Pattern (option 2)

Fig. 12: Parallel Split Pattern (option 3)

Synchronization

The Synchronization pattern is the exact opposite of the Parallel Split. It joins two or more process

threads back into one control flow. In Fig. 13 and Fig. 14 examples of such a pattern in BPMN are

shown. In the first example an AND-gateway is used to merge the control flows arriving from activity

A and B. Both A and B need to be completed before C will be executed. In the second example a

sub-process is used. When the sub-process is activated activities A and B are started (see Parallel

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Parallel Split 1 3 5 4 1 2 0 0 6

Parallel Split 2 3 6 4 1 2 0 0 7

Parallel Split 3 3 8 4 1 4 0 0 3

36

Split), when both are ended then the control flow from the sub-process can continue to start activity

C. An example of such a pattern in a business context could be that the order cannot be shipped

(Ship order) before the goods are packaged (Package goods) and the shipping bill is made (Create

shipping bill), which can happen simultaneously.

Fig. 13: Synchronization Pattern (option 1)

Fig. 14: Synchronization Pattern (option 2)

Exclusive Choice

The Exclusive Choice pattern expresses a decision in a process model. A decision has to be made

between several different branches. In BPMN this is done by the usage of an XOR-gateway, as

demonstrated in Fig. 15. If condition X is met, activity B is executed. If condition Y is met, then C

will be executed. Both conditions have to be mutually exclusive, otherwise it is not an Exclusive

Choice pattern, but a Multi-Choice pattern, which will be discussed later on. This pattern is used

when decisions need to be made based on a priori knowledge. This means that the designer knows

how the decisions will be made when he is designing the BPM. This decision is however not based on

business logic, but more so on process logic. A business process situation where such a pattern would

appear is for example when a customer has the choice to either pick up the order himself or that he

wants his order to be shipped to him. If the customer wants to pick up the order himself, a different

path in the process needs to be followed than when he wants it to be shipped. Other activities need

to be undertaken in both situations and the customer cannot combine both options: an exclusive

choice needs to be made.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Synchronization 1 3 6 4 1 2 0 0 7

Synchronization 2 3 8 4 1 4 0 0 3

37

Fig. 15: Exclusive Choice Pattern

Simple Merge

The Simple Merge pattern is a bit more complex. This is because the pattern allows for multiple

instances to continue, this in contrast with the Synchronization pattern. Examples of such a pattern

in BPMN are shown in Fig. 16 and Fig. 17. As the first example shows, it is possible to do this by

using regular flow arrows from activity A and B to C. However, to someone not completely familiar

with the BPMN specifications, it is not clear whether A and B need to be completed before C can start.

According to the BPMN specifications this kind of notation would imply that C can start whenever A

or B is completed. This would mean that multiple threads of the process can exist: C can be executed

multiple times if A and B both complete. This is referred to as an uncontrolled flow. The second option

with the XOR-gateway is much more straightforward. If the user understands the logic of the XOR-

gateway he should understand that the completion of A or B would start activity C. In a business

process it would make sense to let the Exclusive Choice pattern be followed by the Simple Merge

pattern. To continue from the example given with the Exclusive Choice pattern: whether the

customer picked up the order himself or it got shipped to him, an invoice still needs to be sent to

him. However, these cases are all under the assumption that only one token arrives at activity C.

When this is not the case and the model designer does not anticipate for this, there might be

problems. If somehow both paths would be followed in the business case, it would result in the

customer receiving two invoices and the shipment being sent to him at home.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Exclusive Choice 3 6 4 2 1 0,66 1 7

38

Fig. 16: Simple Merge Pattern (option 1)

Fig. 17: Simple Merge Pattern (option 2)

4.2.2 Advanced Branching and Synchronization

Multi-Choice

The Multi-Choice pattern occurs when one or more paths can be followed based on conditions in the

BPM. An example of this functionality within BPMN is given in Fig. 18. In BPMN this type of control

flow is demonstrated by usage of an OR-gateway. In the example given below, activity B will be

executed when condition X is met. If condition Y is met, activity C will be executed. The conditions

do not have to be mutually exclusive, this in contrast with the Exclusive Choice pattern: both

conditions can be met and this way the process can be split up into multiple threads from the point

of the gateway. A business process situation where such a pattern occurs can easily be demonstrated.

For example the customer could order different types of products that need very different treatment

with regards to packaging, shipping, … He could have chosen products from different types, or just

one specific type, still the necessary activities based on the types of products he ordered need to be

executed.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Simple Merge 1 3 5 4 2 1 0 0 6

Simple Merge 2 3 6 4 2 1 0 0 7

39

Fig. 18: Multi-Choice Pattern

Synchronizing Merge

The Synchronizing Merge is the more complex counterpart of the Multi-Choice pattern. The modeling

of the pattern in BPMN as it was defined by Van Der Aalst (2003) is not evident. An example is given

in Fig. 19. The OR-gateway is used with supplemental logic added inside. The logic states that the

gateway should wait till all ‘needed’ threads have completed. The ‘needed’ threads are those that

have been started after the split occurred. This pattern is also based on the assumption that every

thread is only completed once. This means that a limitation is put on the model that the threads can

only complete once while the gateway is waiting or the other threads to finish. While the graphical

BPMN model seems very simple, the logic that is within the OR-gateway is not. It might be hard for

users to understand. For the business process example the situation is easier to sketch. Continuing

from the previous example at the Multi-Choice pattern, the customer could have ordered different

types of products that have different shipping requirements (for example product-specific

packaging). If the customer ordered only one type of product, then the OR-gateway will continue the

flow if that particular thread is completed. If the customer ordered more different types, the OR-

gateway will wait for all the active threads to complete before continuing the flow.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Multi-Choice 3 6 4 3 3,5 0,67 1 7

40

Fig. 19: Synchronizing Merge Pattern

Multi-Merge

Another example of the previous mentioned uncontrolled flow, is the Multi-merge pattern. This

pattern occurs when two activities or two threads converge again, but without the synchronizing

effect. This means, for example in the BPMN model as can be seen in Fig. 20, that activity C can be

executed more than once. Just like with the first example of the Simple Merge, this behavior might

not be completely clear to someone who is not familiar with the BPMN specifications, or it could cause

confusion to those who are familiar with it. It is considered ‘best practice’ to use an XOR-gateway

(White, 2008), like in Fig. 17. While the Simple Merge has different assumptions about the preceding

activities and threads, the pattern looks the same in BPMN as it does with the Multi-Merge (Wohed,

van der Aalst, Dumas, ter Hofstede, & Russell, 2005). With regards to understandability the same

proposition is made by White (2004): it might be confusing for users to employ such patterns, as it

allows for multiple executions of the same activity in the workflow. An example with regards to a

business process could be that some parts of the packaging process are the same for two different

types of products. This would mean that they need to undergo the same activity, but in a different

instance.

Fig. 20: Multi-Merge Pattern

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Synchronizing Merge 3 6 4 3 3,5 0,33 1 7

41

Discriminator

The Discriminator pattern expresses a functionality in the process that should continue the flow as

soon as one incoming thread has completed. All future incoming threads will be ignored. This means

that the total concurrent threads will be reduced to one. In some way, it is comparable to the

Synchronization pattern, however only one preceding activity needs to be completed. There are

different ways to express this functionality in BPMN. The first possibility is as has been described by

White (2004), with the usage of an XOR-merge gateway with a label added that the nature of the

gateway is in fact discriminating. However, this method has been criticized by Wohed e.a. (2005).

In their paper they regard the Discriminator pattern in BPMN as a special case of the N-out-of-M Join

pattern. The N-out-of-M Join pattern is a pattern that “depicts the ability of synchronizing a flow after

N parallel threads (out of M initiated threads) have completed” (Wohed e.a., 2005). In normal

language, this means that the flow of activities will only continue when all the needed preceding

activities have been completed. The amount of needed preceding activities (N) is not necessarily

equal to the total possible routes of activities that could have been taken earlier (M). The

Discriminator pattern is comparable with an N-out-of-M Join pattern in such a way that N equals

exactly to 1. This means that all the other paths that have been taken will be ignored by the gateway

and that only the first thread is registered and continues the flow of activities and all other threads

that arrive later will be discarded. This interpretation of the pattern in BPMN can be found in Fig. 22.

The authors propose another solution through the use of an empty activity after an XOR-merge

gateway. For example in a business process context, this pattern could present itself in a situation

where multiple departments (in a BPM divided into lanes) could have the rights to make decisions.

It could be possible that one department would make a decision sooner and the request is approved

and the rest of the process can continue. However, for such a situation it might be better to make

use of Cancellation patterns that cancel the activities in other departments with regards to the

decision making. These types of patterns will be discussed later on.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Multi-Merge 3 5 4 2 8 0 0 6

42

Fig. 21: Discriminator Pattern according to White

(2004) (1)

Fig. 22: Discriminator Pattern according to Wohed
e.a.(2005) (2)

Fig. 23: Discriminator Pattern according to Wohed e.a. (2005) (3)

4.2.3 Structural

Arbitrary Cycles

The Arbitrary Cycles pattern expresses a point in the BPM where some activities (not all) can be done

multiple times. An example of such a pattern can be seen in Fig. 24. In this example, when activity

C is finished the decision is made whether to ‘go back’ to activity B or continue to activity D. Activity

B is an upstream activity (White, 2008). An important aspect of this pattern is that the loop itself

has an alternative exit node, in this example this is after activity F has been completed. A business

process example could be a situation where quality checking is done of products in a manufacturing

environment. Activity B could be a quality check. If the quality is sufficient, the flow will go to activity

F (Add to stock). If the quality is not sufficient, activity C should happen (Fix quality problem). If the

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Discriminator 1 4 9 6 3 3 0,25 1 11

Discriminator 2 5 12 7 4 5,5 0,2 1 22

Discriminator 3 4 10 5 3 3 0,5 2 10

43

item is fixed, it should go back to the quality check (B). If the item is not fixed, it should go to D

(Production failure handling).

Fig. 24: Arbitrary Cycles Pattern

Implicit Termination

The Implicit Termination pattern expresses the functionality of a BPM to end the entire process when

there are no other (parallel) activities needing completion. BPMN completely supports this kind of

logic because BPMN supports different kinds of end-nodes. The None-end-node ends the current

thread, however the Terminate-end-node ends all threads. In this pattern the assumption is made

that there are no other active threads in the BPM, thus normal (None) end-nodes are sufficient. An

example of such a pattern in BPMN is given in Fig. 25. A business situation for this kind of pattern is

easily sketched: if there is nothing left to be done, the process ends.

Fig. 25: Implicit Termination Pattern

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Arbitrary Cycles 5 13 9 6 4 2 3 24

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Implicit Termination 4 11 5 1 3 0,75 1 8

44

4.2.4 Multiple Instances (MI)

With a priori Design-Time Knowledge

This pattern is the kind where the designer of the BPM already knows how many times a specific

activity needs to be repeated in the business process. This means that before (a priori) the model is

designed (design-time) the amount of repetitions is known (Knowledge) to the designer of the BPM.

In a business context such a pattern would present itself when an activity needs to be repeated a

known number of times before continuing to the next activity. An example in a manufacturing

environment could be product testing. The designer of the BPM knows how many the product needs

to be tested by the employee and inputs it into the model. An example of such a pattern can be seen

in Fig. 26.

Fig. 26: Multiple Instance Pattern with a priori Design-Time Knowledge

With a priori Run-Time Knowledge

This pattern is different from the previous pattern in such a way that the designer does not know

how many times the activity should be repeated when he is designing the BPM. The amount of

repetitions is dependent on a condition that should be specified before (a priori) the activity’s

execution (Run-Time).

Fig. 27: Multiple Instance Pattern with a priori Run-Time Knowledge

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

MI with a priori

Design-Time

Knowledge

3 5 3 1 8 0 0 3

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

MI with a priori

Run-Time

Knowledge

3 5 3 1 8 0 0 3

45

Without a priori Knowledge

This patterns is again different from the two preceding patterns. Within this pattern, the amount of

repetitions of a certain activity is not known before the activity is undertaken. This functionality is a

bit more complex to construct in BPMN, but an example of such a pattern is given in Fig. 28. In the

example, two parallel activities (B and C) are started. Activity C is the activity where the amount of

iterations of the other activity (B) is determined. This means that the use of an XOR-gateway is

needed after activity B with two conditions. If the determined amount of iterations by C for B is

reached, the flow will continue to D. If there are not enough copies of B, the thread will end after B.

However, the token coming from activity C will continue to another XOR-gateway with two conditions

that follows the same logic as the other XOR-gateway: if enough copies of B are present the flow will

continue to activity D. If this is not the case, an upstream loop is made. A business context that

would require such functionality in a BPM could be similar to the example given for the a priori

Design-Time knowledge pattern. Testing products could depend on the manufacturing data. If a lot

of deviations were detected in the manufacturing process, most likely there will be more defects. If

the risk for defects is higher, maybe the amounts of iterations of the testing phase should be

increased to avoid faulty productions.

Fig. 28: Multiple Instance Pattern without a priori Knowledge

Requiring Synchronization

In the first two MI patterns discussed the need for synchronization was addressed. If this need is

present, this should be added into the BPM. To address this in the BPMN notation, extra information

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

MI without a priori

Knowledge
5 15 9 6 6 0,5 2 23

46

is needed for the parallel looping logic of the activity. This can be done by setting the

“MI_FlowCondition”-variable to “ALL”. In the example shown in Fig. 29, this would mean that all

iterations of B need to be completed before activity C can start.

Fig. 29: Multiple Instance Pattern Requiring Synchronization

4.2.5 State-based

Deferred Choice

The Deferred Choice pattern is quite similar to the Exclusive Choice pattern. However, the difference

is in the fact that the decision is made in a different way. With the use of the Exclusive Choice pattern,

the decision is based on process data. The Deferred Choice pattern in contrast is based on the

occurrence of events. This means that if the event occurs, the path is taken and the other possible

control flow paths are disregarded. In BPMN this can be easily modeled using an Exclusive Event-

based gateway, as can be seen in the example in Fig. 30. The gateway after activity A will wait for

either 24 hours passing by, which would result in activity B commencing, or for a confirmation, which

would result in activity C in executing. It is straightforward to sketch a business situation where such

a pattern would occur. It could be that a sales rep made an offer to a customer for a particular order

of goods. If the customer does not reply within a timeframe of 24 hours, the offer expires (B). If he

does reply, other activities (C) need to be undertaken.

Fig. 30: Deferred Choice Pattern

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Requiring Synchronization 3 5 3 1 8 0 0 3

47

Interleaved Parallel Routing

The Interleaved Parallel Routing pattern occurs when two or more activities can be done

consecutively, however their order is irrelevant and is decided on upon run-time. An example in

BPMN is given by White in Fig. 31. The notation for such a pattern can be realized by the usage of

an ad-hoc sub-process. The sub-process needs to be defined further in such a way that the activities

should be executed sequentially (and which). A business context example could be the process for

hiring new staff. It could be that new staff need to undergo a personality and analytical test. They

cannot be done at the same time by the same person, but the order is irrelevant. The process cannot

continue unless both tests have been completed.

Fig. 31: Interleaved Parallel Routing Pattern

Milestone

The Milestone pattern occurs when the end of a particular activity in the process implies other

activities in parallel to be activated, or to be made impossible to reach after its expiration. An example

by White (2004) is presented in BPMN in Fig. 32. This example by White is however criticized by

Wohed e.a. (2005). According to the authors White’s example does not allow for expiration of the

milestone, a crucial aspect of the pattern. They propose a different solution which is reprinted in Fig.

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Deferred Choice 3 8 4 2 3,5 0,67 1 9

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Interleaved Parallel

Routing
6 13 9 3 6 0,17 1 16

48

33. They circumvent the inability of BPMN to express states of activities by using a messaging

mechanism between sub-processes to inform about the state of completion on activity B. An example

within a business context could be that the customer can cancel his order until 48 hours before the

delivery date. If he does not cancel his order within this time period, the delivery will be made. The

milestone here is the starting of the 48 hour-period before the delivery date. Once this milestone is

reached, the customer cannot cancel his order anymore.

Fig. 32: Milestone Pattern by White (2004) (1)

Fig. 33: Milestone Pattern by Wohed e.a. (2005) (2)

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Milestone 1 5 19 8 2 11 0,17 1 16

Milestone 2 3 16 5 3 3,5 0,33 1 14

49

4.2.6 Cancellation

Cancel Activity and Cancel Case

The Cancel Activity pattern occurs when there are two (or more) competing activities. When one of

the two is completed, the other should be interrupted. In BPMN this can be done by using an

interrupting intermediate event at the second activity, which is activated by a signaling event after

the first activity. An example of such functionality can be seen in Fig. 34. If the first activity (B) is

finished, the second activity (C) is then canceled. A business situation where such a pattern might

occur could be when there are two parallel activities and one activity is completed, the other should

be stopped. The Cancel Case pattern is almost identical to the Cancel Activity pattern. The only

difference is that the activity C is replaced by a sub-process C.

Fig. 34: Cancel Activity Pattern

Fig. 35: Cancel Case Pattern

4.3 Analysis

4.3.1 Descriptive statistics

First of all some descriptive statistics are generated of the data that have been collected for the

different Workflow Patterns. These descriptive statistics can be found in Table 4. The number of

activities (NOA) does not differ much between the different patterns. This is easily explained, as most

patterns do not contain that many activities because the focal point of the patterns are on the control

flow which in BPMN is constructed by gateways and control flow arrows. This is also the reason why

the number of activities and control flows (NOAC) does vary in greater amounts between the different

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

Cancel Activity 3 10 5 2 4,5 0 0 9

Cancel Case 3 10 5 2 6,5 0 0 9

50

patterns. The highest NOAC was measured for the Milestone 1 pattern. The second highest score

was assigned to the Milestone 2 pattern. If the NOAC alone could be considered as a good means of

measuring complexity, the Milestone patterns could be regarded as the most complex patterns

discussed here. For the number of activities, joins and splits (NOAJS) the same can be said as with

regards to the NOA: there is not much variation between the different patterns. The Arbitrary Cycles

pattern scores the highest NOAJS, which could indicate that it contains a lot of gateway-logic. The

Control-flow Complexity (CFC) is the highest (6) for this pattern as well. The Cognitive Weight metric

assigns the highest value to the Milestone 1 pattern as well. This could confirm the original indication

by the NOAC-metric. However, the danger exists that these two metrics actually measure the same

thing, we try to test this later by looking at the Pearson correlation coefficients between the different

metrics and by applying factor analysis to the data. The mean and maximum nesting depth

(MeanND/MaxND) of the patterns do not vary a lot, however these metrics have deeper meaning

and any difference should indicate a greater difference in complexity. The assumption for now is that

not all the metrics are equally sensitive, which can be easily demonstrated by comparing the IF and

ND values. This assumption is however still preliminary and further analysis needs to be conducted

in the next paragraphs. The highest nesting depth (3) was realized in the Arbitrary Cycles pattern,

which at the same time was assigned the highest mean nesting depth. The Information Flow (IF)

metric is the metric that has the highest variation. The reason for this can be found in the way it is

calculated: increased number of control flows have an exponential influence on the metric in absolute

value.

 N Minimum Maximum Mean Std. Deviation

NOA 27 3 6 3,52 0,89
NOAC 27 5 19 8,63 3,91
NOAJS 27 3 9 4,93 1,86
CFC 27 1 6 2,22 1,40
CW 27 1 11 4,31 2,62
MeanND 27 0 2 0,27 0,43
MaxND 27 0 3 0,63 0,79
IF 27 3 24 9,22 6,15

Table 4: Descriptive statistics of the measurements

Because the different metrics measure comparable aspects of complexity, they can be analyzed

based on their correlations. If some metrics demonstrate high correlation coefficients, this might

indicate that the different metrics measure the same aspect of complexity, or that the different

aspects measured are linked together. In Table 5 the Pearson correlation coefficients can be found.

The single and double asterisks indicate significance at the 5% and 1% level respectively. From this

51

table we can see that the NOA, NOAC and NOAJS demonstrate high correlations, which was expected

as all three of them account (partly) for the amount of activities in the patterns. Anything below a

0,6 correlation value can be considered as low or moderate correlation.

Since all of the metrics discussed here attempt to capture the same concept (complexity) of BPM,

their low correlation might indicate that they measure different aspects of the same concept. To find

out what these aspects are we conduct a factor analysis in the next paragraph.

4.3.2 Factor analysis

Because the results from the descriptive statistics confirmed our initial expectations (the metrics

measure different aspects of complexity), we conduct a factor analysis. A factor analysis can be used

to identify the dimensions of complexity that are measured by the metrics. This is done by employing

the principal components method. This method tries to identify whether some variables belong to a

specific dimension by identifying linearly uncorrelated variables. The Kaiser stopping criterion is

employed to decide on the amount of dimensions to be extracted: all factors with eigenvalues greater

than 1 should be ignored. The scree plot generated from SPSS can be found in Fig. 36.

Fig. 36: Scree Plot from Factor Analysis

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

NOA 1
NOAC ,728** 1
NOAJS ,927** ,826** 1
CFC ,644** ,565** ,777** 1
CW ,321 ,358 ,269 ,059 1
MeanND ,400* ,348 ,481* ,657** ,133 (-) 1
MaxND ,663** ,599** ,712** ,843** ,003 ,862** 1
IF ,825** ,794** ,923** ,876** ,179 ,564** ,775** 1

Table 5: Pearson Correlation Matrix

52

The scree plot demonstrates an almost ideal pattern: it starts with a steep decline, then bends into

a somewhat straight line. As can be interpreted from the scree plot, the flat straight line starts from

the third component. This means that the metrics we have applied to the different patterns can be

reduced to two different dimensions.

Total Variance Explained

Component

Initial Eigenvalues Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5,310 66,376 66,376 4,393 54,918 54,918

2 1,396 17,451 83,828 2,313 28,910 83,828

3 ,561 7,006 90,834

4 ,314 3,923 94,757

5 ,265 3,311 98,068

6 ,096 1,205 99,273

7 ,045 ,564 99,837

8 ,013 ,163 100,000

Extraction Method: Principal Component Analysis.
Table 6: Results from Factor Analysis: Total Variance Explained

When we look at the total variance explained by these two components (dimensions) of complexity,

we find that these two groups account for a cumulative total of 83,828% variance explained, which

is rather high. This means that these two components of complexity that were identified account for

83,83% of the variation found in all studied complexity metrics.

Rotated Component Matrixa

Component

1 2

NOA ,635 ,654

NOAC ,552 ,689

NOAJS ,735 ,623

CFC ,880 ,232

CW -,202 ,826

MeanND ,874 -,171

MaxND ,946 ,118

IF ,820 ,494

Extraction Method: Principal Component Analysis.

 Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.
Table 7: Results from Factor Analysis: Rotated Component Matrix

From the Rotated Component Matrix (Table 7) we can deduct that some of the metrics belong to the

first component group and other metrics belong to the second component group. This means that

53

the metrics from different groups most likely measure different aspects of complexity, but that the

metrics that belong to the same group measure most likely the same aspect. This answers one of

our research questions: some metrics actually seem to measure the same thing based on the factor

analysis. However, the factor analysis also pointed out that the metrics that were tested most likely

measure two different dimensions of complexity. NOAJS, CFC, MeanND, MaxND and IF are placed in

the first component group. These metrics are often associated with structure and control flows. NOA,

NOAC and CW are placed in the second component group and are not as much linked to flows but

rather to the nature of the elements within the BPM. This could mean that the first group could be

collectively seen as a measure of structural complexity, while the second group could represent

measures for functional complexity.

To answer the question whether the different metrics assign the same ranking to the patterns, we

look at the Spearman Ranked Correlation Matrix as can be found in Table 8.

Overall, the ranking of the patterns by the different metrics seem to be relatively highly correlated

at the 1% significance level. This would mean that the different metrics assign somewhat the same

ranking to the different patterns, since they are highly (positively) correlated. This answers our

research question: we can conclude that the different metrics assign highly correlated rankings to

the different patterns, which means that they should assign rankings in a similar way. An obviously

high ranking correlation is between the NOA, NOAC and NOAJS: they all account for the amount of

tasks/activities in the BPM. CFC is highly correlated with NOAJS. This was to be expected as well,

because both of them measure structural complexity of the BPM. Less straightforward is the high

(positive) correlation between the MeanND and NOA. One explanation could be that the more

activities are present within the BPM, the more decisions are needed to get to these activities. More

interesting relationships can be found with regards to the IF metric. It is highly correlated with all

 NOA NOAC NOAJS CFC CW MeanND MaxND IF

NOA 1

NOAC ,715** 1

NOAJS ,819** ,903** 1

CFC ,578** ,597** ,720** 1

CW ,252 ,230 ,166 ,092 1

MeanND ,529** ,556** ,523** ,646** ,097 (-) 1

MaxND ,721** ,681** ,685** ,782** ,020 ,936** 1

IF ,757** ,862** ,924** ,801** ,102 ,646** ,779** 1

Table 8: Spearman Ranked Correlation Matrix

54

the metrics, except for CW. Even though not significant, it does offer interesting perspectives for

further research.

4.3.3 Pattern comparison

To compare the different patterns with regards to their measured complexity we transformed the

data into different forms. These forms should provide a straightforward basis for comparing the

patterns. Firstly, a line graph comparison is made based on unweighted values (Fig. 37). These

values come straight from the computed metrics for each pattern. They are sorted based on their

weighted values, because this creates a more logical order in the patterns going from rather complex

to simple. The weighted values were computed by weighing the metric values measured per pattern

to the metric’s maximum found in the descriptive analysis. Because the weighted values comparison

shows different results (graphically) from the unweighted values, we can conclude that the metrics

are not equally sensitive. This already answers our research question (are all metrics equally

sensitive?) negatively. For example, as can be seen in Fig. 37, the IF metric is very sensitive, which

was to be expected because of its quadratic nature. Because of these differences in sensitivity a

comparison is made based on the weighted values of the metrics, as can be found in Fig. 38. Still,

this graphical comparison does not distinctively show the differences between the complexity metrics

for the different patterns: a general trend is still rather hard to identify.

Fig. 37: Pattern comparison (unweighted values)

0

5

10

15

20

25

30

A
rb

it
ra

ry
 C

yc
le

s

M
I w

it
h

o
u

t
a

p
ri

o
ri

 k
n

o
w

le
gd

e

M
ile

st
o

n
e

 1

In
te

rl
e

av
e

d
 P

ar
al

le
l R

o
u

ti
n

g

D
is

cr
im

in
at

o
r

2

D
is

cr
im

in
at

o
r

3

M
ile

st
o

n
e

 2

D
is

cr
im

in
at

o
r

1

Im
p

lic
it

 T
e

rm
in

at
io

n

D
ef

e
rr

ed
 C

h
o

ic
e

M
u

lt
i-

C
h

o
ic

e

C
an

ce
l C

as
e

Sy
n

ch
ro

n
iz

in
g

M
er

ge

C
an

ce
l A

ct
iv

it
y

Ex
cl

u
si

ve
 C

h
o

ic
e

M
u

lt
i-

M
e

rg
e

M
I w

it
h

 a
 p

ri
o

ri
 D

es
ig

n
-T

im
e

…

M
I w

it
h

 a
 p

ri
o

ri
 R

u
n

-T
im

e…

R
eq

u
ir

in
g

Sy
n

ch
ro

n
iz

at
io

n

P
ar

al
le

l S
p

lit
 3

Sy
n

ch
ro

n
iz

at
io

n
 2

Si
m

p
le

 M
er

ge
 2

P
ar

al
le

l S
p

lit
 2

Sy
n

ch
ro

n
iz

at
io

n
 1

Si
m

p
le

 M
er

ge
 1

P
ar

al
le

l S
p

lit
 1

Se
q

u
en

ce

NOA NOAC NOAJS CFC CW MeanND MaxND IF

55

Fig. 38: Pattern comparison (weighted values)

Fig. 39: Pattern comparison (ranks)

0

0,2

0,4

0,6

0,8

1

1,2

A
rb

it
ra

ry
 C

yc
le

s

M
I w

it
h

o
u

t
a

p
ri

o
ri

 k
n

o
w

le
gd

e

M
ile

st
o

n
e

 1

In
te

rl
e

av
e

d
 P

ar
al

le
l R

o
u

ti
n

g

D
is

cr
im

in
at

o
r

2

D
is

cr
im

in
at

o
r

3

M
ile

st
o

n
e

 2

D
is

cr
im

in
at

o
r

1

Im
p

lic
it

 T
e

rm
in

at
io

n

D
ef

e
rr

ed
 C

h
o

ic
e

M
u

lt
i-

C
h

o
ic

e

C
an

ce
l C

as
e

Sy
n

ch
ro

n
iz

in
g

M
er

ge

C
an

ce
l A

ct
iv

it
y

Ex
cl

u
si

ve
 C

h
o

ic
e

M
u

lt
i-

M
e

rg
e

M
I w

it
h

 a
 p

ri
o

ri
 D

es
ig

n
-T

im
e

…

M
I w

it
h

 a
 p

ri
o

ri
 R

u
n

-T
im

e…

R
eq

u
ir

in
g

Sy
n

ch
ro

n
iz

at
io

n

P
ar

al
le

l S
p

lit
 3

Sy
n

ch
ro

n
iz

at
io

n
 2

Si
m

p
le

 M
er

ge
 2

P
ar

al
le

l S
p

lit
 2

Sy
n

ch
ro

n
iz

at
io

n
 1

Si
m

p
le

 M
er

ge
 1

P
ar

al
le

l S
p

lit
 1

Se
q

u
en

ce

NOA NOAC NOAJS CFC CW MeanND MaxND IF

56

Another ground for comparison can be found by ranking the patterns. This is done by assigning mean

weighted ranks to the different patterns according to their measured complexity. The results of this

comparison can be found in Fig. 39. The patterns are ranked according to their average ranks for the

various metrics. This means that the most complex pattern is ranked as 1. The ranks are weighted

by their means. The different metrics follow a similar trend, which could be seen as reductions in

complexity (from left to right). However some metrics seem to deviate from the trend. Especially the

CW, CFC and MeanND rankings show obvious deviations from the general trend. This indicates that

these metrics might measure different aspects of complexity in comparison with the other metrics.

The Arbitrary Cycles, MI without a priori Knowledge, Interleaved Parallel Routing, and Milestone

patterns seem to be the most complex according to the metrics discussed. This was to be expected,

because these patterns also required the most explanation in the previous section (4.2 Workflow

Patterns). However, the CW metric deviates from this ascertainment. Instead, it seems to judge the

MI patterns with a priori Knowledge and Requiring Synchronization as more complex, while the other

metrics seem not to. The explanation for this can found in the weight that is assigned to multiple

instance activity by the metric, while other metrics do not seem to address this complexity.

4.3.4 Conclusions

By applying factor analysis we identified that the metrics seem to measure two different aspects of

complexity. These two aspects were identified as structural complexity and functional complexity.

The structural complexity metrics identified are the NOAJS, CFC, MeanND, MaxND and IF. These

metrics are mostly related to control flows and structure. The functional complexity metrics identified

are NOA, NOAC and CW. These metrics are not as much linked to control flow, but rather to the

nature of the elements within the BPM. This answers our research question with regards to whether

the metrics measure the same thing.

By computing the Spearman Ranked Correlation Matrix we have identified that the different metrics

seem to (overall) rank the patterns in the same way with regards to their complexity. There are

however some interesting deviations: IF and CW do not seem to rank the patterns in the same way

which could be grounds for further research.

There are problems with the interpretation of individual metrics. It is hard to assign a qualitative

categorization of ‘complexity’ to specific values of the metrics. It seems intuitive though that a higher

value indicates higher complexity (and thus lower understandability), however the question remains

57

what the difference is between slightly, moderately or heavily complex. This is however a dangerous

assumption. Some representations in BPMN (for example Parallel Split 1 and 2) might appear

confusing to the user, because even though there are fewer elements in the model, not all the

information with regards to instances and synchronization are explicitly stated. To make things

worse, the metrics do not seem to be equally sensitive to the complexity of the patterns analyzed.

By using weighted values and mean ranked complexity it was found that the metrics do not express

the same sensitivity. This was to be expected, because the metrics differ in their computational

nature. For example the IF metric is highly sensitive due to its quadratic nature.

According to most metrics, the highly complex patterns seem to be the Arbitrary Cycles, MI without

a priori Knowledge, Interleaved Parallel Routing and Milestone. This was in line with expectations,

because these patterns’ functionality also required the most explanation earlier this chapter. The

ranking according to the CW metric however deviates from the general trend. This is explained by

its penalizing nature for multiple instance activity.

By answering the several research questions proposed in the first chapter, an answer can be

formulated to the general research question. Applying just a single metric from the metrics discussed

does not seem to be the preferable way to measure a BPM’s complexity and proxy for its

understandability. The reason for this is because the metrics seem to measure different aspects of

complexity. It could be that a BPM might be considered complex by the mean nesting depth metric,

but considered the opposite by the Control Flow Complexity metric, as is demonstrated by the Implicit

Termination pattern. A combination of metrics therefore seems to be the desirable path to follow.

From the factor analysis it can be concluded that combining metrics that either measure structural

or functional complexity seems to be the best way to go. Good metrics for structural complexity

seem to be the NOAJS, CFC, MeanND, MaxND and IF metrics. For measuring functional complexity,

NOA, NOAC and CW seem to be the best metrics.

59

Chapter 5: Conclusions

5.1 Concluding remarks

Keeping control over process complexity and thus understandability is important to keep the model

understandable and in turn usable for users. For a business it is important that all the stakeholders

can participate throughout all the phases of business process design, both of the present situation

and for the future. In order to improve the communication of BPM, this study compares the

combinations of different metrics to improve BPM understandability.

BPM understandability has been related in the literature to many theories derived from social

sciences. Cognitive Load Theory, the SEQUAL model, Semiotic Theory, Resource Allocation Theory

and Cognitive Theory of Multimedia Learning all provide interesting perspectives with regards to BPM

understandability and their implications have been reviewed. Cognitive Load Theory implies that

when more elements are added to the BPM, it should become more difficult to understand. Not only

the number of elements impacts the understandability, but also the meaning that is given to the

elements has its influence. Semiotic theory addresses this ‘ladder’ of understanding by decomposing

understandability by syntax, semantics and pragmatics. The focus within this master’s thesis is

however on the syntactical level.

Different metrics for assessing the syntactical level of complexity of BPM have been discussed and

their computational aspects have been explained. There are however other factors identified outside

of those defined by the BPM alone. Resource Allocation Theory suggests that the user of the model

should be able to understand a BPM better if he has more experience working with them. The

literature therefore stresses the need for education in order to increase the understanding of more

complex models. This is confirmed by the Cognitive Theory of Multimedia Learning, which suggests

that not only the experience of working with BPM influences the understanding of the user, but also

the way in which the BPM is presented. CTML can also be linked to semiotic theory: both define

subsequent levels of understanding which can be matched together. Syntactical and semantical

understanding can be linked to surface understanding. In order to acquire deep understanding the

user needs to understand the BPM at the pragmatical level.

Due to the close relationship between complexity and understandability of BPM, some popular metrics

for process complexity are discussed. These metrics form a close proxy for determining a BPM’s level

of understandability. The metrics do not seem to be very useful on an individual basis: they seem to

60

measure different aspects of a BPM’s complexity. This assumption is tested by applying the various

metrics to Van Der Aalst’s (2003) Workflow Patterns (WFP). The data from these metrics is then

analyzed with factor analysis and the different patterns are compared. By factor analysis, two

dimensions of complexity were identified that were measured by the metrics. This seems to confirm

our initial thought that the metrics measure different aspects of complexity. These two dimensions

were identified as addressing structural complexity and functional complexity. Metrics that seem to

target structural complexity are NOAJS, CFC, MeanND, MaxND and IF. NOA, NOAC and CW however

seem to target the functional complexity of a BPM. The metrics do however seem to rank the patterns

in the same way with regards to their complexity. The only exception is the CW metric, which could

provide grounds for further research. In addition, the metrics do not seem to be equally sensitive,

which was expected because the metrics differ in their computational nature. For example the IF

metric is very sensitive due to its quadratic form. The patterns that were identified by the various

metrics weighted ranking as being the most complex were also the patterns that needed the most

explanation of their functionality. The CW metric did however assign different patterns higher

complexity levels because of its penalizing nature for multiple instance activity.

All of this results in an answer to the general research question posed by this master’s thesis: what

are useful metrics or combinations of metrics for assessing business process model

understandability? It can be concluded that a single metric from the ones discussed does not cover

everything. The reason for this is because the metrics seem to measure different aspects of

complexity. It is therefore preferred to use combinations of metrics that on the one side measure

structural complexity and functional complexity on the other side.

5.2 Guidelines for future research

Most academic research with regards to understandability of BPM has been directed towards control

flows and layout characteristics. However, not much research has been conducted (to my knowledge)

about other aspects of a BPM that can influence understandability. BPM are characterized by their

multi-dimensional nature. They not only give information about different activities, but also who is

responsible or accountable for certain activities and what resources need to be addressed. So far, I

have not come across much literature that addresses either the way responsibility/accountability or

the allocation of resources is demonstrated in a BPM and how they affect the understandability of

models.

61

With regards to the cognitive metrics on the syntax level, the knot count metric might be an

interesting metric for further empirical research. The knot count could be an indication for the ‘well-

structuredness’ and therefore the understandability of a BPM (W. M. Van der Aalst, 1998). Combining

the Control-Flow Complexity metric and the Nesting Depth metrics could provide interesting results,

as both cognitive weights with regards to structure and depth are measured. Maybe other

perspectives can be offered by assigning scores to anti-patterns, or implementing detection

mechanisms for this group of patterns in design tools for BPM. The Information Flow metric as

introduced by Sun and Hou (2014) also offers interesting perspectives for assessing BPM complexity

and understandability.

In this master’s thesis Workflow Patterns are measured in terms of their understandability on the

syntax level. However, on the semantics and pragmatics level not much research has been done to

my knowledge. A few steps have been made in the semantics direction by Mendling (2010), but for

now the amount of literature on these subjects seems to be limited. The reason for this could be that

the preceding level, according to semiotic theory, syntax has not matured enough yet in BPM

research.

63

References

Aalst, W. M. P. van der, Hofstede, A. H. M. ter, Kiepuszewski, B., & Barros, A. P. (2003). Workflow Patterns.
Distributed and Parallel Databases, 14(1), 5–51. http://doi.org/10.1023/A:1022883727209

Abd Ghani, A. A., Koh, T. W., Muketha, G. M., & Wong, P. W. (2008). Complexity metrics for measuring the
understandability and maintainability of Business Process Models using Goal-Question-Metric (GQM).
International Journal of Computer Science and Network Security, 8(5), 219–225.

Aguilar, E. R., García, F., Ruiz, F., & Piattini, M. (2007). An Exploratory Experiment to Validate Measures for
Business Process Models. In RCIS (pp. 271–280).

Bandara, W., Gable, G. G., & Rosemann, M. (2007). Critical success factors of business process modeling.
Geraadpleegd van http://eprints.qut.edu.au/8755/1/8755.pdf

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. E. (1994). Program Understanding and the Concept
Assignment Problem. Commun. ACM, 37(5), 72–82. http://doi.org/10.1145/175290.175300

Burton-Jones, A., & Meso, P. (2008). The effects of decomposition quality and multiple forms of information on
novices’ understanding of a domain from a conceptual model. Journal of the Association for
Information Systems, 9(12), 1.

Burton-Jones, A., Wand, Y., & Weber, R. (2009). Guidelines for empirical evaluations of conceptual modeling
grammars. Journal of the Association for Information Systems, 10(6), 1.

Cardoso, J. (2005). Control-flow complexity measurement of processes and Weyuker’s properties. In 6th
International Enformatika Conference (Vol. 8, pp. 213–218). Geraadpleegd van
http://www.waset.org/publications/11011

Cardoso, J., Mendling, J., Neumann, G., & Reijers, H. A. (2006). A discourse on complexity of process models.
In Business process management workshops (pp. 117–128). Springer. Geraadpleegd van
http://link.springer.com/chapter/10.1007/11837862_13

Carliss, Y., Baldwin, C. Y., & Clark, B. (1997). Managing in the age of modularity. Harvard Business Review,
75(5), 84–93.

Cruz-Lemus, J. A., Maes, A., Genero, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on
the understandability of UML statechart diagrams. Information Sciences, 180(11), 2209–2220.
http://doi.org/10.1016/j.ins.2010.01.026

Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual
modeling in practice? Data & Knowledge Engineering, 58(3), 358–380.

Eriksson, H.-E., & Penker, M. (1998). Business Modeling With UML: Business Patterns at Work (1st ed.). New
York, NY, USA: John Wiley & Sons, Inc.

Figl, K., & Laue, R. (2011). Cognitive Complexity in Business Process Modeling. In H. Mouratidis & C. Rolland
(Red.), Advanced Information Systems Engineering (pp. 452–466). Springer Berlin Heidelberg.

Figl, K., Mendling, J., & Strembeck, M. (2013). The influence of notational deficiencies on process model
comprehension. Journal of the Association for Information Systems, 14(6), 312–338.

Figl, K., & Strembeck, M. (2014). On the Importance of Flow Direction in Business Process Models.
Geraadpleegd van http://wwwi.wu-wien.ac.at/home/mark/publications/icsoft-ea14.pdf

Genon, N., Heymans, P., & Amyot, D. (2011). Analysing the Cognitive Effectiveness of the BPMN 2.0 Visual
Notation. In Proceedings of the Third International Conference on Software Language Engineering (pp.
377–396). Berlin, Heidelberg: Springer-Verlag. Geraadpleegd van

http://dl.acm.org/citation.cfm?id=1964571.1964605
Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a “cognitive

dimensions” framework. Journal of Visual Languages & Computing, 7(2), 131–174.
Gruhn, V., & Laue, R. (2006a). Adopting the cognitive complexity measure for business process models. In

Cognitive Informatics, 2006. ICCI 2006. 5th IEEE International Conference on (Vol. 1, pp. 236–241).
IEEE. Geraadpleegd van http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4216417

Gruhn, V., & Laue, R. (2006b). Complexity metrics for business process models. In 9th international conference
on business information systems (BIS 2006) (Vol. 85, pp. 1–12). Citeseer. Geraadpleegd van
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.2111&rep=rep1&type=pdf

Gruhn, V., & Laue, R. (2009). Reducing the cognitive complexity of business process models (pp. 339–345).
IEEE. http://doi.org/10.1109/COGINF.2009.5250717

Gustafsson, J. (2000). Metrics calculation in MAISA. University of Helsinki, Department of Computer Science.
Geraadpleegd van
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.8954&rep=rep1&type=pdf

Hahn, J., & Kim, J. (1999). Why are some diagrams easier to work with? Effects of diagrammatic representation
on the cognitive intergration process of systems analysis and design. ACM Transactions on Computer-
Human Interaction (TOCHI), 6(3), 181–213.

Henry, S., & Kafura, D. (1981). Software structure metrics based on information flow. Software Engineering,
IEEE Transactions on, (5), 510–518.

Holl, A., & Valentin, G. (2004). Structured business process modeling (SBPM). Information systems research in
Scandinavia (IRIS 27)(CD-ROM). Geraadpleegd van http://www.informatik.fh-
nuernberg.de/professors/Holl/Personal/sbpm_IRIS_2004.pdf

Ince, D. C., & Shepperd, M. J. (1989). An empirical and theoretical analysis of an information flow-based
system design metric. In ESEC’89 (pp. 86–99). Springer. Geraadpleegd van
http://link.springer.com/chapter/10.1007/3-540-51635-2_34

Kanfer, R., Ackerman, P. L., Murtha, T. C., Dugdale, B., & Nelson, L. (1994). Goal setting, conditions of
practice, and task performance: A resource allocation perspective. Journal of Applied Psychology,
79(6), 826.

64

Kiepuszewski, B., ter Hofstede, A. H. M., & Bussler, C. J. (2000). On structured workflow modelling. In
Advanced Information Systems Engineering (pp. 431–445). Springer. Geraadpleegd van
http://link.springer.com/chapter/10.1007/3-540-45140-4_29

Koschmider, A., & Reijers, H. A. (2015). Improving the process of process modelling by the use of domain
process patterns. Enterprise Information Systems, 9(1), 29–57.

Krogstie, J., Sindre, G., & Jørgensen, H. avard. (2006). Process models representing knowledge for action: a
revised quality framework. European Journal of Information Systems, 15(1), 91–102.

Laue, R., & Awad, A. (2010). Visualization of business process modeling anti patterns. Electronic
Communications of the EASST, 25. Geraadpleegd van http://journal.ub.tu-
berlin.de/index.php/eceasst/article/view/344

Lindland, O. I., Sindre, G., & Solvberg, A. (1994). Understanding quality in conceptual modeling. Software,
IEEE, 11(2), 42–49.

List, B., & Korherr, B. (2006). An Evaluation of Conceptual Business Process Modelling Languages. In
Proceedings of the 2006 ACM Symposium on Applied Computing (pp. 1532–1539). New York, NY,
USA: ACM. http://doi.org/10.1145/1141277.1141633

Liu, R., & Kumar, A. (2005). An analysis and taxonomy of unstructured workflows. In Business Process
Management (pp. 268–284). Springer. Geraadpleegd van
http://link.springer.com/chapter/10.1007/11538394_18

Mayer, R. E. (2002). Multimedia learning. Psychology of Learning and Motivation, 41, 85–139.
McCabe, T., J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering, 2(4).

http://doi.org/10.1109/TSE.1976.233837
Melcher, J., Mendling, J., Reijers, H. A., & Seese, D. (2010). On Measuring the Understandability of Process

Models. In S. Rinderle-Ma, S. Sadiq, & F. Leymann (Red.), Business Process Management Workshops
(pp. 465–476). Springer Berlin Heidelberg. Geraadpleegd van
http://link.springer.com/chapter/10.1007/978-3-642-12186-9_44

Mendling, J., Reijers, H. A., & Recker, J. (2010). Activity labeling in process modeling: Empirical insights and
recommendations. Information Systems, 35(4), 467–482.

Mendling, J., & Strembeck, M. (2008). Influence factors of understanding business process models. In Business
information systems (pp. 142–153). Springer. Geraadpleegd van
http://link.springer.com/chapter/10.1007/978-3-540-79396-0_13

Mendling, J., Strembeck, M., & Recker, J. (2012). Factors of process model comprehension—findings from a

series of experiments. Decision Support Systems, 53(1), 195–206.
Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541–580.

http://doi.org/10.1109/5.24143
Nordbotten, J. C., & Crosby, M. E. (1999). The effect of graphic style on data model interpretation. Information

Systems Journal, 9(2), 139–155. http://doi.org/10.1046/j.1365-2575.1999.00052.x
N. Russell, A. H. M. ter H. (2006). Workflow Control-Flow Patterns: A Revised View.
Paas, F., & Ayres, P. (2014). Cognitive Load Theory: A Broader View on the Role of Memory in Learning and

Education. Educational Psychology Review, (2), 191.
Petre, M. (1995). Why looking isn’t always seeing: readership skills and graphical programming.

Communications of the ACM, 38(6), 33–44.
Recker, J., Rosemann, M., Indulska, M., & Green, P. (2009). Business process modeling-a comparative analysis.

Journal of the Association for Information Systems, 10(4), 1.
Reijers, H. A., & Mendling, J. (2011). A Study Into the Factors That Influence the Understandability of Business

Process Models. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
41(3), 449–462. http://doi.org/10.1109/TSMCA.2010.2087017

Reijers, H. A., Mendling, J., & Dijkman, R. M. (2011). Human and automatic modularizations of process models
to enhance their comprehension. Information Systems, 36(5), 881–897.
http://doi.org/10.1016/j.is.2011.03.003

Reijers, H., & Mendling, J. (2008). Modularity in process models: Review and effects. In Business Process
Management (pp. 20–35). Springer. Geraadpleegd van http://link.springer.com/chapter/10.1007/978-
3-540-85758-7_5

Rozinat, A., & van der Aalst, W. M. P. (2008). Conformance checking of processes based on monitoring real
behavior. Information Systems, 33(1), 64–95. http://doi.org/10.1016/j.is.2007.07.001

Scheer, A.-W. (2000). ARIS — Business Process Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg.
Geraadpleegd van http://link.springer.com/10.1007/978-3-642-57108-4

Schrepfer, M., Wolf, J., Mendling, J., & Reijers, H. A. (2009). The impact of secondary notation on process
model understanding. In The Practice of Enterprise Modeling (pp. 161–175). Springer. Geraadpleegd
van http://link.springer.com/chapter/10.1007/978-3-642-05352-8_13

Schroeder, A. (1984). Integrated program measurement and documentation tools. In Proceedings of the 7th
international conference on Software engineering (pp. 304–313). IEEE Press. Geraadpleegd van
http://dl.acm.org/citation.cfm?id=801985

Shao, J., & Wang, Y. (2003). A new measure of software complexity based on cognitive weights. Electrical and
Computer Engineering, Canadian Journal of, 28(2), 69–74.

Sun, H., & Hou, H. (2014). Study on Complexity Metrics of Business Process. Geraadpleegd van
http://www.atlantis-press.com/php/download_paper.php?id=12706

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and instruction, 12(3),
185–233.

Thom, L. H., Reichert, M., & Iochpe, C. (2009). Activity patterns in process-aware information systems: Basic
concepts and empirical evidence. International Journal of Business Process Integration and
Management, 4(2), 93–110.

65

Van der Aalst, W. M. (1998). The application of Petri nets to workflow management. Journal of circuits,
systems, and computers, 8(01), 21–66.

Van der Aalst, W. M. P. (2011). Process mining discovery, conformance and enhancement of business
processes. Berlin Springer.

Ware, C., Purchase, H., Colpoys, L., & McGill, M. (2002). Cognitive measurements of graph aesthetics.
Information Visualization, 1(2), 103–110.

Weyuker, E. J. (1988). Evaluating software complexity measures. Software Engineering, IEEE Transactions on,
14(9), 1357–1365.

White, S. A. (2004). Process modeling notations and workflow patterns. Workflow handbook, 2004, 265–294.
White, S. A. (2008). BPMN Modeling and Reference Guide: Understanding and Using BPMN. Future Strategies

Inc.
Wohed, P., van der Aalst, W. M., Dumas, M., ter Hofstede, A. H., & Russell, N. (2005). Pattern-based Analysis

of BPMN. Geraadpleegd van http://eprints.qut.edu.au/archive/00002977

67

Appendix

Introduction to BPMN

BPMN was originally developed by the Business Process Management Initiative (BPMI) to support the

graphical representation of business processes. The objective of the standard is to improve the

communication of business processes between all the stakeholders. It should be a communicational

tool that on the one side can be easily understood, but on the other should offer the technical

functionality to express very complex business processes. BPMN is only meant to model actual

processes and it cannot be used to make organizational diagrams or data models. The graphical

notation shows a lot of similarities with the Activity Diagrams from Unified Modeling Language (UML

AD), however the target audience of both languages is different. While UML AD is mainly aimed at

software engineers, BPMN has been created for business users.

A brief overview of the elements of BPMN can be found in Fig. 40. These elements are briefly

discussed at the individual level. For their exact and broader specifications the reader is referred to

the website of the Object Management Group4.

Fig. 40: Elements of BPMN 2.0

Events

Start events

The none-start event symbolizes the main start of the business process. This is where the flow starts:

a token is generated that will travel through the rest of the BPM. A token is a theoretical concept and

can be seen as an instance of the process. This token then travels through the BPM following the

sequence flows, demonstrating the flow of the process in reality. Multiple tokens or instances can be

generated by Start events or other elements of the BPM. Start events are illustrated as circles with

4 The specifications for the BPMN 2.0 standard can be found at:
http://www.omg.org/spec/BPMN/index.htm

68

optionally a symbol inside. Other variations of the start event, as can be seen in Fig. 41, are triggered

when a message is received or a condition is satisfied. The graphical representations are fairly

straightforward and can be found in Fig. 41. There are other kinds of start events possible within

BPMN 2.0, however they are not relevant for understanding the examples given in this thesis.

Fig. 41: Start events

End events

The process ends when all tokens in the BPM have reached an end-event and are thus destroyed. All

the possible variations of end-events are listed in Fig. 42. End events are illustrated by a thicker

circle than start events. Other variations include end-events that trigger activities such as sending a

message or signaling other parts of the process. The Terminate-event kills all remaining tokens in

the BPM and ends the process.

Fig. 42: End events

Intermediate events

Intermediate events are neither start- nor end-events. They trigger activities, usually during or in

between task execution. Intermediate events are symbolized by a double circle with possible addition

of a symbol inside. These events show similarities with the corresponding symbols of start- and end-

events. The different variations are listed in Fig. 43.

Fig. 43: Intermediate events

Tasks

Tasks are the main activities in the BPM. They either describe tasks executed by a user, a service or

scripts. A user task is a task that has to be done by a person. A service task is a task that is executed

by an application or web service, for example a server query. A script task is a task that is executed

by a script in the business process engine. Usually these scripts are written in a programming

language like JavaScript. The visual representation of these tasks is given by a rounded rectangle

69

with a short textual description of the activity inside. Small icons in the upper left side of the rectangle

show whether the task is done by a user, a service or a script, or that they include sending or

receiving messages. Within the examples given in this master’s thesis we assume that all tasks are

none-tasks, which do not have an icon. These activities can be looped with added symbols at the

bottom side of the rounded rectangle. Examples of the graphical representations can be found in Fig.

44 and Fig. 45.

Fig. 44: Tasks

Fig. 45: Looping tasks

Sub-processes

Sub-processes are parts of the BPM that describe a ‘chunk’ of the BPM that can be ‘grouped’ as a

single task. This grouping is done to lower the granularity of the BPM and increase the overall

understandability of the model, or to allow for specific functionality that would not be possible within

the normal control flow. Some examples of these exceptional situations are shown in the next

chapter. The graphical representation of such a sub-process or sub-task can be given in either its

collapsed or expanded form. When the sub-process is collapsed, it looks very similar to a normal

task however a plus-sign is added at the bottom edge of the rounded rectangle and the label is

written outside of the element. When the sub-process is expanded, the underlying sub-process is

visible to the reader. Examples of the collapsed and expanded views of sub-processes are given in

Fig. 46.

Fig. 46: Sub-processes

70

Gateways

BPMN uses gateways to split or merge control flows. Gateways are used to express the sequence

flow of the process and this way they define the behavior of the process. Gateways in BPMN are

visualized as a slightly rotated (45 degrees) square. The symbol (or absence thereof) within the

square gives the logical implications of the construct. The different types of gateways (AND, XOR,

OR, event-based and complex) are described and illustrated below.

AND-gateway

The split of the AND-gateway instructs the flow of the process to continue in all outgoing branches

of the gateway. This means that multiple tokens are created in the remainder of the BPM that might

eventually be synchronized by a merging AND-gateway. The AND-gateway is used when multiple

tasks need to be done in parallel, for example by different actors.

Fig. 47: AND-gateway

XOR-gateway

The XOR-split-gateway implies an exclusive choice for the BPM. Only one of many possible flows will

be chosen based on conditions specified either inside the gateway or on the branches that follow

from it. This means that the different conditions that are connected to the gateway need to be

mutually exclusive, only one single condition should be met and there should be alternatives. The

matching XOR-merge-gateway however allows all incoming branches to continue in the flow following

the gateway. This would mean if the AND-split-gateway would be followed by a XOR-join-gateway,

multiple tokens will remain in the process and all following activities might be executed multiple

times. The XOR-gateway can be represented in two ways in BPMN. It can either have an X inside, or

it can be left blank. Both representations have the same meaning5. Examples are given in Fig. 48.

Fig. 48: XOR-gateway

5 To avoid confusion within this document only the variant with the X-symbol is used.

71

OR-gateway

The OR-gateway differs from the XOR-gateway in such a way that multiple branches can be followed

by the flow of the BPM, as long as the conditions given are met. This makes the interpretation of the

OR-gateway perhaps a bit more complex than the XOR-gateway, especially since the merging

happens differently. The OR-gateway synchronizes all the incoming sequence flows and is able to

identify which paths were activated by its splitting counterpart. An example of such a gateway is

given in Fig. 49.

Fig. 49: OR-gateway

Event-based gateways

Event-based gateways have flow-handling capacity that differs greatly from the other gateways that

have been discussed so far. Event-based gateways use a ‘pull’ mechanism to decide on what control

flow path should be followed next. Following on the gateways are different kinds of events: waiting

for a message, waiting for a timer to expire, … Whichever event is triggered first, that path is followed

by the control flow. The symbols for event-based gateways are demonstrated in Fig. 50.

Fig. 50: Event-based gateways

Because this behavior might be confusing at first, an example of an event-based gateway can be

found in Fig. 51. In this example, after task A is completed the control flow continues to the Event-

based gateway. The token then waits for either a message received or a timer that expires. If the

timer expires before a message is received, task C is started. If the message arrives after the timer

has expired (et vice versa) nothing happens, the flow has already continued.

Fig. 51: Example Event-based gateway

72

Complex gateway

The Complex gateway allows for the specification of more complex logic than is allowed by the other

gateways discussed above. For example, a merging Complex-gateway allows for a logic that N out

of M control flow paths should arrive at the gateway before the continuation of the control flow is

allowed. The graphical representation of such a gateway is given in Fig. 52.

Fig. 52: Complex gateways

Flows and associations

The control flow of the process in BPMN is illustrated by a solid arrow, with the arrow pointing in the

direction of the flow. Associations are illustrated with a dotted line without arrowheads. Associations

are made for example between extra explanatory labels that give deeper meaning to specific

elements of the BPM. Message flows, for example between departments or parties, are indicated by

a dashed line with arrows pointing in the direction of the flow. They do not symbolize process control

flow, but indicate communicational flows and symbolize extra information for the reader of the BPM.

Fig. 53: Flows and association

Pools and lanes

Within BPMN, pools and lanes are used to demonstrate the differences between actors or parties in

the BPM. Different lanes are different actors within the process and give some indication of

responsibilities of specific tasks. Their positioning inside a lane indicates that the actor that is

associated with that lane is responsible for the execution of that activity. Different pools indicate

external parties, for example suppliers or customers. They are outside of the process and the process

flow can interact with these parties through message flows. The graphical representation of a pool

and its lanes is given in Fig. 54.

73

Fig. 54: Pools and lanes

Concluding remarks

This short summarization is meant as a short introduction to BPMN. It does however contain far from

all of the specifications that compose the BPMN standard. The information as given in this preliminary

section should be sufficient for comprehending the examples given in this document. For the exact

and complete specifications the reader is referred to the official specifications6 on the website of the

Object Management Group.

6 The full specifications for the BPMN 2.0 standard can be found at:
http://www.omg.org/spec/BPMN/index.htm

74

Example BPM

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Comprehension of Business Process Models: An evaluation of metrics for

understandability

Richting: Master of Management-Management Information Systems

Jaar: 2015

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,

vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Voor akkoord,

Van Eijk, Koen

Datum: 31/05/2015

