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Abstract

Introduction: This project involved Parkinson’s Disease (PD) patients who were
randomized to two dual-task training interventions (Integrated and Consecutive)
with the aim of improving their dual-task performances and achieving better lifestyles.
The main objectives of this study were: 1) to check whether dual-task training could
result in improvements of dual-task performances among PD patients; 2) to assess
the more efficient training strategies employed in terms of dual-task performance
and safety.
Methods: LMM fitted on Gait velocity and NBM fitted on Fall counts were used
to assess the efficacy and safety respectively of the training exercises.
Results: Results confirmed that patients under the Integrated dual-task training
had higher rate of increase of Gait velocity and lower fall rate compared to pa-
tients under the Consecutive dual-task training but statistically the differences were
not significant (efficacy: est=0.63cm/s pvalue=0.4147, safety: est=-0.03 RR=0.97
pvalue=0.8916). Further result checks revealed that there was highest significant
increase of Gait velocity (about 11cm/s increase, pvalue<0.0001) at six weeks after
training interventions compared to measurements at the beginning of the study.
On the other hand, greatest drop in Fall counts (about 21% drop, pvalue=0.4218)
occurred six weeks after training interventions compared to Fall counts at baseline
though it was not significant.
Conclusion: In this study, it was concluded that the training practices actually
improved on the performance of the dual-task among the PD patients. Though In-
tegrated task seemed better than Consecutive in improving dual-task performances,
the two approaches did not differ much from each other and can be employed to
improve the dual-tasking abilities of PD patients. In addition to improved dual-task
performances achieved, better lifestyle was also realised since the fall rate among
the patients dropped as a result of performing the training practices. In the light of
the presence of missing responses common to most longitudinal clinical trials data,
accounting for missing data can be further addressed with the use of Selection Mod-
els methodology to give additional confidence in the findings gained so far from the
models already applied in this project.

Keywords :Dual-task, Missing At Random, Parkinson’s Disease, Sensitivity Analysis.
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1 Introduction and Literature Review

Parkinson’s Disease (PD), is a progressive disease of the nervous system marked by
tremor, postural instability, muscular rigidity and slow, imprecise movement (bradykine-
sia), chiefly affecting middle-aged and elderly people [30, 34]. Symptoms of Parkinson’s
disease can appear at any age, but the average age of onset is 60 [30]. One safety challenge
many patients with advanced PD face is “freezing”, which is the temporary, involuntary
inability to move [31]. The cause of freezing is unknown and freezing creates a danger
of falling because the beginning and end of a freezing episode are unpredictable [31].
Approximately 60 percent of people with PD fall each year and about two-thirds fall
recurrently [2]. Falls in PD occur mostly when turning or changing directions and is of-
ten related to a “freezing episode”. Not all people with PD experience freezing episodes,
but those who do are at a much higher risk of falling [31]. Apart from frequent falls
experienced by PD patients, they also face daily normal challenges of activities involving
multitasking.

In several activities of daily living, more than one task is executed at the same time. The
ability to execute dual tasks is highly advantageous and is a pre-requisite to normal life.
Walking around, for example, allows for communicating with someone else, transporting
of objects from one place to another and monitoring of the environment to avoid accidents
[33,42]. In normal circumstances, the concomitant execution of motor and cognitive
tasks is common, and in such situations, motor activities are performed "automatically",
with little or no effort in conscious attention required [12]. Such autonomous stage of
performance of a motor ability [14] is achieved through a process of motor learning in
which practice and its variability bring about the formation of action programs [40].

Action programs are controlled by open circuit, with little interference of feedback [40].
Therefore, demands on attention mechanisms necessary to efficient performance are very
low, facilitating attention to focus on other items relevant to task performance. From
this point on, it is possible for an individual to execute a second task simultaneously
with the first, without any interference in performance. Dual-task is the analysis of the
performance cost of a task executed simultaneously with a secondary task [19]. This
involves the execution of a primary task, which is the main focus of attention, and a
secondary task, performed simultaneously [33] but with different goals. The execution
of two tasks at the same time demands a high level of information processing and thus
performance of one or both tasks is deteriorated [4, 16]. The negative influence on the
primary and/or secondary task occurs because both tasks compete with similar processing
demands [4].

The influence of cognition or motor control alterations (or both) in the performance
of dual-task can be an important indicator of the functional status of a patient during
illness or during rehabilitation. Such alteration is usually regarded as motor-cognitive
interference [11]. After a cerebral lesion for example, motor-cognitive interference can
occur, causing activities which were previously automatic to require a controlled process,
with increased attention demands. This in turn deteriorates performance in dual tasks
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[16]. Such is common in patients with Parkinson’s Disease with a progressive degenerative
disorder of the central nervous system and as a consequence results in impairments of the
basal nuclei, with progressive loss of neurons from the substantia nigra pars compacta.
As a result of impairments in the basal ganglia, automatic task performance in people
with Parkinson’s disease is affected.

Patients with Parkinson’s Disease can generate normal motor patterns when they focus
their attention on performance, that is, when they think on the execution of movements
[47]. This way they activate the intact pre-motor cortex (Figure 1) area and avoid relying
on the impaired circuitry of the basal nuclei to assist in the production of movements.
In dual task situations, the use of these cortical resources to execute motor tasks can
restrict performance in both tasks. This is because secondary cognitive tasks rely on
these brain resources and when performing the two tasks together, it is more likely that
residual capacity will not be sufficient.

Figure 1: Overview of structures and functions of major components of brain (Motor
circuit of Basal ganglia)
Source: Sherwood (2011)

Wu and Hallett (2007) carried on a study to assess the correlation between neurons and
dual tasks performance in PD patients and healthy volunteers. They realised that after
practice, the dual tasks activated similar brain regions in both groups. It was realised
also that patients had greater activity in the cerebellum, premotor area and prefrontal
cortex compared to normal individuals. They concluded that difficulty in performing
two tasks simultaneously in PD patients is probably due to limited attentional resources,
defective central executive function and less automaticity in performing the tasks. From
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their findings, they recommended that practice can diminish dual-task interference and
improve performance in patients with PD.

In another study to assess the safety of exercises on PD patients conducted by Colleen
et al. [9], it was confirmed that fewer falls in exercise group were recorded compared to
patients who did not carry on the exercise.

However, in physiotherapeutic guidelines it is often advised to avoid dual-task training
in people with Parkinson’s disease because of an increased risk for adverse events such as
falls [18]. In recent years, there is however a tendency of supporting dual-task training in
people with PD since recent pilot studies showed improvements in clinical outcomes (gait,
balance) after dual-task training. In addition, dual-task training might make patients
aware of their limitations causing them to be more cautious when performing these kind
of tasks. As of now, large RCTs confirming these pilot study results are lacking and it
is still not known whether it is safe to use these kinds of interventions (independently of
possible clinical benefits these interventions might show).

To address these issues, in this project PD patients were trained under two dual-task
training strategies as a means of focusing their attention and improving in their perfor-
mances. The first strategy involved consecutive task training (CTT), whereby each task
was trained separately. The other strategy involved the integrated dual-task training
(IDT) in which the two tasks were performed simultaneously. Various gait parameters
were measured at four different sessions for each patient. Being a longitudinal study
involving patients, it is prone to missingness.

Missing observations frequently occur in all types of clinical trials especially in a repeated
measure data such as longitudinal study involving humans. Reasons for missing data in
a longitudinal trial study can range from causes such as accidents, patients’ refusal to
continue and illness of partner. A major problem in the analysis of clinical trials is missing
data caused by patients dropping out of the study before completion. This problem can
result in biased treatment comparisons and also impact the overall statistical power of the
study [26]. It can become more problematic if the rate, time to, and reason for withdrawal
differ widely among treatment groups. For these reasons, data analyses therefore should
pay special attention to incomplete data sets.

According to Little and Rubin [24], missing data have been classified into three different
types based on the possible reasons for the missingness: 1) missing completely at random
(MCAR) for which the missingness is not related to any observed and unobserved factors.
Examples here could be domestic relocation, suffering from an accident, or unrelated
illness. 2) missing at random (MAR) for which the missingness depends on observed
factors but is independent on the unobserved data. An example could be lack of efficacy
of treament. 3) missing not at random (MNAR) for which the missingness depends on
unobserved data as well as some observed factors. Previous analyses pointed out that
the MAR assumption may be more plausible in practice than that of MCAR [10,21].
Nevertheless, a MCAR missing mechanism is also a MAR but not every MAR is a
MCAR [44]. MNAR is useful in assessing the sensitivity of the results that are not MAR
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[8, 26].

There are several statistical approaches used to analyse longitudinal data with missing
values [7, 8, 23, 27, 41]. The methods chosen is based on the data missing mechanism,
since different statistical methods are valid only under certain missingness mechanism
with specified missing rates. This means there is no unique "best" method available for
all situations. Missingness mechanism is difficult to test in a longitudinal clinical study
and there is no clear definition into how much is considered as too much missing data
[27]. Sprint and Dupin-Sprint [41] pointed out that the tolerable amount of missing data
is that which will not hide an effect in the opposite direction. Two commonly used simple
methods of analysing missing data [26] are Complete Case Analysis (CCA) and Last
Observation Carried Forward (LOCF). CCA involves only individuals with data at all
time points. With LOCF, every missing value is replaced by the last observed value from
the same individual. CCA has some major shortcomings being that it suffers from loss of
information and consequently ineffiecient estimators and will produce bias results when
the data are MAR [26]. The LOCF technique can severely affect the features of a Linear
Mixed Model (Verbeke and Molenberghs, 1997, chapter 5). The LOCF, CCA and other
ad hoc approahes to deal with missing data can lead to serious bias. As a result, simple
methods of analysing missing data have been replaced recently by approaches including
Direct Likelihood (DL) and Multiple Imputation (MI) which are fully consistent with
Intention To Treat (ITT) paradigm and valid under MAR [26, 43]. Assuming data is
MAR, DL such as random effects model, and bayesian methods are valid procedures for
analysis [6, 15].

Several researchers have considered and constructed simulation studies for the proof of
strong consistency of imputation methods and to check the efficiency of the imputation
methods. For example, Myers [28] compared the results of two imputation methods (that
is, the complete case method and the multiple imputation method) based on simulated
data sets of three hundred patients with a dropout rate ranging from 20% to 60%. He
concluded that results from complete case method provided estimates and inference which
differ from the simulated complete data set. On the other hand, multiple imputation
provided mean values and results very close to those of the complete data set.

In a related study conducted by Ali, et al. [1], a simulated survival data analysis under
MCAR and MAR were compared for four imputation methods: complete case analysis
(CCA), means substitution (MS), and multiple imputation (MI) with and without the
inclusion of the outcome (MI+ and MI- respectively). The simulation results suggested
that in general MI+ was likely to be the best method.

Nakai et al. [29] concluded based on a simulation study that MI was the most effective
imputation method in longitudinal data analysis under MCAR.

Despite the positive views of the previous researchers towards MI, others preferred DL
over MI. For example Allison [35], stated that DL is more efficient than MI, for fully
efficiency of MI can only be achieved after producing and analysisng an infinite number
of data sets which is impossible.
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In addition to the view of the latter researcher, Allison and Schafer [17,35] both acknowl-
edged the fact that there is always a conflict between the imputation model and the
analysis model. Such can happen when the imputation model has predictors which are
absent in the analysis model. In such a situation some parameter estimates and standard
errors may differ between the DL and MI [17].

Although DL can be more efficient than MI, there are situations where MI has advantages
over DL. Molenberghs and Kenward [26] found that MI can work better in cases of
missing predictors. It was further discussed that in fitting population-averaged models
to repeated discrete outcomes with non-likelihood methods such as GEE, leads to results
which are valid under MCAR. They recommended the use of MI then GEE to produce
results which are valid under MAR. Finally, as a sensitivity analysis to assess the MAR
assumptions of the primary analyses, MI provide a convenient approach [26] by which
MNAR pattern mixture models can be used at the imputation step.

1.1 Objective and Hypothesis

Objectives: The objectives of this multicentered, single blind study were to check if
dual-task training could result in improvements in dual-task performance; to distinguish
between the two training strategies, the more efficient in terms of better dual-task out-
comes and more safe with respect to reduce fall rates. This can be re-expressed as follows:

1. Do the training groups differ with respect to change in dual-task outcomes from
baseline (0 and 6 weeks before intervention=T1 and T2 respectively) to post inter-
vention (6 weeks after randomization=T3) controlling for other important variables.

2. Do the training groups differ with respect to change in dual-task outcomes from
baseline (0 week before intervention=T1) to 12 weeks following intervention (T4)
controlling for other important variables.

Hypothesis: It is hypothesized that Integrated Dual Task (IDT) practice will lead to
better dual-task outcomes particularly in patients without cognitive impairment.
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2 Data Description

The data set consists of PD patients of both sexes, between 40 to 80 years of age and
who are at the Hoehn and Yahr stage II to III of the disease status. The patients were
randomly allocated to two training groups: G=1 involved 65 patients who carried on
six weeks of integrated dual task training (IDT); or G=0 which involved 56 patients
who did six weeks of consecutive task training (CTT). Both training methods involved
a walking and cognitive practice which were carried on at the patients’ premises at the
same rate with a 12 supervised sessions by a physiotherapist and 12 unsupervised sessions.
Preceding the randomised period was a 6 week control period for all the patients. A total
of 121 patients were recruited which was based on a pilot study previously conducted
that aimed for a sample size of 120 with a power set at 80% after subjects who withdrew
or lost-to-follow-up. The 120 sample size resulted in an expectation of 54 patients in
each arm. A drop out rate of 5% was realised. The two outcome variables of particular
interest were Gait Velocity (primary) in centimeter per second (V in cm/s) and Fall counts
(secondary). Gait velocity represents the distance covered in a second by a patient. It
was measured with the use of a GaitRite mat placed in quiet laboratories at Radboud
University Nijmegen Medical Centre, in the Netherlands and at the Catholic University of
Leuven in Belgium (Figure 2). Measurements were collected in four clinic visits including
baseline (T1), 6 weeks before training (T2), 6 weeks after training (T3) and after 12 weeks
follow-up periods (T4). Fall counts (FC) represent the total number of falls an individual
can experience within a period of time. It was recorded through a weekly phone call made
to patients by a specialist. Total Fall counts were then collected at four measurement
visits including first 6 weeks before training (T1), last 6 weeks before training (T2), first
six weeks after training (T3) and last six weeks after training (T4). Possible predictors
recorded for each patient at baseline included Hoehn and Yahr stages II and III (H=2
were 82 patients with stage II and H=3 were 39 patients of stage III), Freezing of Gait
(F=0 for 52 nonfreezers and F=1 for 69 freezers) and patient’s country (C=1 were 62
patients from Belgium and C=0 were 59 patients from the Netherlands).

Figure 2: GaitRite mat
Source: Strouwen (2014)
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3 Methodology

This was divided into the exploratory and analysis parts. For efficacy testing, analysis of
the dual-task was performed under three different measurements of Gait velocity based
on the three secondary tasks (a backward Digit Span task, an auditory Stroop task
and a Mobile Phone task) done during the testing sessions. This gave rise to three
Gait velocities: V1, V2 and V3 respectively. Results from V2 were of primary interest
because the cognitive task was not practised during the training session. To reinforce
on results and possible transfer of performance gained under trained tasks to untrained
tasks, results from V2 were compared to those of V1 and V3.

3.1 Exploratory Data Analysis (EDA)

Exploratory analysis of longitudinal data was done to discover patterns of systematic
variation across groups of patients, as well as aspects of random variation that distinguish
individual patients. In this project, the number of patients and their corresponding mean
velocity alongside the number of falls recorded at each test session were computed and
compared for each training group and country. This was further substantiated with mean
and patient profile plots between the two interventions on both response types. The
variability and correlation between responses at the different test sessions were assessed
both graphically and with some summary statistics. In addition to this, Gait velocity
and Fall counts from each patient were assumed to be normally and poisson distributed
respectively, and so, histograms and quantile plot were produced for each response per
treatment arm to illustrate the nature of the assumed distributions. The exploratory
approaches mentioned above, served as a guide in the modeling techniques applied in the
subsequent sections.

Before analysis of the data, reasons for dropout from the patients with missing values
were highlighted with some corresponding plausible missingness mechanism stated. This
served as a first exploratory guide to missingness mechanism (which is normally assumed
during data analysis) plausible with the data.

More formally, logistic regression (Dropout Model ) analysis was used to establish key
independent predictors of withdrawal. MAR is often considered more plausible if missing
data are mainly due to monotone, with a scattering of nonmonotone missing data [26].

3.2 Accounting for missing data: Direct Likelihood (DL) and
Multiple Imputation (MI) Approaches.

Many techniques have been developed to handle missing data in longitudinal clinical
trials. However, there are few methods that are actually used in real trials with missing
data. In this project, primary analysis was based on the DL and MI under the MAR
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assumptions. Further analyses were also done using CCA and MI under the MCAR and
MNAR assumptions respectively as part of sensitivity analyses.

Direct Likelihood: This involves fitting a model with likelihood estimation facilities
which can handle incompletely observed data. DL approach can be applied to both
continuous and discrete repeatedly measured outcomes. The principle and approach
to DL in missing data analysis is based on the following: For every independent subject
i=1,...,N in a study, let Yij be a set of planned measurements for subject i at measurement
time j, and Rij be missing data indicator (1 if Yij is observed and 0 if Yij is missing). The
full data (Yi Rij) with Yij (Y o

i = observed or Y m
i = missing) is modeled as illustrated

below:

f(Y o
i , Ri/θ, ψ) = f(Y o

i /Xi, θ)f(Ri/Y
o
i , ψ) (1)

where θ and ψ are the parameters for the measurement and missingness processes re-
spectively and Xi the matrix of covariates. Within the likelihood framework, if the
observed data and missingness process are independent of each other, the separability
condition is fulfilled [26]. Under this condition, inference can be made solely under the
marginal observed data, f(Y o

i /Xi, θ), while ignoring the missingness process (unless it
is of scientific interest). According to Rubin (1976) and Molenberghs and Kenward [26],
likelihood based methods and inference with ignorability condtion are valid under the
MAR assmptions. Two commonly used likelihood methods are the linear mixed model
(LMM) for continuous outcome and generalized linear mixed model (GLMM) for discrete
outcomes. Parameters under the LMM model have both marginal and subject-specific
interpretations whereas those of the GLMM have subject-specific interpretions. Either
of them can be applied with respect to the research question of interest.

Since Gait velocity is a continuous response, the LMM [26, 43] was used. Given Vi being
the vector of measurements of Gait velocity available for patient i, a general linear mixed
model can be expressed as:

Vi = Xiβ + Zibi + εi (2)

where β is a vector of population-averaged regression coefficients representing the fixed
effects which are often of scientific interest, bi is a vector of patient-specific regression co-
efficients which measure how a PD patient deviates from the average in the population of
interest. Xi and Zi are the matrices of known covariates (G, T, F, H, C and interactions).
The random effects (bi) and the residual components (εi) are assumed to be independent
and normally distributed expressed as N(0, G) and N(0, Σi) respectively. Inference in
LMM, is usually based on maximum likelihood (ML) or restricted maximum likelihood
(REML) for both the fixed effect parameters and variance components. The fitting of
a Linear Mixed Model usually lead to an implied marginal model with mean Xiβ and
covariance Vi(α) = ZiGZi

′ + Σi, with α being the ’variance components’ in the matrices
of D and Σi. This can be accomplished by fitting a LMM for incomplete longitudinal
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gait velocity measures using the SAS procedure, PROC MIXED and will lead to valid
estimates and likelihood ratios under MAR [26].

If interest on inference is based on β, t and F distributions are often used with de-
nominator degrees of freedom estimated either by Satterthwaite or Kenward and Roger
approximation methods [Satterthwaite 1941; Kenward and Roger 1997]. On the other
hand inference for some of the αs can be done by using classical wald, score and likelihood
ratio test. But the null hypothesis of some of the parameters (variance of random effects)
usually have boundary problems and as a consequent, the mixture of chisquare are used
to get an appropriate likelihood ratio test and p values [ Stram and Lee (1994, 1995),
Molenberghs and Verbeke (2006)].

Multiple Imputation: Multiple Imputation proposed by Rubin [37] to analyze incom-
plete data under the MAR missing mechanism is a method whereby missing values in the
data set are filled multiple times with plausible estimates to generate multiple (m) data
sets. Then, these imputed data sets are analyzed by standard procedures that are com-
monly used in analyzing complete data sets. Finally, the results of analyses are combined
to provide a single estimate of parameters of interest, together with standard errors that
reflect the uncertainty common to imputed data set [3, 13]. In principle, the m data sets
will form m different estimates of the regression parameters, β (i.e β̂(k) for k=1,...,m) and
the respective estimates for variance-covariance. The final estimates are then calculated
thus:

β̂ =
1

m

m∑
k=1

β̂(k) (3)

and

Ĉov(β̂) = W + (1 +m−1)B (4)

where W and B are the within and between imputation variability respectively.

Under the MAR assumption, MI is based on the expression given below:

f(Y m
i /Y o

i , Xi, Ri) = f(Y o
i /Xi, θ)︸ ︷︷ ︸

predictive,distribution

(5)

From the expression, imputation of Y m
i is obtained by randomly drawing values from the

predictive distribution. In this setting, the predictive distribution of the missing data
given the observed data does not depend on the missing data indicator, Ri. When the
data missing pattern is monotone, regression method can be applied to impute the missing
values. This requires the data to be in the "horizontal format" and the first response is
always observed. Subsequent responses have missing data due to attrition and the amount
of missingness increases as the response number increases. The appropriate regression
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model first predict Yi2 from Yi1 and Xi from which random samples are drawn to fill the
missing values in the second response. This is done sequentially to the last response.
For nonmonotone missingness Schafer (1997) proposed draws using the Markov chain
Monte Carlo (MCMC) methods. In the MCMC approach, the Markov chains are drawn
repeatedly and long enough until convergence. Once target distribution is attained, draws
can be made from the posterior distribution (multivariate normal) which are used to fill
the missing responses. Both MCMC and regression methods will lead to similar results
for monotone missingness pattern and can be applied in SAS using the procedure PROC
MI. A few assumptions and constraints of MI are: 1) missing data mechanism should be
MAR; 2) the imputation model must match the analysis model [6]; and 3) the algorithm
used to generate imputed values must accommodate the variables associated with the
missingness of the data as well as other related variables. Two major advantages of MI
are that it allows the use of complete data methods for data analysis and it incorporates
random errors in the imputation process. MI can accommodate any model with any
data and does not require specialized software. In addition, MI increases efficiency of the
estimates through minimizing the standard errors [37]. However, Rubin [37] pointed out
that the three disadvantages of MI are more effort to create the multiple imputations,
more time to run the analyses, and more computer storage space for the imputed data
sets.

The MI method was used for the Fall count data. In line with the response being discrete,
likelihood methods appropriate for it under the MAR is GLMM. Since research questions
are population based, appropriate models which are valid under MAR would be the MI
using MCMC method at the imputation step and later fitting the imputed data using
appropriate Count regression model under the GEE approach. Assuming a Poisson model
for the Fall counts, after filling the data multiple times each imputed data is then fitted
using the following marginal model formulation:

log(E[FCij]) = β0 + β1Xi1 + ...+ βpXip (6)

where βi are the fixed effects andXi the covariates and V ar(Fcij) = φv(E[FCij]) where φ
is the scale parameter that needs to be estimated. Correlation in the data, Cor(Yij, Yik) =
α also needs to be estimated. The GEE approach to estimate the parameters, solves the
following equations:

n∑
i=1

D
′

iV
−1
i (yi − E[FC]) = 0 (7)

where Vi is the "working" covariance matrix, Di the "derivative" matrix of expected FC
with respect to β. These equations are solved iteratively where β, α and φ are updated
until convergence is attained.

As an approach to sensitivity analysis under MNAR, MI was used for both FC and V
models. In this approach, the predictive distributions from which Y m

i values can be filled
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were modified to depend on Ri or other missing pattern specified. This changed the
missingness mechanism from MAR to MNAR and draws from the modified predictive
distributions were done using the MI methodology described above.

3.3 Statistical Analysis

The presence of missing responses in the data require statistical modeling strategies to
account for the missingness in the data as elaborated above.

First analysis was to explore the dependence of the missing responses on previous ob-
served responses (P), and other covariates. This was done by fitting a logistic dropout
model [26] as stated in equation (8).

logit[p(dropout)] = ψ0 +ψ1Pi +ψ2Gi +ψ3Fi +ψ4Hi +ψ5Ci +ψ6Ti +ψ7T
2
i +ψ8Gi ∗Ti (8)

Fitting this model helped to have an idea of the type of assumptions of missingness (MAR
or MCAR) prominent with respect to the data. Nevertheless, a data which is MCAR is
also MAR but not the reverse [26, 44]. By this setting, the proceeding modeling for both
responses was done under MAR assumptions and sensitivity of results were assessed by
further model fitting under the MNAR assumptions.

3.3.1 Efficacy

For efficacy testing, a saturated linear mixed model (LMM) for missing Gait velocity was
fitted as illustrated below:

Vij = (b0i + β0) + β1Groupi + (b1i + β2)Timeij + (b2i + β3)Time
2
ij + β4Freezingi +

β5Hoehn_Y ahri + β6Countryi + β7Groupi ∗ Timeij + β8Groupi ∗ Time2ij + εij

where b0i, b1i, b2i, and εij are the random patient’s effects for the intercept, linear time,
quadratic time and error terms respectively. The random effects were introduced into the
model to account for the correlations of repeated Gait velocity measurements for each
patient.

According to Verbeke & Molenberghs [43], such complex structure will favour getting
consistent estimators for both the mean and covariance structures during model building.
The initial model structure was then reduced to a parsimonious structure through the
top down model building approach [43]. Similar analysis was done through multiple
imputation (Rubin 1987) by which the missing responses were filled 50 times (using
PROC MI in SAS) from a predictive multivariate normal distribution using the MCMC
method as described under multiple imputation methodology above. Each of the filled
data were then fitted using the LMM and with the use of PROCMIANALYZE in SAS, the
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results were combined to produce single estimates for both the fixed effects and covariance
parameters. Both analyses are valid under the MAR [26] and were compared to each other
for consistency of results and inference. Based on some literature as discussed earlier,
results from LMM (MAR1) was finally preferred to MI then LMM (MAR2) [17, 35].

3.3.2 Safety

In this analysis, Count regression models such as Poisson or Negative Binomial regression
are much more appropriate [13]. Models on Poisson distribution assume that the mean
and variance of fall counts are equal. For the Negative Binomial Models (NBM), this
assumption is relaxed since it can handle data with variance greater than the means
(overdispersion) by correcting for overdispersion which very often occurs in real data
setting [13]. The choice between the two models was done both graphically and with
the use of Pearson Chisquare goodness-of-fit statistics, BIC and AIC values. In Count
regression models, the predictors are connected to the outcomes (Fall counts), via a
natural logarithmic link function. Just like in logistic regression, the coefficients are
usually exponentiated and interpreted as incidence rate ratios (IRR).

For the safety testing, an initial saturated Poisson model (PM) [3,13] was fitted based
on Generalized Estimating Equations [22] with an initial unstructured (UN) covariance
matrix to cater for the correlation of the repeated Fall counts per patient:

log[E(FCij)] = β0+β1Groupi+β2Timeij +β3Time
2
ij +β4Freezingi+β5Hoehn_Y ahri+

β6Countryi + β7Groupi ∗ Timeij + β8Groupi ∗ Time2ij

where the βs are interpreted as the log of the incidence rate of Fall counts for each
population of interest.

Reduction of the model was done by first choosing an appropriate covariance structure.
This was achieved by comparing the empirical (EBSE) and model based (MBSE) stan-
dard errors. The model whose EBSE and MBSE were closed to each other was considered
appropriate. The fixed effects were then reduced by removing insignificant terms and also
keeping some terms based on the research questions. Since the response is a count data
and there can be a possibility of overdispersion, a Negative Binomial Model (NBM) was
also fitted under the GEE approach with the unstructure covariance matrix as an initial
choice [3,13].

The two initial models fitted using the GEE approach to the missing Fall counts was
done under the nonlikelihood approach and parameters estimated iteratively through
the generalized estimating equations until convergence is reached. These models are
valid under MCAR [26].

Since inference with respect to the research questions is population based, a similar
model (either NBM or PM) was fitted after filling in the missing Fall counts 50 times
using the MCMC methods applied in multiple imputation as described above. The 50
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imputed data sets were then modelled under GEE approach and the results from each
data combined using PROC MIANALYZE in SAS to get a parsimonious final model.
This final model (MI then GEE) is valid under MAR and was chosen for the primary
analysis of the safety testing because of its broader validity and also based on what was
observed in the literature from the papers of other researchers [26]. The model under
MCAR was considered for sensitivity analysis.

3.3.3 Sensitivity Analysis (SA)

The missing data model of the MAR assumption used as the primary analysis whose
assumptions cannot be checked still needs to be assessed for the sensitivity of results to
change in assumptions. The purpose of an SA is to analyse the missing data under differ-
ent assumptions regarding missingness in order to ascertain a range of conditions under
which the study conclusions are robust as well as conditions under which conclusions can
be overruled [26]. This is the principle behind the sensitivity analysis approach used in
this project.

Having a thorough knowledge for the reasons of missing data from the EDA, a systematic
approach begins here with accounting for the reasons (mechanism) which caused the data
to be missing. Three prominent models for such analysis are the Pattern Mixture Models,
Selection Models and Shared Parameter Models [26]. In this project focus was based on
MNAR models obtained using the standard SAS procedures for MI (PROC MI and
MIANALYZE) based on PMMs. In this approach, patients are put into groups based on
common patterns of missing data (such as: time of dropout, reasons for discontinuation,
treatment arms to which patients are randomised. The full data model under PMM is
expressed as below:

f(Y o
i , Y

m
i , Ri/Xi) = f(Ri/Xi, )︸ ︷︷ ︸

MIM

∗ f(Y o
i /Xi, Ri)︸ ︷︷ ︸
ADM

∗ f(Y m
i /Y o

i , Xi, Ri)︸ ︷︷ ︸
PDM

(9)

where MIM=missingness indicator model, ADM=available data model within each pat-
tern, PDM=predictive distribution model within each pattern.

Due to missing values in some patterns, some parameters in PDM cannot be computed
and as a consequence, "identifying restrictions" (ADM) are explicitly imposed or equated
to the PDM. Imputation is then followed using sequence of calls to PROC MI with
a MONOTONE statement (if data is not monotone). This is in contrast to a single
call typically done to fill values under the MAR assumptions [26]. In this project two
pattern-mixture MNAR models were constructed using the multiple imputation approach
as discussed below:

MNAR1: Adjusted Imputed responses: For MNAR1 model analysis, PD patients
were grouped according to having or not having missing responses within each training
group. The focus here was to check if the pattern of the data was the same in patients

19



who do and do not have missing responses. In this analysis the distributions of the
missing responses (PDM) were filled from the corresponding observed responses (ADM)
50 times using the MCMC method. Each imputed value were then adjusted with some
arbitrary parameters at the different sessions. For the Gait velocity, it was assumed that
the distribution of missing Gait velocity at T1, T2, T3 and T4 had expected values that
were 2, 4, 6 and 8 respectively, lower than those of the corresponding distribution of the
observed Gait velocity at T1, T2, T3 and T4. On the other hand, it was assumed that
the distribution of missing Fall counts at T1, T2, T3 and T4 had expected values that
were 0.1 higher than those of the corresponding distribution of the observed fall counts at
T1, T2, T3 and T4 [9, 38]. The 50 imputed data sets were then analysed using LMM for
Gait velocity or an appropriate Count regression model under GEE for Fall counts. The
results from each data set were then combined using PROC MIANALYZE to produce
final estimates for the MNAR1 model.

MNAR2: Complete Case Missing Value Restrictions: For MNAR2 model anal-
ysis, PD patients were grouped with respect to time of discontinuation of studies. The
missing responses for each pattern of missingness (PDM) were filled in from the observed
data from the completers (ADM) using the regression method approach. This was done
50 times based on the standard MI approached discussed earlier. The 50 imputed data
sets were then analysed using LMM for Gait velocity or an appropriate Count regression
model under GEE for Fall counts. The results from each data set were then combined
using PROC MIANALYZE to produce final estimates for the MNAR2 model.

The results and estimates were assessed to check for sensitivity of results to assumptions
made on the data. The final model was checked with respect to fits and assumptions
levied on the residuals and random effects. This was done with the use of diagnostic plots
including histogram, QQ plot, and plots between predicted and observed responses.
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4 Results and Discussion

4.1 Efficacy

4.1.1 Exploratory Data Analysis

Table 1 shows the mean and standard deviations of V2 ( Gait velocity from walking and
untrained stroop tasks) for each training group and country. From Test session 1 to 4, the
mean values seem not to differ much between the intervention groups (CTT and IDT).
On average, there seem to be an increasing Gait velocity trend in both treatment groups.
At the end of the study, 5 patients dropped out from the CTT group as compared to
7 patients in IDT. Patients from Belgium (BE) seem to have higher Gait velocity as
compared to patients from Netherlands (NL) but the difference is not much. At the
end of the study, 3 patients were missing for Belgium compared to 9 patients from the
Netherlands. The standard deviation of the mean Gait velocity across the different Test
sessions seem fairly constant hence depicting the presence of constant variance.

Table 1: Mean(standard deviation) V2 per Training Group and Country

CTT IDT BE NL

T N n mean(sd) N n mean(sd) N n mean(sd) N n mean(sd)

1 65 65 92.63(19.95) 56 56 91.43(21.46) 62 62 93.55(19.41) 59 59 90.53(22.28)
2 65 62 92.60(18.04) 56 53 94.60(20.26) 62 62 94.34(18.55) 59 53 92.57(19.71)
3 65 61 102.32(20.18) 56 53 105.28(18.62) 62 60 103.06(21.71) 59 54 104.40(16.75)
4 65 60 98.98(21.75) 56 49 103.45(19.49) 62 59 102.87(21.52) 59 50 98.77(19.89)

N=number of patients at beginning of study,
n=number of patients remaining at each test session, T=test session

Figure 3: Patient V2 profile for CTT Figure 4: Patient V2 profile for IDT

Figures 3 and 4 illustrate the patients Gait velocity profile plots in the CTT and IDT
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groups respectively. There seem to be much between patient variability compared to
within patient variability. This suggests the presence of random effects and strong cor-
relation between Gait velocity measurements within patients compared to Gait velocity
values between patients. Studying the average Gait velocity evolution over time (Fig-
ure 5), indicates no much difference between the IDT and CTT training practices but
the trend seem to present some downward curvature after Test session 3. This kind of
trend suggest a quadratic evolution of V2 with time. Figure 6 and Table 2 show the
relation between Gait velocity values at each Test session. The values show significant
raw association in the data that need to be accounted for during modeling. Similar trend
in the patient profile, mean structure and associations were observed with V1 and V3
(Appendices A and B).

Figure 5: Mean Evolution of V2 Figure 6: Scatter Plot for V2

Table 2: Pearson correlation between V2 values at the test sessions

vel1 vel2 vel3 vel4

vel1 1 0.81364 0.68378 0.649
<.0001 <.0001 <.0001

vel2 1 0.7605 0.73337
<.0001 <.0001

vel3 1 0.83376
<.0001

vel4 1
vel=Gait velocity

Analysis of LMMs are carried out under the assumption that missing data are missing
at random (MAR). Under MAR, the probability of having missing data on Gait veloc-
ity may depend on the previous observed Gait velocity but not on missing Gait Velocity
and according to Verbeke and Molenberghs (2000), inference based on maximum likeli-
hood methods are valid. Apart from MAR, Little and Rubin (2002) and Allison (2001)
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highlighted two other assumptions of missing data patterns: missing completely at
random (MCAR) in which the probability of missing Gait velocity does not depend on
previous observed Gait velocity and missing not at random, MNAR, which assumes
that the chance of missingness depends on the value of the missing Gait velocity as well
as the observed Gait velocity. In this analysis, the two main types of missingness pattern
were explored. These include the monotone missingness where Gait velocity from a
certain test session onward will be unobserved and nonmonotone missingness in which
the unobserved Gait velocity values are being observed at certain test session later in the
study. From Table 3, nonmonotone missingness accounted for about 2% in CTT and
2% in IDT group, while monotone missingness accounted for about 6% of the missing
Gait velocity in CTT and 12% in IDT group. The remaining are completers who had
measurements at all the test sessions. Missingness pattern for V1 and V3 are found in
Tables 16 and 19 of Appendix B. Results from all Gait velocity values, revealed higher
missing values were recorded for patients in the IDT group compared to patients in the
CTT group.

Table 3: Missingness pattern based on V2 per treatment group

CTT IDT

Pattern T1 T2 T3 T4 n % T1 T2 T3 T4 n %

1 O O O O 60 92.3 O O O O 48 85.7
2 O O M M 2 3.1 O O O M 4 7.1
3 O M M M 2 3.1 O O M M 1 1.8
4 O M O M 1 1.5 O M M M 2 3.6
5 O M O O 1 1.8

n=number of patients for each pattern of missingness

In the analysis, the reasons for missing Gait velocity as stipulated in the design study and
missingness mechanism were explored with the use of a dropout model. This actually
helped in the plausibility of the assumed missingness mechanism in the data. These
reasons were recorded both after Randomisation and at Follow-up periods:

Randomisation

• Five patients did not receive the allocated interventions with reasons such as: time
consuming (MCAR); illness of partner (MCAR); relapse of disease (MAR); opera-
tion of knee (MAR); testing too intense (MCAR).

Follow-up

For the patients that were followed up and had missingness,

23



• The reasons included: discontinued intervention because of hospital stay (MAR);
operation of back (MAR); cerebrovascular accident after test 3 (MNAR); illness of
partner (MCAR); operation after test 3 (MNAR).

The dropout models results in Table 20 Appendix B, revealed insignificant effect of all
covariates and including previous Gait velocity . There was a lone significant effect of
country for V1. It can be concluded that missingnesss does not depend on the previous
Gait velocity and other covariates except country. This means there is high chance of
valid analysis based on MCAR for V2 and V3 which implied MAR and a higher chance
for valid results under MAR for V1. Not withstanding the plausibility of results under
MCAR and MAR, sensitivity of results still need to be confirmed under MNAR.

4.1.2 Statistical Analysis

To get a parsimonious model for Gait velocity, the initial saturated LMM highlighted
at the methodology, was reduced using the "top-down" model building approach. Re-
sults led to a significant random quadratic term for time for both V1 (LRT=12.5,
pvalue=0.0039) and V2 (LRT=9.2, pvalue=0.0184) meanwhile only the random patient
intercept was left for V3 since the other two were insignificant. For V2, the maximised
REML loglikelihood involving all three random effects was 3651.3 while the REML log-
likelihood involving the random intercept and linear slope was 3660.5. This gave a gain
in loglikelihood of 9.2 and based on a mixture of chisquare led to a significant p value
of 0.0184. Variance variation was also assessed for the error terms by allowing for a
gaussian serial correlation but the difference in REML loglikelihood was small for all
three Gait velocities. Details can be found in Table 21, Appendix B. Consequently, the
independent identity variance-covariance structure was adopted with no serial correla-
tion. The fixed effects from the loaded initial model were reduced with the use of a t-test
under Restricted Maximum Likelihood (REML) estimation approach. Based on the re-
search question, a reduced model was formed having all significant main effects, linear
and quadratic terms for Time and the interaction between Time and Training Group. A
further test for the need of a quadratic Time was done by comparing the models with
linear and quadratic Time. This was done with the use of Likelihood ratio Test under
the Maximum Likelihood (ML) estimation approach. The result was further confirmed
with the significance of the t-test for the quadratic time effect (Tables 4, 5, 6). Both
results confirmed significant quadratic effect for the Time for all the Gait velocities and
led to the final reduced model illustrated below:

Vij = (b0i +β0) +β1Gi +β2Hi +β3Fi +β4Ci + (b1i +β5)Tij + (b2i +β6)T
2
ij +β7Gi ∗Tij + εij

where i = 1, 2, ..., 121, j = 1, 2, 3, 4, Vij=Gait velocity of patient i at Test session j, b0i,
b1i, b2i, and εij are the random patient intercepts, linear slopes, quadratic slopes and
error term respectively.

Tables 4, 5 and 6 show the model parameter estimates, standard errors and pvalues
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obtained from the three different Gait velocity measurements. All results from different
missingness mechanisms were compared to each other and summarised on the Tables as
sensitivity analysis tools. The different assumptions being tested included MCAR (for
LMM under CCA analysis), MAR1 (for LMM under DL analysis), MAR2 (for LMM
under MI), MNAR1 (for PMM with Shift-parameter approach) and MNAR2 (for PMM
under CCMV approach). With respect to the research question, some insignificant effects
were kept including training group, freezing and interaction term between training group
and time.

Examining these results, it was observed that the estimates for the corresponding param-
eters are comparable and their numerical values were indeed very close to each other. It
can be seen from the analyses that the associated p-values for the fixed effect assessments
of group, freezing and interaction between group and time were all insignificant, their
p-values being all greater than 5%. However, the associated p-values for the intercepts,
Hoehn & Yahr, Time and Time2 were significant and an additional significant Country
effect was realised with V3 (pvalues < 0.05). The parameter estimates for Hoehn &
Yahr based on CCA and DL are almost twice those obtained from MI which is in con-
formity to what was discussed by Allison and Schafer [17, 35]. In addition to this the
variance components estimates did not differ much from each other. As observed from
the EDA, estimates for the between variance were much higher compared to estimates
for the within variance (for V2: Var(b0i) + Var(b1i) + Var(b2i)=332.6 » Var(ε)=87.08
). In summary, the results and inference based on the different assumptions did not
change significantly and as a consequent give more weight to conclusions under the MAR
assumptions which was deemed plausible for the data. The assumed normal distribution
for the error terms and model fit of the data was explored through some diagnostic plots
(Figure 19 Appendix A). The plots based on studentized residuals confirmed the fit and
assumptions were fulfilled.

Table 4: Model parameter estimates(standard errors) and pvalues under the MCAR,
MAR and MNAR assumptions for V2

MCAR MAR1 MAR2 MNAR1 MNAR2

Effects Est(se) P value Est(se) P value Est(se) P value Est(se) P value Est(se) P value

Intercept 94.15(3.02) <.0001* 96.14(2.92) <.0001* 97.47(3.03) <.0001* 96.77(2.99) <.0001* 97.61(3.02) <.0001*
Group 1.96(3.47) 0.5726 0.74(3.31) 0.8230 -1.09(3.42) 0.0750 -0.67(3.37) 0.8437 -1.17(3.42) 0.7333
Hoehn & Yahr -8.18(1.82) <.0001* -8.28(1.75) <.0001* -14.14(3.73) 0.0002* -13.34(3.67) 0.0003* -14.24(3.71) 0.0001*
Freezing -3.51(3.30) 0.2888 -5.17(3.15) 0.1035 -4.63(3.24) 0.1523 -4.09(3.20) 0.2011 -4.77(3.22) 0.1387
Time 7.48(1.25) <.0001* 7.47(1.21) <.0001* 7.84(1.24) <0.0001* 7.06(1.29) <.0001* 7.70(1.23) <.0001*
Time2 -1.28(0.25) <.0001* -1.28(0.24) <.0001* -1.34(0.24) <0.0001* -1.26(0.25) <.0001* -1.33(0.24) <.0001*
Group*Time 0.60(0.78) 0.4444 0.63(0.77) 0.4147 0.75(0.79) 0.3451 0.87(0.84) 0.2969 0.88(0.79) 0.2646

Variance Components

Var(b0i) 314.47 315.43
Cov(boi,b1i) -48.75 -48.35
Var(b1i) 19.50 17.92
Cov(boi,b2i) 7.27 7.02
Cov(b1i,b2i) 0.08 0.31
Var(b2i) -0.73 -0.75
Var(ε) 88.18 87.08

*=significant at 5%, Est=estimate, se=standard error, Var=variance, Cov=covariance

Results from V2 based on MAR1, show a positive effect of interaction between Time
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and Training Groups keeping other variables constant. This means the rate of change of
Gait velocity for patients in IDT is more compared to patients in CTT but the difference
was insignificant (Est=0.63, pvalue=0.4147). On the other hand, there was a significant
common positive effect of Time in the Training Groups. Hence, the Gait velocity in both
training groups was increasing significantly (Est=7.47, pvalue<.0001). Though there was
a significant increasing Gait velocity, there was a subsequent significant drop at some
point in time of the study. This was because there was a significant downward curvature
for quadratic Time (Est=-1.28, pvalue<.0001). Similar trend of Gait velocity evolution
was observed with results from V1 and V3 in Tables 5 and 6 respectively. Comparing
the results from the three Gait velocities, it was realised that patients increased their
velocities fastest when performing walking and trained Digit Span (WDS) compared to
the other dual-tasks. Walking and Mobile phone tasks (WMT) resulted in the slowest
increase in patients’ velocities. Among all three dual-tasking procedures tested, walking
and Stroop task (WST) had the steepest drop in Gait velocity while WMT had the
slowest drop.

Table 5: Model parameter estimates (standard errors) and pvalues under the MCAR,
MAR and MNAR assumptions for V1

MCAR MAR1 MAR2 MNAR1 MNAR2

Effects Est(se) P value Est(se) P value Est(se) Pvalue Est(se) P value Est(se) P value

Intercept 92.74(3.18) <.0001* 94.89(2.91) <.0001* 96.36(3.02) <.0001* 95.67(3.03) <.0001* 96.45(3.01) <.0001*
Group 1.54(3.57) 0.6667 0.14(3.29) 0.9672 -2.03(3.40) 0.5497 -1.44(3.38) 0.6709 -2.04(3.38) 0.5453
Hoehn & Yahr -7.81(1.84) <.0001* -7.38(1.74) <.0001* -14.04(3.73) 0.0002* -13.14(3.77) 0.0005* -14.02(3.72) 0.0002*
Freezing -2.79(3.44) 0.4184 -5.30(3.18) 0.0976 -4.45(3.22) 0.1669 -3.77(3.27) 0.248 -4.53(3.23) 0.1606
Time 7.94(1.33) <.0001* 7.59(1.26) <.0001* 8.03(1.29) <0.0001* 6.54(1.40) <.0001* 8.02(1.29) <.0001*
Time2 -1.24(0.27) <.0001* -1.18(0.25) <.0001* -1.26(0.26) <0.0001* -1.09(0.27) <.0001* -1.27(0.26) <.0001*
Group*Time -0.04(0.73) 0.9570 0.02(0.72) 0.9809 0.27(0.75) 0.7198 0.41(0.82) 0.6155 0.29(0.74) 0.6987

Variance Components

Var(b0i) 325.62 322.47
Cov(boi,b1i) -59.51 -61.35
Var(b1i) 47.79 46.54
Cov(boi,b2i) 10.22 10.52
Cov(b1i,b2i) -6.51 -6.38
Var(b2i) 0.7 0.72
Var(ε) 81.48 78.59

*=significant at 5%, Est=estimate, se=standard error, Var=variance, Cov=covariance

Controlling for other factors in the model, Hoehn and Yahr stage III (H3) patients did
worse compared to stage II (H2) patients in terms of Gait velocities gotten from the
different dual-task performances. H3 patients on average had significantly less Gait
velocities compared to stage II patients during the study period. Results from WST,
WDS and WPT testing procedures showed that the Gait velocities for H3 patients were
respectively 8.28cm/s, 7.38 cm/s and 7.41cm/s less than those of H2 patients. In the
same scenario, freezers of gait experienced less Gait velocities compared to non-freezers
though the difference was not significant statistically from all three approaches of dual
practices.
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Table 6: Model parameter estimates (standard errors) and pvalues under the MCAR,
MAR and MNAR assumptions for V3

MCAR MAR1 MAR2 MNAR1 MNAR2

Effects Est(se) P value Est(se) P value Est(se) P value Est(se) P value Est(se) P value

Intercept 76.77(3.72) <.0001* 78.29(3.61) <.0001* 79.49(3.64) <.0001* 78.65(3.66) <.0001* 79.46(3.65) <.0001*
Group 1.51(3.78) 0.6905 0.36(3.68) 0.9221 -1.44(3.71) 0.6975 -1.20(3.73) 0.7479 -1.51(3.72) 0.6851
Hoehn & Yahr -8.15(1.93) <.0001* -7.41(1.88) <.0001* -14.49(4.22) 0.0006* -13.85(4.23) 0.0011* -14.39(4.23) 0.0007*
Freezing -2.38(3.65) 0.5157 -4.00(3.59) 0.2664 -2.85(3.66) 0.4363 -2.71(3.68) 0.4614 -2.88(3.67) 0.4325
Country 9.63(3.59) 0.0085* 9.76(3.52) 0.0065* 10.05(3.51) 0.0042* 11.05(3.52) 0.0017* 10.13(3.52) 0.0040*
Time 5.92(1.24) <.0001* 5.61(1.23) <.0001* 5.91(1.27 <0.0001* 5.27(1.30) <.0001* 5.99(1.24) <.0001*
Time2 -0.87(0.28) 0.0021* -0.80(0.28) 0.0039* -0.85(0.28) 0.0023* -0.77(0.29) 0.0078* -0.88(0.28) 0.0016*
Group*Time 0.27(0.68) 0.6900 0.23(0.67) 0.7285 0.35(0.69) 0.6108 0.22(0.72) 0.7540 0.35(0.70) 0.6125

Variance Components

Var(b0i) 318.64 333.79
Var(ε) 108.42 109.23

*=significant at 5%, Est=estimate, se=standard error, Var=variance

Since the study took place at two different trial centers (Belgium=BE and Nether-
lands=NL) with the hope of patients being exposed to same conditions of treatment,
country was not expected to have significant effect. On the contrary, results from WMT
testing procedure depicted that patients from Belgium on average portrayed a signifi-
cant 9.76cm/s higher Gait velocity than patients from the Netherlands which remained
constant over time.

Further analysis was carried on with respect to some specific questions of interest as
stated by the hypothesis. Based on that, the above model was reparameterized and
the insignificant interaction term was removed. Due to some computational problems
realised from the output in SAS, the nobound option was used alongside the PROC
MIXED statement and the random effects for linear and quadratic time were omitted to
have a positive definite variance component in the implied marginal model [5,32,43]. The
nobound option actually helped to remove constraints levied on some variance compo-
nents (such as negative variance for random slope realised). In a related note, removing
some higher order terms for the random effects solved the problem of "infinite likelihood"
realised from the analysis. Added to this, Verbeke and Molenberghs [45] stated that dif-
ferent hierarchical models can lead to the same marginal model but the reverse is not
true. This was realised from this analysis since estimates and inference did not change
from the model that was not reparameterized. The final model was thus expressed as
follows:

Vij = β0 + β1Gi + β2Ti2 + β3Ti3 + β4Ti4 + β5Hi + β6Fi + β7Ci + β8T
2
ij + b0i + εij

where β3, β4, and β3 − β2 are the differences in estimated Gait velocities between time
points T1 vs T3, T1 vs T4 and T2 vs T3 respectively. These differences were common
in both intervention groups since there was no significant interaction with time points.
Figure 7 shows the mean predicted Gait velocity for V2. From the plot, highest value
(104cm/s) was reached at test session 2 (T3) which was the period of 6 weeks after
training practices. Similar trend was observed for V1 and V3 (Figure 20 Appendix A).
Results in Table 7 below shows a summary of Gait velocity differences at the test sessions
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for V1, V2 and V3. Details of the results are found in Table 22 Appendix B.

Figure 7: Predicted Mean Profile Plot for V2

Table 7: Gait velocity comparison at each time point

V1 V2 V3

T Est(se) P value Est(se) P value Est(se) P value

T1 vs T3 11.45(1.34) <.0001 11.78(1.32) <.0001 8.94(1.37) <.0001
T1 vs T4 10.40(1.34) <.0001 8.79(1.34) <.0001 9.18(1.39) <.0001
T2 vs T3 8.31(1.35) <.0001 9.95(1.33) <.0001 6.39(1.39) <.0001

T=Test session, V=Gait velocity, Est=Estimate, se=standard errors

Results from Table 7 showed highest difference in Gait velocity between T1 (0 week before
training practice) and T3 (after 6 weeks of training practice). There was a significant
overall increase in Gait velocity after intervention of dual-task practice compared to
baseline Gait velocities before patients were randomized. This implies the dual-tasking
practices in general improved the dual-task performances of the PD patients and can
easily be extended to tasks that were not trained. Although patients who were in the
IDT training group performed better than those in the CTT training group in terms of
Gait velocity, the difference was not significant.
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4.2 Safety

4.2.1 Exploratory Data Analysis

To get a view of the distribution of the Fall counts, frequency plots were produced per
Training group (Figure 8) . The figures suggest the distributions are strongly skewed
with a mode of zero counts. This suggests that regression of Fall counts will rarely meet
the distributional assumptions of LMM. Moreover, Fall counts will also violate the equal
variances assumptions of linear models, as higher values of Fall counts will certainly have
higher variances [3, 13].

Figure 8: Distribution of the number of Falls per training group

Considering how the Fall counts are related to the Training group of patients, the mean
Fall counts alongside the corresponding variances at each time point were computed
and presented in Table 8. CTT on average had higher number of falls than IDT which
experienced a slight drop from 1.49 to 1.36 whereas IDT experienced an increase in the
number of fall counts from 0.75 to 0.92 on average. The trend of evolution between the
training groups suggested a fairly constant evolution (Figure 9). Comparing the mean
and the variance, it was realized that the variances were higher compared to the means
hence suggesting the presence of overdispersion. This is a very important issue in count
data modeling and needs to be taken into account by fitting a parsimonious model that
can accommodate such.
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Table 8: Average fall counts(variance) at each time point

CTT IDT

T N n mean(var) N n mean(var)

1 65 65 1.49(19.69) 56 55 0.75(4.16)
2 65 62 1.24(12.22) 56 53 0.70(2.33)
3 65 61 1.15(10.63) 56 51 0.57(2.85)
4 65 61 1.36(10.83) 56 50 0.92(9.42)

N=number of patients at beginning of study,
n=number of patients remaining at each test session, T=test session

Figure 9: Average evolution of the number of Falls per Group (O=CTT, 1=IDT)

Being a longitudinal data involving patients, missingness is paramount in such study
and needs to be explored for proper modeling. The presence of missing Fall counts was
explored and with the results from the dropout model (Table 9), it was realised that
there was a plausibility of valid analysis under MCAR or in the broader sense MAR.
This was because all effects including previous fall counts were unrelated to missing fall
counts (all pvalues are bigger than 5%).
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Table 9: Dropout model for Fall count

Effect Est se P value

Intercept 2.85 3.28 0.3853
Group -2.85 2.86 0.3187
Previous FC -0.30 0.49 0.5340
Time -1.56 0.99 0.1174
Hoenh & Yahr -1.17 1.11 0.2906
Freezing 0.89 0.75 0.2328
Country -1.16 0.82 0.1600
Group*Time 1.22 1.15 0.2862
Est=estimates, se=standard error

Table 10, shows the missingness pattern observed from the data. Missing data patterns
were all due to dropouts. There were more missing data for patients in the IDT group
(about 9%) compared to patients in the CTT group (about 6% ). One patient had missing
data all through the entire study for IDT group since Fall counts were not recorded for
that patient.

Table 10: Missingness pattern for fall counts

CTT IDT

Pattern T1 T2 T3 T4 n % T1 T2 T3 T4 n %

1 O O O O 61 93.85 O O O O 50 89.29
2 O O M M 1 1.54 O O O M 1 1.79
3 O M M M 3 4.62 O O M M 2 3.57
4 O M M M 2 3.57
5 M M M M 1 1.79

O=observed, M=missing

Although valid analysis can be done under the MAR assumptions as confirmed from the
dropout model results, deviations of results under the MNAR assumptions was later on
confirmed through fitting of two Pattern Mixture MNAR models as seen in subsequent
analyses.

4.2.2 Statistical Analysis

Two competing count models were fitted with a loaded mean structure and UN correlation
structure using GEE approach as illustrated in section 3.2.2 in the Methodology. The
Compound symmetry structure was finally chosen since the EBSE and MBSE were closed
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to each other compared to the independent structure (Table 11). The models with the UN
structure did not converge. Interaction terms between group and other factors (except
linear time) were dropped since they were not significant. All insignificant main effects
were retained with respect to the research questions. The final model for fixed effects
was expressed thus:

log[E(FCij)] = β0+β1Groupi+β2Timeij+β3Freezingi+β4Hoehn_Y ahri+β5Countryi+
β6Groupi ∗ Timeij

Plots of observed and fitted fall counts (Figure 10) from the two models did not show
major difference in models fit to the observed data. Appropriate model fit statistics were
computed (PM: Pearson chisquare=5.50, BIC=1698.6, AIC=1619.7 ; NBM: Pearson
chisquare=1.27, BIC=1059.3, AIC=1026.3 ). The Pearson chisquare statistic for NBM
was very close to 1 compared to that of PM. In addition to this, the AIC and BIC values
for NBM were much smaller compared to those of PM. This implies NBM fitted the data
better than PM and was considered for subsequent analyses.

Figure 10: Observed and predicted Fall counts from PM and NBM

The presence of overdispersion in the data was also realised from the results since PM
had a higher value for the scale parameter (2.39). This overdispersion was taken care of
by the NBM because it had a scale parameter of 1.11, which is very close to 1.
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Table 11: Results from Poisson Model(PM) and Negative Binomial Model(NBM)

PM NBM

Effect Est(ebse,mbse) P value Est(ebse,mbse) P value

Intercept -1.75(0.52,0.70) <.0001 -1.59(0.49,0.50) 0.0012
Group -0.75(0.55,0.51) 0.1751 -0.27(0.52,0.51) 0.6001
Hoehn & Yahr 0.21(0.18,0.23) 0.2283 0.17(0.17,0.26) 0.3126
Freezing 1.01(0.56,0.50) 0.0699 0.74(0.45,0.43) 0.1002
Time -0.05(0.11,0.07) 0.6714 -0.03(0.12,0.09) 0.7661
Country 1.79(0.38,0.60) <.0001 1.75(0.38,0.43) <.0001
Group*Time 0.07(0.16,0.12) 0.6405 -0.06(0.17,0.13) 0.7068

Scale parameter 2.39 1.11

Table 12 shows the results of the NBM fitted under the three missingness assumptions
(MCAR, MAR, and MNAR) to assess the sensitivity of results obtained under the MAR
assumption. Parameter estimates under the different assumptions are very close to each
other. There is a significant effect for the intercept and country under MCAR and an
additional significant effects of Freezing and Hoehn and Yahr under MAR and MNAR.
Since MAR encompasses MCAR, the MNAR assumptions for the data did not have an
influence in terms of inference for the assumed MAR model. Hence more trust can be
given to the results under the MAR model for further inference on the research questions.

Table 12: Results of the NBM under the MCAR, MAR and MNAR assumptions

MCAR MAR MNAR1 MNAR2

Effect Est(se) P value Est(se) P value Est(se) P value Est(se) P value

Intercept -1.59(0.49) 0.0012* -1.54(0.41) 0.0002* -1.39(0.41) 0.0007* -1.54(0.41) 0.0002*
Group -0.27(0.52) 0.6001 -0.22(0.51) 0.6667 -0.23(0.51) 0.6546 -0.21(0.51) 0.6813
Hoehn & Yahr 0.17(0.17) 0.3126 0.68(0.24) 0.0043* 0.64(0.24) 0.0088* 0.68(0.24) 0.0050*
Freezing 0.74(0.45) 0.1002 0.54(0.24) 0.0249* 0.47(0.24) 0.0559* 0.56(0.25) 0.0267*
Time -0.03(0.12) 0.7661 0.02(0.12) 0.8569 0.05(0.12) 0.6884 0.02(0.12) 0.8575
Country 1.75(0.38) <.0001* 1.44(0.25) <.0001* 1.31(0.25) <.0001* 1.43(0.25) <.0001*
Group*Time -0.06(0.17) 0.7068 -0.03(0.19) 0.8916 -0.03(0.19) 0.8573 -0.02(0.19) 0.9367

*=significant at 5%

The interaction term between the Training groups and Time was -0.03. In terms of
incidence rate ratio this value is e−0.03=0.97. On average, there is an increase in the
number of falls in both Training groups, but patients of the IDT group had about 3% less
in the rate of increase in number of falls compared to patients in the CTT group but the
difference was not significant (Est=-0.03, IRR=0.97, pvalue=0.8916). Approximately, an
IRR of 1.02 (e0.02) for Time effect implies there was a weekly 2% increase in the number
of Falls in each Trainig group which also was not significant (Pvalue=0.8569). Putting all
other factors constant, at baseline, there were about 72% (e0.54) more falls among freezers
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of Gait compared to non-freezers and 97% (e0.68) higher number of falls for Hoehn and
Yahr stage III patients compared to stage II patients. Great difference in the number
of patients that fell was realised between the patients from the different centres. PD
patients from Belgium had on average 4 times (e1.44) the number of falls compared to
those from the Netherlands.

In order to assess the differences in the average fall counts at the different measurement
periods, the interaction term between Time and Training group was dropped since it was
insignificant and the model reparameterised. A summary of the results is found in Table
13.

Table 13: Fall counts comparison at different time points

T Est IRR Pvalue

T1 vs T3 -0.24 0.79 0.4218
T1 vs T4 0.08 1.08 0.7961
T2 vs T3 -0.13 0.89 0.6705

T=test session

Conditioning on other important variables, moving from Time points 1 to 3 and 2 to 3
with incidence rate ratios of less than 1 implies there was a drop in the average number of
falls of about 21% and 11% from both transitions respectively. On the contrary there was
an increase of about 8% in the number of falls from Time point 1 to Time point 4. These
changes in fall counts were not significant statistically and were common irrespective of
the Training groups of patients. From the results, lowest number of falls were recorded
at Time point 3 and this period represented the measurements just after the Training
practices. In conclusison, the interventions or dual-task training practices had a positive
effect in reducing the fall rate of PD patients though not greatly.
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5 Conclusion and Recommendation

Dual-task practice involves the execution of a primary task as the main focus of attention
and a secondary task executed simultaneously [33] but with different goals. In this study,
PD patients of Hoehn and Yahr stages II and III, were randomised to two different dual-
task training interventions (Integrated dual-task and Consecutive dual-task) with the
aim of improving their dual-task performances.

Gait velocity and Fall counts were recorded from each patient at four test sessions.
Though missing values were observed from patients in both training groups, the patients
were analyzed as randomized in accordance with the ITT principle which produce valid
results under MAR [26]. According to Wu and Hallett [47], patients with PD can diminish
dual-task interference and improve performance if they practice such activities. Colleen
et al. [9] confirmed fewer falls were reported among patients who did some exercises
compared to those who did not. Similar results in improving gait performance and
reducing fall rates were obtained from this study.

Results from this study confirmed that integrated dual-task training improved dual-task
performance and led to less number of fallers compared to consecutive task training.
This was realized because IDT patients had higher rate of increase of Gait velocity and
lower rate of increase of fall compared to CTT patients though it was not a significant
difference. It is worthy to note that, highest significant increase of Gait velocity of about
11cm/s was realized between measurements at the beginning of study and measurements
six weeks after interventions. In addition to this, highest drop in number of falls of about
21% was envisaged between fall counts measurements at baseline and those realized after
six weeks of training practices but the difference was not great.

In several activities of daily living, more than one task is executed at the same time.
As a result of this, performing more than one task is an indispensable act to normal
daily lifestyle. Though multitasking is a major challenge to patients with with PD,
such can be enhanced through practice of such activities [47] which was confirmed from
this study. This is because results from the trained dual-tasks (walking and digit span)
were very similar and in accord to those realised from the untrained dual-tasks (walking
and stroop, walking and mobile phone). As a consequent, the training exercises were
considered efficient to be employed by PD patients to improve in their daily dual-task
performances.

In this study, it was concluded that the training practices actually improved on the
performance of the dual-task among the PD patients. Though integrated task seemed
better than consecutive in improving the performance, the two approaches did not differ
much from each other and can be employed to improve the dual-tasking abilities of PD
patients. Gait velocity results involving walking and digit span actually increased the
Gait velocity fastest compared to the walking and untrained Stroop and Mobile phone
approaches. In addition to improved dual-task performances achieved, better lifestyle was
also realised since the fall rate among the patients also dropped as a result of performing
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the training practices.

In the light of the presence of missing responses common to most longitudinal clinical
trials data, accounting for missing data through MI had one major drawbacks when the
imputation and analysis models differ with respect to covariates used in the modeling
[17,35]. This was the major challenge faced during fitting models involving MI in this
project especially the MNAR Pattern Mixture Models since interaction terms in the
analysis model could not be introduced in the imputation model. As part of sensitivity
analysis, missing assumptions can be further addressed with the use of Selection Models
methodology [25,26] to give additional confidence in the findings gained so far from the
models already applied in this project. In addition to this, the presence of many zeros
for fall counts, can be addressed by the use of Zero-inflated Negative Binomial Models
[13] since it was also a challenge in fitting it for this project.
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7 Appendix

7.1 A: Graphs

Figure 11: Patient profile for CTT (V1) Figure 12: Patient profile for IDT (V1)

Figure 13: Mean Evolution of V1 Figure 14: Scatter Plot for V1
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Figure 15: Patient profile for CTT (V3) Figure 16: Patient profile for IDT(V3)

Figure 17: Mean Evolution for V3 Figure 18: Scatter Plot for V3
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Figure 19: Diagnostic plots for model fit and assumptions check for V2

Figure 20: Predicted Mean Profile Plots for V1 (left) and V3 (right)
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7.2 B: Tables

Table 14: Mean Estimates(standard deviation) of V1 at the test sessions

CTT IDT BE NL

Test N n Mean(SD) N n Mean(SD) N n Mean(SD) N n Mean(SD)

1 65 65 90.32(19.14) 56 55 90.87(22.30) 62 62 91.64(19.25) 59 58 89.43(21.99)
2 65 60 92.68(17.72) 56 53 94.67(20.97) 62 62 94.08(17.94) 59 51 93.04(20.90)
3 65 55 102.54(20.19) 56 50 101.92(19.40) 62 58 101.85(21.33) 59 47 102.74(17.75)
4 65 57 100.27(20.87) 56 47 102.68(19.30) 62 59 102.76(20.91) 59 45 99.52(19.10)

N=number of patients at beginning of study,
n=number of patients remaining at each test session, T=test session

Table 15: Pearson correlation between V1 values at the test sessions

vel1 vel2 vel3 vel4

vel1 1 0.81946 0.66823 0.70228
<.0001 <.0001 <.0001

vel2 1 0.74812 0.74229
<.0001 <.0001

vel3 1 0.84764
<.0001

vel4 1
vel=Gait velocity

Table 16: Missingness Pattern based on V1

CTT IDT

Pattern T1 T2 T3 T4 n % T1 T2 T3 T4 n %

1 O O O O 53 81.54 O O O O 43 76.79
2 O O M M 5 7.69 O O O M 5 8.93
3 O M M M 3 4.62 O O M M 2 3.57
4 O O M O 2 3.08 O M M M 2 3.57
5 O M O O 2 3.08 O O M O 2 3.57
6 O M O O 1 1.79
7 M O O O 1 1.79

M=missing, O=observed, n=number of patients
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Table 17: Mean(standard deviation) V3 per treatment group and country

CTT IDT BE NL

Test N n mean(sd) N n mean(sd) N n mean(sd) N n mean(sd)

1 65 65 79.59(22.17) 56 56 79.21(22.18) 62 62 84.35(20.54) 59 59 74.23(22.63)
2 65 63 81.22(21.56) 56 54 82.87(20.86) 62 62 87.00(20.86) 59 55 76.32(20.23)
3 65 61 89.33(22.76) 56 53 87.36(21.04) 62 60 91.20(23.24) 59 54 85.31(20.08)
4 65 61 87.79(24.33) 56 49 90.80(21.67) 62 59 92.63(22.98) 59 51 85.09(22.85)

N=number of patients at beginning of study,
n=number of patients remaining at each test session, T=test session

Table 18: Pearson correlation based on V3

vel1 vel2 vel3 vel4

vel1 1 0.80714 0.72749 0.7486
<.0001 <.0001 <.0001

vel2 1 0.79706 0.7813
<.0001

vel3 1 0.79845
<.0001

vel4 1
vel=Gait velocity

Table 19: Missingness pattern based on V3 per treatment group

CTT IDT

Pattern T1 T2 T3 T4 n % T1 T2 T3 T4 n %

1 O O O O 61 93.9 O O O O 49 87.5
2 O O M M 2 3.1 O O O M 4 7.1
3 O M M M 2 3.1 O O M M 1 1.8
4 O M M M 2 3.6

O=observed, M=missing, n=number of patients
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Table 20: Results of Dropout models for Gait velocity

V1 V2 V3

Effects Est(se) P value Est(se) P value Est(se) P value

Intercept -3.72(2.02) 0.0646 -3.10(3.82) 0.4175 0.09(3.40) 0.9796
Group -2.57(1.42) 0.0705 -0.94(1.33) 0.4768 -1.63(1.53) 0.2853
Previous Velocity 0.01(0.01) 0.5040 0.03(0.02) 0.0942 0.01(0.02) 0.7456
Time 1.15(1.43) 0.4214 -0.85(1.83) 0.6420 -0.90(1.83) 0.6220
Hoehn & Yahr -0.0004(0.74) 0.9996 -0.98(1.13) 0.3821 -1.24(1.12) 0.2672
Country -1.78(0.67) 0.0076* -1.27(0.70) 0.0695 -1.03(0.71) 0.1489
Freezing 0.03(0.54) 0.9553 0.92(0.66) 0.1596 0.63(0.66) 0.3408
Time2 -0.37(0.30) 0.2222 0.11(0.36) 0.7659 0.03(0.38) 0.9363
Group*Time 1.22(0.64) 0.0582 0.53(0.50) 0.2910 1.07(0.75) 0.1528

*=significant at 5%, est=estimate, se=standard error

Table 21: Results from model building

Models V1 V2 V3

Random effects −2lREML ref Pvalue −2lREML ref Pvalue −2lREML ref Pvalue

Model with intercept, time, time2 (M1) 3504.2 - 3651.3 - - 3729.7 - -
Model with intercept, time (M2) 3516.7 M1 0.0039 3660.5 M1 0.0184 3734.3 M1 0.1519
Model with intercept, time2 (M3) 3522.9 M1 0.0002 3670.8 M1 0.0001 3736.1 M1 0.0672

Measurement error

Model with serial correlation 3496.4 3650.2 3729.7
Model without serial correlation 3504.2 3651.3 3729.5

ref=reference

Table 22: Results of Model Reparameterization for efficacy testing

V1 V2 V3

Effect Parameter Est(se) P value Est(se) P value Est(se) P value

Intercept β0 95.93(2.80) <.0001 97.28(2.80) <.0001 78.72(3.58) <.0001
Group β1 0.18(3.08) 0.9542 1.38(3.08) 0.6539 0.72(3.5) 0.8365
Time2 β2 3.14(1.30) 0.0164 1.83(1.31) 0.165 2.55(1.36) 0.061
Time3 β3 11.45(1.34) <.0001 11.78(1.32) <.0001 8.94(1.37) <.0001
Time4 β4 10.40(1.34) <.0001 8.79(1.34) <.0001 9.18(1.39) <.0001
Hoehn & Yahr β5 -8.45(1.77) <.0001 -9.13(1.77) <.0001 -7.48(1.86) <.0001
Freezing β6 -4.92(3.16) 0.1217 -5.10(3.14) 0.1076 -3.95(3.58) 0.273
Country β7 9.80(3.52) 0.0062
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