
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek

2014•2015
FACULTY OF SCIENCES
Master of Statistics

Master's thesis
Diagnosing pneumonia, influenza and obstructive pulmonary diseases in  
adult patients presenting to primary care with acute cough: a multinomial 
logistic regression analysis

Supervisor :
Prof. dr. Marc AERTS

Supervisor :
Prof.dr. SAMUEL COENEN

Pavlina Mesiri 
Thesis presented in fulfillment of the requirements for the degree of Master of
Statistics

Transnational University Limburg is a unique collaboration of two universities in two countries:
the University of Hasselt and Maastricht University.



2014•2015
FACULTY OF SCIENCES
Master of Statistics

Master's thesis
Diagnosing pneumonia, influenza and obstructive
pulmonary diseases in adult patients presenting to
primary care with acute cough: a multinomial logistic
regression analysis

Supervisor :
Prof. dr. Marc AERTS

Supervisor :
Prof.dr. SAMUEL COENEN

Pavlina Mesiri 
Thesis presented in fulfillment of the requirements for the degree of Master of
Statistics





Abstract

Background:
Community-acquired lower respiratory tract infection (LRTI) is a broad term which describes
airways/pulmonary tissue inflammations due to viral and/or bacterial infection, below the level
of the larynx. Known infections that can affect the lower respiratory tract, among others,
are: pneumonia, exacerbation of chronic obstructive airway disease (e.g. asthma or COPD)
and influenza (can affect both the upper and lower respiratory tracts). The objective of this
report is to assess the diagnostic value of signs and symptoms and added value of biomarkers,
e.g. C-Reactive Protein, of adult patients from 16 primary care networks from 12 European
countries who presented to primary care with acute cough for GRACE studies in the diagnosis
of pneumonia, influenza and obstructive pulmonary diseases treating the diagnoses in parallel
rather than in series.
Methods:
Missing information on patients diagnosis’ symptoms and signs were imputed using Multiple
Imputation Chained Equations. Candidate clinical predictors able to discriminate patients’
condition (i.e. Pneumonia, Influenza, Asthma, COPD or ”Other”) were chosen through Random
Forest approach. The contribution to the log odds of a category versus the baseline was then
estimated for the selected clinical predictors with a Multinomial Logistic Regression(MNL)
model. The diagnostic accuracy and prediction power of the model were assessed for each pair of
categories by fitting a Logistic Regression(LR) and estimating the area under each curve (AUC)
for each models’ Receiver Operating Characteristic (ROC) Curve.
Results:
The pairs with the highest AUC were : Influenza when reference is Pneumonia, Asthma when
reference is Pneumonia, COPD when reference is Pneumonia and Influenza when reference is
Asthma. Influenza when reference is Pneumonia model revealed an AUC value equal to 0.92 i.e.
a randomly selected patient from the Influenza group has a predicted probability for influenza
larger than that for a randomly chosen patient from the Pneumonia group 92 percent of the
time. Retrofitting the same logic, 0.86, 0.79 and 0.85 were the identified AUC values for Asthma
when reference is Pneumonia, COPD when reference is Pneumonia and Influenza when reference
is Asthma respectively. The added diagnostic value of CRP was quantified by fitting the logistic
regression models without CRP and calculating the AUC value of their ROC curve. All models
where CRP was significant (i.e. Influenza when reference is Pneumonia , Asthma when reference
is Pneumonia and COPD when reference is Pneumonia) had a lower AUC value after we omitted
CRP. The difference proved insignificant.
Conclusions:
Based only on symptoms and signs taken into consideration in this report, we can conclude
that differentiating between: pneumonia, influenza when reference is other diagnoses as well as
between each pair diagnosis (Influenza, Asthma or COPD when reference is Pneumonia and
Influenza when reference is Asthma) at first day of patient consultation, can be adequately
accurate.
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1 Introduction

Acute cough is one of the most frequent complaints of patients who visit primary health care
centers and one of the early symptoms of community-acquired lower respiratory tract infections
(LRTI). Pneumonia, Influenza and Pulmonary Obstructive Diseases are three examples of LRT
infections.

The proper antimicrobial treatment or the necessity for an antimicrobial treatment itself is a
matter of contention when it comes to LRTI’s. For the former it all comes to the fact that not all
type of LRTIs are bacterial. For the latter, severity of the symptoms and the need for a prompt
treatment invariably account for overly broad spectrum antibiotic prescription which acceler-
ates antimicrobial resistance (AR) emphasizing the importance of the proper use of antimicrobials.

The matter of antimicrobial resistance (AR) has been studied extensively within GRACE
(Genomics to combat Resistance against Antibiotics in Community-acquired LRTI in Europe;
(www.grace-lrti.org), a Network of Excellence funded by the European Commission (2006-
2011). Since 2006, GRACEs’ role has been definitive in the battle against the threat of resistance
against antibiotics. GRACE has integrated centers of excellence across 12 European Countries
and its research program was composed of 4 platforms (GRACE-COMIT, GRACE-TECH,
GRACE-PAT, GRACE-EDUT) and 12 workpackages (WP1 - WP12). GRACE-PAT focused
on patients and through its observational Studies (e.g. GRACE-01) described the presentation,
diagnosis, investigation, management and outcomes for people with cough / chest infection [5].
As regards acute cough, the coordinated action has been focused on incorporating all patient
information which can add valuable knowledge to diagnosing its causal reason and therefore its
proper treatment. A related paper by Prof. Samuel Coenen et. al., stresses the GPs diagnostic
uncertainty in patients with acute cough and its significant effect on the antibiotic prescribing
decision [6].

The reference standard for diagnosing pneumonia is the chest-x-ray. Additionally for patients
with pneumonia symptoms present for more than 24 hours a test for the serum level of biomarker
C-reactive protein (CRP) can be done. CRP level< 20 mg/L, makes the presence of pneumonia
highly unlikely whereas a level of CRP > 100 mg/L is an indicator of pneumonia being present.
Influenza can be diagnosed via a microbiological blood test analysis. Chronic obstructive
pulmonary disease (COPD) is a type of Obstructive Pulmonary diseases which is characterized
by airflow obstruction [8]. Since COPD has no direct cure yet, bronchodilator or bronchodilator
and an inhaled steroid may be prescribed. People who have COPD are at higher risk for
pneumonia or influenza than people who don’t have COPD. Obstructive Pulmonary diseases
can be diagnosed via lung function tests to identify asthma and chronic obstructive pulmonary
disease. Because of the high interconnection between pneumonia, influenza, asthma and COPD
symptoms, the discrimination prior to laboratory or chest x ray results, can be difficult.
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The etiology, diagnosis prognosis and treatment of lower respiratory tract infections (LRTI)
have been some of the many objectives of Grace Research Network. Traditionally, diagnoses of
pneumonia, influenza and obstructive pulmonary diseases are analyzed separately, whereas in
reality they are analyzed by clinicians in parallel rather than in series. Through this report, we
present our work i.e. to assess the diagnostic value of signs and symptoms and added value of
biomarkers, e.g. C-Reactive Protein (CRP), of adult patients from 16 primary care networks from
12 European countries who presented to primary care with acute cough for GRACE studies in
the diagnosis of pneumonia, influenza and obstructive pulmonary diseases treating the diagnoses
in parallel rather than in series.
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2 Data Description

The data belong to GRACE group project (Genomics to combat Resistance against Antibi-
otics Community-acquired LRTI in Europe, www.grace-lrti.org), a Network of Excellence
funded by the European Commission. Observational data from primary care centers (Cardiff,
Southampton, Utrecht, Barcelona, Mataro, Rotenberg, Antwerpen, Lodz, Milano, Jonkoping,
Nice, Jesenice, Bialystok, Sczecin, Gent and Bratislava) in 12 countries (UK, Netherlands, Spain,
Germany, Slovenia, Belgium, Poland, Italy, France, Sweden, Finland and Slovakia) were collected
between 2007 and 2010.

Patients presenting to primary care with acute cough had their history, symptoms, clinical
findings and CRP measurement taken the first day of consultation. Pneumonia was defined
by radiologists’ judgment of the Chest radiographs which were performed within 7 days after
consultation [16]. Airway obstruction was diagnosed by spirometry results analysis 28-35 days
after inclusion. Asthma was diagnosed if recurrent (more than 1 episode last year) complaints of
wheezing, cough or chest tightness were present, in combination with an increase in FEV1 of ≥
12% or more than 200 milliliters (ml) after bronchodilation [14]. According to the European
Respiratory Society (ERS), COPD was confirmed when a ”fixed” FEV1/FVC ratio was below
0.7 according to GOLD (obstruction GOLD), and a FEV1/FVC ratio was below the lower
limit of normal (LLN) [14]. For the diagnosis of influenza, nasopharyngeal swabs were taken
within 24 hours after consultation. The swabs were analyzed for Influenza A and B by reverse
transcriptase polymerase chain reaction (RT-PCR). Influenza was considered present if the PCR
was positive for influenza A or B [18].

Eligible patients were all at least 18 years old and all presented to primary care with acute
cough or LRTI-like symptoms consulting for the first time for that illness episode. For Asthma
& COPD, diagnosis was based on results of the lung function tests. For influenza only patients
with symptom onset ≤ 7 days prior to consulting were considered in the analysis, because studies
show a positive Influenza PCR up to 7 days after onset of symptoms [18].

3
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Figure 1: Flow chart of the study and participants

Influenza, n=3104
pts, 297 out of
them diagnosed
with Influenza

A or B (91
missing outcome

values) & 732
got an influenza
vaccination that

fall or winter

Pneumonia,
n=3104 pts,

141 out of them
diagnosed with

pneumonia
(0 missing

outcome values)

Asthma or
COPD, n=2532

pts, 336 di-
agnosed with
Asthma , 266
with COPD
and 52 out

of them have
both Asthma &

COPD (0 missing
outcome values)

Combined
information,

common patients
across the three

data sets →
N=2344 → 111
have concurrent

diagnostic results
→ Nfinal = 2575

Out of the 2575
pts , 107(4%)

were pneumonia
diagnosed,

324(13%) asthma,
258(10%) COPD

and 204(8%)
with influenza

• patients with missing data on any diagnostic outcome were excluded (figure 1). From the
combined final data set 43 of the 91 initial influenza patients had missing outcome values
and thus were omitted.

The number of patients’ combinations with concurrent diagnoses was the following:
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• 15 were COPD & influenza diagnosed

• 4 patients were pneumonia & influenza diagnosed

• 14 patients were pneumonia & COPD diagnosed

• 19 patients were influenza & asthma diagnosed

• 43 patients were asthma & COPD diagnosed

• 2 patients were influenza & asthma & COPD diagnosed

• 7 patients were asthma & pneumonia diagnosed

• 2 patients were influenza & asthma & pneumonia diagnosed

• 5 patients with were asthma & pneumonia & COPD diagnosed

This equals to 111 patients and 231 diagnoses. For the variables initially included, clinical
indicators from already published diagnostic models for each diagnosis separately, were con-
sidered [14,16,18]. Van Vugt et al. studied the diagnostic accuracy of symptoms and signs as
well the accuracy of selected inflammatory markers for predicting pneumonia on the scope of
the high importance of an accurate diagnosis of pneumonia in primary care, focused on the
prevalence of airway obstruction and bronchodilator responsiveness as well as at the high risk of
undiagnosed asthma and COPD in adults with acute cough and investigated the validity of a
clinical model to predict influenza in patients presenting with symptoms of lower respiratory
tract infection in primary care with main goal to access the validity of an existing diagnostic
model symptoms to accurately differentiate those with influenza on clinical grounds from the
other LRTI’s in primary care.
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3 Methods

3.1 Multiple Imputation

Multiple imputation (Rubin 1987) is a useful mechanism to handle missing data that occur
in more than one variable. Each missing value is replaced by a set of m plausible values(m is
the number of imputations, m≥ 1). The result of each replacement represents a complete data
set, thereby generating m complete data sets. Multivariate imputation by chained equation
is one of the two general approaches of multiple imputation. Multiple imputation by chained
equations, selects imputed values by iterating over conditional distribution, P (Y1|Y−1, θ1), · · ·
P (Yp|Y−p, θp), of each partially observed variable given the other variables in the data set [26].
In the presence of continuous , binary or categorical (j > 2) variables, this is a very useful
approach since an appropriate regression model can be selected for each variable (e.g. linear
regression for continuous variables, logistic regression for binary variables).

Important Notation:

• Let Yj be the jth partially observed variable, j = 1, 2, · · · , p.

• Let Y obs
j = (Y obs

1 , Y obs
2 , · · · , Y obs

p ), Y mis
j = (Y mis

1 , Y mis
2 , · · · , Y miss

p ) the obsereved and
missing data.

• Let R be the vector of observation indicators being equal zero or one depending on whether
the variable Y is missing or observed.

• Q̂1, Q̂2, · · · Q̂m stand for the coefficient(s) of interest as estimated from each imputed data
set (Y 1

1 , Y
2
2 , · · · , Y m

p ) .

Missing data mechanisms, i.e. Missing Completely at Random (MCAR), Missing not at Random
(MNAR) and Missing at Random (MAR), reflect one’s belief about whether the univariate or
marginal distributions of the complete case and observed data are expected to be the same or not.
Therefore, MCAR would e.g. assume that the distribution of a variable Yj is the same regardless
whether Y−j = (Y1, · · · , Yj−1, Yj+1. · · · , Yp), is observed or missing. Therefore, because MCAR is
a very strong assumption to rely and because patients’ symptoms and signs are hardly unaffected
of each other, throughout this report, we assume that the mechanism behind missing data is
MAR i.e. P (R|Y, Y obs , X) = P (R|Y, Y miss , X) where Y the observed outcome and X the fully
observed variables (X = X1, · · ·Xp).

The complete m data sets can then be combined for inference(pooling). Rubin (1987, pp.
76-77), describes the method of pooling estimates from a data analysis performed m times. In
our case, m=5 imputations. The overall estimate is the average of the individual estimates
of each parameter but the overall standard error requires a bit more calculating. We first
calculate the within-imputation variance Ū = 1

m

∑m
j=1 Uj and between-imputation variance
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B̄ = 1
m−1

∑m
j=1(Q̂j − Q̄)2. Then the total variance is equal to T = Ū + (1 + 1

m)B the square
root of which is the overall standard error [25].
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3.2 Variable Selection

Random forests (Breiman, 2001) is a powerful method when it comes to selection of important
predictors. Initially, bootstrap samples of size N(b = 1 to B) are drawn from the original sample.
A random-forest tree Tb is grown for b = 1 to B and at each terminal node of the tree the
best split from a subset of predictor variables (m) is used to split the node [24]. The process is
repeated for each Tb until minimum node size nmin is reached. Finally for classification purposes,
the status of the response variable at a new point x is predicted as the majority vote of the
predictions for all trees.

The subset of predictor variables (m) is randomly selected, constant during the whole process
and its typical value for classification is

√
p, where p stands for the number of total variables.

One can tune the subset m to find the optimal value which minimizes the out-of-Bag error
estimate (OOB). Now suppose that we collect all subsets that do not include the particular
(Xj , Yj) in the construction of the k-th tree(oob samples). Let k be the class appearing most
frequently every time (Xj , Yj) is left out. The proportion(i.e. over n) of times k does not equal
the true class is the OOB error estimate. The ideal number of trees to grow can be found in
terms of oob error stabilization [24].

Mean decrease in accuracy can be used as selection index for measuring importance of a variable
j . Approximately one third of each bootstrap sample cases are left out each time a tree is
constructed (OOB sample). This is a way of ”internal” cross validation. Mean decrease in
accuracy is a measure of decrease in prediction accuracy between trees at the bottom of which
OOB samples are placed and OOB samples with randomly permuted jth variable values. So the
more important the variable the larger the accuracy decrease it causes. Consequently predictors
with large mean decrease in accuracy(averaged over all trees) are the most important in terms
of correctly classifying the data.
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3.3 Multinomial Logistic Regression analysis

Multinomial Logistic Regression generalizes logistic regression by simultaneously describing
the log odds for all pairs

(
J
2

)
of categories [10]. If each observation is independent ( see

Assumptions below ), yij = 1 if population i has outcome in category j and yij = 0 otherwise
and πij = P (yij = 1) beeing the probability of outcome j, then the probability mass function
follows a multinomial (n, πi) distribution characterized by the sample size n and the probabilities
πi [28]:

p(n1, n2, · · · , nc) =
n!

n1!, n2!, · · · , nc!
π1
n1π2

n2 · · ·πcnc (1)

log(
πij
πiJ

) = log(
πij

1−
∑J−1

j=1 πiJ
) =

K∑
k=0

xikβkj
( i=1,··· ,N
j=1,2,··· ,J−1

)
(2)

↔

πij =
e
∑K

k=0 xikβkj

1 +
∑J−1

j=1 e
∑K

k=0 xikβkj
(j < J) (3)

πiJ =
1

1 +
∑J−1

j=1 e
∑K

k=0 xikβkj
(4)

In our case, N=2575 and j=1,2,3,4 for pneumonia, asthma, copd or influenza, respectively and
J=5 representing the reference category i.e the other diagnoses.

A model is then used to predict the probabilities of the different possible outcomes of the
categorical response, given a set of independent variables (qualitative and/or quantitative)
equations. The parameter estimation is done through Newton Raphson iterative method for
nonlinear systems. The log likelihood function for the multinomial logistic regression model is :

l(β) =
N∑
i=1

J−1∑
j=1

(yij

K∑
k=0

xikβkj)− nilog(1 +
J−1∑
j=1

e
∑K

k=0 xikβkj ) (5)

Where : i represents each patient (often called population), n is a column vector with ni the
number of observations for population i (

∑N
i=1 ni = N), y is a column vector with yi the observed

numbers of successes for each population i, J is the number of discrete categories of the dependent
variable (J ≥ 2), X is the design matrix with N rows and K+1 columns where K is the number
of independent variables specified and the parameter vector β the K+1 length column parameter
vector. Differentiating two times equation (5) with respect to each βk we obtain the first and
second order derivatives of the log likelihood and if the matrix of second partial derivatives is
negative definite, and solution is the global maximum rather than a local maximum, we obtain
the parameter estimates and their variance-covariance matrix iteratively through Newton-Rapson
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method [28].

Assumptions of Multinomial Logistic Regression:

• Independence from irrelevant alternatives property (IIA) i.e. the odds of choosing a
category over the reference do not depend on the other alternatives [27]. The assumption
is tested when Multinomial models represent alternative specific variables i.e. variables
which depend on the category chosen (Discete choice models). All variables in our case,
are individual specific.

• Log of the odds ratio and the measurement variables have a linear relationship (Eq. 2).

• Multinomial logistic regression does not make any assumptions of normality, linearity, and
homogeneity of variance for the independent variables.

Sample Size requirements :
The minimum number of outcomes per independent variable must be 10 [11].

12



3.4 Cluster-Robust Inference

When observations are grouped into clusters, model errors for individuals in the same cluster
may be correlated. Ones’ choices to account for clustering are : Introducing random effects
( random effects models) or ignoring clustering but ensure that standard errors are based on
so-called ”sandwich” variance estimator(marginal models). For this thesis we proceed with the
latter choice i.e correcting the standard errors to account for heterogeneity between countries
and similarity within countries(clusters). This method is also called quasi likelihood approach
(QL) for the univariate case (single response) or Generalized Estimating Equations (GEE) for a
multivariate response (repeated measurements). Agresti (2002), mentions that the ”sandwich”
variance adjustment requires a rather large number of clusters n for the asymptotic covariance
matrix of the QL estimator β̂ to be unbiased. A way to address the issue as it is proposed by
literature is to use small sample modifications of the cluster-robust variance matrix estimate.

In the presence of two way clustering or multi-way clustering one simply clusters at the highest
level of aggregation [23].

Unlike maximum likelihood method(ML), quasi likelihood approach does not inflict a certain
distribution for the response (Yi) but instead it assumes a mean-variance relationship. The mean
variance relationship is connected via a chosen variance function (υ), V ar(Yi) = υµi. As showed
by Agresti (2002), assuming that the true variance is the same as the one chosen (QL same as
ML estimates) then the covariance matrix (McCullagh, 1983.) can be approximated by :

V = [
∑
i

(
∂µi
∂β

)′[u(µi)]
−1](

∂µi
∂β

)]−1 (6)

However, if the true variance is different from the initial ”guess” that is if V ar(Yi) 6= υµi then
the actual asymptotic covariance matrix of the QL estimator is the so called sandwich estimator:

V [
∑
i

(
∂µi
∂β

)′[u(µi)]
−1]var(Yi)[u(µi)]

−1(
∂µi
∂β

)]V (7)
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3.5 Diagnostic Accuracy

Let x describe the explanatory variables. The effects of x on the J-1 logits, for one covariate x,
are described simultaneously from the equation :

log
πj(x)

π5(x)
= αj + β′jx j = 1, 2, 3, 4 (8)

↔

πj(x) =
exp(αj + β′jx)

1 +
∑4

h=1 exp(αh + β′hx)
(9)

where J is the baseline category (J=5) → αJ = βJ = 0.

Multinomial logistic regression fits one model simultaneously accounting for the different levels in
the outcome variable such that the total probability of all five outcomes adds to one. From Equa-
tion (8), suppose we would like to examine category j=1 when the reference is j=2, i.e. suppose
a different pair of categories inside the multinomial logistic regression model, is of interest. Then
the log of odds for category 1 (j=1) when reference is category 2 (J=2) for one covariate would be:

log
π1
π5

= α1 + β1x (10)

and

log
π2
π5

= α2 + β2x (11)

so the difference :

log
π1
π2

= (α1 − α2) + (β1 − β2)x (12)
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For this thesis, we based the assessment of diagnostic accuracy of a multinomial model on the
diagnostic accuracy of each binary logit model separately for the J-1 pairings of responses. From
equation (8) we first began with category j=1 alone, using only observations in category 1 or
5(J) of the response variable to obtain the α1, β1. Then categories 2 and 5(J) to obtain estimates
of α2, β2, categories 3 and 5 for α3, β3 and categories 4 and 5 for the α4, β4. We expect the
estimates to differ from the ones obtained from a simultaneous multinomial logistic regression fit
(Eq. 10-12). Acknowledging that differences may arise, we will compare the separate estimates
(log of odds) with the simultaneous log off odds from the multinomial logistic regression model
(j=1,2,3,4).

Receiver Operating Characteristic Curve (ROC) is a technique used to summarize the predictive
power of a classifier in terms of sensitivity (the ability of the model to predict an event correctly)
versus 1-specificity for the possible cut-off classification probability values π0 [10]. Predicted
value is classified as ŷ = 1 if the probability of belonging to i-th category (π̂) is larger than the
specified cut off probability point and ŷ = 0 otherwise. So, sensitivity is the probability that we
predict the value is one if the true outcome value is one P (ŷi = 1|y = 1) and specificity is the
probability that we predict the value is zero if the true outcome value is zero P (ŷi = 0|y = 0).
From Equations (10-12), a ROC curve for j=1 when reference category is J=5, coming from a
multinomial logistic regression when reference is category 5(J=5), would imply :

log
π1/(π1 + π5)

π5/(π1 + π5)
⇒ π1

π1 + π5
=

eα1+β1x

1 + eα1+β1x
(13)

and for

ŷ = 1⇔α̂1 + β̂1x > κ (14)

Similarly, a ROC curve for j=1 when reference category is J=2, would imply :

ŷ = 1⇒(α̂1 − α̂2) + (β̂1 − β̂2)x > κ (15)

where κ the cut off point.

The area under the ROC curve (AUC) can be expressed as
∫ 1
0 f1(t1)dt1 where t1, t2 are the correct

classification probabilities which can be described by a functional relationship, t2 = f1(t1) [29].

In our analysis, the AUC for the models was recalculated for the data set where the patients’
combinations with concurrent diagnoses (nconcurrent = 231) were removed (Nfinal2 = 2344).
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As mentioned above, ROC curve is actually a plot of sensitivity(TPR) versus 1-Specificity (FPR)
at different thresholds(cut off points). Of course, ones’ interest is finding the best trade off
between specificity and sensitivity. In our analysis, in order to take into account that we quantify
the diagnostic accuracy of a multinomial response model from binary response models separately
(J=5 categories) we specify the cut off point to be 0.5 with the following logic. In the presence
of five categories the by chance selecting one out of five is 0.2. Taking into consideration the
equivalence between a binary logit and a multinomial logit with information from only two
categories (Eq. 8-15) we begin with a cut off point of 0.5 (πj(x)/πj(x) + πJ(x) = 0.2/0.2 + 0.2).
Additionally, we present a 3-fold cross validation estimate of the ROC curve. Each cross valida-
tion fold is randomly removed from the test data and the remaining data set ( training ) is used
to plot the TPR and FPR values, together with the average value across the 3-folds and box
plots.

Hypervolume under Manifold (HUM) is an extension of the ROC curve for multi class categories.
HUM estimator counts the proportion of subsets of M individuals in which each of the M persons
is correctly classified [29].

ĤUM =
1∏M

h=1 nh

n1∑
k1=1

n2∑
k2=1

· · ·
nM∑
kM=1

CR(p̂1k1, · · · , p̂MkM) (17)

where p̂ij are the estimated probabilities for the jth individual of class i (i = 1, · · · ,M), obtained
from a multinomial logistic regression model. For more technical details and theory, we refer to
paper by Li, J., Fine, JP. [29].
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4 Results

4.1 Multiple Imputations by Chained Equations

Out of the 2575(Nfinal) individuals we have 1125 (44%) complete cases i.e. patients whose
variables were all observed and recorded. A bit more than half of the patients (56%) have missing
values. The total number of missing values is equal to 2896(4%). Because of the objective of the
analysis only variables with missing values were imputed and participants with missing outcome
values were excluded.
Variables with the highest number of missing data were: CRP measurement, Days feeling unwell,
Recurrent cough(more than 3 cough episodes during last year) and Asthma present in family.
We look at the marginal plot of each pair of those variables. The observed data are colored
blue whereas the missing, red. There are 904 records in which CRP is missing (red dots left
margin), 489 were Days feeling unwell are missing (red dots bottom margin) and 184 were both
are missing (figure 2). For the other pairs of variables, the plots can be found at Appendix,
Figures 12 - 16.

Figure 2: Marginal plot of CRP versus is Days feeling
unwell
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4.2 Exploratory Data Analysis

We look at the association between diagnostic variables(as identified by literature) and outcome
: i.e. Pneumonia, Influenza, Asthma, COPD and other outcomes, separately. The values shown
at Tables 1, 2 and 3 are the average results of five times imputed variables for each pair of
diagnosis separately i.e. each response category versus the other diagnosis category (reference
category). The total number of patients is n=2575. We have considered 32 clinical indicators for
all diagnoses combined. As mentioned in Section 4.1., 4% of the data are missing. Because of
the objective of the analysis only variables with missing values were imputed and participants
with missing outcome values were excluded. Nevertheless, as mentioned in the data description
section only influenza diagnosis had missing outcome (n=91) which were therefore excluded. 347
(13%) out of the total number of patients were under antibiotic treatment during the previous six
months. Patients at high risk were patients with other lung disease (e.g. fibrosis or bronchiectatis,
etc), patients with heart disease (e.g. valvularlesions, cardiomypoathy etc) and diabetic patients.
Among the 106 diabetic patients, 8 (7 %), 23 (22 %), 21 (20%) and 5 (5%) were pneumonia,
asthma, COPD and influenza diagnosed, respectively. Among patients who suffered from heart
diseases (n=89), 8 (7 %), 4 (1.2 %), 9 (3.5 %) and 4 (2 %). Among patients with other lung
diseases (n=48), 4 (8.3 %), 7 (15 %) , 9 (19 %) and 1 (2.1 %). 558 patients (22%) got an
influenza vaccination during that fall or winter. Twenty nine out of them were influenza diagnosed.
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Table 1: Association between diagnostic variables and Pneumonia (n = 1789)

Diagnostic
Variable

Value(%)
or mean(SD)

Pneumonia
present

(n = 107)
OR (95% CI)

Age,
mean(SD)

50(17) 107 1.011(1.001; 1.017)

Men 1030(58%) 47 1.219(1.021;1.453)
Current Smoker 445 (25%) 4 1.586(1.275;1.97)

Days ill prior
consult,
mean (SD)

10 (8) 5 0.968(0.954;0.98)

Severe Cough 582(33%) 42 1.011(0.444;2.912)
Phlegm 1420(79%) 91 1.513 (1.193;1.942)
Severe
Breathless-
ness

92 (5%) 13 3.812 (2.453;6.052)

Runny nose 1276 (71%) 55 0.399(0.335;0.476)
Fever 596(33%) 63 3.087(2.585;3.692)
Severe Chest Pain 80 (4.5%) 9 2.246(1.492;3.36)
Diarrhea 125(7%) 10 1.405(1.026;1.884)

Any heart
comorbidity
(valvularlesions,
cardiomypoathy
etc)

72(4%) 8 2.043(1.433;2.839)

Diabetes 111( 6.2 % ) 8 1.239(0.874;1.71)
General Toxicity 482 (27%) 34 1.281(1.06;1.544)

Diminished
vesicular
breathing

199 (11%) 24 2.407(1.931;2.98)

Tachycardia
( > 100beats/min)

853 (48%) 54 1.375(1.154;1.64)

Tachypnoea
( > 24breaths/min)

40 (2.2 % ) 6 2.862(1.888; 4.198)

Systolic blood pressure 128(18) 107 0.986(0.981;0.991)
Diastolic blood pressure 79 (11) 107 0.982(0.974;0.99)
Oral temperature (> 37.8 ) 66 (3.7%) 14 4.682(3.52;6.16)
CRP(mg/L),
mean(SD) 24(46) - 1.012(1.011;1.013)
> 20 1363(76%) 48 2.84( 2.173;3.675)
> 30 171 (10%) 16 3.301(2.459;4.374)
> 50 120 (6.7%) 13 7.607(6.076;9.5)
> 100 134(7.5 %) 29 Ref.cat
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Table 2: Association between diagnostic variables and Influenza(n=1886)

Diagnostic
Variable

Value(%)
or mean(SD)

Influemza
present
(n=204)

OR (95% CI)

Age
mean(SD)

49(16) 204 0.978(0.975;0.983)

Men 733 (39%) 75 0.905(0.79;1.035)
Current Smoker 492 (26%) 50 1.017(0.867;1.191)

Days ill prior
consult.,
mean (SD)

10(8) 204 0.723(0.702;0.743)

Severe Cough 606 (32%) 66 NA
Phlegm 1462(78%) 134 0.505(0.439;0.581)

Severe
Breathlessness

87(5 %) 8 0.802(0.538;1.175)

Runny nose 1365 (72%) 50 1.157(0.997;1.347)
Fever 677 (0.36%) 144 5.223(4.534;6.03)
Severe Chest Pain 93 (5 %) 22 4.066(2.984;5.564)
Myalgia 970 (51%) 155 0.3004(0.258;0.348)
Headache 1080 (57%) 153 2.425(2.094;2.816)
General feeling unwell 1434 ( 76 %) 190 4.636(3.658;5.969)
Interference
with daily
activities

1183(63 %) 172 3.541(2.985;4.227)

Abnormal auscultation * 616 (33%) 139 0.949(0.825; 1.09)
Tachycardia
(pulse > 100beats/min)

867 (46 %) 2 0.626(0.547; 0.716)

Tachypnoea
(pulse > 24breaths/min)

37 (2 %) 3 0.719(0.405;1.182)

CRP(mg/L),
mean(SD) 21(39) - 1.003(1.001;1.004)
> 20 1447 (77 %) 132 2.648(2.223;3.144)
> 30 196 (10 %) 41 1.862(1.475;2.329)
> 50 127 (7 %) 20 1.025(0.758;1.359)
> 100 116 (6 %) 11 Ref.cat.

* Abnormal auscultation breath sounds, wheeze, rhonchi, crackles.
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Table 3: Association between clinical indicators and Asthma or COPD (n= 2006 & n = 1940)

Diagnostic
Variable

Value(%)
or mean(SD)

Asthma
present

(n = 324)

COPD
present

(n = 258)
ORasthma(95%CI), ORCOPD(95%CI)

Age
mean(SD)

50(17) 324 258 0.986, (0.983;0.989),0.975(0.971;0.979)

Men 783 (40 %) 818 748 1.518(1.364;1.689),1.199(1.062; 1.356721)
Current Smoker 521(26%) 538 504 1.874(1.659;2.117),0.557(0.485; 0.639)

Days ill prior
consult.,
mean(SD)

10(8) 324 258 0.989 (0.982;0.996),1.013(1.01,1.021)

Severe Cough 644 (33 %) 654 633 0.687(0.421;1.172), 0.889(0.427; 1.664)
General feeling unwell 1464 (74%) 1492 1435 1.149(1.015;1.303),1.004(0.878;1.15)

Interference
with daily
activities

1227 (62%) 1298 1155 1.03(0.924;1.148),1.185(1.053;1.333)

Abnormal auscultation1 669 (34%) 681 658 1.351(1.211;1.507),0.702( 0.623;0.792)

Diminished
vesicular
breathing

211(11%) 210 212 1.048(0.881; 1.241),0.69(0.583;0.820)

Severe Wheeze 47(3%) 52 42 6.212(4.493;8.615), 0.293( 0.199; 0.434)
Severe Chest Pain 85 ( 4%) 87 82 1.555(1.153;2.085), 0.82( 0.589;1.154)
Allergic disease 287(15%) 294 279 1.045(0.899;1.211),1.123(0.948; 1.338)

Recurrent
(> 3) cough
episodes
last year

226(12%) 242 209 1.99(1.726;2.291),0.9463(0.788;1.144)

Asthma in the family 475(24%) 955 904 1.142(1.011;1.288),1.019( 0.888;1.168)
Phlegm Colour
(green, yellow or
bloodstained)

930 (47%) 161 110 1.11(0.999;1.235),1.195( 1.062; 1.345)

CRP(mg/L),
Mean(SD) 21(40) - - 1.001(1;1.003),0.997(0.995; 0.998)
> 20 1527 (77%) 238 187 1.456(1.23;1.715),0.7699(0.638;0.935)
> 30 190( 10%) 40 24 1.251(1.013;1.533),0.673(0.545;0.837)
> 50 130 (7%) 24 20 1.117(0.894;1.382),0.746(0.598;0.938)
> 100 126 (6%) 21 20 Ref.Cat

1 Abnormal auscultation breath sounds, wheeze, rhonchi, crackles.
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Asthma or COPD invariably have the same symptoms. Therefore, discriminating patients’
condition to be Asthma, COPD or both, when they present to primary care with acute cough
can be difficult prior to the lung function test results. All variables considered in our case,
are variables / clinical predictors which were measured at day one the patient consulted the
primary care center (Case Report Form). According to literature, the cough of COPD patients
is frequently associated with chronic sputum production [19,20]. Our analysis shows that 50%
of asthmatic patients and 43% of COPD patients have phlegm production. The symptoms and
signs are outwardly similar between COPD and asthmatic patients. Often the age of initial
presentation is the distinguishing factor between COPD and asthma. Asthma typically appears
in childhood whereas COPD over the age of 40.

4.3 Variable Selection

The variable importance list from the random forest process is given in Figures 3, 4, 5, 6 and
7, separately for each imputed data set with information on how important that variable is in
classifying the data. We keep all variables which have a positive mean decrease in accuracy in
at least one imputed data set. The mean OOB error estimate is 0.342(34.2%) and the optimal
number of variables per tree level i.e. the ones that minimize the OOB error found to be 12
at three out of five imputed data sets and 6 for the rest. The number of trees to grow at each
iteration (bootstrap replicates) are set to 500, as from 500 trees on wards the OOB error seems
to stabilize (figures App. 17, 18, 19, 20 and 21).
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Figure 3: Imputed data 1 Figure 4: Imputed data 2

Figure 5: Imputed data 3 Figure 6: Imputed data 4
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Figure 7: Imputed data 5
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4.4 Multinomial Logistic Regression

From the importance lists above (figures 3- 7), we chose the clinical predictors with positive mean
decrease in accuracy. Using the selected set of predictors we fit a multinomial logistic regression.
The baseline category is the ”Other” diagnosis. Below we look at the significant quasi likelihood
estimators across the five imputed data sets. CRP measurements tend to vary depending on days
of illness and therefore the interaction between them was tested. Additionally given that we re
modeling patients whose age ranges from 18-92 years old, we considered the possibility that some
clinical predictors may vary depending on age. Nevertheless, that was not the case in our analysis
as no interactions proved to be significant, the smallest pvalue for the 1st imputed data set is
0.06 (interaction age with phlegm production) and the highest 0.892 (interaction age with severe
breathing difficulties). Below, we look at the significant parameter estimates (Tables 4,5,6 and 7).

Table 4: Parameter estimates and standard errors for the Multinomial model, effect
on log of odds for Pneumonia when reference is other diagnosis.

Analysis by imputation
Parameter? Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5

Intercept -3.399(0.529)-1.918(0.7813) - - -
Dur.pr.illness -0.035(0.012) -0.035(0.015) -0.033(0.0122) - -0.041(0.013)
Wheeze.sev3† - - 0.353(0.45) - -
Syst.BP - -0.022(0.009) -0.024(0.01) -0.2445( 0.01) -0.023(0.009)
Day.unwell 0.017(0.008) - - - -
Fever.yn1 0.976(0.259) 1.112(0.301) 0.973 (0.259) 1.008(0.282) 1.066(0.299)
Age - 0.02(0.008) - - -
smoke2• 0.591(0.234) - - 0.5(0.247) -
smoke3• - 0.431(0.208) 0.441(0.22) - -
CRP 0.01(0.001) - 0.009(0.001) 0.009(0.0007) -
Muscle.ach.yn1 - 0.465(0.209) - 0.009(0.0007) -
Runn.nose.yn1 -0.837(0.148) - -0.859 (0.161) -0.87(0.153) -1.023( 0.142)
Crackles.yn1 1.12(0.437) 1.497 (0.508) 1.125(0.412) 1.122(0.316) 1.407(0.512)
Breath.sev4‡ 0.785 (0.376) 1.288(0.424) - 0.897(0.393) 1.126(0.381)
Gen.unwell.yn1 -0.847(0.266) -0.684(0.299) -0.764(0.289) -0.789(0.325) -0.666(0.301)
Dim.vesic.breath.yn1 0.692(0.31) - - - -
Lung.other.yn1 - 0.778(0.336) - - 0.648(0.287)
other.heart.yn1 - 0.651(0.251) - - -

? All variables significant at 5% level of significance (pvalue < 0.05).
† Wheeze.sev3→ Moderate Problem as compared to No problem(Wheeze.sev1).
• smoke3=Current smoker,smoke2=Past smoker as compared to Never smoked(smoke1).
‡ Breath.sev4 = Severe Breathing difficulty as compared to no problem.
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Table 5: Parameter estimates and standard errors for the Multinomial model,
effect on log of odds for Influenza when reference is other diagnosis.

Analysis by imputation
Parameter? Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5

Dur.pr.illness -0.248(0.033)-0.258(0.034) -0.24(0.03) -0.259(0.027) -
Day.unwell -0.046(0.021) - - - -0.039(0.146)
Wheeze.sev4† 1.461(0.426) 1.189(0.481) 1.381 (0.386) 1.425(0.41) 1.449( 0.419)
Fever.yn1 1.167(0.168) - 1.158(0.173) 1.175(0.173) 1.219(0.154)
Syst.BP - - -0.008(0.004) -0.009(0.004) -
asthma.family1 - - - -0.422(0.183)-0.333(0.146)
Chest.pain.sev4∗ - 0.492(0.22) - - -
Interf.act.yn2• -0.523(0.148) - -0.534( 0.199)-0.558(0.192)-0.537(0.177)
Muscle.ache.yn1 0.445(0.198) 0.465(0.209) 0.482 (0.171) 0.519(0.159) 0.444(0.189)
Phlegm.yn1 - - -0.619(0.292) -0.635(0.287)-0.581(0.282)
other.heart.yn1 -0.629(0.227)-0.651(0.251) -0.631(0.269) - -0.643(0.267)
Breath.sev4‡ -0.957(0.362)-0.858(0.366) -0.941(0.363) -0.896(0.362)-0.907(0.359)
Breath.sev3‡ - - -0.643(0.309) - -
Gen.unwell.yn1 0.433(0.211) 0.448(0.181) - 0.438(0.222) 0.4176(0.206)

? All variables significant at 5% level of significance (pvalue < 0.05).
• Interf.act.yn2→No problem of interference with daily activities versus problem.
† Wheeze.sev4→ Severe Wheeze as compared to No problem(Wheeze.sev1).
∗ Chest.pain.sev4→ Severe Chest paim as compared to No prob-

lem(Chest.pain.sev1).
‡ Breath.sev3 (Breath.sev4) = Moderete(Severe) Breathing difficulty as compared

to no problem.
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Table 6: Parameter estimates and standard errors for the Multinomial model,
effect on log of odds for Asthma when reference is other diagnosis.

Analysis by imputation
Parameter? Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5

Intercept -2.179(0.47) -2.351( 0.454) -2.385(0.488) -2.407(0.457)-2.146(0.449)
Day.unwell - -0.024(0.009) -0.021(0.009) - -0.021(0.009)
Wheeze.sev2 †0.914(0.231) 0.905(0.203) 0.947(0.222) 0.520(0.430) 0.969(0.209)
Wheeze.sev3 †1.061(0.371) 1.069(0.316) 1.096(0.352) 1.090(0.374) 1.106(0.338)
Wheeze.sev4† 1.721(0.386) 1.669(0.329) 1.727(0.345) 1.756(0.364) 1.720(0.348)
Fever.yn1 -0.219(0.093) -0.256(0.090) -0.227(0.0853)-0.234(0.091)-0.223(0.087)
Age -0.011(0.004) -0.011(0.004) -0.013(0.004) -0.013(0.004)-0.013(0.004)
smoke3• 0.366(0.141) 0.371(0.152) 0.382(0.141) 0.387(0.140) 0.360(0.143)
CRP 0.002(0.001) - - - -
Gen.tox.yn1 -0.341(0.142) -0.333(0.147) -0.346(0.131) -0.314(0.148)-0.315(0.130)
recurrcough1 0.554(0.129) - 0.566(0.122) 0.600(0.148) 0.731(0.165)
gender1∗ 0.489(0.141) - 0.492(0.122) 0.461(0.131) 0.522(0.144)

? All variables significant at 5% level of significance (pvalue < 0.05).
† Wheeze.sev2→ Mild Wheeze as compared to No problem(Wheeze.sev1).
† Wheeze.sev3→ Moderate Wheeze as compared to No problem(Wheeze.sev1).
† Wheeze.sev4→ Severe Wheeze as compared to No problem(Wheeze.sev1).
• smoke3=Current smoker, smoke2=Past smoker as compared to never

smoked(smoke1).
∗ gender1 → male.
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Table 7: Parameter estimates and standard errors for the Multinomial model, effect
on log of odds for COPD when reference id other diagnosis.

Analysis by imputation
Parameter? Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5

Intercept -4.472(0.829)-4.663(0.871)-4.895(0.871) -4.824(0.841) -4.676(0.824)
Dur.pr.illness - - - -0.019( 0.009) -
Age 0.035(0.010) 0.034(0.011) 0.032(0.010) 0.032(0.010) 0.034(0.011)
Smoke3• 0.839(0.233) 0.858(0.244) 0.856(0.234) 0.855(0.231) 0.848(0.229)
Muscle.ache.yn1 0.37(0.095) 0.353(0.099) 0.368(0.094) 0.363(0.099) 0.351(0.101)
lung.other.yn1 - 0.738(0.247) 0.627(0.272) - 0.696(0.245)
CRP 0.003(0.001) - 0.003(0.0007) - -
gender1 ∗ -0.318(0.110)-0.318(0.105)-0.323(0.117) -0.343(0112) -0.311(0.114)
Breath.sev4 † 0.711(0.312) 0.706(0.265) 0.749(0.281) 0.673(0.321) 0.764(0.312)
Gen.tox.yn1 -0.724(0.165)-0.711(0.142)-0.707(0.169) -0.680(0.179) -0.724(0.163)
Runn.nose.yn1 - - - -0.198(0.099) -

? All variables significant at 5% level of significance (pvalue < 0.05).
† Breath.sev4 → Severe Breathing difficulty as compared to No prob-

lem(Breath.sev1).
• smoke3=Current smoker, smoke2=Past smoker as compared to never

smoked(smoke1).
∗ gender1 → male.

For the combined results across imputations, we followed the procedure outlined by Rubin, (see
4.1. Multiple Imputation by Chained Equations). None of the pooled estimates was significant.
We discuss this issue later (see 5. Discussion).

Comparing with tables 14, 15, 16, 17 at Appendix, we could say that the estimates are similar
to each other preserving the directionality. For example, the log of odds for Influenza for
Dur.pr.illness variable, in the separate logistic regression, when reference is pneumonia, is equal
to 4.722 -0.415 × xDur.pr.illnessi and for the multinomial model (see Eq. 10-12) 3.399 + ( -0.248
+ 0.035 ) = 3.399 - 0.213 × xDur.pr.illnessi.

We know examine three out of the five categories. We fit a Multinomial model for Pneumonia
(j=1), Influenza (j=2) and Other diagnosis (reference). From this point on wards, there are
some features changed in our analysis. Firstly the 111 patients with combined results are now
removed. Secondly we ignore the heterogeneity between countries and similarity within countries
(clusters) since we have reasons to believe that the small number of clusters mistakenly inflates
the standard errors of the estimated coefficients. The significant estimated relative risks (ratio of
the probability of outcome category j=1 or j=2 over the probability of J=3, reference category)
from the first imputed data set, are presented at tables 8, 9 .
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Table 8: Parameter estimates and standard errors for the
2nd Multinomial model, effect on log of odds for Pneumonia
when reference is other diagnosis

Parameter? Estimate
Standard

error
pvalue

Syst.BP -0.027 0.008 0.020
Fever.yn2† -0.800 0.258 < .001
CRP 0.01 0.002 < .001
Runn.nose.yn2† 0.984 0.245 < .001
Crackles.yn1 1.201 0.339 < .001

Gen.unwell.yn2† 0.959 0.324 0.003

? All variables significant at 5% level of significance
(pvalue < 0.05).
† yn2 → no problem when reference is problem.

Table 9: Parameter estimates and standard errors for the 2nd
Multinomial model, effect on log of odds for Influenza when
reference is other diagnosis.

Parameter? Estimate
Standard

error
pvalue

Dur.pr.illness -0.252 0.043 < .001
Fever.yn2† -1.228 0.219 < .001
Diast.BP -0.025 0.012 0.037
Chest.Pain.sev4∗ 0.853 0.437 0.051
Phlegm.yn1 -0.776 0.186 < .001
Interf.act.yn2† -0.563 0.294 0.055
Breath.sev.3‡ -0.748 0.369 0.043
Breath.sev.4 ‡ -1.002 0.531 0.058

? All variables significant at 5% level of significance (pvalue <
0.05 except Breath.sev.4, Chest.Pain.sev4 → borderline
significant).
† yn2 → no problem when reference is problem.
∗ Chest.pain.sev4→ Severe Chest paim as compared to No

problem(Chest.pain.sev1).
‡ Breath.sev3→ Moderate Breathing difficulty as compared

to No problem(Breath.sev1).
‡ Breath.sev4 → Severe Breathing difficulty as compared

to No problem(Breath.sev1).
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4.5 Diagnostic Accuracy

The performance of the multinomial model was first assessed for each type of diagnosis versus
reference(other diagnoses) by fitting separate Logistic Regressions. The ROC curves of the
pairs had all extremely small AUC values even when the patients’ combinations with concurrent
diagnoses (nconcurrent = 231) were removed (Nfinal2 = 2344). (Discussion part). Next, at figures
8, 9, 10 and 11 we look at the ROC curves and the discriminating power of contrasts which
appeared to have the best discriminating ability in terms of Area Under the Curve (AUC)
value. Variables that did not appear significant at any imputed data set from the multinomial
(1st model) process are now removed (i.e. Asthma.family, Influenza.vaccination, Tachypnoea,
Diastolic BP, phlegm.color, headache and interference.with.daily.activities). A forward selection
procedure is applied to each Logistic Regression model to identify significant predictors for each
pair of diagnoses. All significant predictors for each pair of diagnosis can be found at tables
14 -17 at Appendix. For example, the final model for Influenza when reference category is
pneumonia, for patient i = 1,· · · , 1789, will be :

log(
π4
π1

) = 4.722 +−0.415× xDur.pr.illnessi − 0.019× xCRPi − 2.557× xGen.unwell.yn2i

−1.931× xDim.vesic.breath.yn1i − 1.821× xCrackles.yn1i − 1.097× xRunn.nose.yn2i
−1.517× xPhlegm.yn1i − 0.036× xagei + 3.522× xlung.other.yn2i

−1.414× xsmoke3i + 2.193× xWheeze.sev2i

+3.915× xWheeze.sev3i + 4.75× xWheeze.sev4i

−1.937× xiBreath.sev2 − 2.104× xiBreath.sev3
−3.671× xiBreath.sev4

Table 10: Likelihood Ratio test (df) & pvalue

Model Chi-square (df) pvalue
1 200(19) 2.775 ∗ 10−32

2 149(18) 1.279 ∗ 10−22

3 94(12) 7.923 ∗ 10−15

4 233(10) 1.614 ∗ 10−44
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Figure 8: ROC curve.AUC=0.92 Figure 9: ROC curve.AUC=0.86

Figure 10: ROC curve.AUC=0.79 Figure 11: ROC curve.AUC=0.85
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At figure 8 we observe the connected pairs of predicted probabilities at specific cut off points,
as they were estimated from a Logistic Regression model for Influenza when Pneumonia is the
reference category. The calibration of all models was good (figures Appendix 22, 23) , but
not realistic enough since models are fitted to the actual data. We therefore proceed to a 3-k
cross validation plot. Unlike models Asthma when Pneumonia is the reference category, COPD
when Pneumonia is the reference category and Influenza when Pneumonia is the reference
category, the 3-k ROC curves for Influenza when reference is Pneumonia (figure 8), are not
very close to each other. The internal estimate of accuracy ranged from 0.751 to 0.814 and
the cross-validation estimate from 0.737 to 0.789, for the 4 models. Likelihood ratio tests
LR = 2(loglikelihood(fullmodel)− loglikelihood(nullmodel)), compare the log likelihoods of two
nested models. The test statistic LR is chi-square distributed, with degrees of freedom equal to
the difference between degrees of freedom of full and null model. All likelihood ratio tests (LR)
showed that all models fit significantly better than a model without any predictors (null model).
At table 10 we look at those differences in terms of residual deviance and degrees of freedom as
well as the associated pvalue.

The AUC value for each ROC curve above is again calculated with the difference that now we
omit CRP for the 3 first models, in order to gain an insight on its diagnostic discriminating power.
The AUCnoCRP for model Influenza when reference is Pneumonia, Asthma when reference is
Pneumonia and COPD when reference is pneumonia is 0.839, 0.774, 0.774, in all cases slightly
decreased, indicating its added value. The difference between comparisons AUC and AUCnoCRP
proved insignificant for all models. In particular the alternative hypothesis: Hα = true difference
in AUC and AUCnoCRP is not equal to 0, could not be rejected

↔

z =
AUC −AUCnoCRP√

SE2
AUC + SE2

AUCnoCRP − 2rSEAUCSEAUCnoCRP

≥ 1.96 (17)

The differences (95% CI) between AUC and AUCnoCRP for the first imputed data set, were
0.034 (-0.009;0.078), -0.036 (-0.081;0.009) and 0.023(-0.027;0.073).
The zscores and pvalue were: z = 1.5243, pvalues = 0.1274, z = -1.5683, pvalues = 0.1168 and z
= 0.8957, pvalue = 0.3704 for models Influenza when reference is Pneumonia, Asthma when
reference is Pneumonia and COPD when reference is Pneumonia.

For the derivation of SEAUC , SEAUCnoCRP , r, i.e. the standard errors for the two AUC and the
between area correlation, we refer to paper by Hanley, J. A. and McNeil, B. J. [30] .

37



With regard to comparisons with category other diagnoses, because of the high imbalance
between the number of patients with the diagnosis of interest and other diagnosis (reference
category) beside the classification accuracy ((tp + tn) / (tp+tn+fp+fn)) we take a look at
the positive agreement as well. Positive agreement for a 2X2 table is calculated as the ratio
PA=2tp/(2tp+fp+fn) with tp the true positive , fp the false positive and fn the false negative.
On the other hand negative agreement can be found by NA=2tn/(2tn+fp+fn) where tn stands
for the true negative. For pneumonia the positive agreement ranged from 25%-29% while the
correct classification percentage for all imputed data sets was approximately 95%. Of course
the huge correct classification arises from the fact that only 107 out of the 1789 are pneumonia
diagnosed(204, 324 and 258 influenza,asthma and copd). For influenza the positive agreement
was 31% with 90% diagnostic accuracy, for asthma 2% and 84% and for COPD 2% and 87%.

Below we see the 2× 2 contingency tables (first imputed data set) for Pneumonia when reference
is other diagnosis category and Influenza when reference is Pneumonia, both at a 0.5 cut off
point. The tables for the other comparisons can be found at Appendix (tables 18,19,20 and
21,22,23).

ac
tu

al
va

lu
e

test value

p n total

p′
tp=
19

fn=
88

P′=107

n′
fp=
9

tn=
1673

N′=1682

total P=28 N=1761

Table 11: Contingency 2×2 table, pneumonia when reference is other diagnosis, tp: true positive,
fp: false positive, fn : false negative, tn: true negative

38



ac
tu

al
va

lu
e

test value

p n total

p′
tp=
191

fn=
13

P′=204

n′
fp=
31

tn=
76

N′=107

total P=222 N=89

Table 12: Contingency 2× 2 table, influenza when reference is pneumonia, tp: true positive, fp:
false positive, fn : false negative, tn: true negative
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Among the comparisons of interest, models Influenza and Asthma, both versus Pneumo-
nia(baseline) had:

• The highest sensitivity (tp/(tp+fn)) and specificity (tn/(tn + fp)), i.e. the highest
probability that Influenza or Asthma will be positive when the disease is present and the
highest probability that the patient will not have Influenza or Asthma when the test is
indeed negative, respectively. Sensitivity was 0.6, 0.69 and Specificity 0.86, 0.79.

• The highest positive likelihood ratios (sensitivity/(1-specificity)), the highest ratio between
the probability of a positive test given the presence of the condition and the probability of
a positive test given the absence of the disease. Positive LR was 4.29 and 3.29.

The negative likelihood ratio measures the difference between the probability of a negative test
result when the patient has the condition and the probability of a negative result given that the
patient does not have the condition. Asthma when reference is Influenza model revealed the
smallest Negative LR, 0.42.

The above approach has certain limitations. The estimates fitted by separate logistic regressions
will normally differ from those obtained simultaneously by a multinomial logit. The diagnostic
accuracy was accessed for the second multinomial model i.e for the three categories simulta-
neously . The overall HUM is 0.57, and the variables with the highest HUM are crackles.yn
(ĤUM = 0.87) and breathlessness severity (ĤUM = 0.68).

The overall HUM estimator suggests that each of the patient is correctly classified with 0.57
probability. The accuracy is good, since a non informative value for HUM would had by chance
probability of occurring 0.17(M !)−1.
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5 Discussion

In the observational study performed between October 2007-July 2010, out of the 2575 patients,
4% had Pneumonia on chest radiography, 13% Asthma based on an FEV1 ≥ 12% or more than
200 milliliters (ml) after bronchodilation, 10% COPD confirmed with an FEV1/FVC below
0.7 or below the lower limit of normal (LLN) and 8% Influenza confirmed as PCR testing of
nasopharyngeal swab samples. The laboratory reference standard results were available after
inclusion of the patient with spirometry results(FEV, FVC) e.g. 28-35 days after inclusion of
the patient.

This report attempts to quantify the accuracy of a multinomial model in diagnosing pneumonia,
influenza, asthma and COPD with ”other” diagnoses as a baseline reference. Most commonly
imported other diagnoses were: acute bronchitis, chronic bronchitis, nasopharygitis, chest
infection, tracheitis and tracheobronchitis.

In order to understand why our combined results from all 5 multiple imputations were insignificant,
we first calculated the within and between imputation variance(B) for each variable which was
exceptionally small indicating that estimated coefficients as we can see from tables 4-7 are more
or less similar across imputations without big discrepancies. Another explanation comes from
the fact that we took into consideration heterogeneity between countries which implies that
standard errors will be inflated in comparison to what we would have expected if we would
have ignored it. Excluding the suspicion that insignificance comes from the variability between
imputations, observing how small the odds of each category versus the reference (other) are and
keeping in mind that the ”other” category occupies 65% of the sample size, we have reasons
to believe that pneumonia, asthma, copd and influenza are hard to differentiate versus other
diagnoses if based only on sign and symptoms at first day of consultation. For that reason
we also tried to change the reference category and see what happens when e.g. we test each
category versus asthma. The AUC then, for all possible combinations was approximately 0.77
except for : Pneumonia when reference is Asthma (AUC=0.25), Pneumonia when reference is
COPD(AUC=0.28), Asthma when reference is COPD (AUC=0.36), Pneumonia when reference
is influenza(AUC=0.22), Asthma when reference is Influenza(AUC=0.14) and COPD when
reference is Influenza (AUC=0.16). This doesn’t strike as a surprise for two reasons: First
patients with asthma and/or COPD are more susceptible to pneumonia and both can arouse
as a flu-related complication. Secondly in our analysis patients with concurrent results were
included as separate units. So to speak e.g. the 4 patients with pneumonia and influenza are
included 2 times, the first as pneumonia and the second time as influenza. This action has certain
limitations since the assumption that each independent variable has a single value for each case
is violated. Nevertheless even when we removed the 111 patients with concurrent results, the
AUC values for other diagnoses as reference, remained still low(AUC ≈ 0.20). For the diagnostic
accuracy of the model we looked any two category subsets since any pair of a multinomial model
is a valid parametrization i.e. any multinomial pair is conditionally binomial [10]. The pairs
with the highest AUC, that is the categories with the highest discriminating ability are Influenza
when reference is Pneumonia, Asthma when reference is Pneumonia, COPD when reference
is Pneumonia and Influenza when reference is Asthma. The correspondent significant clinical
predictors as were specified by forward selection procedure are shown at tables 14, 15 ,16 and
17(Appendix).

We then constructed the ROC curves of the specified contrasts along with a 3-fold cross validation
estimate of the ROC curve, their average estimate and the corresponding box plots ( figures 8,
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9, 10, 11). The added diagnostic value of selected inflammatory markers, CRP was quantified
by running each model again without CRP and calculating the AUC value of its ROC curve.
The AUC values when CRP was ommited were lower but insignificant (Hanley McNeil test).

Finally, the HUM estimator showed that the multinomial logistic model (tables 8, 9) for predicting
patients conditions i.e. Pneumonia, Influenza and other diagnoses had a good classification
accuracy.
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A Appendix

Missing values per variable.

Table 13: Missing values per variable.

Variable Missing Values Variable MissingV alues

Dur. pr.illness 24 General.Toxicity 3
Cough 14 Dim.vesic.breath. 16
Phlegm 4 Tachycardia 37
Severe Breathlessness 6 Tachypnoea 61
Runny nose 3 Systolic BP 51
Fever 3 Diast BP 51
interference .every.day.activities 2 examabnormal 13
Allergic disease 1 Headache 2
Oral temperature 23 CRP 904
crackles 15 age 0
Days.unwell 480 gender 0
Myalgia 3 Diarrhea 2
reccurcough 541
asthma .family 449
phlegm.Colour 167
smoke 1
Severe Wheeze 4
General feeling unwell 3
Severe.Chest.Pain 11
Any.heart.comorbidity 0



Marginal distributions of pairs of variables with the highest missing values.

Figure 12: Marginal plot Days unwell versus
Asthma.family

Figure 13: Marginal plot Asthma.family versus
Days un.

Figure 14: Marginal plot Asthma.family versus
CRP

Figure 15: Marginal plot Asthma.family versus
Recur.cough



Figure 16: Marginal plot CRP versus Re-
curr.cough



Stabilization of OOB error at 500 trees, plot for each imputed data set.

Figure 17: Imputed data 1 Figure 18: Imputed data 2

Figure 19: Imputed data 3 Figure 20: Imputed data 4



Figure 21: Imputed data 5



Significant Clinical predictors diagnostic accuracy˙

Table 14: Parameter estimates and standard errors for the Logistic Regression model, effect on
log of odds for influenza when reference is pneumonia.

Parameter Estimate
Standard

error
pvalue

Intercept 4.722 1.773 0.008
Dur.pr.illness -0.415 0.079 < .001
CRP -0.019 0.004 < .001
Gen.unwell.yn2 -2.556 0.580 < .001
Dim.vesic.
breath.yn1

-1.931 0.544 < .001

Crackles.yn1 -1.821 0.526 < .001
Runn.nose.yn2 -1.096 0.414 0.008
Phlegm.yn1 -1.519 0.488 0.002
age -0.036 0.012 0.008
lung.other.yn2 3.522 1.392 0.011
smoke3 -1.414 0.512 0.006
Wheeze.sev2 2.193 0.793 0.005
Wheeze.sev3 3.915 1.037 < .001
Wheeze.sev4 4.75 1.272 < .001
Breath.sev2 -1.937 0.892 0.03
Breath.sev3 -2.104 0.994 0.034
Breath.sev4 -3.671 1.178 0.002

Table 15: Parameter estimates and standard errors for the Logistic Regression model, effect on
log of odds for asthma when reference is pneumonia

Parameter Estimate
Standard

error
pvalue

CRP -0.009 0.003 < .001
Fever.yn2 1.323 0.301 < .001
age -0.04 0.010 < .001
Syst.BP 0.028 0.008 < .001
Runn.nose.yn2 -0.997 0.298 < .001
recurrcough1 1.117 0.467 0.017
Dim.vesic.
breath.yn1

-1.049 0.375 0.005

Phlegm.yn1 -0.837 0.397 0.035
Crackles3.yn1 -1.074 0.392 0.006
Gen.unwell.yn2 -0.680 0.342 0.047
gender1 0.611 0.306 0.046
smoke2 -0.906 0.364 0.013
Wheeze.sev3 1.248 0.607 0.05
Wheeze.sev4 2.108 0.825 0.010



Table 16: Parameter estimates and standard errors for the Logistic Regression model, effect on
log of odds for COPD when reference is pneumonia

Parameter Estimate
Standard

error
pvalue

Intercept -1.870 0.915 0.041
Fever.yn2 1.100 0.285 < .001
CRP -0.007 0.002 < .001
Crackles.yn1 -1.082 0.355 0.002
Syst.BP 0.028 0.007 0.002
smoke2 -0.71 0.346 0.040
Runn.nose.yn2 -0.618 0.283 0.029
Dim.vesic.
breath.yn1

-0.832 0.348 0.017

day.unwell -0.059 0.027 0.029

Table 17: Parameter estimates and standard errors for the Logistic Regression model, effect on
log of odds for influenza when reference is asthma

Parameter Estimate
Standard

error
pvalue

Intercept 2.912 0.362 < .001
Dur.pr.illness -0.311 0.044 < .001
Fever.yn2 -1.525 0.230 < .001
smoke3 -0.580 0.268 0.031
Phlegm.yn1 -0.561 0.259 0.030
recurrcough1 -0.994 0.352 0.005
gender1 -0.580 0.236 0.014
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test value

p n total

p′
tp=
7

fn=
317

P′=324

n′
fp=
8

tn=
1674

N′ =1682

total P=15 N=1991

Table 18: Contingency 2× 2 table, asthma when reference is other diagnosis, tp: true positive,
fp: false positive, fn : false negative, tn: true negative

.
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test value

p n total

p′
tp=
4

fn=
254

P′=258

n′
fp=
3

tn=
1679

N′=1682

total P=7 N=1933

Table 19: Contingency 2× 2 table, copd when reference is other diagnosis, tp: true positive, fp:
false positive, fn : false negative, tn: true negative

.
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test value

p n total

p′
tp=
42

fn=
162

P′ =204

n′
fp=
24

tn=
1658

N′=1682

total P=66 N=1820

Table 20: Contingency 2× 2 table, influenza when reference is other diagnosis, tp: true positive,
fp: false positive, fn : false negative, tn: true negative

.
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test value

p n total

p′
tp=
26

fn=
298

P′=324

n′
fp=
48

tn=
59

N′=107

total P=74 N=357

Table 21: Contingency 2× 2 table, asthma when reference is pneumonia, tp: true positive, fp:
false positive, fn : false negative, tn: true negative

.
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test value

p n total

p′
tp=
22

fn=
236

P′=258

n′
fp=
43

tn=
64

N′=107

total P=65 N=300

Table 22: Contingency 2× 2 table, copd when reference is other diagnosis, tp: true positive, fp:
false positive, fn : false negative, tn: true negative

.
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test value

p n total

p′
tp=
134

fn=
70

P′=204

n′
fp=
60

tn=
264

N′=324

total P=194 N=3334

Table 23: Contingency 2 × 2 table, asthma when reference is influenza, tp: true positive, fp:
false positive, fn : false negative, tn: true negative

.



Examine how the scores are calibrated as probability estimates(Calibration Plot).

Figure 22: Calibrattion Plot Influenza Figure 23: Calibration Plot Asthma



B R code

####All codes were repeated for all five

imputation and where necessary estimates

were pooled,for illustration purposes

we show the codes of 1st imputed

dataset.

For diagnostic accuracy part,

for the same

reason we illustrate the procedure for

categories influenza and asthma####

########Section 4.1##########

#############################

#####MULTIPLE IMPUTATION ####

#############################

library(mice)

mydata <- read.table("C:/New folder/

Thesis/Thesis Last Data/20072015/

multinomialsev2107.txt", header=TRUE,

sep="\t" ,fill = TRUE)

mydata$class <- as.factor(mydata$class)

mydata$pneumonia<-

as.factor(mydata$pneumonia)

mydata$diagASTMA<-as.factor

(mydata$diagASTMA)

mydata$COPD<-as.factor(mydata$COPD)

mydata$Influenza_A_B_interpretation

<-as.factor

(mydata$Influenza_A_B_interpretation)

mydata$other<-as.factor(mydata$other)

mydata$Dur_pr_cough<-

as.numeric(mydata$Dur_pr_cough)

mydata$Dur_pr_illness<-as.numeric

(mydata$Dur_pr_illness)

mydata$age<-as.numeric(mydata$age)

mydata$chest_wheez<-

as.factor(mydata$chest_wheez )

mydata$gender<-as.factor(mydata$gender)

mydata$asthma_family<-

as.factor(mydata$asthma_family)

mydata$smoke<-as.factor(mydata$smoke)

mydata$chest_tightness<-

as.factor(mydata$chest_tightness)

mydata$breaths_min<-

as.numeric(mydata$breaths_min)

mydata$Cough_sev<-

as.factor(mydata$Cough_sev)

mydata$smoke_pack_years<-

as.numeric(mydata$smoke_pack_years)

mydata$Phlegm_yn<-

as.factor(mydata$Phlegm_yn )

mydata$longterm_illness_yn<-

as.factor(mydata$longterm_illness_yn)

mydata$Breath_yn<-as.factor(mydata$Breath_yn)

mydata$asthma_yn<-as.factor(mydata$asthma_yn )

mydata$COPD_yn<-as.factor(mydata$COPD_yn)

mydata$Breath_sev<-as.factor(mydata$Breath_sev)

mydata$other_heart_yn<-

as.factor(mydata$other_heart_yn)

mydata$Runn_nose_yn <-

as.factor(mydata$Runn_nose_yn)

mydata$diabetes_yn <-

as.factor( mydata$diabetes_yn)

mydata$Cough_yn<-as.factor(mydata$Cough_yn )

mydata$Fever_yn<-as.factor(mydata$Fever_yn)

mydata$cough_2wksplus_ter<-

as.factor(mydata$cough_2wksplus_ter)

mydata$Chest_pain_yn<-

as.factor(mydata$Chest_pain_yn )

mydata$Chest_pain_sev

<-as.factor(mydata$Chest_pain_sev)

mydata$Diarhh_yn<-as.factor(mydata$Diarhh_yn)

mydata$Syst_BP<-as.numeric(mydata$Syst_BP)

mydata$Diast_BP<-as.numeric(mydata$Diast_BP )

mydata$Wheeze_yn<-as.factor( mydata$Wheeze_yn )

mydata$Oral_temp<-as.numeric(mydata$ Oral_temp )

mydata$Wheeze_sev<-as.factor(mydata$Wheeze_sev )

mydata$Interf_act_yn<-

as.factor(mydata$Interf_act_yn )

mydata$Muscle_ach_yn<-

as.factor(mydata$Muscle_ach_yn)

mydata$Headache_yn<-as.factor(mydata$Headache_yn)

mydata$Gen_unwell_yn<-

as.factor(mydata$Gen_unwell_yn)

mydata$FEV1<-as.numeric(mydata$FEV1)

mydata$Suspected_pneumonia<-

as.factor(mydata$Suspected_pneumonia)

mydata$ratio_70<-

as.factor(mydata$ratio_70)

mydata$Beats_min<-

as.numeric(mydata$Beats_min)



mydata$examabnormal<-

as.factor(mydata$examabnormal)

mydata$FV<-as.numeric(mydata$ FVC)

mydata$Gen_tox_yn<-

as.factor(mydata$Gen_tox_yn)

mydata$Dim_vesic_breath_yn<-

as.factor(mydata$Dim_vesic_breath_yn)

mydata$crpgp<-as.factor(mydata$crpgp)

mydata$crp<-as.numeric(mydata$crp)

mydata$Tachypnoea<-

ifelse(comb$breaths_min > 24,

"Tachypnoea","Normal breaths")

comb$Temperature <-

ifelse(comb$Oral_tem >37.8 ,

"Fever","No Fever")

mydata$Tachypnoea<-

as.factor(comb$Tachypnoea)

comb $ Temperature <-

as.factor(comb$Temperature)

mydata$prescr_med_yn<-

as.factor(mydata$prescr_med_yn )

mydata$infl_vacc_yn<-

as.factor(mydata$infl_vacc_yn)

mydata$CRACKLES3_YN<-

as.factor(mydata$CRACKLES3_YN)

mydata$lung_other_yn <-

as.factor(mydata$lung_other_yn )

mydata$allergic_disease_yn

<-as.factor

(mydata$allergic_disease_yn )

mydata$ AB_treat_yn<-

as.factor(mydata$AB_treat_yn)

mydata $ recurrcough<-

as.factor(mydata$recurrcough)

mydata$day_recovery<-

as.numeric(mydata$day_recovery)

mydata$phlegmanycolour

<-as.factor(mydata$phlegmanycolour)

mydata$pulsehigh<-

as.factor(mydata$pulsehigh)

mydata$day_unwell <-

as.numeric(mydata$day_unwell)

mydata $ lung_other_yn <-

as.factor(mydata$lung_other_yn)

#################################

#################################

#################################

remove variables not used

in the papers

#################################

#################################

mydata3<-mydata[,c(1:21,23,26:69,71)]

mydata3pat<-

mydata3[,c(1:8,10:12,14:16,18:21,23:26

,28,31:34,36:41,43,45,46,48,49:57,59,

60,64:67)]

str(mydata3pat)

#####################################

library(data.table)

setDT(mydata3pat)[PCN_name ==

"Brastislava",

Country := "Slovakia"]

setDT(mydata3pat)[PCN_name ==

"Cardiff",

Country := "Wales"]

setDT(mydata3pat)[PCN_name ==

"Southampton",

Country := "England"]

mydata3pat$Country<-

factor(mydata3pat$Country)

table(mydata3pat$Country)

######################################

#######explore missingness patterns##

############

missi<-md.pattern(mydata3pat)

library(VIM)

marginplot(mydata[, c("recurrcough", "crp")],

col = mdc(1:2), cex = 1.2,

cex.lab = 1.2, cex.numbers = 1.3, pch = 19)

########missing values per variable##

for (Var in names(mydata)) {

missing <- sum(is.na(mydata[,Var]))

if (missing > 0) {

print(c(Var,missing))

}}

######################################

Imputation, which variables to use

as predictors and imputation method

for each variable

pmm:predictive mean matching

logreg:logistic regression model

polyreg:Multinomial logit model

######################################

ini <- mice(mydata3pat,maxit=0,pri=F)

mydata3pat<-as.data.frame(mydata3pat)



pred<-ini$pred

pred[,c("SubjectCode","ResponsDate",

"pneumonia","class","diagASTMA","COPD",

"Influenza_A_B_interpretation","other",

"smoke_pack_years","PCN_name","Country",

"Diagnosis","day_unwell")] <- 0

meth <- ini$meth

meth[c("age","gender","smoke",

"Dur_pr_illness","crpgp","Cough_sev",

"Phlegm_yn","Breath_sev","Runn_nose_yn",

"Fever_yn","Chest_pain_sev","Diarhh_yn",

"other_heart_yn","Gen_tox_yn",

"Dim_vesic_breath_yn","pulsehigh",

"breaths_min","Syst_BP","Diast_BP",

"Oral_temp","crp","infl_vacc_yn",

"lung_other_yn","diabetes_yn",

"Muscle_ach_yn","Headache_yn",

"Gen_unwell_yn","Interf_act_yn",

"examabnormal","Wheeze_sev",

"allergic_disease_yn","recurrcough",

"phlegmanycolour","asthma_family")]

<-c("pmm","logreg","polyreg","pmm",

"polyreg","polyreg","logreg","polyreg",

"logreg","logreg","polyreg","logreg",

"logreg","logreg","logreg","logreg",

"pmm","pmm","pmm","pmm","pmm","logreg",

"logreg","logreg","logreg","logreg",

"logreg","logreg","logreg","polyreg",

"logreg","logreg","logreg","polyreg")

imp <- mice(mydata3pat,m=5,

maxit=10, printFlag=TRUE,pred=pred,

meth=meth,seed=10082015)

str(imp)

com <- complete(imp, 1)

com2 <- complete(imp, 2)

com3 <- complete(imp, 3)

com4 <- complete(imp, 4)

com5 <- complete(imp, 5)

########Section 4.3##########

#############################

#####RANDOM FORESTS##########

#############################

############Random Forests#########

library(randomForest)

library(lattice)

myvars <-

c("age","gender","smoke",

"Dur_pr_illness","Cough_sev","Phlegm_yn",

"Breath_sev","Runn_nose_yn","Fever_yn",

"Chest_pain_sev","Diarhh_yn",

"other_heart_yn","Gen_tox_yn",

"Dim_vesic_breath_yn","Beats_min",

"breaths_min","Syst_BP","Diast_BP",

"Oral_temp","crp","CRACKLES3_YN",

"infl_vacc_yn","lung_other_yn",

"diabetes_yn","day_unwell",

"Muscle_ach_yn","Headache_yn",

"Gen_unwell_yn","Interf_act_yn",

"examabnormal","Tachypnoea","pulsehigh",

"Temperature","asthma_family",

"Wheeze_sev",

"Chest_pain_sev","allergic_disease_yn",

"recurrcough","phlegmanycolour","crpgp",

"class")

newdata <- com[myvars]

###### classification trees##########

combinedrf<-randomForest

(class ~age+gender+

Temperature+smoke+Dur_pr_illness

+Cough_sev+Phlegm_yn+Breath_sev

+Runn_nose_yn+Fever_yn+Chest_pain_sev

+Diarhh_yn+other_heart_yn+

Gen_tox_yn+Dim_vesic_breath_yn+

Beats_min+

breaths_min+Syst_BP+Diast_BP+Oral_temp+

crp+CRACKLES3_YN+infl_vacc_yn+

lung_other_yn

+diabetes_yn+day_unwell+Muscle_ach_yn+

Headache_yn+Gen_unwell_yn+Interf_act_yn+

examabnormal+Tachypnoea+pulsehigh+

Temperature+asthma_family+Wheeze_sev+

Chest_pain_sev+allergic_disease_yn+

recurrcough+phlegmanycolour,data=newdata,

ntree=500, mtry=12,importance=TRUE,

nodeSize = 1000,norm.votes=TRUE,

jclasswt =0)

#########Mean decrease in accuracy

imp=as.data.frame(importance(combinedrf,

type=1))

library(lattice)



data <-as.data.frame(cbind(rownames(imp),

round(imp[,"MeanDecreaseAccuracy"],3)))

colnames(data)<-c("Parameters",

"MeanDecreaseAccuracy")

data$MeanDecreaseAccuracy <-

as.numeric(as.character

(data$MeanDecreaseAccuracy))

data$Parameters <-reorder

(data$Parameters,

data$MeanDecreaseAccuracy)

dotplot(Parameters ~

MeanDecreaseAccuracy,

data = data,aspect = 1.5,

xlab = "Mean Decrease Accuracy",

scales = list(cex = .6),

panel = function (x, y) {

panel.dotplot(x, y, col="black",lty = 2)

panel.abline( h=y[ which(x==0.300

lty = "dotted", col = "red")})

#######tuning to identify best number

of variables mtry###################

tuning <-tuneRF(newdata2 [ ,-41],

newdata2[ ,41], improve=.10,

ntreeTry=500,

mtryStart = 6, stepFactor = 0.5)

tuning

print(tuning)

########Section 4.4##########

#############################

#############################

#############################

#######Multinomial LR########

#############################

myvars <-c("SubjectCode","class",

"Country","Dur_pr_illness","PCN_name"

,"day_unwell","Wheeze_sev","Syst_BP",

"Fever_yn","age",

"smoke","Temperature","crp","Diast_BP",

"Dim_vesic_breath_yn","Muscle_ach_yn",

"pulsehigh","examabnormal",

"Chest_pain_sev",

"Tachypnoea","Phlegm_yn",

"Gen_tox_yn",

"asthma_family","recurrcough",

"Runn_nose_yn",

"Interf_act_yn","CRACKLES3_YN",

"Breath_sev","Gen_unwell_yn",

"Headache_yn","other_heart_yn",

"gender","infl_vacc_yn",

"phlegmanycolour","lung_other_yn")

finaldata<- comb[myvars]

library(mlogit)

long0=mlogit.data

(finaldata,shape="wide",

chid.var = "SubjectCode",

choice="class")

TM <- mlogit.data(long0,

choice = "class", shape = "long",

alt.levels = c("Pneumonia","Asthma",

"COPD","Influenza","Other"),

chid.var = "SubjectCode",

drop.index=TRUE)

simple0=mlogit(class ~ 1 |

Dur_pr_illness + day_unwell +

Wheeze_sev + Syst_BP +Fever_yn +

age+smoke+crp+Diast_BP+

Muscle_ach_yn+examabnormal

+Chest_pain_sev+Tachypnoea+

Phlegm_yn+Gen_tox_yn+asthma_family+

recurrcough+Runn_nose_yn+Interf_act_yn+

CRACKLES3_YN+Breath_sev+

Dim_vesic_breath_yn+Gen_unwell_yn+

Headache_yn+other_heart_yn+

gender+infl_vacc_yn+phlegmanycolour+

lung_other_yn,TM,reflevel ="Other")

########Section 4.4##############

#################################

#################################

#################################

####cLUSTER ROBUST INFERENCE#####

#################################

#################################

Adjust the standard errors

to account for clustering

/ function#######################

#################################

finaldata$Country<-as.numeric



(finaldata$Country)

cl.mlogit<-function(logitmodel,cluster){

require(sandwich, quietly = TRUE)

require(lmtest, quietly = TRUE)

M <- length(unique(cluster))

N <- length(cluster)

K <- length(coefficients(logitmodel))

# dfc <- (M/(M-1))*((N-1)/(N-K))

dfc <- (M/(M-1))

uj <- apply(estfun(logitmodel),2,

function(x) tapply(x, cluster,sum));

vcovCL <- dfc*sandwich(logitmodel,

meat.=crossprod(uj)/N)

coeftest(logitmodel, vcovCL) }

cl.mlogit(simpleb,finaldata$Country)

##########Interaction all with age

and crp*Dur_pr_illness->

none significant

Phlegm_yn*age +

CRACKLES3_YN*age +

Interf_act_yn*age

+Dur_pr_illness*crp +

+Breath_sev*age

p.value:0.06 Phglegm_yn * age

p.value:0.892 Breath_sev4*age

###############################

########Section 4.5##########

#############################

#############################

#############################

#####Diagnostic Accuracy#####

#############################

#############################

x.sub1 <-com[com$class %in% c("4","2"),]

x.sub1$class<-relevel(x.sub1$class,

ref="4")m1resfinal<-glm(formula=class ~

Dur_pr_illness +day_unwell +

Wheeze_sev + Syst_BP + Fever_yn +

crp +age+smoke+Dim_vesic_breath_yn+

Muscle_ach_yn+Chest_pain_sev+Phlegm_yn+

Gen_tox_yn+recurrcough+Runn_nose_yn+

CRACKLES3_YN+Breath_sev+

crp+Gen_unwell_yn+other_heart_yn+

gender+lung_other_yn+ crp*Dur_pr_illness,

family = binomial(link = "logit")

multi.grace09intercept <-

glm(formula = class ~ +1 ,

family = binomial(link ="logit"),

data = x.sub1)

########forward selection Logistic

Regression

result=step(multin.grace09intercept,

scope=list(lower=multin.grace09intercept,

upper=m1resfinal), direction="forward")

################################

final model#####################

m1resfinalb<-glm(formula = class ~

Dur_pr_illness

+ Fever_yn + smoke + Phlegm_yn +Syst_BP +

recurrcough + other_heart_yn +

day_unwell + gender,

family = binomial(link = "logit"),

data = x.sub1)

########## AUC##############

labels=x.sub1$class

scores=predict(m1resfinalb,

newdata=NULL, type="response")

scores=as.vector(scores)

########procedure for AUC

was repeated for

dataset without the duplicated

patients

test<-comb[!(duplicated

(comb$SubjectCode) |

duplicated(comb$SubjectCode,

fromLast = TRUE)), ]#######

library(ROCR)

pred <- prediction(scores, labels)

perf <- performance( pred, "tpr", "fpr")

auc.tmp <- performance(pred,"auc")

auc <- as.numeric(auc.tmp@y.values)

plot(perf, colorize=T)

abline(a=0, b= 1)

text(0.8,0.2, paste("AUC = ",

format(auc, digits=3)))

title("ROC curve Asthma



when reference is Influenza")

#####################

Cross Validation - 3 fold

#####################

library(DAAG)

val.daag <-CVbinary(m1resfinalb,

rand=NULL,

nfolds=3, print.details=TRUE)

my.cvfunc<-function (obj =

frogs.glm, rand = NULL, nfolds = 3,

print.details = TRUE, seed=NULL)

{

data <- obj$data

m <- dim(data)[1]

if (is.null(seed))

{

if (is.null(rand))

rand <- sample(nfolds, m,

replace=TRUE)

}

else {

set.seed(seed)

if (is.null(rand))

rand <- sample(nfolds,m,replace = TRUE)

}

form <- formula(obj)

yvar <- all.vars(form)[1]

obs <- data[, yvar]

ival <- unique(rand)

fam <- obj$family$family

hat <- predict(glm(form, data,

family = fam), type = "response")

cvhat <- rep(0, length(rand))

if (print.details)

cat("\nFold: ")

my.out<-vector("list",nfolds)

my.y<-vector("list",nfolds)

for (i in ival) {

if (print.details)

cat("", i)

if (i%%20 == 0)

cat("\n")

here <- i != rand

i.glm <-glm(form, data = data[here, ],

family = fam)

cvhat[!here] <-

predict(i.glm,newdata=data[!here,

], family = fam, type ="response")

my.out[[i]]<-cvhat[!here]

my.y[[i]]<-data[!here,yvar]

}

list(my.out,my.y)

}

testit<-my.cvfunc(m1resfinalb

,seed=10)

pred<-prediction(testit[[1]],

testit[[2]])

perf<-performance(pred,"tpr", "fpr")

plot(perf,col="grey82",lty=3)

plot(perf,lwd=1,avg="vertical",

spread.estimate="boxplot", add=TRUE)

abline(0,1,col=4,lty=3)

mtext(’Model Influenza when reference

is Asthma’,side=3,line=.5,

font=2)

##########Contigency table for Pneumonia

when reference is Other diagnoses

######################

Yhat<- predict(m1resfinal,type="response")

thresh <- 0.5 # threshold for

dichotomizing according to

predicted probability

YhatFac <- cut(Yhat, breaks=c(-Inf,

thresh, Inf),

labels=c("5", "1"))

################contingency table

cTab <- table(x.sub1$class, YhatFac)

addmargins(cTab)# marginal sums

###############percentage

correct for data

sum(diag(cTab)) / sum(cTab)

#########################

##########AUC difference

test, model with CRP (pred1,lab1),

model without CRP (pred2,lab2)

pred: predicted prob.

lab: factor for pred.



##########################

##########################

AUC.test(pred1, lab1, pred2,

lab2, conf.level = 0.95,

paired = FALSE)

#####################

Within and between

variable imputation var

#####################

######u:se of each imp

u1<-0.003595

u2<-0.003647

u3<-0.003215

u4<-0.0054568

u5<-0.00327

U= 1/5*(u1+u2+u3+u4+u5)

######g:coef of each imp

g1<- -0.01489

g2<- -0.018617

g3<- -0.011264

g4<- -0.4963507

g5<--0.01465

qbar<-1/5*(g1+g2+g3+g4+g5)

B<-1/4*((g1-qbar)+(g2-qbar)

+(g3-qbar)+(g4-qbar)+

(g5-qbar))^2

T=U+(1+(1/5))*B

m=5

m1=m-1=4

df=(m1)*(1+((m*U)/

((m+1)*B)))^2

t=qbar/sqrt(T)

2*pt(-abs(t),df=df)

#######Calibration plot

#######observed versus

predicted

####p:scores/estimated/

predicted probabilities

####y:response 0:1

calibration<- function (y, p,

main="Title"){

newp <- seq(0, 1, length=100)

yy <- predict(loess(y ~ p, span=1),

newp, se=T)

yy.ok <- !is.na(yy$fit)

yy$fit <- yy$fit[yy.ok]

yy$se.fit <- yy$se.fit[yy.ok]

newp <- newp[yy.ok]

se.lower <- yy$fit - 2 * yy$se.fit

se.upper <- yy$fit + 2 * yy$se.fit

par(pty="s")

plot(c(0,1), c(0,1), type="n",

xlab="Predicted Probability",

ylab="Observed Proportions",

xaxs="i", yaxs="i", las=1, main=main)

polygon(c(newp, rev(newp), newp[1]),

c(se.lower, rev(se.upper), se.lower[1]),

col = "gray", border = NA)

rug(p[y == 0], side=1, col="navy")

rug(p[y == 1], side=3, col="navy")

abline(0, 1, col="red")

abline(h=0.2, col="yellow", lty=2)

lines(newp, yy$fit, lwd=2, col="blue")

par(pty="m")

}

####Three way HUM########

########################

Code by Li. J.##########

########################

########################

available at:

http://www.stat.nus.edu.sg/~stalj/

########################

########################

ThreeHUM=function(y,d){

#y is the tri-nomial response,

i.e., a single vector taking

three distinct values,

can be nominal or numerical

#d is the continuous marker

#x1 is position of

observations from the 1st category

#x2 is position

of observations

from the 2nd category

#x3 is position

of observations

from the 3rd category

x1=which(y==1)



x2=which(y==4)

x3=which(y==5)

n=length(y)

#n is the sample size

a=matrix(0,n,3);

one1=a;

one1[,1]=1;

one2=a;

one2[,2]=1;

one3=a;

one3[,3]=1;

library(nnet)

fm=multinom(y~d)

#extract the probablity

assessment vector

pp=fm$fitted;

dd1=pp-one1;

dd2=pp-one2;

dd3=pp-one3;

jd1=sqrt(dd1[,1]^2+

dd1[,2]^2+dd1[,3]^2);

jd2=sqrt(dd2[,1]^2+

dd2[,2]^2+dd2[,3]^2);

jd3=sqrt(dd3[,1]^2+

dd3[,2]^2+dd3[,3]^2);

jd1=exp(jd1);

jd2=exp(jd2);

jd3=exp(jd3);

mt1=kronecker

(jd1[x1]%*%t(jd2[x2]),jd3[x3]);

mt2=kronecker

(jd1[x1]%*%t(jd3[x2]),jd2[x3]);

mt3=kronecker

(jd2[x1]%*%t(jd1[x2]),jd3[x3]);

mt4=kronecker

(jd2[x1]%*%t(jd3[x2]),jd1[x3]);

mt5=kronecker

(jd3[x1]%*%t(jd2[x2]),jd1[x3]);

mt6=kronecker

(jd3[x1]%*%t(jd1[x2]),jd2[x3]);

cr=sum(mt1==pmin(pmin(

pmin(pmin(pmin(mt1,

mt2), mt3), mt4), mt5), mt6));

#hypervolume under

ROC manifold value

hum=cr/(length(x1)*

length(x2)*length(x3));

return(hum)

}
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