
éêçãçíçê=W

mêçÑK=ÇêK=hêáë=irvqbk
ÅçJéêçãçíçê=W

báåÇîÉêÜ~åÇÉäáåÖ=îççêÖÉÇê~ÖÉå=íçí=ÜÉí=ÄÉâçãÉå=î~å=ÇÉ=Öê~~Ç=
j~ëíÉê=áå=ÇÉ=áåÑçêã~íáÅ~=Üìã~åJÅçãéìíÉê=áåíÉê~Åíáçå

^=dê~éÜáÅ~ä=aÉëáÖå=íççä=Ñçê=jìäíáJaÉîáÅÉ=rëÉê=
fåíÉêÑ~ÅÉë=Ä~ëÉÇ=çå=rfji

mêçÑK=ÇêK=h~êáå=`lkfku

g~å=jÉëâÉåë

Abstract

A platform-independent User Interface (UI) would be desirable to enable
the access to a wide range of services on many different devices with varying
display sizes. It is not straightforward, however, to design such a UI because
of the heterogeneity among these devices.

A Model-Based User Interface Design (MBUID) process can be used to
(semi-) automatically generate an interface for a desired target platform from
a platform independent user interface description. A lot of UI design tools
have adopted this approach, however, many of them cannot have serious
usability problems since the gap between the mental model of the designer
and the presentation the tool offers is too big. Yet, most designers prefer the
usage of traditional Graphical User Interface (GUI) builders because they
provide a concrete representation during their design activities. Most GUI
builders, however, do not support platform independence.

In this thesis, the strengths of both MBUID design tools and GUI
builders are combined in order to create a new generation of flexible design
tools. To establish this, we propose a domain specific GUI builder which
can be generated from a domain vocabulary. This vocabulary contains a
set of abstractions commonly used in the domain considered, each of them
coupled to a concrete UI element. The domain specific GUI builder will al-
low the creation of a UI by combining these concrete elements, although the
resulting UI description will still contain the necessary abstractions. The
approach followed here is based on the User Interface Markup Language
(UIML).

A concrete representation, however, shows the UI for one particular dis-
play size. To address multiple display sizes, a UI interpolation technique is
integrated in the domain specific GUI builder. This technique generates UIs
for arbitrary screen sizes from two previously created user interfaces. Con-
sequently, the designed UI can easily be ported to a broad range of devices
with varying screen sizes.

Our implementation of a domain-specific GUI builder and a UI interpo-
lation mechanism is based on the open Uiml.net renderer. To validate our
approach, the existing System.Windows.Forms (SWF) vocabulary is used as
a mapping from the GUI domain vocabulary to specific SWF user interface
elements. From this, we generate a SWF-specific GUI builder.

Acknowledgments

I would like to express my gratitude to a number of people who helped
realize this thesis.

First, I want to thank my promotor Prof. dr. Karin Coninx for giving me
the opportunity to realize this work. Furthermore, I thank my co-promotor,
Prof. dr. Kris Luyten, for many insightful conversations during the devel-
opment of the ideas in this thesis, and for helpful comments on the text.
Particular thanks go to my supervisor, Jo Vermeulen, for his thorough, ef-
ficient and ongoing suggestions as well as for his support throughout the
implementation and writing process of this thesis.

Furthermore, I like to thank Bert De Decker from the computer graphics
group, for correcting the introduction to image based rendering in this tekst.

On a personal note, I am in great debt to my parents, Fons and Hélène
and my sister Lieve: they supported and encouraged my studies and gave me
sufficient freedom to make my own decisions. Also thanks to all my friends
for the necessary diversions I needed during my studies. Special thanks go
to Lieven De Keyzer, who convinced me to study computer science. Finally,
I wish to thank my girlfriend Kristien for always being there for me and
helping me through stressful times as well as for the corrections she made
on my English text.

Contents

I Preliminaries 1

1 Introduction 2
1.1 Problem Description . 2
1.2 The Research covered by this thesis 3
1.3 Outline . 4

II Research 5

2 A Comparison of User Interface Design Tools 6
2.1 General Principles of User Interface Design Tools 7
2.2 Graphical User Interface Builders 8

2.2.1 Tool examples . 8
2.2.2 User Interface rendering 8
2.2.3 Evaluation . 10

2.3 Model-Based and Automatic Techniques 11
2.3.1 Model-Based User Interface Design 12
2.3.2 Interface Models . 12
2.3.3 Model-Based Design Tools 14
2.3.4 Evaluation . 15

2.4 Discussion . 16

3 Multi-Platform User Interfaces 18
3.1 Multi-Target User Interfaces 19
3.2 High-Level User Interface Descriptions 19

3.2.1 UsiXML . 20
3.2.2 XForms . 21
3.2.3 UIML . 21

3.3 Multi-Platform Interface Design Tools 21
3.4 Conclusion . 23

4 Adaptable User Interfaces 25
4.1 User-adaptable interfaces . 26

4.1.1 General approach . 26

CONTENTS iv

4.1.2 Examples of tools . 26
4.2 Self-adapting interfaces . 28

4.2.1 User-Adaptive Interfaces 28
4.2.2 Physical Characteristics-Adaptive Interfaces 29
4.2.3 User- and Physical Characteristics-Adaptive Interfaces 29

4.3 Discussion . 30
4.4 Conclusion . 31

5 User Interface Design by Demonstration 32
5.1 Introduction to Intelligent User Interfaces 32
5.2 General Approach . 33
5.3 Demonstrational Interface Design Tools 34
5.4 Strengths and Weaknesses . 35

5.4.1 Strengths . 35
5.4.2 Weaknesses . 35

5.5 Conclusion . 36

6 UIML 37
6.1 UIML Document Structure 37

6.1.1 General . 37
6.1.2 Structure . 38
6.1.3 Style . 39
6.1.4 Behavior . 40
6.1.5 Logic . 40
6.1.6 Presentation . 41

6.2 The Uiml.net renderer . 42
6.2.1 Introduction . 42
6.2.2 Architecture . 42

6.3 Conclusion . 43

III Development 45

7 Domain-specific User Interface Builder 46
7.1 Domain-specific Visual Language Editors 47

7.1.1 Domain-specific Visual Languages 47
7.1.2 Flexible Domain-specific Visual Language Editors . . 48

7.2 The Graphical User Interface Domain 49
7.2.1 Domain Objects . 49
7.2.2 Domain Vocabulary 49

7.3 Domain-specific User Interface Builders 50
7.3.1 General Characteristics 50
7.3.2 Relation with Model-Based Design Tools 51

7.4 Domain-specific User Interface Builder for UIML 51

CONTENTS v

7.4.1 Domain Objects in UIML 52
7.4.2 GUI Builder Components 53
7.4.3 Managing the Interface Structure 56
7.4.4 Serialization and Deserialization 59
7.4.5 Multi-Container Domain Objects 59
7.4.6 Shortcomings of the UIML Vocabulary 60

7.5 Conclusion . 61

8 User Interface Interpolation 62
8.1 User Interface Space . 63

8.1.1 Definition . 63
8.1.2 Adaptive Interfaces . 64

8.2 User Interface Space Covering Techniques 64
8.2.1 Automated Layout Techniques 65
8.2.2 Intelligent User Interface Techniques 66

8.3 The User Interface Based Rendering Approach 66
8.3.1 Image Based Rendering 66
8.3.2 User Interface Based Rendering 68

8.4 User Interface Interpolation 69
8.5 Rule-Based User Interface Interpolation 70

8.5.1 Goals . 71
8.5.2 User Interface Cloning 72
8.5.3 Rules . 73
8.5.4 Rules in DSUIB-UIML 74
8.5.5 The Rule Syntax . 78
8.5.6 Uiml.net Interpolation Runtime 81

8.6 Results . 83
8.7 Conclusion . 84

IV Conclusion 87

9 Conclusion 88
9.1 Summary of the Results . 88
9.2 Future Work . 89

9.2.1 Domain-Specific User Interface Builder 90
9.2.2 Rule-Based User Interface Interpolation 91

V Appendices 92

A Dutch summary 93
A.1 Inleiding . 93
A.2 Domeinspecifieke Gebruikersinterface Builders 94

CONTENTS vi

A.3 Gebruikersinterface-interpolatie 95
A.4 Toekomstig Werk . 97

Bibliography 98

List of Figures

1.1 Devices ordered by their display size 2

2.1 Rendering of a user interface description language 9

3.1 The construction of multi-device interfaces by TERESA in
four steps . 22

4.1 Winamp skinning examples 26
4.2 User Interface Façades (Images courtesy of [SCPR06]) 27
4.3 A design space for adaptation at high level of reasoning (im-

age courtesy of [TC99]) . 28
4.4 SmartMenus . 28

5.1 The general principle of demonstrational user interface designers 33

6.1 The global UIML document structure 38
6.2 An example of the connection between the style and structure

section . 38

7.1 The domain model of a multimedia player 49
7.2 Several domain vocabularies for the music player domain . . . 50
7.3 The Domain-specific User Interface Builder concept 51
7.4 The three main dialogs of a GUI Builder, generated from the

System.Windows.Forms vocabulary 54
7.5 For the vocabulary in this Figure, the domain object render-

ing pipeline is executed three times in order to construct the
toolbox . 54

7.6 Smoothly resizing a component 55
7.7 Multiple views of the canvas 56
7.8 Changing the properties of a component 56
7.9 The z-order in a user interface 58
7.10 Manipulating the Z-value of the RadioButton 59
7.11 An example of a multi-container: the tab-container with tab-

pages . 60

LIST OF FIGURES viii

8.1 Two outcomes of the card-game User Interface Space 63
8.2 User Interface Space . 64
8.3 User Interface Space and adaptation 64
8.4 The plenoptic function . 67
8.5 User Interface Based Rendering 68
8.6 Interface Interpolation . 70
8.7 An infinite number of regions around the reference user inter-

faces are possible. 70
8.8 Adaptations between a small user interface, on the left, and

a larger one, on the right . 71
8.9 User Interface Cloning . 73
8.10 Rules are used to divide user interface space 75
8.11 Links between components . 76
8.12 The construction of a rectangular area around each compo-

nent . 77
8.13 The Rule Editor . 78
8.14 Four possible conditions for a selected mapping rule. If these

are met, the mapping of the selected control will be used .
Otherwise, the mapping of it’s linked component is employed. 79

8.15 The serialization of a restructuring and addition 81
8.16 The Uiml.net interpolation runtime 83
8.17 The interpolation of the card-game user interface at different

screensizes . 84
8.18 The remapping between a combobox and a listbox with the

default heuristic . 85
8.19 The birthdaybook application 86

9.1 1-N* mappings of an abstract playlist interactor 90
9.2 The extended interpolation mechanism 91

List of Tables

2.1 The four general principles applied to GUI builders 11
2.2 Principles applied to MBUIDEs 15
2.3 Comparison table between the different tool categories. 17

7.1 Evaluation of Domain-specific User Interface Builders 61

8.1 The four general principles applied to DSUIB-UIML in com-
bination with the user interface interpolation mechanism . . . 85

List of Listings

6.1 style declared in the part tree 39
6.2 The behavior element describes end-user interaction 40
6.3 The UIML description of the power method 41
6.4 The call element . 41
6.5 A button in the SWF 1.0 vocabulary 41
7.1 myVoc.uiml . 52
7.2 The interface built on myVoc.uiml 52
7.3 A default instance of the domain object described in myVoc.uiml

(listing 7.1) . 55
8.1 A pseudo-syntax for interpolation rules 80
8.2 The serialization of a repositioning rule 80
8.3 The serialization of a remapping rule 82
8.4 The XML platform description 82

Part I

Preliminaries

Chapter 1

Introduction

1.1 Problem Description

Next to the rise of desktop computers, there has also been a widespread
emergence of computing devices in the past few years [AnSA02]. Conse-
quently, users want to use the same kinds of applications and access the
same data and information on these appliances as on their desktop comput-
ers. As illustrated in Figure 1.1, an important characteristic of the different
devices is the available screensize, which can vary from a very small dis-
play in mobile and embedded devices to a large display in a smartboard1,
widescreen projections, etc. The user interfaces for these devices may differ
from the traditional interaction metaphors on desktops [AnSA02].

Figure 1.1: Devices ordered by their display size

The variance in display size between several devices complicates the de-
ployment of a user interface to these devices. An interface designed for a
desktop PC, for example, will fall partially outside the display region of a

1http://smarttech.com/smartboard/

http://smarttech.com/smartboard/

1.2 The Research covered by this thesis 3

PDA. Thus, depending on the available screen size, an automatic user in-
terface adaptation should be performed. That way, the same application
can be used from a broad range of devices. In order to accomplish this,
several automated layout techniques have been introduced. In this context,
layout means the process of determining the position and size of each visual
object that is displayed in a user interface, and the result of that process
[LF01]. Two popular automated layout techniques are layout managers and
constraint based systems. Both techniques mostly result in a predictable and
consistent interface, but they can only change the size or position of visual
objects in an interface depending on the screen size. More advanced adap-
tations are impossible with automated layout techniques. An example of
an advanced adaptation is the transformation of a listbox into a dropdown
menu when the display size shrinks.

In order to become a usable interface for the desired platforms and de-
vices, one can create a separate user interface for each device or platform.
This approach, however, increases the development effort of an application
significantly. Multi platform user interfaces address this issue by describ-
ing the user interface on a higher platform-independent level of abstraction.
From this description, a (semi-) automatic reification process can be started
towards the final interface on the desired target platform. This process,
which starts with the design of the abstract models and progresses gradu-
ally towards the more concrete models is called Model-Based User Interface
Design (MBUID) [CLC04].

Despite the reduction of development effort introduced by MBUID, the
commercial world has not generally adopted this design method. One rea-
son for the low acceptance of MBUID tools is that designers are forced to
think at a high level of abstraction too early in the design process. This
is contrary to Graphical User Interface (GUI) builders, which are better
suited to support a creative user interface design process. A GUI builder
uses direct manipulation operations to create the interface on a concrete
level of abstraction. Yet, most GUI builders are constrained in the number
of devices, platforms, toolkits or widget-sets that they support. Thus, there
is room for a new generation of user interface design tools which combine
the strengths of GUI builders and MBUID tools. This new tool will allow
the designer to describe a user interface on a platform-independent level of
abstraction without the necessity to define this description explicitly.

1.2 The Research covered by this thesis

We are searching for a new, flexible, design tool which can create a user
interface on a concrete level of abstraction, but still reaches the desired

1.3 Outline 4

platform independence. As well in litterature as in existing implementations,
model based user interface design tools and GUI builders will be explored
and evaluated. The proposed approach will automatically generate domain-
specific user interface builders. These tools will be able to create interfaces
on a concrete level, using domain specific abstractions.

A user interface, created on a concrete level of abstraction, is designed
for a specific screen size. When this size changes, the user interface needs
to be adapted. Several adaptation techniques will be researched, in order
to combine these with the domain specific user interface builder. A new
solution to this problem will be deducted, called user interface interpolation.
This approach will be able to generate a new interface for a desired screensize
from two previously created interfaces. The combination of the domain-
specific user interface builders and user interface interpolation should result
in a new development environment for multi-platform user interfaces.

The solutions described above will be based on the Uiml.net [LC04] UIML
renderer. This renderer already allows the execution of a UIML interface
description on different platforms and devices.

1.3 Outline

The next part covers the research that was conducted in this thesis. First,
we provide a detailed comparison between model-based design tools and
GUI builders. The strengths and weaknesses of both are discussed in detail.
Chapter 3 discusses multi-platform user interfaces. Model-based user inter-
face development and high level user interface descriptions are emphasized
here. Next, demonstrational user interface design techniques and adaptable
user interfaces are covered. A detailed overview of UIML and the Uiml.net
renderer is provided in the final chapter of this part.

Details about the implementation part of this thesis are given in the next
part. First, the domain specific user interface builder for UIML is intro-
duced. Next, the integrated user interface interpolation mechanism is dis-
cussed in detail.

Finally, we draw the conclusions and provide some opportunities for future
work.

Part II

Research

Chapter 2

A Comparison of User
Interface Design Tools

Contents

2.1 General Principles of User Interface Design Tools 7
2.2 Graphical User Interface Builders 8

2.2.1 Tool examples . 8
2.2.2 User Interface rendering 8
2.2.3 Evaluation . 10

2.3 Model-Based and Automatic Techniques 11
2.3.1 Model-Based User Interface Design 12
2.3.2 Interface Models 12
2.3.3 Model-Based Design Tools 14
2.3.4 Evaluation . 15

2.4 Discussion . 16

User Interface Design Tools (UIDTs) help reduce the amount of code that
programmers need to produce when creating a user interface and allow user
interfaces to be created more quickly [MHP00]. This in turn enables rapid
prototyping and therefore more iterations (or an iterative design process)
which has been proven to be a crucial component for achieving high-quality
user interfaces. Another important advantage of tools is that they help
enforce a consistent look and feel, since all user interfaces created with a
certain tool will be similar.

In this chapter, two categories of design tools are introduced: the tradi-
tional graphical user interface builders and model-based design tools. The
former facilitates the development of UIs by intuitive direct manipulation
techniques. The latter provides in the generation of a user interface from
a high level declarative description. The strengths and weaknesses of these

2.1 General Principles of User Interface Design Tools 7

two tool categories are discussed in detail, in order to combine the strengths
of both in a later stage of this thesis.

In order to compare both tool categories, a set of general user interface
design tool principles is introduced first. Next, Sections 2.2 and 2.3 discuss
respectively graphical user interface builders and model-based design tools.
The application of the general principles in these tools is evaluated within
each of these sections. Finally, a general evaluation of both categories is
provided.

2.1 General Principles of User Interface Design
Tools

In [HY91] some general principles for the construction of user interface
design environments are stated:

• There should be no hidden components: this principle involves
visibility and stems directly from the basic principles of direct manip-
ulation.

• Rich and immediate feedback should be provided: the conse-
quences of design actions need to be visible as those actions are being
considered or carried out;

• The designer should be in control of the design: there is no
substitute for the knowledge of a human designer and it is important
to allow the designer to have full control over the design process;

• The system should automate as much as possible: automate
as many of the tedious or repetitive steps as possible and provide
guidance, direction and structure when is needed.

The final two principles are partially in conflict and can in fact represent
an area of tradeoff: more control to the designer implies less automatization
possibilities for the application and vice-versa.

In the remainder of this chapter, the application of these principles is
evaluated within several tool categories. Each principle will be evaluated
on a scale of zero to ten. A zero-score involves that the principle is not
supported, a score of ten indicates the opposite: the principle is completely
adopted.

2.2 Graphical User Interface Builders 8

2.2 Graphical User Interface Builders

Graphical User Interface (GUI) builders basically contain two main com-
ponents [Pay98]. The first one is a library or toolbox with a wide variety of
elements for a graphical user interface: e.g. windows, buttons, edit-controls,
drawing areas, etc. The other one is a visual editor to combine these ele-
ments with the mouse by drag-and-drop or click-and-point actions. These
tools can also be categorized as What You See Is What You Get (WYSI-
WYG) tools. In the next section, we will discuss a few examples.

2.2.1 Tool examples

Some well known GUI builders are Glade1 and Qt Designer2. Glade en-
ables quick and easy development of user interfaces for the GTK+ toolkit3

and the Gnome desktop environment4. GTK+ is a multi-platform toolkit
for creating graphical user interfaces. Offering a complete set of widgets,
GTK+ is suitable for projects ranging from small one-off projects to com-
plete application suites.

Besides Gnome, KDE is the other main desktop environment for Linux
[Ant01]. While Gnome is built on top of the GTK+ toolkit, KDE5 is built on
top of the Troll Tech’s Qt6 widget library. Qt is a high-level cross-platform
toolkit that provides an object-oriented graphical application library for
C++ programmers. Qt Designer is the tool to automate most of the leg-
work of designing a user interface in Qt. Additionally Qt Designer can
be integrated in the KDevelop integrated development environment, which
gives you the facilities of a Rapid Application Development RAD environ-
ment for C++ programmers. Other examples include Visual Basic and the
“resource editors” or “constructors” that come with Microsoft’s Visual C++
and most other environments [MHP00].

2.2.2 User Interface rendering

After the construction of a user interface inside the tool, the interface
should be made accessible to the application logic. The extraction of the
interface outside of the tool is called user interface generation. Most tools
store the interface structure in an intermediate User Interface Description
Language (UIDL), a - commonly XML based - description of a user interface.
From this intermediate format, the final interface should be rendered. The

1http://glade.gnome.org/
2http://www.trolltech.com/products/qt/features/designer
3http://www.gtk.org/
4http://www.gnome.org/
5http://www.kde.org/
6http://www.trolltech.com/products/qt

http://glade.gnome.org/
http://www.trolltech.com/products/qt/features/designer
http://www.gtk.org/
http://www.gnome.org/
http://www.kde.org/
http://www.trolltech.com/products/qt

2.2 Graphical User Interface Builders 9

interface rendering process of a basic UIDL is straight forward: a specific
XML tag is directly mapped on a corresponding UI element. In Figure 2.1
the rendering of a <button> tag to a SWF button is shown.

Figure 2.1: Rendering of a user interface description language

The rendering can be done by two approaches: compilation or interpre-
tation. Although some literature associates user interface rendering with
the interpretation approach only, it is defined as the overall UI generation
concept here. The two rendering techniques are discussed below.

Compilation

The compilation approach involves the translation of the UIDL specifi-
cation to programming code. The generated code can then be adapted in
order to couple it to the application logic. In order to come to the final
interface coupled to the logic, this code can then be built.

A major drawback of the compilation approach is the possible arise of an
inconsistency between the generated code and the UIDL. Without the trans-
lation step, alterations to the UIDL are not reflected in the programming
code. Otherwise, modifications in the code are never returned in the UIDL
except when an inverse translation is available. Yet, this inverse translation
is not commonplace and rarely available.

Both Glade and Qt Designer store the interface structure in an UIDL
format, respectively glade xml and Troll Tech’s own UI XML format. In
Qt Designer, the User Interface Compiler (UIC) is used to generate a .h
header file and the implementation file of the dialog class. Having done this,
the KDevelop C++ IDE can be used to add callbacks, compile and debug
the program. Glade, however, can process XML interfaces directly into C
source code.

2.2 Graphical User Interface Builders 10

The Qt and Gtk+ toolkits have bindings in many languages: Qt is amongst
others available in C++, the .NET platform (Qt#), python (PyQt) and java
(Jambi), while Gtk+ has bindings for C, C++, Eiffel, Ada95, the .NET plat-
form (Gtk#), etc. It is possible to convert the interface, described in the
intermediate xml format, to some of these bindings. Besides the uic tool for
C++, the Qt interface can be compiled to the Python bindings with puic.
There is also a juic tool available to compile the interface to Java, but this
requires a slightly modified version of the original Qt ui format, called jui.
Glade can emit Eiffel, Ada95, and C++ source code.

Interpretation

Whereas the compilation approach generates source code, the interpreta-
tion approach generates the interface directly from the UIDL. The interface
is rendered from the UIDL without any translation step. This involves
that there can no longer be a inconsistency, any adjustment to the UIDL is
directly reflected in the interface. Glade does not only support the compi-
lation approach, but also the interpretation. To accomplish this it uses the
Libglade7 library, which builds the interface from an XML file (glade’s save
format) at runtime.

Another example of a UIDL is Microsoft’s Extensible Application Markup
Language (XAML8), which is a declarative XML-based language that defines
objects and their properties in XML. XAML syntax focuses upon defining
the UI for the Windows Presentation Foundation (WPF) and is therefore
separate from the application code behind it. WPF is the new presentation
API in .NET Framework 3.0 (formerly WinFX). Users can program directly
against the API with .NET, but one can also use the WPF to interpret
XAML documents.

2.2.3 Evaluation

Visibility the use of a widget panel, which shows all the possible widgets,
avoids the presence of hidden components as stated in the first principle (see
Section 2.1). Additionally, the properties of the different widgets are mostly
listed in a property window, which reduce the time needed to look them
up. One problem with GUI Builders is that, unless the interface builder is
very limited in scope, the designer sees more than he needs to create the
interface. Because of these redundant objects, the visibility-score is reduced
with two points, which results in an eight.

7http://developer.gnome.org/doc/API/libglade/libglade.html
8http://www.xaml.net

http://developer.gnome.org/doc/API/libglade/libglade.html
http://www.xaml.net

2.3 Model-Based and Automatic Techniques 11

Table 2.1: The four general principles applied to GUI builders

Feedback the second principle is completely supported in this type of tool
because it uses direct manipulation to create interfaces. Direct manipulation
involves immediate feedback when an action is undertaken by the designer.
For instance, when a button is dragged to another location in a form, this
is shown interactively to the designer. A user interface should not be build
or executed before the result can be evaluated. The evaluation is seamlessly
integrated in the design process of GUI Builders.

Control and Automation the designer is placed in full control of the
design, he can use the direct manipulation techniques to develop the in-
terface he has in mind. The full control given to the designer results in a
minimal automated approach. This automation involves the replacement of
programming code by direct manipulation. Intelligent techniques to reduce
the development effort on repetitive steps are not provided in this type of
tool.

2.3 Model-Based and Automatic Techniques

Although the UIDTs described in Section 2.2 facilitate the creation of
user interfaces, the design itself stays a manual task: the fourth principle
of user interface design environments (Section 2.1) is not well supported. A
thread in user interface research that addresses this issue is the investigation
of automatic techniques for generating interfaces [MHP00]. The goal of this
work is generally to allow the designer to specify interfaces at a very high
level of abstraction, with the details of the implementation to be provided by
the system. Motivations for this include the hope that developers without
user interface design experience could simply implement the functionality
and rely on these systems to create high-quality user interfaces. The systems
might allow user interfaces to be created with less effort (since parts would
be generated automatically). Further, there is the promise of significant
benefits such as automatic portability across multiple types of devices (see
Chapter 3), and automatic generation of online help for the application.

2.3 Model-Based and Automatic Techniques 12

2.3.1 Model-Based User Interface Design

The most well-known automatic user interface generation technique is
Model-Based User Interface (MBUI) design. MBUIs are designed on an ab-
stract model of the interface instead of its visual appearance [LL02]. These
declarative models store a conceptual representation of the required inter-
face. Recently, the models supported by Model-Based User Interface Design
Environments (MB-UIDEs) have increased both in number and in expres-
siveness. The first-generation of MB-UIDEs is concentrated on modelling
the underlying application domain through a domain model. Typically, such
a limited view of the modelled domain produced simple menu or form-based
interfaces. The past few years, however, MB-UIDEs have exploited a much
wider range of interacting models, with consequently an increase in the qual-
ity and variety of their generated interfaces [GtMP+98].

Most MB-UIDEs contain two important main parts: the conceptual de-
scription of the interface, the interface model, and a mapping function to
map these abstract descriptions to the concrete interface [PE99]. The Model-
based interface development process [CLC04] usually starts with the design
of the abstract models and progresses gradually towards the more concrete
models, resulting in the final interface when the design process is complete.

2.3.2 Interface Models

An interface model is an ordered collection of all the relevant elements
of a user interface [PE99]. The elements of an interface model are grouped
into model components. The basic components are the task model, the user
model, the domain model, the presentation model, and the dialog model.

Task model

The Task Model (TM) expresses the activities that end-users of an appli-
cation want to undertake and any temporal constraints that exist between
tasks or sub-tasks[GtMP+98]. A common task model is the ConcurTask-
Trees (CTT) as proposed in [Pat00]. This notation offers a graphical syntax,
an hierarchical structure and a notation to specify the temporal relation be-
tween tasks.

User model

A User Model (UM) represents the different types of users of a target
application. It is not a cognitive model but a definition of the attributes
and roles of users [PE99]. In SUPPLE [GW04], a different user model is
used. User traces are used here to describe the way a user interacts with an
application (see Section 4.2.3).

2.3 Model-Based and Automatic Techniques 13

Domain model

The Domain Model (DM) is used to capture the functionality of the un-
derlying application or database [GtMP+98]. This model therefore specifies
the application’s public interface in terms of the low-level data sources and
services the application makes available to the user. In nature, it is very
similar to an application’s data model [PE99] but it is also intended to ex-
plicitly represent the attributes of objects and the relationships among the
various domain objects.

Presentation model

The Presentation Model (PM) [PE99] is a representation of the visual,
haptic, and auditory elements that a user interface offers to its users. For
example, a presentation element might be a window that contains additional
elements such as widgets that appear in that window.

Dialog model

The Dialog Model (DiM) defines the way in which the presentation model
interacts with the user. It presents the actions that a user may initiate via
the presentation elements and the reactions that the application communi-
cates via those same elements [PE99].

Mappings

In general terms, developers use model-based systems to define firstly
one or more abstract models: a user-task model, a domain model and a
user model. The model-based systems then attempt to generate from those
model-components more concrete models such as presentation and dialog
models that are then converted into an executable interface specification
(i.e, a running user interface) [PE99]. This requires some sort of mapping
to perform this conversion. These mappings can be realized at three levels:

• between abstract models: the assignment of users to tasks, for
example, is a mapping process. At this level, there is also a mapping
from task to domain model possible [PE99].

• between concrete models: the presentation elements and the dia-
log elements in an interface model must be linked to each other in order
to specify a running user interface [PE99]. Therefore presentation-
dialog mappings are needed.

• from abstract models to concrete models: for example, given
task t in domain d find an appropriate presentation p and dialog D
that allows user u to accomplish t [PE99]. At this level task-dialog,

2.3 Model-Based and Automatic Techniques 14

task-presentation and domain-presentation are the most common map-
pings.

2.3.3 Model-Based Design Tools

The generation of user interfaces from domain models is the approach
followed by Mecano [PEGM94]. Through a model editor, the developer can
build, visualize and review a domain model. Mecano follows an iterative
approach, which involves the continuous refinement of the domain model
towards the final user interface. The model will be used as the input of
an intelligent designer component, a tool which produces a dynamic dialog
specification and a preliminary layout for the interface. A dialog specifi-
cation is created at two levels: high- and low-level. A high-level dialog
specification defines all interface windows, assigns interface objects to win-
dows, and specifies the navigation scheme among windows in the interface.
The low-level one defines specific dialog elements (widgets) to each interface
object created at high level and specifies how the standard behavior of the
dialog element is modified for the given domain. In a next step, the layout
can be refined using NeXT’s interface builder.

Besides the dialog model, Teallach [GtMP+98] utilizes the four declarative
interface models in the process of generating user interfaces. Teallach stores
the different models in a shared model repository. Initial models can be
generated from the ones already stored in the repository. This generation is
supported by mapping rules, at different levels as described in Section 2.3.2,
stored at several places in the Teallach’s architecture. Thus, Teallach guides
the developer through the construction of a presentation model, starting
from the domain model. Some parts of the intermediate models can be
generated automatically by drag and generate operations: for example, after
dragging a part of the domain model to the task model editor, an initial task
model will be generated. Other parts of the model should be made by hand
and connected manually to the sibling models.

In MOBI-D [PE99], a general-purpose model-based interface development
environment, all the different components of the interface model are used.
Whereas the mappings are embedded into the system in Teallach’s and
Mecano’s approach, MOBI-D allows interface developers to directly access
and set the mappings according to their needs. In order to support the
inspection and setting of mappings, MOBI-D extends the definition of an
interface model to include a new model component called the design model :
a declarative representation of all the mappings. A design editor is sup-
plied to support the designer in the construction of same-level-of-abstraction
mappings. For the more complex abstract-to-concrete mappings, MOBI-D
provides a decision-support tool: The Interface Model Mapper (TIMM).

2.3 Model-Based and Automatic Techniques 15

2.3.4 Evaluation

Control and Automation besides the construction of abstract inter-
face models by model editors, a Model Based User Interface Design Tool
(MBUIDT) supports the transformation of this model towards the final in-
terface. These transformations are often based on heuristics [MHP00], which
results in a difficult to understand connection between the model and the
final result. Whereas this difficult relationship makes it hard for the de-
signer to have control over the final UI, the automatization factor increases
significantly. Several solutions to enhance the control of the designer are
worked out in the tools discussed in Section 2.3.3. In Mecano [PEGM94]
and Teallach [GtMP+98], the designer can modify unexpected generations
at different steps in the process. The MOBI-D [PE99] approach passes the
mapping responsibility to the designer. Despite these creative solutions,
only partial support for the control principle was realized.

Visibility the model-editors guide the developer in the model design pro-
cess and typically show an intuitive interface with the possible options in
the model. For example, in the CTT task modelling environment [Pat00],
a panel with possible tasks and temporal operators between the tasks is
shown. Although hidden components are avoided at model construction
level, the components used to build the final interface stay hidden for the
designer. Because of this, the first principle is only partially supported by
MBUIDTs.

Feedback the impact of a change in the interface model, is rarely visual-
ized immediately in the final interface or other models. For example, when a
task model is modified, the result of this modification is only reflected in the
dialog model after the execution of all the automatic transformations and
related dialogs. Thus, the feedback principle is only minimally supported.
The evaluation of each principle is shown in Table 2.2.

Table 2.2: The four general principles of user interface design environments
applied to the model-based user interface development process.

2.4 Discussion 16

2.4 Discussion

In this chapter, several sorts of design tools were discussed and evaluated.
The decrease of control, visibility and feedback are the most important rea-
sons that model-based user interfaces have not been widely adopted in the
commercial software development world, which has instead gravitated to-
wards GUI builders. An important reason for this success is that GUI
builders use graphical means to express graphical concepts (e.g., interface
layout) [MHP00]. By moving some aspects of user interface implementa-
tion from conventional code into an interactive specification system, these
aspects of interface implementation are made available to those who are not
conventional programmers. This allows many domain experts to prototype
and implement interfaces highly tailored to their tasks, and allow visual
design professionals to become more involved in creating the appearance
of interfaces. Even the programmer benefits, as the speed of building is
dramatically reduced.

Model-based UI tools do not match or augment the work practices of de-
signers. They often force designers to think at a high level of abstraction
to early in the design process [LL02]: for example, by specifying a task
model which is then transformed in a concrete UI. This abstract thinking is
contrary to the normal task of the designer to develop concrete interfaces.
Designers must also learn a new language for specifying the models, which
raises the threshold of use [MHP00]. Furthermore, automatically generat-
ing interfaces is a very difficult task: automatic and model-based systems
have each placed significant limitations on the kinds of interfaces they can
produce [MHP00]. A related problem is that the generated user interfaces
are generally not as good as those that could be created with conventional
programming techniques. Despite these drawbacks, model-based techniques
have been widely adopted by multi-device UI development tools.

The comparison between the different tool-categories is summarized in
Table 2.3.

2.4 Discussion 17

Table 2.3: Comparison table between the different tool categories.

Chapter 3

Multi-Platform User
Interfaces

Contents

3.1 Multi-Target User Interfaces 19
3.2 High-Level User Interface Descriptions 19

3.2.1 UsiXML . 20
3.2.2 XForms . 21
3.2.3 UIML . 21

3.3 Multi-Platform Interface Design Tools 21
3.4 Conclusion . 23

Next to the rise of desktop computers, there has also been a widespread
emergence of computing devices in the past few years [AnSA02]. However,
users want to use the same kinds of applications and access the same data
and information on these appliances that they can access on their desktop
computers. The user interfaces for these platforms are different from the
traditional interaction metaphors on desktops [AnSA02].

Multi-platform user interfaces are the subject of this chapter. These in-
terfaces are described on an appropriate level of abstraction which omits
platform-dependant terms. Platform refers to the hardware and software
platforms [CCT+03], which are, the computational and interaction devices
that can be used. Multi-platform interfaces will adapt to the platform con-
sidered, without duplicating the development effort. For example, one in-
terface description can be used for a desktop computer, a PDA and a smart-
phone. These type of interfaces belong to adaptable interfaces, which are
discussed in Chapter 4.

3.1 Multi-Target User Interfaces 19

First, the general approach of multi-target user interfaces is discussed.
Next, a short introduction to high-level user interface descriptions is given.
Finally, several tools which support the creation of multi-platform interfaces
are discussed.

3.1 Multi-Target User Interfaces

The context-of-use [CCT+03] of an interactive system is defined by three
classes of entities: (1) the users of the system who are intended to use the
system; (2) the hardware and software platform(s), that is, the computa-
tional and interaction device(s) that can be used; (3) the physical environ-
ment where the interaction can take place. An interface which is capable
of supporting multiple contexts of use is called a multi-target user interface.
Multi-platform interfaces are a specialization of these multi-target user in-
terfaces, which adapt the interfaces depending on the hardware and software
platforms considered.

Initial models [CCT+03], which are specified manually by the developer,
serve as input descriptions to the multi-target development process. This
process uses a combination of operators to transform initial models into tran-
sient models until the final context-sensitive interactive system is produced.
A transient model is an intermediate model, necessary for the production
of the final executable interface. Task-oriented descriptions, abstract and
concrete interfaces are typical examples of transient models. Two kinds of
operators are important in the production of transient models:

• Vertical transformations that may be processed along a top-down
(reification) or bottom-up (abstraction) process;

• Horizontal transformations, such as those performed between HTML
and WML content descriptions, correspond to translations between
models at the same level of reification.

The final result of the multi-target design process is the Final User Interface
(Final UI), expressed in source code, such as Java and HTML, or interpreted
as a pre-computed user interface and plugged into a run-time environment
that supports dynamic adaptation to multiple targets.

3.2 High-Level User Interface Descriptions

High-Level User Interface Descriptions (HLUIDs) provide the possibility
to create a device-independent and abstract description of a user interface
with a language that is easy to use in heterogeneous environments [Luy04].
Although there are also many User Interface Description Languages that do

3.2 High-Level User Interface Descriptions 20

not use the eXtensible Markup Language (XML), XML is the most appropri-
ate language to describe High-Level User Interface Description Languages
(HLUIDLs) [Luy04]. This description language can reach easily platform
independence, if there is an XML parser available on the system, the XML
description can be used. Other desired properties of XML are: consistency
through the use of a DTD1, unconventional I/O (e.g.: WML or VoiceXML),
rapid prototyping, constraint definitions, easily extensible and re-usability.

The contribution of HLUIDs to multi-platform interfaces is two-fold:

• an HLUID makes it possible to (semi-) automatically generate the
code of the UI, as desired in model-based approaches for developing
UIs [SV03];

• when an interface is required on different computing platforms, this
can be done by exchanging the HLUID from one platform to an-
other without any changes to avoid any extraneous development effort
[SV03]. An HLUID renderer is responsible for generating the interface
on the desired platforms.

Although an HLUIDL description should mainly stay the same for a wide
range of devices, the same description generally cannot be reused in more ex-
treme conditions such as very small screens or multiple displays [LVC06]. In
practice, the description also contains widget-set specific layout information.
This results in multiple alternative descriptions for the same user interface to
keep them consistent for different widget-sets on different devices. To avoid
the creation multiple alternative descriptions, another approach is to create
a HLUIDL which targets a generic but limited set of widgets [LTVC06].

In the remainder of this section, some examples of HLUIDLs are provided

3.2.1 UsiXML

The USer Interface eXtensible Markup Language (UsiXML) [FMVM06] is
an XML-compliant HLUIDL covering all four levels of abstraction: the Final
User Interface (FUI), the Concrete User Interface (CUI), the Abstract User
Interface (AUI), and the tasks and domain model. The FUI refers to the
actual user interface, which will be rendered on a given computing platform.
The CUI abstracts the FUI into a definition that is independent from any
programming language. The CUI contains a detailed description of the user
interface in terms of widgets, layout, navigation and behavior.

1Document Type Definition

3.3 Multi-Platform Interface Design Tools 21

The AUI abstracts the CUI into a UI definition that is independent from
any interaction modality. This is done by the use of interaction spaces, i.e.
the grouping of tasks that have to be presented together. In UsiXML, the
AUI is populated by Abstract Components and Abstract Containers. The
tasks and concepts model forms the last level of abstraction. In UsiXML
the CTT notation [Pat00] is used to represent tasks, while class diagrams
are used for the domain model.

3.2.2 XForms

XForms [Wik07] is an XML format for the specication of user interfaces,
specically web forms. XForms was designed to be the next generation of
HTML / XHTML forms, but is generic enough to be used in a stand-alone
manner to describe any user interface, and even to perform simple and
common data manipulation tasks.

3.2.3 UIML

The User Interface Markup Language (UIML) is an XML based meta-
language to describe an interface in a device-, toolkit-, interaction- and
platform-independent way. Instead of specific abstraction (part,property,. . .),
UIML uses generic terms (e.g. window, button, etc) to define the interface.
The mappings of these terms to the appropriate concrete interface elements
is defined in a vocabulary section. The use of a vocabulary provides great
flexibility: it allows to build a custom user interface language on top of
UIML, similar to the way the XML meta-language supports building a cus-
tom data format. A more detailed description of UIML is given in Chapter
6.

3.3 Multi-Platform Interface Design Tools

In this section, tools are discussed to construct multi-platform interfaces.
The TERESA [PMS03] tool reificates the task-models, specified in the Con-
curTaskTree [Pat00] notation, to concrete user interfaces in four steps. First
a high-level task model and a domain model should be constructed in the
ConcurTaskTree notation. Whereas the former identifies the possible con-
texts of use and the various roles involved, the latter aims to identify all the
objects and concepts that have to be manipulated to perform tasks and the
relation among such objects. During the second step, the designer needs
to refine or filter the high-level task-model towards a system task-model for
the different platforms considered.

Next, the abstract user interface description, defined in the XML AUI
format, should be generated from the system task-model. This transfor-

3.3 Multi-Platform Interface Design Tools 22

mation of task-models to abstract user interfaces is done by the detection
of Presentation Task Sets (PTSs), [MPS04] which represent tasks that are
enabled over the same period of time. Once these PTSs, and the transitions
among them, are detected, the abstract interface can be derived. This will
be done by mapping the tasks on corresponding interactors, depending on
the task category. For example, a task classified as an “edit” type will be
mapped on an interactor that allows information modification. An analysis
of the CTT task model will build the composition among the different in-
teractors. This composition is steered by the temporal operators between
the tasks and various task-attributes (such as frequency).

The abstract interface description can be used as input for the concrete
interface construction process. During this platform-dependent phase, the
specific properties of the target-device should be considered: supported in-
teraction techniques, operating system, toolkit, etc. The designer can choose
the preferred level of control in this step. TERESA can render an interface
depending on predefined criteria, but the designer can easily modify these
criteria. The four steps are summarized in Figure 3.1.

Figure 3.1: The construction of multi-device interfaces by TERESA in four
steps

Graceful Degradation [FMVM06] consists in specifying one source inter-
face, designed for the least constrained platform, and to apply transfor-
mation rules to this source interface in order to produce specific interfaces
targeted to more constrained platforms. By the use of splitting rules, in-
teractor and image transformation rules, moving rules, resizing rules and

3.4 Conclusion 23

removal rules it is possible to paginate an interface in logical units for dif-
ferent devices. Graceful degradation is possible at UsiXML’s CUI level and
at the combined AUI and task-model level. In order to become the most
usable interface, the latter will be preferred to the former.

In TIDE [AnSA02] (Transformation-based Integrated Development Envi-
ronment), the developer writes UIML (see Chapter 6) code and the IDE
generates the interface, as expected. The assumption made here is that
the process of creating an interface in an abstract language, such as UIML,
which will be translated into one or more specific languages, undergo a pro-
cess of trial and error. The developer builds what he or she thinks will be
appropriate in UIML, renders to the desired language(s), and then makes
changes as appropriate. TIDE is built to facilitate this process in three
ways: (1) the UIML code of the abstract interface can be edited; (2) the
result can be rendered for the desired platform; (3) after this rendition, the
relationships between parts of the interface and blocks of UIML code are
visualized by arrows connecting these two. The UIML code can be modified
for the different platforms, which establishes the horizontal transformation.

In [JB03], a design environment is presented for implementing multi-
device interfaces using custom tag libraries for Java Server Pages (JSPs),
called the Abstract User Interface Technology (AUIT). An AUIT interface
description contains generic, device-independent mark-up tags describing
interface elements and layout information. Depending on the target plat-
form, the information stored in this abstract description is used to render
an interface in the suitable markup (e.g. HTML or WML) with the cor-
rect layout, using the right interaction, adornment (e.g. available fonts only,
no colour if black-and-white device) etc. The design environment provides
three editors – a tree structure-, text- and layout-editor – and two rendering
views, one for a web browser and one for a PDA, to facilitate the creation
of these specific type of interface. The most remarkable part is the layout
editor which provides an intuitive manner to specify the relative positions
and groupings of screen elements based on a grid model. While running the
interface for a particular device, it may split into multiple parts using the
grid specified, in order to fit the interface into the device’s smaller screen.
Thus, the horizontal transformation is done automatically by the splitting
blocks defined in the grid editor.

3.4 Conclusion

The various concepts of multi-platform interfaces were introduced in this
chapter. Also a short review of tools to create this type of interfaces was

3.4 Conclusion 24

included. The design of multi-platform interfaces is an important goal of
the design tool developed in this thesis.

Chapter 4

Adaptable User Interfaces

Contents

4.1 User-adaptable interfaces 26
4.1.1 General approach 26
4.1.2 Examples of tools 26

4.2 Self-adapting interfaces 28
4.2.1 User-Adaptive Interfaces 28
4.2.2 Physical Characteristics-Adaptive Interfaces 29
4.2.3 User- and Physical Characteristics-Adaptive In-

terfaces . 29
4.3 Discussion . 30
4.4 Conclusion . 31

As discussed earlier in the problem description, an automatic adaptation
of a user interface is necessary to make an application accessible from a
broad range of devices with varying display sizes. To better understand this
issue, existing adaptation techniques are studied in this chapter.

In Human-Computer Interaction, adaptation [TC99] is modeled as two
complementary system properties: adaptability and adaptivity. While the
former is the capacity of the system to allow users to customize their system
from a predefined set of parameters, the latter is the capacity of the sys-
tem to perform adaptation automatically without deliberate action from the
user’s part. Interfaces which support adaptability is called user-adaptable
interfaces, the ones which support adaptivity are called self-adapting inter-
faces.

In this chapter, user-adaptable and self-adapting interfaces are introduced.
Both are discussed in detail and several examples are provided. Finally, the
strengths and weaknesses of these two adaptation techniques are discussed.

4.1 User-adaptable interfaces 26

4.1 User-adaptable interfaces

4.1.1 General approach

An active interface customization approach can be established with user-
adaptable interfaces. In this type of interfaces, one can adapt the primary
interface through secondary interfaces [SCPR06]. The latter contains op-
erations and interaction techniques to restructure the former, which is the
interface to perform the application’s main task. A well designed secondary
interface with attractive adaptation options led to a great flexibility in the
organizational structure of the primary interface. The more one can cus-
tomize the primary interface to his personal needs, the better he will perform
the task provided by the application.

4.1.2 Examples of tools

Two of the simplest forms of user interface customization are skins and
themes [SCPR06]. A skin, or a theme, can simply consist of a set of col-
ors or textures used by the existing drawing code. It can also partially
or completely replace that drawing code, possibly adding complex output
modifications. In addition to the visual style of interface elements, skins
and themes can also specify the layout and to a lesser degree the behavior
of these elements. However, although these allow visual designers to cus-
tomize interfaces, these systems remain out of reach for end-users who can
only choose between predefined theme options. Figure 4.1 shows two skins
for the popular Winamp1 multimedia player. In this example the primary
interface is an interface to play multimedia, the secondary interfaces are a
complex set of drawing tools - gimp, photoshop, . . . - and text editors -
vim, notepad, . . . - to construct a skin.

(a) futuristic skin (b) WMP skin

Figure 4.1: Winamp skinning examples

1http://www.winamp.com/

4.1 User-adaptable interfaces 27

User Interface Façades [SCPR06] is a system that provides users with sim-
ple ways to adapt, reconfigure, and re-combine existing graphical interfaces,
through the use of direct manipulation techniques. A user interface facade
is a user-specified set of graphical interfaces and interaction techniques that
can be used to customize the interaction with existing, unmodified applica-
tions. User interface Façades make it possible to:

• copy and paste screen regions,

• cut screen regions,

• use external components to interact with applications.

(a) Copy and paste screen regions (b) Creation of a hole in a
word-processor interface

(c) Replacing of widget types

Figure 4.2: User Interface Façades (Images courtesy of [SCPR06])

User Interface Façades provide intuitive well designed secondary interfaces
to adapt primary ones. In Figure 4.2a it is shown how to copy and paste
screen regions between two Gimp2 dialogs by direct manipulation. The
opacite slider is selected and dragged to a new desired dialog. Figure 4.2b
displays the creation of a hole in a textwriter interface. Through this hole,
the result of an underlying calculator window can be consulted. It’s also
possible to change widget types as shown in Figure 4.2c. The dropdown
widget in the left view is changed to a list of radiobuttons in the right view,
the middle view is the user interface facade used to change the widget type.

2GIMP is the GNU Image Manipulation Program. It is a freely distributed piece of
software for such tasks as photo retouching, image composition and image authoring.
http://www.gimp.org/

http://www.gimp.org/

4.2 Self-adapting interfaces 28

4.2 Self-adapting interfaces

Whether adaptation is performed on human requests or automatically,
the design space for adaptation includes three orthogonal axes [TC99] (see
Figure 4.3):

• The target for adaptation: this axis denotes the entities for which
adaptation is intended;

• The means of adaptation: the components of the system involved in
adaptation;

• The temporal dimension of adaptation, which can be static, between
sessions, or dynamic, at runtime.

During this section, several self-adapting interfaces will be discussed, classi-
fied by the target (see Figure 4.3) for which adaptation is intended.

Figure 4.3: A design space for adaptation at high level of reasoning (image
courtesy of [TC99])

4.2.1 User-Adaptive Interfaces

Figure 4.4: SmartMenus

4.2 Self-adapting interfaces 29

The interfaces discussed here all have one idea in common [Jam03] : they
learn something about each individual user and adapt its behavior to them.
The most well-known example is provided by the Smart Menus feature that
Microsoft introduced in Windows 2000, as shown in Figure 4.4. The idea
behind these menus is that in the long run they should contain just the
items that the user accesses regularly, so that the user needs to spend less
time searching within menus. Another example are the Split Menus [SS94],
which are organized into high- and low-frequency regions, with the several
most frequently used options appearing at the top of the menu.

4.2.2 Physical Characteristics-Adaptive Interfaces

The physical characteristics of a system can be refined [TC99] in terms of
interactional devices (e.g., mouse, keyboard, screen, video cameras), com-
putational facilities (e.g., memory and processing power), and communica-
tional facilities (e.g., bandwidth rate of the communication channels with
other computing facilities).

The platform independent interfaces discussed in Chapter 3 can be catego-
rized as physical characteristics-adaptive interfaces. Each of these interfaces
will adapt to the device considered. Most of them do not adapt at runtime,
but support static adaptation between sessions.

4.2.3 User- and Physical Characteristics-Adaptive Interfaces

Beside user-adaptation, the systems discussed here adapt to some specific
physical characteristics changes too. SUPPLE [GW04][GCH+05] is a user
interface optimization tool, which is able to render UIs on different device
types for different users. When asked to render an interface on a specific
device and for a specific user, SUPPLE searches for the rendition that meets
the device’s constraints and minimizes the estimated cost (user effort) of the
person’s activity [GW04]. Not only the layout of the UI will be optimized,
also the individual widgets are optimally chosen by SUPPLE during the
rendering.

A functional interface model, a device model and a user model serve as the
required inputs of SUPPLE [GW04]. The user model consist of user traces,
which describes the sequences of elements manipulated by the user. Each of
these inputs will be used to render an optimized UI as output. The objective
is [GW04] to render each interface element with an available widget. Thus
a legal rendering will be defined as a mapping from interface elements to
widgets, which satisfies the interface and device constraints. More than one
legal rendering will be possible, SUPPLE seeks the best: the one which
minimizes the expected cost of user effort. A cost function is used as an

4.3 Discussion 30

estimate of the user effort involved in manipulating a particular rendering
of an interface.

The bottleneck of decision-theoretic optimization techniques such as SUP-
PLE is the cost function [GW05]. In most cases, the numerous parameters
of these functions are chosen manually, which is a tedious and error-prone
process. While domain-specific learning techniques have been used occa-
sionally, most practitioners parametrize the cost function and then engage
in a laborious and unreliable process of hand-tuning. In the SUPPLE case,
over forty factors and the corresponding weights has to be chosen manually
to yield the desired solutions.

These cost function related issues are addressed by Arnauld[GW05]: a
tool which facilitates the definition of cost functions. This reduces not only
the burden on developers but it enables also wide-scale personalization ca-
pabilities, simply by defining separate cost functions for each user. One
way to establish this is example critiquing which consists of recording the
natural interactions of the user and use these to further improve the used
cost function. In some cases, the user’s natural actions provide insufficient
feedback to learn a cost model. In these cases, the computer must facilitate
preference elicitation by generating information-gathering questions to ask
the user. With the use of these techniques, Arnauld can be integrated with
SUPPLE to optimize SUPPLE’s cost function’s parameters.

4.3 Discussion

The biggest advantage of user-adaptable interfaces is that they leave the
user in control, he can organize the interface in a way he or she likes. This
is contrary to automated approaches, which will adapt the interface auto-
matically according to some internal logic (optimization logic for example).
However, these frequent changes in the arrangement of the interface can
produce a variant of the general usability problem of predictability [Jam03]
.

Adaptable interfaces suffer from the problem that new ’secondary’ inter-
faces and interaction techniques must be added to support the customization
of the ’primary’ interface [SCPR06]. These secondary interfaces should be
designed so that they don’t disturb the user in performing his main task
through the primary interface. Further more they must be very intuitive
and usable in order to convert the adaptation of the interface to a quick and
light process. Otherwise, the user may not know what options exist or how
to get them and trial and error with different settings can be time-consuming

4.4 Conclusion 31

and frustrating [Jam03] . Self-adapting interfaces don’t need secondary in-
terfaces, the adaptation is a background process while the user performs his
main task.

4.4 Conclusion

Different sorts of adaptation were introduced during this chapter: an ac-
tive approach, user-adaptable interfaces, and a passive one, self-adapting in-
terfaces. Self-adapting interfaces adapt dynamically or statically to a change
in the adaptation target. This type of interface will prove useful during the
construction of the interface interpolation mechanism in a later stage of this
thesis.

Chapter 5

User Interface Design by
Demonstration

Contents

5.1 Introduction to Intelligent User Interfaces . . . 32
5.2 General Approach 33
5.3 Demonstrational Interface Design Tools 34
5.4 Strengths and Weaknesses 35

5.4.1 Strengths . 35
5.4.2 Weaknesses . 35

5.5 Conclusion . 36

To reach platform independence, a user interface needs to be adapted
depending on the screensize. For the designer, it is not trivial to specify
such an adaptation in an intuitive way. A possible technique to accomplish
this is to demonstrate the desired adaptation behavior, in order to train this
behavior to the interface.

A demonstrational design approach is used in intelligent user interfaces,
which are the subject of this chapter. After a short introduction to intelligent
user interfaces, the general approach of demonstrational interface design is
discussed. Next, a selection of tools which adopt this approach is presented.
Finally, the strengths and weaknesses of this type of user interface design
are discussed.

5.1 Introduction to Intelligent User Interfaces

What happens when an end-user interacts with a user interface is called
user interface behavior. For example, when a user clicks a button, this but-
ton should be enlarged; after clicking another button, a label should be hid-

5.2 General Approach 33

den. Traditionally, interface behavior is specified by an abstract sequencing
specification: for example, scripting- or programming languages. However,
there are also interfaces which know how to react to user interaction. This
type of interfaces are called intelligent user interfaces, since they are said to
possess some sort of intelligence.

In order to create this intelligence, designers describe the desired interface
behavior through examples. That is, the designers give concrete examples
of the behavior rather than having to deal with an abstract sequencing spec-
ification directly [Fra95]. This concept is called interface design by demon-
stration.

5.2 General Approach

Figure 5.1: The general principle of demonstrational user interface designers

Most demonstrational tools follow the procedure illustrated in Figure 5.1.
First the designer needs to interact with the design tool in order to provide
the expected examples. Different tools use different methods to collect ex-
amples, for example stimuli response (DEMO [WF91]), sketching (Monet
[LL05]) and before- and after snapshots (Inference Bear [FSF95]). In step
two, (2) in Figure 5.1, these examples are used to learn the desired behavior.
Popular learning techniques are linear generalization (DEMO [WF91]), rea-
soning engines (Inference Bear [FSF95]) and radial based function networks

5.3 Demonstrational Interface Design Tools 34

(Monet [LL05]). This behavior is used to respond on the actions made by
the user on the final interface, (3) in Figure 5.1. A more detailed description
of some demonstrational designer tools is provided next in section 5.3

5.3 Demonstrational Interface Design Tools

The DEMO system [WF91] allows the developer to draw the graphical
components of an interface using a standard drawing editor. Once the graph-
ics are drawn, the developer then defines the behavior of the interface using
stimulus-response demonstration. Stimulus-response demonstration is de-
signed to be a simple and intuitive technique for defining the behavior of an
interface. In using the technique, the developer first plays the role of an end
user by demonstrating a stimulus that represents an action that an end user
will perform on the interface. Fallowing the stimulus, the developer plays
the role of the system by demonstrating the response(s) that should result
from the given stimulus. DEMO does not use predefined widgets such as
buttons and sliders but drawing primitives such as lines, circles and rectan-
gles. The possible stimuli are atomic mouse events such as a mouse button
presses and releases. For example, it is possible to specify that a line at a
fixed position should appear when the left mouse button is pressed by spec-
ifying the mouse press as the stimulus and then drawing the line in response
[Fra95].

Inference Bear [FSF95] (An Inference Creature based on Before and
After Snapshots) is built on top of a domain-independent reasoning engine.
The examples provided as input to the engine consists of “before” and “af-
ter” states which describe a change of state, and of a parametrized event
which describes when this change of state should occur at run-time. The
output of the engine consists of an algorithmic description of how the state
changes in response to the event. For example, it is possible to specify that
a button moves one button length to the right every time it is clicked. In
this example, the before snapshot is the button’s original position, the af-
ter snapshot is the original position moved one button length to the right,
and the click event is the description of when the transition should occur.
Interference Bear provides an intuitive interface to record state changing
events and the before- and the after states. Many examples can be given
to describe the same behavior, in order to have an accurate training of the
reasoning engine.

Monet [LL05] is a sketch-based tool for prototyping continuous interac-
tions by demonstration. In contrast to discrete interactions that are trig-
gered by events such as mouse click, continuous interactions give continuous
feedback in response to the user’s continuous input. In a climate viewer,

5.4 Strengths and Weaknesses 35

for example, a floating bar can be moved freely on a map with its height
changing to reflect the rainfall at a particular position on the map. In Monet,
designers can prototype continuous widgets and their states of interest using
examples. These examples are provided by sketching the state of the wid-
gets and the mouse position, in order to estimate the continuous behavior.
For example, the pointer of a clockwise widget can be sketched at different
positions near the mouse cursor, which will infer a draggable pointer behav-
ior. In the interaction mode the trained behavior can be tested and the set
of examples can be refined to adjust the training. The learning technique
used by Monet is based on Radial Based Function Networks (RFN).

5.4 Strengths and Weaknesses

User interface design by demonstration has several strengths and weaknesses.
Each of these are covered in this section, mostly based on the overview in
[Fra95].

5.4.1 Strengths

The primary strength is that giving examples of desired behavior takes less
cognitive skill than formally specifying the same behavior. While learning
how to give examples of behavior also takes skill, it compares favorably with
having to learn a formal language [Fra95]. Another strength of programming
by demonstration is that giving interactive examples is less intimidating then
textually specifying the equivalent behavior. Visually-oriented designers in
particular are more likely to be willing to give examples than they are to
invest time up-front learning a formal language [Fra95].

5.4.2 Weaknesses

Programming by demonstration also has its drawbacks. For one, there are
inherent theoretical limits on its expressive power [Fra95]. To understand
this issue, imagine that you are defining a complex mathematical function
by providing a number of its points. An external observer can now draw a
curve that goes trough all of these points, but she can only approximate the
function that you had in mind.

The practical limits on expressive power of the approach are even more
severe because the number of examples for defining a single behavior must
be very small (less than, say, ten) [Fra95]. Hence, assuming that the sys-
tem has no prior knowledge of what will be demonstrated, it cannot infer
complex behavior at all. Giving the system prior knowledge of what will be
demonstrated does not solve this problem either because it is impossible to
anticipate all possible demonstrations in a complex domain.

5.5 Conclusion 36

Another problem with programming by demonstration is that one cannot
have complete confidence in what has been inferred without inspecting a
static representation of the inferred behavior [Fra95]. Inference Bear [FSF95]
for example, directly shows a static representation as the algorithmic output
of the training process, which can be used by experts to verify the learned
behavior. In most tools, however, there is only a test-drive mode available
to test the behavior with a few cases. Yet, one can never have complete
confidence in an inference without examining it in a symbolic form. Monet
[LL05], for example, only provides an interaction mode which can be used
to test the behavior.

Finally, demonstrating all of the behavior for a large design can be frus-
tratingly tedious [Fra95] . This is because by demonstration alone the de-
signer cannot easily define a common behavior once and then parametrize
it for the future.

5.5 Conclusion

In this chapter, the specification of interface behavior by demonstration
was introduced. Demonstrational techniques can be used to describe many
types of behavior interactively, however, its difficult to demonstrate the
complete behavior of a complicated interface. In this thesis, demonstrational
interface design serves as a reference technique, which permits to describe a
tough matter by using simple interactive techniques.

Chapter 6

UIML - User Interface
Markup Language

The User Interface Markup Language (UIML) is an XML language that
permits a declarative description of a user interface in a highly device-
independent manner [AP99]. The goal of UIML [AH04] is to create an
open standard user interface description language in XML that can be freely
implemented by anyone. The motivation is to facilitate better tools for cre-
ation of user interfaces that work on any platform available today, but which
also allow today’s legacy user interfaces to evolve to new forms for use on
platforms that are created years from now.

UIML is a meta language which contains only generic terms (part, prop-
erty,. . .) instead of a specific abstraction (e.g. window, button, . . .). A
generic term can be used for any possible UI element and can support any
metaphor. This allows UIML to prepare for the future, when new ways of
interaction could be introduced. Yet, specific abstractions would restrict
the use of UIML to a certain way of interaction (e.g. a specific modality,
metaphor or device). Of course these generic terms must still be mapped
on the right UI elements: this is accomplished by including a vocabulary
section in the UIML document. The use of a vocabulary provides great
flexibility: it allows one to build a custom user interface language on top
of UIML, similar to the way the XML meta-language supports building a
custom data format.

6.1 UIML Document Structure

6.1.1 General

The structure of a UIML document (fully described in [AH04]) is dis-
played in Figure 6.1. An UIML document is composed of the peers (also

6.1 UIML Document Structure 38

Figure 6.1: The global UIML document structure

Figure 6.2: An example of the connection between the style and structure
section

known as the vocabulary section), which defines the mapping between the
UIML tags and a widget set, and the interface section, which describes
the user interface itself. Each following paragraph discusses a component of
the UIML document structure.

6.1.2 Structure

The structure element is encapsulated in the UIML document’s interface
section, as shown in Figure 6.2. It defines the initial organization of the
interface represented by the UIML document. “Organization” means the
set of UI widgets that are present in the interface, and the containment
relationship of those widgets to each other when the interface is initially

6.1 UIML Document Structure 39

rendered. This organization can be envisioned as a virtual tree of parts
with each part’s associated content, style, behavior, etc. attached to it. An
example of the structure part tree is shown in Figure 6.2, the arrows show
the connection between the part and style properties. A part contains :

• A unique identifier to associate the part with the right style, content,
behavior,

• A class name which will be mapped by the vocabulary on a concrete
widget of the chosen widget set.

6.1.3 Style

In the style section of a UIML document, which is also located within
the interface (as shown in Figure 6.2), there are several style properties
defined about the different parts, eg : the size of a widget, position, color,
border, Normally the style and structure are strictly separated,
though UIML provides a mechanism to declare the style directly into the
part tree (shown in Listing 6.1), which is categorized as the inline style
definition.

Listing 6.1: style declared in the part tree
<UIML>

. . .
<structure>
<part class=”Button”>

<style>
<property name=”l a b e l ”>Cl i ck me!</property>

</style>
</part>

</structure>
. . .

</UIML>

A property contains following attributes:

• name : The name of the property to be set, eg. : size, color,

• part-name : The part-name attribute contains the identifier of
a certain part element. This implies that the property element is
connected to a part element.

The value inside the property tag contains the value to be set to the
property. In Figure 6.2 we can reform the property marked with (*)
to : ”set the size of the part with identifier container to 200,50”.

6.1 UIML Document Structure 40

6.1.4 Behavior

The behavior element describes what happens when an end-user interacts
with the user interface. An example that describes what happens when a
user clicks on a button is shown in Listing 6.2. The behavior element is a
list of rule elements, where each rule contains two main elements.

1. condition : The condition specifies when the action, which is the
other child of the rule element, should be undertaken. In Listing 6.2
the condition is the ButtonPressed event, which will be fired when the
hello button is clicked. Events from the concrete widgets in the chosen
widget set, are mapped on UIML event classes by the vocabulary.

2. action : The action that will be performed when the condition
evaluates to true. The action in Listing 6.2 changes the text of the
helloLabel part into ”Hello World!”.

Listing 6.2: The behavior element describes end-user interaction
<behavior>
<rule>
<condition>
<event class=”ButtonPressed ” part−name=”h e l l o ”/>

</condition>
<action>
<property part−name=”he l l oLabe l ” name=”text”>

Hel lo World !
</property>

</action>
</rule>

</behavior>

6.1.5 Logic

The logic element is the first child of the peers section. The peers sec-
tion is also called the UIML vocabulary, it’s responsible for the mapping
between UIML and the underlying layers. One part of this mapping, the
one between the application logic and the user interface, is done by the
logic element. It describes the calling conventions for methods in the ap-
plication logic that the UI invokes. These methods could appear in different
forms: OO-languages (Java, C++, C#, . . .), CORBA objects, programs,
legacy systems, server-side scripts, databases, A description of a power
method with 2 arguments is given in Listing 6.3. The most important stake-
holders in this example are:

• d-component : This element represents a set of d-methods, the
maps-to attribute specifies the platform-specific type of component
that is being bound. In the example in Listing 6.3 the d-component
maps to the .NET System.Math class and will be available through
the Math identifier for other UIML elements.

6.1 UIML Document Structure 41

• d-method : The d-method element maps its identifier to the corre-
sponding method of the parent component. In the example, the power
method inside the Math component is mapped to System.Math’s Pow
method.

• d-param : Passing parameters to the application logic is done with
the d-param element. In Listing 6.3, two System.Double parameters,
identified by ground and power, will be passed to the System.Math.Pow
method.

Listing 6.3: The UIML description of the power method
<logic>
<d−component id=”Math” maps−to=”System . Math”>
<d−method id=”power” return−value=”double ”
maps−to=”Pow”>
<d−param id=”ground” type=”System . Double”/>
<d−param id=”power” type=”System . Double”/>

</d−method>
</d−component>

</logic>

Once the mapping between UIML and the application logic is specified, the
logic can be called with a call element. In Listing 6.4, the power method
defined in Listing 6.3 is called with parameters 8 and 2.

Listing 6.4: The call element
<ca l l name=”Math . power”>
<param name=”ground”>8</param>
<param name=”power”>2</param>

</cal l>

6.1.6 Presentation

The presentation element is the other component of the peers section.
This element translates the underlying toolkit or widget set to UIML and
vice-versa. It defines the legal class names for parts and events in a UIML
document, as well as the legal property names.

As an example, part of a button in the System.Windows.Forms vocabulary
is given in Listing 6.5. The presentation element is a container of d-class
elements. Each d-class binds a platform specific component to a name. In
Listing 6.5 the Button name is bound to the System.Windows.Forms.Button
class trough the maps-to attribute. Each d-class contains several d-properties,
which represent a property or an event of the parent d-class component.

Listing 6.5: A button in the SWF 1.0 vocabulary
<presentation>
. . .

6.2 The Uiml.net renderer 42

<d−class id=”Button” used−in−tag=”part”
maps−type=”class ”
maps−to=”System . Windows . Forms . Button”>
<d−property id=”l a b e l ”

return−type=”System . St r ing ”
maps−type=”getMethod” maps−to=”Text”/>

<d−property id=”l a b e l ” maps−type=”setMethod”
maps−to=”Text”>
<d−param type=”System . St r ing”/>

</d−property>
. . .

<d−property id=”c l i c k e d ” maps−type=”event”
maps−to=”Cl i ck”>
<d−param
type=”System . Windows . Forms . Control . OnClick”/>

</d−property>
. . .

</d−class>
. . .
</presentation>

6.2 The Uiml.net renderer

6.2.1 Introduction

Uiml.net1 is a free software UIML renderer written in C#2, developed at
the Expertise Centre for Digital Media (EDM) [LC04]. It can render a UIML
document using different widget sets and different platforms. Uiml.net
supports Gtk#3, System.Windows.Forms4, System.Windows.Forms on the
Compact .Net Framework, and a small part of Wx.Net5.

The most mature implementation of a UIML renderer is the one provided
by Harmonia, which is implemented in Java. However, at the time the .NET
framework offered some new possibilities to develop a UIML renderer [LC04].
For example it supports on-the-fly executable code generation and better
integration with web services. The Uiml.net project is the first attempt to
write a UIML renderer for the .NET framework.

6.2.2 Architecture

The Uiml.net renderer , as described in [LTVC06], consists of one ren-
dering core and multiple rendering backends that contains code that is only
used by a specific vocabulary. A rendering core can process a UIML docu-
ment and builds an internal representation of the UIML document. Since

1http://research.edm.uhasselt.be/kris/projects/uiml.net/
2http://www.ecma-international.org/publications/standards/Ecma-334.htm
3http://gtk-sharp.sourceforge.net
4http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpref/html/frlrfSystemWindowsForms.asp
5http://wxnet.sourceforge.net/

6.3 Conclusion 43

the mapping from abstract interactors to concrete widgets is defined outside
the renderer, in the peers section (described in 6.1.6 and 6.1.5), it can be
loaded dynamically and applied at runtime to the rendering core. The ren-
dering backends have a very limited responsibility in the rendering process :
they process the parts of a UIML document that can only be accomplished
by widget-set specific knowledge.

[LTVC06] describes the rendering process as three different stages of pro-
cessing :

pre-processing : during this stage, a UIML document can be trans-
formed into another UIML document.

main processing : during this stage, a UIML document will be in-
terpreted and a concrete instantiation of the document, using the UI
toolkits that are available on the target platform, will be generated.

post-processing : during this stage the runtime behavior strategies of
the UI will be selected.

The main processing stage is more specifically composed out of 4 steps :

1. The UIML-renderer takes a UIML document as input, and looks up the
rendering backend library that is referred to in the UIML document.

2. An internal representation of the UIML document is built. Every
part element of the document is processed to create a tree of abstract
interface elements.

3. For every part element, its corresponding style is applied.

4. For every part element, the corresponding behavior is attached and the
required libraries to execute this behavior will be loaded just-in-time.

5. The generated tree is handed over to the rendering module: for ev-
ery part tag, a corresponding concrete widget is loaded according to
the mappings defined in the vocabulary and linked with the internal
representation. For the generated concrete widget, the related style
properties are retrieved, mapped by the vocabulary to concrete wid-
get properties and applied on the concrete widget.

6.3 Conclusion

As discussed earlier in the problem description, it is hard to construct
platform-independent interfaces. After the discussion of UIML throughout

6.3 Conclusion 44

this chapter, one can conclude that UIML is well suited to reach the re-
quired platform-independence. When one can construct a design tool which
generates a UIML description of the designed interface, this description can
be used to render the interface on different platforms. To accomplish this, a
UIML renderer for the .NET platform, Uiml.net, was also presented in this
chapter.

Part III

Development

Chapter 7

Domain-specific User
Interface Builder

Contents

7.1 Domain-specific Visual Language Editors 47
7.1.1 Domain-specific Visual Languages 47
7.1.2 Flexible Domain-specific Visual Language Editors 48

7.2 The Graphical User Interface Domain 49
7.2.1 Domain Objects 49
7.2.2 Domain Vocabulary 49

7.3 Domain-specific User Interface Builders 50
7.3.1 General Characteristics 50
7.3.2 Relation with Model-Based Design Tools 51

7.4 Domain-specific User Interface Builder for UIML 51
7.4.1 Domain Objects in UIML 52
7.4.2 GUI Builder Components 53
7.4.3 Managing the Interface Structure 56
7.4.4 Serialization and Deserialization 59
7.4.5 Multi-Container Domain Objects 59
7.4.6 Shortcomings of the UIML Vocabulary 60

7.5 Conclusion . 61

So far, several techniques were discussed to create a platform-independent
design tool. Most of these tools describe the interface on a higher level of
abstraction. Despite the platform independence which can be reached with
these tools, many of them have serious usability problems since the gap
between the mental model of the designer and the presentation the tool
offers is too big. Most designers prefer to have a concrete representation
during their design activities.

A more detailed evaluation of different types of design tools was given
in Chapter 2. From this evaluation, it was concluded that both model-

7.1 Domain-specific Visual Language Editors 47

based and GUI builders have several strengths. GUI builders permit to
edit a concrete representation of the interface during the design process,
while model-based and automated techniques allow to reach the required
platform independence. Thus, a combination of both tools will led to a new
more flexible generation of design tools.

In this chapter, the main work of this thesis is introduced. A new type of
design tool is presented, called the Domain-specific User Interface Builder
(DSUIB), which combines the strengths of MBUID tools and GUI builders.
Depending on the domain considered, these tools are adapted in order to
facilitate the development of user interfaces for that domain. The tool will
contain domain-specific abstractions, however, the designer can always edit
a concrete representation of these abstractions. This implies that he is never
forced to work with abstract models.

The origin of domain-specific user interface builders can be found in
Domain-Specific Visual Language (DSVL) editors, e.g: Microsoft’s Visio
which contains multiple domain-specific toolboxes. While DSUIBs are spe-
cialized in creating user interfaces, DSVL editors are able to construct graph-
ical models to describe the considered domain.

After an introduction to domain-specific visual language editors, the var-
ious aspects of the GUI domain are discussed. Next, the general character-
istics of domain-specific user interface builders are introduced. After these
preliminaries, the Domain-specific User Interface Builder for the User In-
terface Markup Language (DSUIB-UIML) is discussed in detail.

7.1 Domain-specific Visual Language Editors

7.1.1 Domain-specific Visual Languages

Domain-specific Languages (DSL) are tailored to a particular problem
domain [EJ01] . Through the appropriate use of notations and abstrac-
tions, they provide the expressive power to better describe specific solutions
to domain-related problems. These solutions can be expressed at an ap-
propriate level of abstraction, and in the language of the problem domain,
employing the concepts familiar to practitioners. In contrary to solutions
expressed in a general-purpose language, which will be created by program-
mers with little domain knowledge, DSL programs can be created by domain
experts.

The costs of educating DSL users as well as of designing, implementing
and maintaining a DSL are high. In principle, visual languages are often

7.1 Domain-specific Visual Language Editors 48

better suited to use as domain-specific notations [EJ01] . For a large number
of specialist applications or problem domains, there exists a natural and in-
tuitive visual representation of artifacts in these domains. The combination
of DSLs and these visual representations are called Domain-specific Visual
Languages (DSVLs), which make it possible to describe complex informa-
tion in a particular domain through a visual metaphor. DSVLs are more
efficient an effective than general-purpose modelling languages [GHZL06].

Mostly, different domains use different DSVLs, each modelled DSVL uses
a different modelling formalisms. A proven method to achieve the required
flexibility for a modelling language that supports many formalisms and mod-
elling paradigms is to model the modelling language itself [VdL02] . Such
a model of the modelling language is called a meta-model. It describes
the possible structures which can be expressed by the DSL and thus the
corresponding DSVL. Tools which are able to create meta-models are called
meta-tools. Consequently, one can consider a meta-tool as a tool to generate
DSVL design tools.

7.1.2 Flexible Domain-specific Visual Language Editors

A näıve approach will construct one editor for each DSVL, the rationale
being that a special-purpose tool using a special-purpose language is better
than a general-purpose tool/language [GHZL06]. Although the construction
of a tool for each DSVL is supported by several toolkits and frameworks
[GMH00], it still is a very tedious and time-consuming activity. Therefore,
a new approach will generate DSVL editors automatically from its meta-
model, which can be defined by a meta-tool. Tools following this approach
are discussed below.

Marama [GHZL06] allows users to rapidly specify or modify a desired vi-
sual language tool using an existing meta-tool, Pounamu, and then have the
tool realized as a high-quality Eclipse-based editing environment. Marama
editors look and feel like other Eclipse graphical editors, use Eclipse code
generation support, and can be integrated with and extended by other
Eclipse plugins. Microsoft’s Domain-specific Language Tools [Jon05], in-
tegrated in the Visual Studio development platform, facilitate the creation
of modeling languages, by a built in meta-tool, and generates a Visio-like
editor for each language. MetaEdit+ also contains a meta-tool which makes
it possible to define custom domain concepts as the modeling elements, their
properties and associated rules. These specifications will be used to generate
a custom CASE tool.

7.2 The Graphical User Interface Domain 49

7.2 The Graphical User Interface Domain

A GUI domain corresponds to the domain for which the GUI is created.
A common way to describe this domain is by a domain model (see Section
2.3.2), which defines the objects that a user can view, access and manipulate
trough a UI [BVE02]. A domain vocabulary specifies the naming scheme
and visual representations of the domain objects (see Section 7.2.2).

7.2.1 Domain Objects

The Concepts Model [CCT+02] captures information related to the do-
main of discourse: in this sense, it is similar to domain modelling. Because
of this similarity, the terms domain object and concept can be exchanged.
Throughout this text, domain object is preferred to concept because it em-
phasizes the relation with the domain for which the user interface is created.
For example, a simplified music-player contains the domain objects: playlist,
timer and song as shown in the domain model in Figure 7.1. As a concept
in a domain model, a domain object can also have several attributes.

Figure 7.1: The domain model of a multimedia player

7.2.2 Domain Vocabulary

The domain vocabulary serves as the meta-model, which specifies the
building blocks, to construct the GUI domain model. A domain vocabulary
contains a set of domain objects that are commonly used in this GUI domain
and a corresponding presentation of each of them. Thus, this vocabulary
is responsible to map the domain objects to a visual presentation, called a
component. The domain-objects used in the domain model of a music player
are linked to a presentation in the MMVocabulary01 and MMVocabulary02
domain vocabularies as shown in 7.2. Beside the visual presentation of
domain objects, the domain vocabulary also specifies the attributes which
can be attached to a domain object.

7.3 Domain-specific User Interface Builders 50

Figure 7.2: Several domain vocabularies for the music player domain

7.3 Domain-specific User Interface Builders

Domain-specific User Interface Builders are a new type of tools, which
combine the flexibility of DSVL editors with the intuitivity of traditional
GUI Builders. They facilitate the creation of a user interface for a specific
domain.

7.3.1 General Characteristics

Domain-specific User Interface Builders are tools that allow the creation
of flexible GUI designs, based on the domain vocabulary (see Section 7.2.2).
A GUI Builder is generated for a specific vocabulary and contains a toolbox
with all the graphical representations of the domain objects. These can be
combined by drag and drop operations, in order to create an interface for
the domain encapsulated in the vocabulary.

Although this approach is comparable with the one of the flexible DSVL
editors discussed in Section 7.1.2, there is an important difference between
DSUIBs and DSVL editors. With a DSVL editor, one can create abstract
models which will be refined towards the final interface. Thus, DSVL editors
can be plugged into the model-based design process. This is contrary to
DSUIBs, which enable the creation of user interfaces at a concrete level
of abstraction. The relation between DSUIBs and model-based design is
discussed in Section 7.3.2.

Assume a vocabulary containing domain objects for ‘classic’ graphical user
interfaces, for example a System.Windows.Forms1 vocabulary, and one for a
media-player, for example a vocabulary for the XMMS2 music player. Typi-
cal objects contained in the System.Windows.Forms vocabulary are buttons,

1http://msdn2.microsoft.com/en-us/library/system.windows.forms.aspx
2http://www.xmms.org/

7.4 Domain-specific User Interface Builder for UIML 51

Figure 7.3: The Domain-specific User Interface Builder concept

textboxes, listboxes and panels. The ones encapsulated in the XMMS vo-
cabulary can be a playlist, a timer and songs. Depending on the chosen
vocabulary, another GUI Builder is generated for the domain encapsulated
in this vocabulary (see Figure 7.3). This example illustrates the flexibil-
ity introduced by domain-specific user interface builders: the same tool can
easily be used to design interfaces for different domains or abstraction levels.

7.3.2 Relation with Model-Based Design Tools

Although domain-specific user interface builders make use of domain ob-
jects and thus a domain model, it is no model-based design tool (which are
discussed in Section 2.3). Model-based user interface development [CLC04]
uses a multitude of models which are related to another in a certain way.
Usually there is some kind of process that starts with the design of the ab-
stract models and progresses gradually towards the more concrete models,
resulting in the final interface when the design process is complete.

In DSUIBs, domain objects are directly mapped to the concrete inter-
face level by the domain vocabulary, without progressing through a set of
models. When this translation has taken place, the user interface designer
should combine these representations in order to create the final interface.
Thus, domain-specific abstractions are manipulated on a concrete level of
abstraction, without the necessity to think abstractly.

7.4 Domain-specific User Interface Builder for UIML

In this section, DSUIB-UIML is presented, a Domain-specific User Inter-
face Builder which is built upon the Uiml.net renderer (see Section 6.2).

7.4 Domain-specific User Interface Builder for UIML 52

7.4.1 Domain Objects in UIML

UIML is a meta language (see Chapter 6) which describes the mappings
between generic user interface terms and concrete user interface elements in
a vocabulary section. This makes that a UIML vocabulary can serve as a
domain vocabulary, which couples domain objects (the generic user interface
terms) to their visual representations (the concrete interface elements). The
d-property element can be used to specify the attributes (properties in
UIML) of the domain objects (UIML parts).

For example, the vocabulary described in Listing 7.1 makes it possible to
create user interfaces containing one type of domain object, a button, which
has two properties, label and position. The button will be visualized by
a System.Windows.Forms.Button3 component. A user interface described
in accordance with this vocabulary, is shown in Listing 7.2: a combination
of three buttons, each with several properties.

Listing 7.1: myVoc.uiml
<presentation>
<d−class id=‘ ‘Button ’ ’ used−in−tag = ‘ ‘part ’ ’
maps−type=‘ ‘ class ’ ’
maps−to=‘ ‘System . Windows . Forms . Button ’ ’>
<d−property id=‘ ‘ l abe l ’ ’ maps−type=‘ ‘ setMethod ’ ’
maps−to=‘ ‘Text ’ ’>
<d−param type=‘ ‘System . Str ing ’ ’/ >

</d−property>
<d−property id=‘ ‘ po s i t i on ’ ’ maps−type=‘ ‘ setMethod ’ ’
maps−to=‘ ‘ Location ’ ’>
<d−param type=‘ ‘System . Drawing . Point ’ ’/ >

</d−property>
</d−class>
</presentation>

Listing 7.2: The interface built on myVoc.uiml
<uiml>

. . .
<interface>

<structure>
<part class =‘ ‘Button ’ ’ id=‘ ‘ button1 ’ ’/ >
<part class =‘ ‘Button ’ ’ id=‘ ‘ button2 ’ ’/ >
<part class =‘ ‘Button ’ ’ id=‘ ‘ button3 ’ ’/ >

</structure>
<style>

<property name=‘ ‘ l abe l ’ ’ part−name=‘ ‘ button1 ’ ’>
Cl i ck me !

</property>
<property name=‘ ‘ po s i t i on ’ ’ part−name=‘ ‘ button1 ’ ’>

10 ,10
</property>
<property name=‘ ‘ l abe l ’ ’ part−name=‘ ‘ button2 ’ ’>

Cl i ck me tooo !
</property>

3http://msdn2.microsoft.com/en-us/library/system.windows.forms.button(VS.71).aspx

7.4 Domain-specific User Interface Builder for UIML 53

<property name=‘ ‘ po s i t i on ’ ’ part−name=‘ ‘ button3 ’ ’>
20 ,20

</property>
</style>

</interface>
<peers>

<presentation base = ‘ ‘myVoc . uiml ’ ’/ >
</peers>
. . .

</uiml>

7.4.2 GUI Builder Components

To facilitate the creation of user interfaces in UIML, the GUI Builder gen-
erated from a specific vocabulary should consist of three important dialogs:

• a toolbox containing a set of respresentations of domain objects.

• a canvas which shows the graphical representation of what the user
interface should look like. Domain objects can be dragged from the
toolbox to the canvas.

• a property dialog which shows the attributes of the domain objects:
editing these attributes will result in the corresponding change in rep-
resentation in the canvas as defined by the vocabulary.

In Figure 7.4, these three dialogs are shown in a GUI Builder generated from
the System.Windows.Forms vocabulary4.

Toolbox

In order to create the toolbox, a step-wise procedure is executed:

1. creation of domain object instances: for every domain object
described in the vocabulary, a default instance is made. The created
instance contains a UIML part and a list of properties, initialized with
default values. For example, a default instance of the domain object
described in the vocabulary of Listing 7.1 is given in Listing 7.3;

2. off-screen rendering: some minor changes were made to the Uiml.net
renderer in order to allow per domain object rendering. Each domain
object is rendered to an offscreen texture. This involves that every
domain object is represented independently from the used widget-set
or toolkit. A visual representation of a domain object is called a com-
ponent.

3. toolbox construction: every texture is loaded in the designer,
which results into the domain-specific toolbox.

4http://research.edm.uhasselt.be/ kris/projects/uiml.net/swf-1.1.uiml

7.4 Domain-specific User Interface Builder for UIML 54

Figure 7.4: The three main dialogs of a GUI Builder, generated from the
System.Windows.Forms vocabulary

Figure 7.5: For the vocabulary in this Figure, the domain object rendering
pipeline is executed three times in order to construct the toolbox

This procedure is illustrated in Figure 7.5. In this thesis, the procedure
which creates a component from a domain-object’s UIML description, is de-
fined as the domain object rendering pipeline. Despite the usage of textures
during design-time, the resulting interface will be fully functional during
run-time.

7.4 Domain-specific User Interface Builder for UIML 55

Listing 7.3: A default instance of the domain object described in myVoc.uiml
(listing 7.1)
<part class =‘ ‘Button ’ ’ id=‘ ‘ part 1 ’ ’/ >

<style>
<property name=‘ ‘ po s i t i on ’ ’>

0 ,0
</property>
<property name=‘ ‘ l abe l ’ ’>

Button
</property>

</style>
</part>

Canvas

A component, which is selected in the toolbox, can be placed and re-sized
on the canvas by direct manipulation. Direct manipulation can be used to
change the size or position of the component on the canvas. This is done
by updating the size and position attributes of the domain object rep-
resented by the component. After updating these values, the component is
re-rendered by executing the domain object rendering pipeline again. Since
the continuous re-rendering during the re-size of a component would be too
computation intensive, the new size of the component is first visualized by
a red rectangle while dragging the mouse (see Figure 7.6(a)), and rendered
when the mouse is released (see Figure 7.6(b)).

(a) while dragging the mouse (b) after releasing the mouse

Figure 7.6: Smoothly resizing a component

The canvas contains two tab-pages, each representing another view of
the interface. The designer view is used to create an interface by direct
manipulation operation as discussed above. A UIML-representation of the
user interface is given in the UIML view. Both views are shown in Figure
7.7.

7.4 Domain-specific User Interface Builder for UIML 56

(a) Design view (b) UIML view

Figure 7.7: Multiple views of the canvas

Property Dialog

After selecting a component, the attributes belonging to the component’s
domain object become visible in the property dialog. For a user interface
designer, the term property is more familiar than the term attribute. There-
fore, DSUIB-UIML has opted for properties instead of attributes. In the
property panel, the value of every property can be changed, which results in
a re-execution of the domain object rendering pipeline to make this change
visible. Changing the color property from white to green is illustrated in
Figure 7.8.

(a) The original color (b) Color changed to green

Figure 7.8: Changing the properties of a component

7.4.3 Managing the Interface Structure

As described in Section 6.1.2, the structure of a UIML user interface can
be seen as a virtual tree of parts. In order to manage the structure of this
tree, the UIML design tool uses the z-order of the components placed on the

7.4 Domain-specific User Interface Builder for UIML 57

canvas. The z-order is an ordering of overlapping two-dimensional objects,
such as the components in a graphical user interface. Two important aspects
engaged in this approach are:

• the algorithm used to build up the tree;

• a mechanism to manipulate the z-order of each component.

Building up the Tree

An interface consists out of several components with each a unique z-
value. A low z-value indicates that a component lies below a component
with a higher one and vice versa. To create a tree from these components,
their spatial relationship will be considered: a component a, which is placed
upon another component b, will be a child of b when it lies within the bounds
of b and there are no disturbing components between both. A disturbing
component x lies between a and b, intersects with both but lies not within
the bounds of a. The algorithm which follows this approach, is described by
the pseudo-code of Algorithm 1.

Algorithm 1 BuildTree
Require: A list of components I

Order I by descending z-value.
Initialize an empty list P , in which components which have already a
parent will be placed.
for x = 0 and x < length(I) do

ComponentA = I[x]
for y = 0 and y < x do

ComponentB = I[y]
if ComponentB does not exist in P then

if ComponentB lies within the bounds of ComponentA then
if There are no disturbing elements between ComponentA and
ComponentB then

Add ComponentB to P
Set ComponentA as the parent of ComponentB

end if
end if

end if
end for

end for

To clarify this algorithm, assume the interface illustrated in Figure 7.9(a)
containing seven colored components, from which the z-value is visualized in

7.4 Domain-specific User Interface Builder for UIML 58

Figure 7.9(b). After the execution of the BuildTree algorithm, this interface
will correspond to the tree shown in Figure 7.9(c). In this tree, C and F are
no children of A, because B acts as a disturbing object between respectively
C and A, and F and A. E is a child of A because D is no disturbing object,
it lies completely within the bounds of A. The parent of G is E, and not D
or A, because the components are investigated in descending z-order. Thus,
at first F will be tested as the parent of G , than E, D, C, etc. Once a
component found a parent, it will no longer be tested to other components,
which involves that G will never be tested for other possible parents once it
has discovered E as its parent.

(a) The interface (b) A 3D visualization of the z-order

(c) The resulting tree

Figure 7.9: The z-order in a user interface

The algorithm described in this section is executed every time a compo-
nent is moved, re-sized, added, deleted or z-manipulated.

Z-Order Manipulation

So far, we have created an algorithm which builds a widget-tree from a
list of components with each a specific z-value. In order to allow a designer
to change the organization of the UI, a mechanism must be introduced to
manipulate a component’s z-order after it has been places on the canvas.
In DSUIB-UIML, this is done in the same way as in traditional drawing
programs: by a context-menu which can bring a component to the front, or
send it to the back. These simple operations can manipulate the z-order in

7.4 Domain-specific User Interface Builder for UIML 59

an intuitive way. An example of the send to back operation is shown in
Figure 7.10.

(a) The context menu (b) The result of
the send to back
operation

Figure 7.10: Manipulating the Z-value of the RadioButton

7.4.4 Serialization and Deserialization

The designed interface is stored in an in-memory tree containing all the
domain objects. This tree can be serialized into UIML, or UIML can be
deserialized into the tree. The serialization procedure combines the part and
property information of this tree into one UIML document. Deserialization
follows the inverse procedure, the properties are attached to the parts in
order to create the domain objects, which are then stored in the tree. These
serialization and deserialization procedures take place when there has been
a switch between the design and UIML-view of the canvas and also when a
user interface is saved to or loaded from UIML.

7.4.5 Multi-Container Domain Objects

Some domain objects are multi-containers, consisting out of several con-
tainers, each holding some child objects. The most well-known multi-container
is the tab-container, which holds different tab-pages, each having several
children. In order to construct an interface with a multi-container, for ex-
ample tab-pages, the design tool should be able to: (1) add tabpages to
the tab-container, (2) switch between these tab-pages. These operations are
encapsulated in the context-menu of the tab-container component, as shown
in Figure 7.11.

7.4 Domain-specific User Interface Builder for UIML 60

(a) Add new tab-page (b) Switch between tab-pages

Figure 7.11: An example of a multi-container: the tab-container with tab-
pages

7.4.6 Shortcomings of the UIML Vocabulary

Problems

Although the UIML vocabulary seems to be the ideal solution to describe
the domain vocabulary, we came across some shortcomings while designing
the UIML user interface builder. The most common problems are:

• the lack of a mechanism to provide default values for a d-property in
the vocabulary. This would be very practical in the useful of domain
object instances for the toolbox;

• the lack of standardization concerning the names of the size and posi-
tion properties. Thus it is not clear which property should be updated
when resizing;

• not being able to determine which object can serve as a container;

• not being able to determine which object can serve as a multi-container.

Designer Backends

As the Uiml.net renderer uses rendering backends [LTVC06] to get widget-
set specific knowledge during the rendering process, the design tool will use
designer backends to get additional information during the design stage. A
designer backend is provided by a compiled [?] (DLL), which implements a
backend interface trough which information can be accessed. This interface
will provide functions to receive the property default values, size and position
property names, the container and multi-container identifiers. During the
implementation of DSUIB-UIML, a backend for the System.Windows.Forms
vocabulary is realized.

7.5 Conclusion 61

7.5 Conclusion

In this chapter, the generation of GUI builders which are able to realize
an interface for a specific GUI domain is discussed. DSUIBs provide the
visibility of GUI builders, they even enhance this visibility by constraining
the toolbox to the domain considered. Only components required for that
domain can be used to construct the interface, which means that the design
tool is not overloaded with general-purpose components. Furthermore, the
feedback and control by DSUIBs is comparable to traditional GUI builders.

DSUIB-UIML generates interface descriptions in UIML, which in theory
makes it possible to render these interfaces on multiple devices. However, no
mechanism to adapt this description depending on physical constraints, such
as an extreme increase in the display-size, is provided. Such a mechanism for
DSUIB-UIML will be provided in Chapter 8. The evaluation is summarized
in Table 7.1.

Table 7.1: Evaluation of Domain-specific User Interface Builders

Chapter 8

User Interface Interpolation

Contents

8.1 User Interface Space 63
8.1.1 Definition . 63
8.1.2 Adaptive Interfaces 64

8.2 User Interface Space Covering Techniques . . . 64
8.2.1 Automated Layout Techniques 65
8.2.2 Intelligent User Interface Techniques 66

8.3 The User Interface Based Rendering Approach 66
8.3.1 Image Based Rendering 66
8.3.2 User Interface Based Rendering 68

8.4 User Interface Interpolation 69
8.5 Rule-Based User Interface Interpolation 70

8.5.1 Goals . 71
8.5.2 User Interface Cloning 72
8.5.3 Rules . 73
8.5.4 Rules in DSUIB-UIML 74
8.5.5 The Rule Syntax 78
8.5.6 Uiml.net Interpolation Runtime 81

8.6 Results . 83
8.7 Conclusion . 84

In chapter 7, a domain specific user interface builder for UIML was intro-
duced. A user interface, constructed by this tool, can be rendered on multi-
ple devices. For example, a user interface created for the System.Windows.Forms
vocabulary can be rendered on a PDA or Desktop computer. The difference
in screen size, however, does not always result in a proper rendering of this
user interface on a small screen. In order to address this issue, DSUIB-UIML
should be extended with an adaptation mechanism.

In this chapter, the term User Interface Space will be defined first to de-
scribe the adaptations of a user interface depending on the available display

8.1 User Interface Space 63

size. Next, several existing adaptation techniques will be discussed. Section
8.3.1 introduces a new theoretical model, user interface based rendering, to
classify adaptation techniques which generate new interfaces from a set of
previously designed ones. Within this model, a new adaptation technique
is deducted: user interface interpolation. Finally, this technique is inte-
grated with DSUIB-UIML and Uiml.net, which will result in a rule-based
user interface interpolation mechanism.

8.1 User Interface Space

(a) UIS(Width1, Height1) (b) UIS(Width2, Height2)

Figure 8.1: Two outcomes of the card-game User Interface Space

As discussed in section 4.2, user interfaces are adapted for a specific target,
which can be the user, the environment or the system’s physical character-
istics. One important component of the system’s physical characteristics is
the display size of the user interface. After changing this size, an adaptation
of the user interface may be required to preserve the usability [TC99] : for
example, when the size shrinks, parts of the user interface may fall outside
the display region. To describe the user interface adaptation caused by a
change in size, the notion User Interface Space (UIS) is introduced.

8.1.1 Definition

In this thesis, we define the User Interface Space of a certain UI as the
two-dimensional space which contains all the sizes a certain user interface
can reach. In UIS, the UI is parametrized by its width and height, thus
the rendition I at an arbitrary width W and height H can be noted as
I = UIS(W,H). Consequently, user interface space represents how the user
interface should be rendered for every size. Assume for example, the user
interface space for a card-game. At two different sizes, the card-game will
be rendered like the interfaces shown in Figure 8.1.

UIS can be visualized on a Cartesian coordinate system: the user inter-
face’s height is located along a vertical axis, its width along a horizontal one.

8.2 User Interface Space Covering Techniques 64

For the card-game user interface space, the corresponding graph is shown in
Figure 8.2(a). In many cases, user interface space will be constrained by a
minimum and a maximum size, which is shown in Figure 8.2(b).

(a) (b)

Figure 8.2: User Interface Space

8.1.2 Adaptive Interfaces

Once the user interface space function is known, it is straightforward to
create user interfaces which adapt to the display-size. Assume the display
size is changed to (widthx, heighty). To render the appropriate user in-
terface, only UIS(widthx, heighty) needs to be computed. This process is
illustrated in Figure 8.3.

(a) Changing the display-size (b) Select the corresponding
rendition in user interface
space

Figure 8.3: User Interface Space and adaptation

8.2 User Interface Space Covering Techniques

One can create a user interface for every size in UIS. During the rendering
stage, the user interface designed for the requested display-size will then be

8.2 User Interface Space Covering Techniques 65

rendered. However, the creation of a user interface for every size in user
interface space is almost impossible. Therefore, several user interface space
covering techniques are pointed out to compute the user interface at every
size in UIS automatically. A short review of existing techniques, which
can be used as space covering techniques, is given in the remainder of this
section.

8.2.1 Automated Layout Techniques

Layout means the process of determining the position and size of each
visual object that is displayed in a user interface, and the result of that
process. Thus, after the creation of a layout for every size in user interface
space, an adapted user interface can be rendered for each size, using this lay-
out. This process is facilitated by the Automated layout techniques [LF01],
which automate the layouting process. Automated layout techniques can
go from the use of layout managers included in a UI toolkit, to constraint
based automated systems.

A layout manager [LF01] chooses positions and sizes at runtime for the
objects that it controls, governed by a set of constraints imposed by a simple
layout policy built into the manager and parameters specified by the pro-
grammer. Typical layout policies include strict horizontal (row) or vertical
(column) layout, row-major or column-major layout, border layout and grid
layout. A programmer designs a parametrized layout as a hierarchy of man-
aged containers, chosen for their layout policies, and further constrained by
programmer-specified parameters. Thus, a layout manager does not actu-
ally design a layout, but rather instantiates a layout at run time from the
structure and parameters specified by the programmer.

In a constraint-based automated layout system [LF01], a constraint solver
takes a constraint network and generates a set of positions and sizes for each
of the components in the network. In such a constraint network, constraints
are classified as abstract or spatial. Whereas the former indicate a high-
level relationship between two components that are to be included in the
layout, the latter enforces positions or size restrictions on the components.
Constraint-based automated layout systems may get in trouble when the
constraint network is under constrained. This means that the constraint
solver can generate multiple solutions from the network, for example: the
resulting position of a button can be (10, 10), (0, 0) or (100, 100). Some
of these solutions may result in a undesired layout, which can harm the
usability of the UI. Thus, a constraint network must be created carefully
in order to avoid under-constraining. Furthermore, the lack of designer
knowledge implies that constraints may result in an undesirable layout.

8.3 The User Interface Based Rendering Approach 66

Although the use of layouting techniques mostly results in a predictable
and consistent interface, they can only change the size or position of visual
objects in an interface. In many cases, other operations may be more suit-
able: for example, the transformation of a listbox1 into a drop-down2 list
when the user interface shrinks; the transformation of a tab-container into
a panel when the user interface enlarges. Automated layout techniques are
not sufficient when advanced adaptations are required.

8.2.2 Intelligent User Interface Techniques

In chapter 5, intelligent user interface design was introduced. Several
intelligent techniques can be used to cover user interface space. A short
review of these techniques, related to the UIS covering problem, is provided
in this section.

Depending on the screensize included in the device-model and the user,
SUPPLE [GW04] will render the most optimal user interface. In contrary to
automated layout techniques, which use simple rules to establish relations
between components, SUPPLE uses a more complicated, less predictable,
optimization mechanism. This results in less control for the designer con-
cerning the final rendition. Yet, Supple can express more complicated oper-
ations than automated layouting techniques.

Demonstrational techniques can be used to demonstrate the desired adap-
tation behavior. However, demonstrating the complete behavior for a large
design can be frustratingly tedious [Fra95].

8.3 The User Interface Based Rendering Approach

In this thesis, User Interface Based Rendering (UIBR) is defined as the
user interface space covering mechanism, which generates a new user inter-
face for an arbitrary screensize from a set of previously created UIs. This
resembles in some way to Image Based Rendering (IBR), a technique used
in the field of computer graphics. Consequently, a simplified introduction
to IBR is given first in section 8.3.1. Starting with the IBR technique, we
proceed to a description of the UIBR technique.

8.3.1 Image Based Rendering

Assume a photographer walking through a forest. At several viewpoints,
he takes some photographs of the nature around him. After his walk, he

1a control to display a list of items
2a control which enables users to select from a single-selection drop-down list box

8.3 The User Interface Based Rendering Approach 67

comes home and sends his photographs to National Geographic3. A couple
of weeks later, National Geographic magazine published some of the pho-
tographs he made, however, it seems that these photographs were taken
from different positions than the ones he took. The question is as follows,
is it possible to generate new photographs of an environment from a set of
pre-acquired imagery?

The answer is yes. The technique used here is called Image based render-
ing (IBR). In IBR, the reference images - the photographs - are considered
as samples of the plenoptic function [McM97] . This function describes
anything which can be seen from any point in space at any time4. Figure
8.4 illustrates a 2D plenoptic function for two points in space. The arrows
describe the region which can be seen from these points. Once the plenop-
tic function is known, images can be generated for every point in space.
However, the plenoptic function is almost always unknown.

Figure 8.4: The plenoptic function

In IBR, techniques are used to approximate this plenoptic function from
the sparse set of samples available. Two approaches which can be followed
to obtain a desired image from the set of reference images are:

• fit a model: one can fit a model from the known data, which can be
used to compute the new image from an arbitrary camera position.
Lots of models are possible, e.g: a depth map, a triangle mesh, etc .

• interpolation: interpolate the known reference images to a new de-
sired image. In image warping [McM97], for example, the visible points
in the reference images are mapped to their correct position in the de-
sired image.

3http://www.nationalgeographic.com/
4This is a simplified definition, for a complete description of the plenoptic function the

reader is referred to [McM97]. Beside the plenoptic function, there are also other functions
possible (for example [LH96])

8.3 The User Interface Based Rendering Approach 68

8.3.2 User Interface Based Rendering

User Interface Based Rendering is a theoretical model which classifies the
techniques that generate a new desired user interface from a set of reference
user interfaces. Remarkable is the similarity with IBR, which generates
a new desired image from a set of reference images. As for the difference
between both approaches: a desired image is a view of the environment from
a desired position, while a desired user interface is a UI designed for a desired
display-size. Furthermore, a desired user interface is created for the same
functionality as the reference user interfaces.

To clarify the UIBR technique, an example scenario is provided: assume
a designer, who creates two reference user interfaces for a card game. Each
reference user interface is designed for a specific display-size, as shown in
Figure 8.1. Assume now a user, who utilizes the card game application and
re-sizes the user interface to a desired size. For this desired size, UIBR will
now generate a desired user interface based on the two previously designed
interfaces.

While reference images are considered to be samples of the plenoptic func-
tion in IBR, UIBR considers reference user interfaces as samples of the user
interface space function. Thus, these user interfaces can be used to approx-
imate the UIS. Once the approximation of UIS is done, user interfaces can
be generated for every size in UIS. To create these approximation methods,
UIBR adopts the IBR approaches introduced in section 8.3.1. As shown in
Figure 8.3.2, two paths can be followed to construct a desired user interface
from a set of reference user interfaces: re-engineering, which corresponds to
the IBR’s model fitting approach, and restructuring, which is comparable to
the IBR’s interpolation approach. Each technique is discussed below.

Figure 8.5: User Interface Based Rendering

8.4 User Interface Interpolation 69

Re-engineering

The re-engineering technique consists out of two stages: reverse and for-
ward engineering. By reverse engineering [CI90], representations of the user
interface at a higher level of abstraction are created: for example, a dialog
model, presentation model or task-model. From these abstract models, the
desired user interface for the desired display-size will be generated by for-
ward engineering. A re-engineering approach for web pages is presented in
[BVE02].

Restructuring

Restructuring [CI90] is the transformation from one representation form
to another at the same relative abstraction level, while preserving the user
interface’s external behavior (functionality and behavior). In this approach,
the reference user interfaces will be restructured towards the desired user
interface, which omits reverse engineering to a more abstract level. This
thesis contributes in the development of a new UIBR restructuring tech-
nique, called User Interface Interpolation. This approach is described in
detail throughout section 8.4.

8.4 User Interface Interpolation

User Interface Interpolation is a new UIBR restructuring approach, which
combines the components of two reference user interfaces in a new desired
user interface. These two reference user interfaces often have widely varying
sizes, for example a 320x240 (PDA) and a 1600x1200 user interface. UIs
with intermediate sizes are then interpolated from the two reference ones.
Each interpolated user interface serves as an adapted UI for its display size.

To illustrate this technique, assume two reference user interfaces A and B
in user interface space, as shown in Figure 8.6. In this Figure, two ellipti-
cal regions are constructed around A and B. User Interfaces located in the
gray region use components of A, the ones situated in the red region use
components of B. Such a region is called the Interpolation Region around a
reference interface. The intersection between both contains the user inter-
faces which combine components from user interface A and B. For example,
as shown in Figure 8.6: UI I3 is constructed from components of B; I2 is an
interpolation of A and B which contains components of both; I1 contains
only components of A.

To create a User Interface Interpolation Algorithm, several problems need
to be solved:

8.5 Rule-Based User Interface Interpolation 70

Figure 8.6: Interface Interpolation

• There are an infinite number of interpolation regions which can be
constructed around A and B, some of them are listed in Figure 8.7.
Thus, an interpolation algorithm must choose the appropriate inter-
polation regions, to know the components which should be combined
at each size.

• Once found which components need to be combined, the question is
to find out how these are combined?

• Which temporal dimension [TC99] is required: run-time adaptation
when the display-size changes or static between sessions.

(a) (b) (c)

Figure 8.7: An infinite number of regions around the reference user interfaces
are possible.

8.5 Rule-Based User Interface Interpolation

Rule-Based User Interface Interpolation is an interpolation technique which
is implemented as an extension to the domain dependent user interface
builder for UIML (see chapter 6) and Uiml.net (see section 6.2). Throughout
this section, the several aspects of this interpolation technique are discussed.

8.5 Rule-Based User Interface Interpolation 71

8.5.1 Goals

The rule-based interpolation approach, integrated in the DSUIB-UIML en-
vironment, needs to reach several goals. All of these are introduced during
this section.

Support for many Adaptations

As discussed in section 8.2.1, the adaptations supported by automated
layout systems do not suffice in many cases. Therefore, rule-based user
interface interpolation should support a wide range of adaptations:

• Changing a component’s position;

• Changing a component’s size;

• Changing a component’s mapping, which is called remapping ;

• Changing a component’s structural location. The structural location
is the location of a component in the user interface tree structure;

• Adding or deleting of components.

Figure 8.8: Adaptations between a small user interface, on the left, and a
larger one, on the right

The change in a component’s position and size corresponds to the adap-
tations supported by automated layout techniques. The other three adap-
tations are illustrated in Figure 8.8. This Figure contains two user interface
tree structures: one of a small interface on the left, and one of a larger in-
terface on the right. The adaptations from the small user interface to the
large are visualized by the arrows between their components. In this Figure,
a panel component is remapped to a tab container when the user interface

8.5 Rule-Based User Interface Interpolation 72

shrinks. Yet, when the user interface enlarges, the tabcontainer transforms
into a panel. The blue arrow shows a change in the structural position of
the two picture boxes: they become a child of a tab page when the user
interface shrinks. Otherwise, when the user interface enlarges, their parent
is a panel component. The large user interface also contains a label, which
is not included in the small one. This is an example of an addition/deletion
and is indicated by the green arrow. There exists an inverse relationship
between an addition and a deletion: an addition in one user interface will
lead to a deletion in the other one and vice versa. Therefore, only additions
are considered during this thesis, unless stated otherwise.

Full Control over the Interpolation

The designer should be in full control of the interpolation process. To
establish this control, he needs to perform two tasks: (1) creating two user
interfaces; (2) specifying which controls are to be used when to constructing
an interpolated user interface. The first task should be supported in order to
minimize the development effort. In DSUIB-UIML, this is done by interface
cloning, as described in section 8.5.2.

An existing interactive technique, which can be used to perform the sec-
ond task, is demonstrational user interface design (see chapter 5). However,
as discussed before, the demonstrational technique has some serious draw-
backs such as the difficulty to demonstrate all the desired adaptations (see
section 5.4). Thus, a new flexible and intuitive mechanism to specify the
interpolation is used in DSUIB-UIML, which is presented in section 7.

Temporal-dimension Independence

It should be possible to interpolate in a dynamic or static way. For exam-
ple, when the user interface is built for a desktop PC, runtime interpolation
is desirable when the user interface re-sizes. Yet, it should be possible to gen-
erate a static interpolated user interface for a fixed screensize, for example
for a PDA or smartphone.

8.5.2 User Interface Cloning

A requirement of the user interface interpolation approach is that both
reference user interfaces are designed for the same functionality. In many
cases, this implies that the second reference user interface will be an adapted
version of the first one. To support this technique, DSUIB-UIML contains a
user interface cloning function, located in the interpolation menu (as shown
in Figure 8.9(a)). After the construction of the first user interface, this
one can be cloned. The cloned user interface can then be adapted towards
the desired screensize, which will finally result in the second reference user

8.5 Rule-Based User Interface Interpolation 73

interface, as shown in Figure 8.9(b). Thus, user interface cloning reduces
the development effort to a minimum, because the second user interface does
not have to be built from scratch.

(a) The user interface cloning function (b) The second reference user
interface, constructed from the
first one

Figure 8.9: User Interface Cloning

8.5.3 Rules

For the different display-sizes in user interface space, the interpolation
mechanism needs to know which components it should combine. In DSUIB-
UIML, a user-specified rule-set is used to decide this. To describe these rules
in detail, a more formal description of the user interface and component
concepts is required:

Definition 8.5.1. A user interface Ix is defined as a collection of n
components: Ix = {Cx1, Cx2, ..., Cxn}. Furthermore, each component Cxy,
whith 1 < y < n, contains k properties Pxy : Pxy = {P 0

xy, ..., P
k
xy}.

The relationship between components in both reference user interfaces
can be defined as a link:

Definition 8.5.2. A link Ljb
ia = (Cjb, Cia) establishes a relation between

two components Cjb and Cia, each located in two different user interfaces Ij

and Ii. The former component is defined as the source component, the
latter as the destination component. Every component can be embodied
in maximum one link.

Definition 8.5.3. A null-link L0
ia = (0, Cia), with a null-source compo-

nent, is a special link which indicates that Cia is not related to any other
component in any other user interface.

With these definitions in mind, the core principles behind rule-based user
interface-interpolation can be explained. Given two reference user interfaces

8.5 Rule-Based User Interface Interpolation 74

I1 and I2, one can define a rule R as a tuple, R = (L1a
2b , Conditions, P u

1a, P
u
2b) :

1 < a < n, 1 < b < n, 1 < u < k . R will construct an interpolated compo-
nent by combining the properties of the source and destination component.
If the Conditions are met, it uses P u

2b. Otherwise, P u
1a will be employed.

In DSUIB-UIML, only four properties are contemplated: a component’s
size, position, structural location and mapping. Consequently there are
resizing-rules, repositioning-rules, restructuring-rules and remapping-rules.
Yet, there are also addition-rules, which contain a null-link. The rule-set,
which specifies the components to use at a certain display-size is defined as
R(Ix, Iy), and contains all the rules between the components in Ix and Iy.

The rule-conditions specify an interval around a destination component,
as illustrated in Figure 8.10(a). If the display-size falls within this interval,
the property of this component will be employed. Otherwise, the source
component’s property will be used. It is not required to specify the interval
by both a minimum and maximum size. In most cases, only a minimum
width and/or height will suffice. Some alternative intervals are illustrated
in Figure 8.10(b) and 8.10(c).

The main goal of rule-based interpolation is to support a wide range of
adaptations. By choosing the source and destination components strategi-
cally, all the required adaptations can be established. An example of several
linked components is given in Figure 8.10(d). The coloured lines represent
the links between source and destination components. Further more, each
colour represents an adaptation type. The green line represents a re-mapping
between the selecting cards component and the drop-down list. All orange
lines indicate a change in position and/or size between their end-points. A
change in the structural location is envisioned by the purple line: the play
card button can be a child of the panel or the user interface itself. Finally,
additions are represented by the red crosses. An addition contains no source
component, this component is replaced by a null source component (see also
definition 8.5.3).

Thus, the rules presented in this section can be used to:

• specify when a certain adaptation property should be used, by con-
structing the right conditions;

• specify all the required adaptations, by selecting the source and desti-
nation components strategically.

8.5.4 Rules in DSUIB-UIML

Despite the expressive strengths of rules, it will be a tedious and time-
consuming job to construct a desired rule-set by hand. Therefore, DSUIB-

8.5 Rule-Based User Interface Interpolation 75

(a) An interval specified by a minimum and maximum
size

(b) An interval specified by a minimum
width condition

(c) An interval specified by a minimum and
maximum height condition

(d) Source and destination components in the card-game

Figure 8.10: Rules are used to divide user interface space

8.5 Rule-Based User Interface Interpolation 76

UIML contains some specific features to facilitate the creation and main-
tenance of a rule-set. This should result in an intuitive technique, which
guarantees that the designer stays in full control of the interpolation pro-
cess.

Specification of Source and Destination Components

The relation between source and destination components is established by
links. A link, as stated in definition 8.5.2, connects a source component in
one reference user interface to a destination component in the other one, as
visualized in Figure 8.10(d). The second reference user interface is mostly
constructed from a cloned reference user interface (as discussed in section
8.5.2). During the clonation, links are created automatically between the
corresponding components of both user interfaces. UIML parts which have
the same identifier in both user interfaces are defined as corresponding com-
ponents.

(a) Visualization of a link (b) Create a link be-
tween two components
manually

Figure 8.11: Links between components

Although links are generated automatically during the cloning process, it
should be possible to create links manually. For example, remappings are
created by linking an existing source component to a destination component
with another mapping. Therefore, a new reference it option is added to the
component’s context-menu, as shown in Figure 8.11(b). Once this option is
clicked, the user can select a component in the other user interface, which
will result in a link between these two components.

A visualization of a link between two components is provided when one
of them is selected: its counterpart is coloured yellow (see Figure 8.11(a)).

8.5 Rule-Based User Interface Interpolation 77

This improves the visibility, the designer can see a component’s link anytime
he selects it.

Creation of the Rules

Rules are created implicitly by DSUIB-UIML. Implicit creation is pre-
ferred to the explicit specification of rules, because it never disturbs the
designer in his main activity, namely designing the user interface.

A background procedure inspects the reference user interfaces continu-
ously: it compares four properties between each source and destination
component: (1) size, (2) position, (3) structural location and (4) mapping.
When a destination component’s property differs from its source property,
a rule is created for that property. For example, when the user re-sizes a
component in one of the two user interfaces, a re-size-rule is created.

Specification of Conditions

(a) The source component (b) The destination compo-
nent

Figure 8.12: The construction of a rectangular area around each component

Once the rules are created, conditions should be added to complete these
rules. DSUIB-UIML uses a heuristic which computes an initial interval for
each rule. This heuristic constructs, for both the source and destination
component, a rectangle from the origin of the user interface to the compo-
nent’s utmost corner, as shown in Figure 8.12. Next, the component which
is embedded in the largest area is selected. For all the rules drawn for
this component, a condition is formulated: the user interface size should be
larger or equal than the rectangle size.

8.5 Rule-Based User Interface Interpolation 78

(a) The Conditions (b) The effect of the rule when the
conditions are met

Figure 8.13: The Rule Editor

These initial intervals only suffice for simple user interfaces. However, for
more complicated user interfaces, the designer should have the ability to
customize the conditions. Therefore, DSUIB-UIML contains a built-in rule
editor. After selecting a component, this editor shows all the rules applied
to this component. For every rule, its pre-conditions and effects can be
queried, as shown in Figure 8.13(a) and 8.13(b).

The user can specify the intervals interactively by slider components,
which are placed near the user interface. For both width and height, two
slider components are available: one for the minimum and one for the max-
imum value. By setting the slider to zero, the corresponding condition is
deleted. Example intervals are illustrated in Figure 8.14(a), 8.14(b), 8.14(c)
and 8.14(d). The slider components are preferred to the manual specifica-
tion of width and height values, because they visualize the interval directly.
Consequently, this results in a more natural interaction, without requiring
a lot of attention from the designer.

Besides the sliders, Figure 8.13(a) shows a dropdown box, which can be
used to modify the operand of a condition to one of the following values:
>,<,≤,≥. Finally, the copy for all button copies the conditions to all the
rules drawn for the selected component.

8.5.5 The Rule Syntax

DSUIB-UIML serializes the user interface in standard UIML, which can be
rendered by a UIML renderer. Through the renderer’s API, one can couple
the application logic to the user interface [LTVC06]. Yet, UIML provides
no syntax to serialize the interpolation rules. In order to support this, the
syntax could be extended, unfortunately, this implies that the tool will no
longer generate standardized UIML. Consequently, there will be decided in
favour of another approach, which does not affect the UIML syntax.

8.5 Rule-Based User Interface Interpolation 79

(a) (b)

(c) (d)

Figure 8.14: Four possible conditions for a selected mapping rule. If these
are met, the mapping of the selected control will be used . Otherwise, the
mapping of it’s linked component is employed.

The rule-based mechanism can be accomplished straightforward, using
simple elements for making a choice among other elements. Both the XML
Schema specification5 and the XSLT specification6 define elements for this
type of functionality. XML Schema defines the xsd:choice element and
XSLT defines the xsl:choice element. The latter is the most suitable
and flexible for the interpolation mechanism [Luy05]. Rule conditions can
then be formulated by XPath7 expressions, which can be embedded in the
xsl:when statements. A pseudo-syntax to serialize the rules in an XSLT
stylesheet is presented in Listing 8.1. The width and height parameters,

5http://www.w3.org/XML/Schema
6http://www.w3.org/TR/xslt
7http://www.w3.org/TR/xpath

8.5 Rule-Based User Interface Interpolation 80

used in the XPath conditions, should be passed by the application logic.

Listing 8.1: A pseudo-syntax for interpolation rules
. . .

<x s l : choose>
<x s l : when t e s t = ‘ ‘ $he ight > 100 and $width < 200 ’ ’>

<!−− use the destination component ’ s property −−>
</x s l : when>
<x s l : otherwise>

<!−− use the source component ’ s property −−>
</x s l : otherwise>

<x s l : choose>
. . .

In the new approach, DSUIB-UIML exports the user interface into an
XSLT stylesheet, which holds the interpolation rules. The stylesheet gener-
ates a proper UIML description depending on the screensize. The rendering
is discussed in detail throughout section 8.5.6. The remainder of this section
is devoted to the serialization of the interpolation rules.

Repositioning and Resizing Rules

The position and size of a component are specified in the style section
of a UIML document. This means that the repositioning and resizing rules
should be defined within this section. An example is provided in Listing 8.2.

Listing 8.2: The serialization of a repositioning rule
<style>
<x s l : choose>
<x s l : when t e s t=” $he ight &l t ; 252

and $width &l t ; 406 ”>
<!−− destination property −−>
<property part−name=”part 38 ”

name=”po s i t i o n ”>9,167</property>
</x s l : when>
<x s l : otherwise>

<!−− source property −−>
<property part−name=”part 38 ”
name=”po s i t i o n ”>255,148</property>

</x s l : otherwise>
</x s l : choose>

</style>

Restructuring and Addition Rules

The structure of a user interface is specified in the structure section of
a UIML document. An example is given in Figure 8.15. In this example,

8.5 Rule-Based User Interface Interpolation 81

xsl:otherwise cannot be used, because the part of the source component
appears on a different location in the tree. This is resolved by the construc-
tion of an inverse condition around the source component. The example
contains also an addition, which has no source component.

Figure 8.15: The serialization of a restructuring and addition

Remapping Rules

As shown in Listing 8.15, each part has a class attribute which con-
tains its own identifier. In the vocabulary section, the remapping rules
are responsible for the connection between this identifier and a concrete
user interface element. An example is given in Listing 8.3. The remap-
ping in this example corresponds to the one between the card-deck (a Sys-
tem.Windows.Forms.GroupBox) and a dropdown menu (a System.Windows.Forms.ComboBox)
as illustrated in Figure 8.10(d) with the green line.

8.5.6 Uiml.net Interpolation Runtime

An XSLT stylesheet transforms an XML document into another XML
document. In order to create the final UIML description of the user in-
terface, the generated XSLT stylesheet transforms a Platform Model (PM)
[Pue97] into a UIML document. This resulting document is a user interface

8.5 Rule-Based User Interface Interpolation 82

Listing 8.3: The serialization of a remapping rule
<presentation>
. . .

<x s l : choose>
<x s l : when t e s t=” $he ight < 252 and $width < 406 ”>
<d−class id=”part 38 ” used−in−tag=”part”

maps−type=”class ” maps−to=”System . Windows . Forms .ComboBox”>
<d−property id=”l a b e l ” maps−type=”setMethod” maps−to=”Text”>

<d−param type=”System . St r ing”/>
</d−property>
. . .

</d−class>
</x s l : when>
<x s l : otherwise>
<d−class id=”part 38 ” used−in−tag=”part”

maps−type=”class ” maps−to=”System . Windows . Forms . GroupBox”>
<d−property id=”l a b e l ” maps−type=”setMethod” maps−to=”Text”>
<d−param type=”System . St r ing”/>

</d−property>
. . .

</d−class>
</x s l : otherwise>

</x s l : choose>
. . .
</presentation>

description for the platform considered. The PM contains the screensize of
the target device, but can be extended to contain other platform-specific
characteristics. An example of a platform model is presented in Listing 8.4.

Listing 8.4: The XML platform description
<platform−model>

<di sp lay−s i z e >
<width>416</width>
<height >262</height>

</d i sp lay−s i z e >
</platform−model>

Time-dimension Independence is one of the goals which should be reached
by DSUIB-UIML’s rule-based interpolation. Static rendering of user inter-
faces for a specific screen-size is straightforward. First, one adapts the plat-
form model in order to specify the desired display-size. Next, an XSLT
processor uses the generated stylesheet to transform the PM into a UIML
user interface description. The resulting user interface description can serve
as the input of a UIML renderer, which visualizes the user interface.

To reach dynamic interpolation, run-time adaptation is required. Ac-
cording to [CCT+03], a run-time adaptation-process consists out of three
steps: (1) recognition of the situation, (2) computation of a reaction and (3)

8.6 Results 83

execution of the reaction. In order to support these steps, the Uiml.net ren-
derer is extended towards the Uiml.net interpolation runtime. A schematic
overview of the Uiml.net interpolation runtime is given in Figure 8.16. To
accomplish the first step, the re-size-event of the displayed user interface is
triggered. Yet, this re-size-event is widget-set specific and thus implemented
in the rendering backends [LTVC06]. Next, if one re-sizes the user interface,
this new size is serialized into the platform model during the second step.
Finally, the reaction is executed by an XSLT transformation of the platform
model. The resulting UIML document will then be used to re-render the
user interface.

Figure 8.16: The Uiml.net interpolation runtime

8.6 Results

In this section, some examples are provided to illustrate the rule-based
user interface interpolation mechanism. From the two reference user inter-
faces given in Figure 8.1, the interpolation at different screensizes is shown
in Figure 8.17. The rule-set used here was constructed with few adaptations
to the original one, generated by the heuristic. From the user interface in

8.7 Conclusion 84

Figure 8.17(a) towards the one in Figure 8.17(f), one can be see that the
select cards component and the blue cards panel evoluate gradually towards
their corresponding component in the other reference user interface.

(a) (b)

(c) (d)

(e) (f)

Figure 8.17: The interpolation of the card-game user interface at different
screensizes

Figure 8.18 shows a remapping with the default heuristic as discussed
in section 8.5.4. When the listbox is no longer completely visible, it is
transformed into a combobox. In Figure 8.19 a birthdaybook interface is
presented. The source interface, in Figure 8.19(a), evoluates gradually to-
wards the smaller destination interface in Figure 8.19(f). A screenshot of
DSUIB-UIML while designing this interface is provided in Figure 8.19(g).

8.7 Conclusion

In this chapter, an extension to the domain-specific user interface builder
for UIML was presented: user interface interpolation. This technique can
be used to support a broad range of adaptations and thus will be able to
transform an interface depending on the available screensize.

8.7 Conclusion 85

(a) (b) (c)

Figure 8.18: The remapping between a combobox and a listbox with the
default heuristic

A final evaluation of DSUIB-UIML in combination with the user inter-
face interpolation mechanism is provided in Table 8.1. The score of the
feedback and visibility principle stems directly from the the final evaluation
of DSUIB-UIML (see Section 7.5). The combination of DSUIB-UIML and
user interface interpolation results in a highly automated approach, how-
ever, the designer stays always in full control of the design. This control is
accomplished by:

• a predictable user interface interpolation mechanism;

• DSUIB-UIML’s intuitive user interface to specify the user interface
interpolation behavior.

Table 8.1: The four general principles applied to DSUIB-UIML in combina-
tion with the user interface interpolation mechanism

8.7 Conclusion 86

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8.19: The birthdaybook application

Part IV

Conclusion

Chapter 9

Conclusion

9.1 Summary of the Results

In this thesis, a new type of user interface design tool was presented: the
domain-specific user interface builder. This type of tool introduces the flex-
ibility to generate a user interface builder for a certain domain, represented
by a domain vocabulary. More specifically, a domain vocabulary contains a
set of domain objects commonly used in the target domain as well as a user
concrete interface component which represents this object visually.

A generated user interface builder contains three important dialogs: a
toolbox, consisting of the domain objects’ graphical representations; a can-
vas, to combine these domain objects towards a user interface; a property-
panel, to manipulate the attributes of the domain objects. Compared with
general-purpose user interface design tools, domain-specific interface builders
speed up the construction of user interfaces for the domain considered.

A practical implementation of a domain-specific user interface builder
was made on top of the Uiml.net renderer, called the Domain-Specific User
Interface Builder for the User Interface Markup Language (DSUIB-UIML).
To accomplish this, the UIML vocabulary serves as domain vocabulary. We
showed that a traditional graphical user interface builder can be generated
from the standard System.Windows.Forms vocabulary.

The UIML user interface description, generated by DSUIB-UIML, serves
as input for the Uiml.net renderer. This involves that the user interface can
be rendered on multiple devices, for example a mobile device and a desktop
computer. Despite this multi-platform approach, a user interface designed
for a desktop PC can fall partially outside the display-region on a small
screen size.

9.2 Future Work 89

A contribution to address this issue is made in this thesis with the im-
plementation of a rule-based user interface interpolation mechanism, a new
user interface based rendering technique. User interface based rendering
is a theoretical model we deducted. It describes all the techniques which
generate a user interface for a desired screen size from a set of previously
designed ones. To accomplish this, user interface interpolation combines the
components of two user interfaces, each designed for a specific user inter-
face, towards a new user interface for an intermediate size. A user-defined
rule-set is used to select the right component of both user interfaces at each
size. This involves that a broad range of adaptations can be described at
different sizes, such as resizing, repositioning, remapping, restructuring and
adding a component.

The construction of the two required user interfaces and the user-defined
rule-set is a non-trivial task for the user interface designer. Therefore,
DSUIB-UIML was extended to minimize this effort. To accomplish this, the
two major components are an integrated clone function and a rule-editor.
The former clones the first user interface to avoid the creation of the second
user interface from scratch. The latter supports the creation of rules and
their conditions in an intuitive way.

DSUIB-UIML exports the constructed rule-set into an XSLT stylesheet.
This stylesheet is able to transform a platform model, which contains the
user interface’s display size, into an UIML document. A UIML renderer
can render this UIML document, which will result in the final user inter-
face for the desired screensize. This process is integrated in the Uiml.net
interpolation runtime, which is implemented as an extension of the Uiml.net
renderer. Every time one re-sizes a user interface, the interpolation runtime
will generate the appropriate user interface for that size.

During the research covered by this thesis, the most important lesson
learned is that simplicity works. Initially, several Artificial Intelligence (AI)
techniques, such as Markov models, decision trees and neural networks, were
investigated to create the interpolation mechanism. Compared with these
techniques, the rule-based mechanism proposed in this thesis is less complex.
However, our approach is more predictable and controllable than most AI
techniques.

9.2 Future Work

Despite the results presented in the previous section, there is still room for
improvements. In this section, several issues of DSUIB-UIML are discussed.

9.2 Future Work 90

9.2.1 Domain-Specific User Interface Builder

In the current UIML vocabulary, it is not possible to define one abstract
interactor in terms of a set of other abstract interactors or to have differing
part structures according to the selected mapping. In order to address
this issue, a 1-to-N* mapping [Luy05] mechanism is proposed. This new
mapping mechanism maps one abstract interactor on a set of other abstract
interactors that in turn should be mapped on the elements that are defined in
the vocabulary. For example, an abstract interactor playlist can be mapped
on several abstract interactors such as a button, scrollbar, listbox and label.
Each of these abstract interactors will then be mapped on a concrete user
interface object, as shown in Figure 9.1.

Figure 9.1: 1-N* mappings of an abstract playlist interactor

1-to-N* mappings can be used to store patterns into the UIML vocab-
ulary, which will represent more complex domain objects. For example,
the playlist vocabulary proposed in section 7.2.2 can be constructed with
1-N* mappings. DSUIB-UIML will then be able to generate user interface
builders for a wide range of complex domain vocabularies. In addition, it
would be desirable to extend DSUIB-UIML with an intuitive mechanism
which enables it to save patterns. If there is a part of the current designed
user interface which can be reused in other designs, this mechanism will
provide the possibility to select and save this reuseable part as a pattern in
the vocabulary. Each pattern can be related to a certain name and iconic
representation, which will appear in the toolbox. In this way, the designer
can extend DSUIB-UIML by practice while he or she gains more knowledge
in the problem domain.

9.2 Future Work 91

9.2.2 Rule-Based User Interface Interpolation

Plasticity [CCT+02] is the capacity of an interactive system to withstand
variations of context of use while preserving usability. The interpolation
mechanism presented in this thesis does not guarantee anything about the
usability of the intermediate user interfaces. Consequently, in some partic-
ular cases an interpolated user interface will be unusable. To resolve this,
DSUIB-UIML can be extended to construct more reference user interfaces.
We believe that an interpolation technique with more user interfaces will
cover user interface space better, and thus will result in more usable in-
termediate user interfaces. This can be accomplished semi-automatically:
using the current interpolation mechanism, a third user interface can be
generated for a specific size from the two previously designed ones. This
third user interface can then be adapted to resolve the usability problems
for its particular size. This process can be repeated for an arbitrary number
of reference user interfaces.

Figure 9.2: The extended interpolation mechanism

An example of this technique is given in Figure 9.2. R1 and R2 are the
original reference user interfaces, which are used to generate R3′. After the
adaptation of R3′, R4′′ will be generated from the three already created user
interfaces. For each user interface, a rule-set is created which is envisioned
by the circular region around each user interface (see section 8.4).

Part V

Appendices

Appendix A

Dutch summary

A.1 Inleiding

Naast de traditionele desktopcomputers zijn er de laatste jaren verschei-
dene nieuwe computergestuurde toestellen ontwikkeld. Dit heeft bij de ge-
bruikers de behoefte aangewakkerd om de applicaties die vooralsnog enkel op
desktopcomputers aanwezig waren ook op deze nieuwe toestellen te kunnen
draaien. Ten gevolge hiervan is het noodzakelijk om de gebruikersinterface
van deze applicaties ook bereikbaar te maken op deze nieuwe toestellen.

Het ontwikkelen van een nieuwe gebruikersinterface voor elk van deze toe-
stellen is een tijdrovende opdracht. Daarom wordt er onderzoek verricht
naar technieken die het mogelijk maken om een gebruikersinterface te ont-
wikkelen voor meerdere platformen. Een veel gebruikte techniek bestaat uit
het specifiëren van de gebruikersinterface op een hoog, toestelonafhankelijk
niveau van abstractie. Vanuit deze specificatie kan dan via een geautoma-
tiseerd proces een gepaste gebruikersinterface gegenereerd worden voor het
gewenste toestel. Dit proces noemt men modelgebaseerde gebruikersinterfa-
ce ontwikkeling.

Hoewel modelgebaseerde gebruikersinterface ontwikkeling platformonaf-
hankelijkheid kan verzekeren, zijn de toepassingen die deze methodologie
volgen niet echt populair. Een mogelijke verklaring hiervoor is dat de ont-
wikkelaars een te hoog niveau van abstractie moeten hanteren te vroeg in
het ontwikkelingsproces. GUI builders daarentegen zijn dan weer populair,
hoewel zij geen platformonafhankelijkheid garanderen. Een mogelijke ver-
klaring hiervoor is dat bij GUI builders een gebruikersinterface op een laag
niveau van abstractie moet gedefinieerd worden.

A.2 Domeinspecifieke Gebruikersinterface Builders 94

A.2 Domeinspecifieke Gebruikersinterface Builders

In deze thesis proberen we GUI builders zodanig uit te bereiden zodat
zij ook platformonafhankelijke gebruikersinterfaces kunnen genereren, zon-
der deze te moeten specifiëren op een hoog abstractieniveau. Om dit te
bewerkstelligen, onderzoeken wij de mogelijkheid om automatische design
tools te genereren voor een bepaald domein, welk dat vooraf gedefinieerd is
in een domein vocabulary. Deze vocabulary bevat een aantal vaak gebruikte
abstracties in het gekozen domein alsook de gebruikersinterface elementen
die deze abstracties voorstellen. Een domeinspecifieke design tool maakt het
mogelijk om deze gebruikersinterface-elementen te combineren tot een vol-
waardige gebruikersinterface. Dit impliceert dus dat een gebruikersinterface
ontwikkeld wordt op een concreet niveau van abstractie, maar toch wordt er
gebruik gemaakt van domeinspecifieke abstracties. Deze aanpak resulteert
finaal in een platformonfhankelijke gebruikersinterface.

Om een domeinspecifieke gebruikersinterface builder te implementeren ba-
seren wij ons in deze thesis op de open Uiml.net renderer. Deze renderer kan
gebruikersinterfaces genereren vanaf een declaratieve beschrijvende gebrui-
kersinterfacetaal, genaamd de User Interface Markup Language (UIML).
UIML is een metataal die gebruik maakt van generieke termen als part,
property in plaats van specifieke elementen als button, window, etc. UIML
bestaat enerzijds uit een interface gedeelte dat de structuur, stijl en het
gedrag van gebruikersinterface bevat. Anderzijds is een vocabulary sectie
aanwezig die de generieke termen mapt naar concrete gebruikersinterface-
elementen. Dit houdt in dat op basis van UIML een nieuwe beschrijvende
gebruikersinterfacetaal gemaakt kan worden door in het vocabulary gedeelte
de juiste links tussen de generieke termen en concrete gebruikersinterface-
componenten te leggen.

Om een domeinspecifieke vocabulary te beschrijven maken wij gebruik
van de standaard UIML vocabulary. Deze wordt ingelezen en gebruikt om
een serie domeinobjecten aan te maken. Vervolgens worden deze domeinob-
jecten één voor één gevisualiseerd (of liever geconcretiseerd) door de Uiml.net
renderer. Een visuele representatie van een domeinobject noemen we een
component. De nu bekomen verzameling van componenten wordt gebruikt
om een toolbox aan te maken voor de gebruikersinterface design tool. Deze
toolbox wordt dus dynamisch aangemaakt naargelang de gebruikte domein
vocabulary. Om een gebruikersinterface te construeren kan de ontwikkelaar
nu componenten selecteren in de toolbox en slepen naar een canvas. Op
deze canvas wordt dus de eigenlijke structuur van de gebruikersinterface be-
paald. De attributen van de op het canvas aanwezige componenten kunnen
gewijzigd worden door deze te modifiëren in een attributenpaneel. Aange-
zien elke component correspondeert met een domeinobject, dat op zijn beurt

A.3 Gebruikersinterface-interpolatie 95

een stukje UIML is, is het triviaal om vanuit een verzameling componenten
een UIML gebruikersinterfacebeschrijving te genereren. Deze gegenereerde
beschrijving kan vervolgens met behulp van de Uiml.net renderer, en de juis-
te vocabulary, op verscheidene platformen getoond worden. In deze thesis
hebben we een gebruikersinterface builder gegenereerd voor de bestaande
System.Windows.Forms Vocabulary.

A.3 Gebruikersinterface-interpolatie

Het ontwikkelen van een gebruikersinterface op een laag abstractieniveau
impliceert dat er slechts één mogelijke situatie van de interface beschreven
kan worden. Wanneer dezelfde interface getoond wordt op een toestel met
een andere schermgrootte kan het gebeuren dat deze gebruikersinterface hier
onbruikbaar wordt. Om dit te voorkomen moet een intelligente techniek
voorzien worden die een gebruikersinterface kan aanpassen voor willekeurige
- onbekende - schermgroottes.

In deze thesis wordt een gebruikersinterface-interpolatiemechanisme voor-
gesteld om nieuwe gebruikersinterfaces te genereren voor arbitraire scherm-
groottes. Dit mechanisme neemt als input twee gebruikersinterfaces, elk ont-
wikkeld voor een bepaalde schermgrootte. Het gebruikersinterface-interpolatie
mechanisme gaat vervolgens de componenten van beide interfaces combine-
ren om zo nieuwe interfaces te genereren voor (gedurende het ontwikkelings-
proces) onbekende schermgroottes.

De moeilijkheid in het bewerkstelligen van een gebruikersinterface inter-
polatiemechanisme is de manier waarop de componenten dienen gekozen te
worden bij de verschillende schermgroottes. Wij stellen een regelgebaseerd
systeem voor, dat aan de hand van een vooraf opgestelde verzameling van
regels de juiste componenten gaat kiezen voor een specifieke schermgrootte.
Een regel kan bijvoorbeeld zijn: ’Voor de component I van de gëınterpoleerde
interface: kies de grootte van component A uit interface 1 wanneer de
schermgrootte ligt tussen 100 en 200, opteer in het andere geval voor de
grootte van component B’. Uit dit voorbeeld kunnen we de belangrijkste
componenten van een regel deduceren:

• de broncomponent: component A in de eerste interface;

• de doelcomponent: component B in de tweede interface;

• de condities: wanneer de schermgrootte ligt tussen 100 en 200.

Regels kunnen opgesteld worden voor 4 verschillende eigenschappen:

1. het veranderen van de grootte van een component;

A.3 Gebruikersinterface-interpolatie 96

2. het veranderen van de plaats van een component in de gebruikersin-
terface;

3. het veranderen van de plaats van een component in de boomstructuur
van een gebruikersinterface;

4. het transformeren van een component: bijvoorbeeld, een dropdown
component die verandert in een listbox wanneer de schermgrootte ver-
kleint.

Wanneer de voor een regel opgestelde condities gelden, wordt de geobser-
veerde eigenschap van de broncomponent genomen. Aan de andere kant,
wanneer deze conditie niet geldt, wordt de eigenschap van de doelcompo-
nent gekozen.

Het spreekt voor zich dat het opstellen van een verzameling regels met
de bijhorende eigenschappen geen eenvoudige taak is voor een ontwikkelaar.
Daarom is onze domeinspecifieke gebruikersinterface builder op een zoda-
nige manier uitgebreid dat dit zo eenvoudig mogelijk kan verlopen. In de
eerste plaats is er een eenvoudig systeem voorzien om de eerst ontwikkel-
de gebruikersinterface te klonen. Deze gekloonde gebruikersinterface kan
vervolgens aangepast worden, wat zal resulteren in de tweede gebruikersin-
terface. Tijdens het klonen van de eerste interface worden de overeenkomsti-
ge componenten tussen beide gebruikersinterfaces gelinkt: de componenten
in gebruikersinterface 1 worden de broncomponenten, diegenen in de ande-
re gebruikersinterface zijn de doelcomponenten. Dit volstaat echter niet.
Wanneer er bijvoorbeeld bij een van de twee gebruikersinterfaces een nieu-
we component wordt toegevoegd, moet het mogelijk zijn om deze te linken
aan een component in de andere gebruikersinterface. Dit wordt in de do-
meinspecifieke gebruikersinterface builder ondersteund door een reference it
operatie in het contextmenu van een component.

Tot hiertoe hebben we twee gebruikersinterfaces, elk bestaande uit een
set van componenten met telkens een link tussen een component in gebrui-
kersinterface 1 naar een component in gebruikersinterface 2. Nu moet op
basis van deze verzameling links een setje van regels opgebouwd worden. Dit
wordt bewerkstelligd door een continu proces, dat tijdens het opmaken van
de interface voortdurend de bron- en doelcomponenten in beide interfaces
vergelijkt. Wanneer voor één van de hierboven vermelde eigenschappen een
verschil tussen de bron- en doelcomponent wordt gevonden, wordt er voor
deze eigenschappen een regel aangemaakt. Zo is het dus mogelijk dat er
voor elk van de vier bovenvermelde eigenschappen een regel wordt aange-
maakt. Door een impliciete regelcreatie te verkiezen boven een expliciete
wordt de designer niet gestoord in zijn hoofdactiviteit, zijnde het creëren
van de gebruikersinterface.

A.4 Toekomstig Werk 97

Eens de regels gecreëerd zijn moeten er nog de gepaste condities aan
toegekend worden. De domeinspecifieke gebruikersinterface builder bevat
een basisheuristiek die initiële intervallen gaat berekenen. Voor elke bron-
en doelcomponent wordt de minimale schermgrootte berekend die nodig is
om deze component te kunnen weergeven. Vervolgens wordt paarsgewijs de
component Ci

max gekozen die de grootste schermgrootte Sizei vereist. Voor
elke regel kunnen dan de volgende initiële condities worden opgesteld: indien
de schermgrootte groter is dan Sizei, opteer dan voor Ci

max, anders dient
de aan Ci

max gelinkte component gekozen te worden.

Hoewel de hierboven beschreven heuristiek werkt voor eenvoudige gebrui-
kersinterfaces, voldoet deze niet in meer complexe situaties. Daarom bevat
de domeinspecifieke gebruikersinterface builder een eenvoudige regel editor.
Deze laat toe om op een intüıtieve manier de intervallen voor de impliciet
gecreëerde regels te bewerken. Wanneer in de regel editor een regel geselec-
teerd wordt, verschijnen er schuifbalken naast de ontworpen gebruikersinter-
faces. Deze schuifbalken stellen de discrete intervallen voor waarbinnen de
geselecteerde regel geldt. Door de schuifbalken te manipuleren, kunnen de
condities eenvoudig aangepast worden zonder dat de ontwikkelaar manueel
bepaalde intervallen moet berekenen.

De aangemaakte regels dienen geëxporteerd te worden naar UIML op-
dat er een adaptatie van de gebruikersinterface zou kunnen plaatsvinden.
Wij kozen ervoor om de regels te exporteren in een XSLT stylesheet. De-
ze stylesheet wordt gebruikt om een platformmodel, dewelke de aanwezige
schermgrootte bevat, om te vormen tot een UIML document. Door het
platformmodel aan te passen telkens wanneer de schermgrootte wijzigt en
vervolgens de XSLT transformatie opnieuw uit te voeren wordt steeds een
geschikte gebruikersinterface bekomen voor de beschikbare schermgrootte.
Dit proces werd ondergebracht in de Uiml.net renderer, dewelke nu kan om-
gedoopt worden tot de Uiml.net interpolation runtime.

A.4 Toekomstig Werk

De concepten voorgesteld in deze thesis zijn nog voor verbetering vatbaar.
Zo is het in de huidige versie van UIML niet mogelijk om samenstellingen
van abstracte interactoren te specifiëren in de vocabulary. Eens dit mogelijk
gemaakt is zou een ontwikkelaar dynamisch herbruikbare gebruikersinterface
elementen kunnen toevoegen aan de vocabulary. Ook zou een iconografische
specificatie per gebruikersinterface element een handige meerwaarde bieden.

Het opgestelde interpolatiesysteem kan in sommige gevallen ongebruiks-
vriendelijke gebruikersinterfaces genereren. Om dit te voorkomen kan in de

A.4 Toekomstig Werk 98

toekomst geopteerd worden voor een interpolatiesyteem dat meer dan twee
interfaces als input neemt. Van de eerste twee opgestelde gebruikersinter-
faces kan een derde gegenereerd worden voor een gewenste schermgrootte.
Deze derde kan dan aangepast worden om de gebruiksvriendelijkheid ervan
te verhogen. Van de drie aanwezige interfaces kan vervolgens een vierde
gegenereerd worden, enz. Hoe meer gebruikersinterfaces als input, hoe ho-
ger de gebruiksvriendelijkheid van de tussenliggende gebruikersinterfaces zal
liggen.

Bibliography

[AH04] Marc Abrams and James Helms. Uiml 3.1 language specifica-
tion. Technical report, Oasis UIML TC, 2004.

[AnSA02] Mir Farooq Ali, Manuel A. Pérez-Qui nonez, Eric Shell, and
Marc Abrams. Building multi-platform user interfaces with
uiml. In Proceedings of CADUI 2002, May 2002.

[Ant01] Antipope.org. Rapid application development tools, 2001. [On-
line; accessed 15-March-2007].

[AP99] Marc Abrams and Constantinos Phanouriou. Uiml: An xml
language for building device-independent user interfaces. In
XML ’99, Philadelphia, USA, 1999.

[BVE02] Laurent Bouillon, Jean Vanderdonckt, and Jacob Eisenstein.
Model-based approaches to reengineering web pages. In TA-
MODIA ’02: Proceedings of the First International Workshop
on Task Models and Diagrams for User Interface Design, pages
86–95. INFOREC Publishing House Bucharest, 2002.

[CCT+02] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Lim-
bourg, Nathalie Souchon, Laurent Bouillon, Murielle Florins,
and Jean Vanderdonckt. Plasticity of user interfaces: A revised
reference framework. In TAMODIA, pages 127–134, 2002.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Lim-
bourg, Laurent Bouillon, and Jean Vanderdonckt. A unifying
reference framework for multi-target user interfaces. Interacting
with Computers, 15(3):289–308, 2003.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering
and design recovery: A taxonomy. IEEE Softw., 7(1):13–17,
1990.

[CLC04] Tim Clerckx, Kris Luyten, and Karin Coninx. The mapping
problem back and forth: customizing dynamic models while
preserving consistency. In TAMODIA, pages 33–42, 2004.

BIBLIOGRAPHY 100

[EJ01] R. Esser and J. Janneck. A framework for defining domain-
specific visual languages. In Workshop on Domain Specific
Visual Languages, in conjunction with ACM Conference on
Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA-2001), Portland, USA, October 14-18 2001.

[FMVM06] M. Florins, F. Montero, J. Vanderdonckt, and B. Michotte.
Splitting rules for graceful degradation of user interfaces. In
Proceedings of 8th Int. Working Conference on Advanced Visual
Interfaces AVI’2006, pages 59–66, New York, May 23-26 2006.

[Fra95] M. Frank. Model-Based User Interface Design by Demonstra-
tion and by Interview. PhD thesis, Georgia Institute of Tech-
nology, 1995.

[FSF95] Martin R. Frank, Piyawadee Noi Sukaviriya, and James D. Fo-
ley. Inference bear: Designing interactive interfaces through
before and after snapshots. In Symposium on Designing Inter-
active Systems, pages 167–175, 1995.

[GCH+05] Krzyszstof Gajos, David Christianson, Raphael Hoffmann, Tal
Shaked, Kiera Henning, Jing Jing Long, and Daniel S. Weld.
Fast and robust interface generation for ubiquitous applications.
In Proceedings of Ubicomp 2005, Tokyo, Japan, 2005.

[GHZL06] John C. Grundy, John G. Hosking, Nianping Zhu, and Na Liu.
Generating domain-specific visual language editors from high-
level tool specifications. In ASE, pages 25–36, 2006.

[GMH00] John C. Grundy, Warwick B. Mugridge, and John G. Hosk-
ing. Constructing component-based software engineering envi-
ronments: issues and experiences. Information and Software
Technology, 42(2):103–114, 2000.

[GtMP+98] T. Gri, t McKirdy, N. Paton, J. Kennedy, R. Cooper, B. Bar-
clay, C. Goble, P. Gray, M. Smyth, A. West, and A. Dinn.
An open model-based interface development system: The teal-
lach approach. In Proceedings of DSV-IS’98, pages 32–49, June
1998.

[GW04] Krzyszstof Gajos and Daniel S. Weld. Supple: Automatically
generating user interfaces. In Proceedings of IUI’04, January
13-16 2004.

[GW05] Krzyszstof Gajos and Daniel S. Weld. Preference elicitation for
interface optimization. In Proceedings of UIST 2005, Seattle,
USA, 2005.

BIBLIOGRAPHY 101

[HY91] Scott E. Hudson and Andrey K. Yeatts. Smoothly integrat-
ing rule-based techniques into a direct manipulation interface
builder. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 145–153, November 1991.

[Jam03] Anthony Jameson. Adaptive interfaces and agents. pages 305–
330, 2003.

[JB03] A. John and G. Biao. An environment for developing adaptive,
multidevice user interfaces. In Proceedings of the Fourth Aus-
tralasian User Interface Conference AUIC’2003, Vol 18, pages
59–66, Adelaide, Australia, 2003.

[Jon05] Edwin Jongsma. Domain specific language, software factories
ontraadseld. Microsoft .NET Magazine, (11):33–35, december
2005.

[LC04] Kris Luyten and Karin Coninx. Uiml.net: An open uiml ren-
derer for the .net framework. In Proceedings of Computer-Aided
Design of User Interfaces (CADUI’2004), pages 221–230, Fun-
chal, Madeira Island, PT, 2004.

[LF01] S. Lok and S. Freiner. A survey of automated layout techniques
for information presentations. In Proceedings of Smart Graphics
2001 (Int. Symp. on Smart Graphics), Hawthorne, NY, march
2001.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages 31–42,
New York, NY, USA, 1996. ACM Press.

[LL02] James Lin and James A. Landay. Damask: A tool for early-
stage design and prototyping of multi-device user interfaces. In
Proceedings of The 8th International Conference on Distributed
Multimedia Systems (2002 International Workshop on Visual
Computing), pages 573–580, San Francisco, CA, September 26-
28 2002.

[LL05] Yang Li and James A. Landay. Informal prototyping of con-
tinuous graphical interactions by demonstration. In UIST ’05:
Proceedings of the 18th annual ACM symposium on User inter-
face software and technology, pages 221–230, New York, NY,
USA, 2005. ACM Press.

[LTVC06] Kris Luyten, Kristof Thys, Jo Vermeulen, and Karin Coninx.
A generic approach for multi-device user interface rendering

BIBLIOGRAPHY 102

with uiml. In Proceedings of Computer-Aided Design of User
Interfaces (CADUI’2006), Bucharest, Romania, June 5-8 2006.

[Luy04] Kris Luyten. Dynamic User Interface Generation for Mobile
and Embedded Systems with Model-Based User Interface Devel-
opment. PhD thesis, Expertise Centre for Digital Media, LUC,
october 2004.

[Luy05] Kris Luyten. Proposition: Adaptable 1-n* mappings for uiml
vocabularies. http://research.edm.uhasselt.be/kris/
research/uiml.net/adaptable1onNmappings.pdf, 2005.

[LVC06] Kris Luyten, Jo Vermeulen, and Karin Coninx. Constraint
adaptability of multi-device user interfaces. In Workshop on
The Many Faces on Consistency, CHI’2006 workshop, Mon-
treal, Quebec, Canada, April 22-23 2006.

[McM97] Leonard McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, University of
North Carolina, Apr 1997.

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
present, and future of user interface software tools. ACM Trans-
actions on Computer-Human Interaction, 7(1):3–28, 2000.

[MPS04] G. Mori, F. Paternó, and Carmen Santoro. Design and devel-
opment of multidevice user interfaces through multiple logical
descriptions. In Proceedings IEEE transactions on software en-
gineering, August 2004.

[Pat00] Fabio Paternò. Model-based design and evaluation of interac-
tive applications. In Springer, 2000.

[Pay98] Bernd Paysan. Mino
∑

-system integration. http://www.jwdt.
com/∼paysan/minos-eng-2.ps.gz, August 1998.

[PE99] Angel R. Puerta and Jacob Eisenstein. Towards a general com-
putational framework for model-based interface development
systems. In Intelligent User Interfaces, pages 171–178, 1999.

[PEGM94] Angel R. Puerta, Henrik Eriksson, John H. Gennari, and
Mark A. Musen. Model-based automated generation of user
interfaces. In Proceedings of National Conference on Artificial
Intelligence, pages 471–477, 1994.

[PMS03] F. Paternó, G. Mori, and C. Santoro. Tool support for design-
ing nomadic applications. In Proceedings of 7 Int. Conf. on
Intelligent User Interfaces IUI’03, pages 12–15, January 2003.

http://research.edm.uhasselt.be/kris/research/ uiml.net/adaptable1onNmappings.pdf
http://research.edm.uhasselt.be/kris/research/ uiml.net/adaptable1onNmappings.pdf
http://www.jwdt.com/~paysan/minos-eng-2.ps.gz
http://www.jwdt.com/~paysan/minos-eng-2.ps.gz

BIBLIOGRAPHY 103

[Pue97] Angel R. Puerta. A model-based interface development envi-
ronment. IEEE Softw., 14(4):40–47, 1997.

[SCPR06] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Philips, and
Nicolas Roussel. User interface façades: Towards fully adapt-
able user interfaces. In Proceedings of UIST 2006, Montreux,
Switzerland, October 15-18 2006.

[SS94] Andrew Sears and Ben Shneiderman. Split menus: effectively
using selection frequency to organize menus. ACM Trans.
Comput.-Hum. Interact., 1(1):27–51, 1994.

[SV03] Nathalie Souchon and Jean Vanderdonckt. A review of xml-
compliant user interface description languages. In DSV-IS,
pages 377–391, 2003.

[TC99] D. Thévenin and J. Coutaz. Adaptation and plasticity of user
interfaces. In Workshop on Adaptive Design of Interactive Mul-
timedia Presentations for Mobile Users, 1999.

[VdL02] Hans Vangheluwe and Juan de Lara. Meta-models are models
too. In Winter Simulation Conference, pages 597–605, 2002.

[WF91] D. Wolber and G. Fisher. A demonstrational technique for
developing interfaces with dynamically created objects. In Proc.
of the 4th Annual Symposium on User Interface Software and
Technology (UIST’91), pages 221–230, Hilton Head, SC, 1991.

[Wik07] Wikipedia. Xforms, 2007. [Online; accessed 20-March-2007].

Auteursrechterlijke overeenkomst
Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw

akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te

nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

A Graphical Design tool for Multi-Device User Interfaces based on UIML

Richting: Master in de informatica Jaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik

als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te

reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van

de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de

eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door

het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit

Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling

werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Ik ga akkoord,

Jan Meskens

Datum: 23.05.2007

Lsarev_autr

	I Preliminaries
	Introduction
	Problem Description
	The Research covered by this thesis
	Outline

	II Research
	A Comparison of User Interface Design Tools
	General Principles of User Interface Design Tools
	Graphical User Interface Builders
	Tool examples
	User Interface rendering
	Evaluation

	Model-Based and Automatic Techniques
	Model-Based User Interface Design
	Interface Models
	Model-Based Design Tools
	Evaluation

	Discussion

	Multi-Platform User Interfaces
	Multi-Target User Interfaces
	High-Level User Interface Descriptions
	UsiXML
	XForms
	UIML

	Multi-Platform Interface Design Tools
	Conclusion

	Adaptable User Interfaces
	User-adaptable interfaces
	General approach
	Examples of tools

	Self-adapting interfaces
	User-Adaptive Interfaces
	Physical Characteristics-Adaptive Interfaces
	User- and Physical Characteristics-Adaptive Interfaces

	Discussion
	Conclusion

	User Interface Design by Demonstration
	Introduction to Intelligent User Interfaces
	General Approach
	Demonstrational Interface Design Tools
	Strengths and Weaknesses
	Strengths
	Weaknesses

	Conclusion

	UIML
	UIML Document Structure
	General
	Structure
	Style
	Behavior
	Logic
	Presentation

	The Uiml.net renderer
	Introduction
	Architecture

	Conclusion

	III Development
	Domain-specific User Interface Builder
	Domain-specific Visual Language Editors
	Domain-specific Visual Languages
	Flexible Domain-specific Visual Language Editors

	The Graphical User Interface Domain
	Domain Objects
	Domain Vocabulary

	Domain-specific User Interface Builders
	General Characteristics
	Relation with Model-Based Design Tools

	Domain-specific User Interface Builder for UIML
	Domain Objects in UIML
	GUI Builder Components
	Managing the Interface Structure
	Serialization and Deserialization
	Multi-Container Domain Objects
	Shortcomings of the UIML Vocabulary

	Conclusion

	User Interface Interpolation
	User Interface Space
	Definition
	Adaptive Interfaces

	User Interface Space Covering Techniques
	Automated Layout Techniques
	Intelligent User Interface Techniques

	The User Interface Based Rendering Approach
	Image Based Rendering
	User Interface Based Rendering

	User Interface Interpolation
	Rule-Based User Interface Interpolation
	Goals
	User Interface Cloning
	Rules
	Rules in DSUIB-UIML
	The Rule Syntax
	Uiml.net Interpolation Runtime

	Results
	Conclusion

	IV Conclusion
	Conclusion
	Summary of the Results
	Future Work
	Domain-Specific User Interface Builder
	Rule-Based User Interface Interpolation

	V Appendices
	Dutch summary
	Inleiding
	Domeinspecifieke Gebruikersinterface Builders
	Gebruikersinterface-interpolatie
	Toekomstig Werk

	Bibliography

