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1 Introduction

Myriad of applications of statistics involve simultaneous testing of many hypotheses. In clinical
trials, multiplicity may easily arise in situations such as multiple endpoints, multiple primary
variables, multiple comparisons of treatments, repeated measurements over time, and interim
analyses [7].

Such multiplicity issues have to be addressed accordingly in order to avoid false findings and
misleading conclusions. Some occasionally preferable possible solutions to lessen or avoid
multiplicity have been developed such as identification of the key primary variable (multiple
variables), choosing a critical treatment contrast (multiple comparisons), and use of a summary
measure like area under the curve (repeated measures). According to the ICH Harmonised Tri-
partite Guideline Statistical Principles for Clinical Trials (ICH E9), in confirmatory analyses,
any aspects of multiplicity which remain after the above procedure(s) should be addressed and
should be determined in the protocol, while the details of any adjustment procedure or an ex-
planation of why the adjustment is not necessary should be incorporated in the analysis plan.
In hypothesis testing, interpreting presumptive statistically significant findings when there is
no multiplicity adjustment should be dealt with care [7].

According to ICH E9, if hypothesis tests are used, committing the Type II error (failure to
reject a false null hypothesis) is also of concern: in a clinical trial, committing a Type II error
means failure to demonstrate that the treatment works when in fact it does [7]. The choice of
Type II error rate is done by the trial sponsor.

In a case of testing a single hypothesis, a statistical test in the absence of a treatment effect can
result in a conclusion in favor of a treatment effect by chance. Such error, also called as Type I
error, can become excessive when many hypotheses are tested and proper multiplicity adjust-
ment is not imposed. This condition inflates the familywise error rate (FWER) discussed in
Section 3 and can lead to significant results for ineffective treatments. Thus, it is imperative
to control this error probability at a prespecified level. This can be done through appropriate
design and well-planned analyses strategies [6]. Controlling the Type I error is more of in-
terest for, and is imposed by, regulatory authorities and for drug approval because it controls
the probability of putting an inefficient drug on the market and/or putting a wrong claim in the
product label. Controlling the familywise Type I error in strong sense (defined in Section 3)
is a prerequisite of the regulatory agencies for Phase III confirmatory claims. Such trials are
necessary to provide clear and firm evidence of efficacy, safety or evidence in support of claims
about the treatment [13].

The conceptual definitions of Type I and Type II error rates can be illustrated in a statistical
inference decision table as shown in Table 1. In this table, the unknown truth is crossed with
the statistical decision. The null hypothesis is presumed to be true until statistical evidence in
a form of a hypothesis test indicates otherwise. Not rejecting the null hypothesis implies two
things: either the null hypothesis is actually true, implying a correct decision in lower left cell of
Table 1, or that the null hypothesis is actually false but there was no enough evidence observed
to reject it hence committing a Type II error. Similarly, rejecting a null hypothesis implies that
either the null hypothesis is actually false, reflecting a correct decision in the upper right cell, or
that the null hypothesis is actually true but we concluded otherwise hence committing a Type I
error [12].
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Table 1: Statistical Inference Decision Table

Inferential Decision True Null Hypothesis False Null Hypothesis
Reject Null Hypothesis Type I error Correct Decision

Probability = a Probability = 1-b
Do not Reject Null Hypothesis Correct Decision Type II error

Probability = 1-a Probability = b
a = Type I error rate
b = Type II error rate ; power = 1-b
Source:[12]

Various classes methods of adjustments for multiplicity has been developed throughout the
years from the simplest Bonferroni adjustment to the methods that can handle complex designs.
According to the amount of distributional information utilized, these methods can be broadly
classified into three classes: nonparametric procedures, that do not make any assumptions about
the joint distribution of the hypothesis test statistics; semiparametric procedures, that require
additional distributional assumptions to establish FWER control but do not explicitly depend
on the joint distribution of the hypothesis test statistics; and the parametric procedures, that
require explicit assumptions about the joint distribution of the hypothesis test statistics [1] [5].

In the recent years, graphical approaches have been proposed to facilitate the visualization and
communication of Bonferroni-based closed test procedures for multiple test problems similar
to the clinical trial considered in this paper, such as comparing several treatments with control
and assessing the benefit of a new drug for more than one endpoint. This enabled us to first
derive the suitable weighting strategies that reflect the given study objectives and then apply the
appropriate test procedures. We consider two families of test procedures based on weighted
Bonferroni tests and weighted Simes tests [3].

1.1 Statements of objectives

Based on a completed clinical trial, investigate the effect of different multiple testing procedures
within the framework of graphical approaches with respect to the power of the results.

In Section 2, we show the testing strategy used in the CSR. We then introduce the graphical
approach in multiple testing in Section 3 and explain how it will be used in the paper. The
weighted Bonferroni test and weighted Simes test will also be discussed. Moreover, the sim-
ulation settings used to investigate the power of the different testing strategies considered will
be described in the same section. The rest of the paper discusses the results and offers some
conclusions and recommendations.
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2 Data description and CSR testing strategy

The clinical trial utilized in this paper is from a completed study investigating a currently mar-
keted drug. Due to confidentiality reasons, all the information that will identify the study drug,
its therapeutic area, dosage and endpoints of the clinical trial study used in this paper were
masked. Hence, this paper will focus more on the methodological aspect of multiple testing
procedures and its effect on the power of the test. Furthermore, the working data set is not
the full CSR data set: for the purposes of this thesis, 5 observations per treatment arm were
randomly deleted for each endpoint, and all the results presented in the paper are based on this
data set. Nonetheless, the conclusions based in this truncated data set are entirely valid because
the deletion of observations did not generate any substantial difference from the CSR results
that would affect interpretation.

The trial was a confirmatory Phase III, multicenter, randomized, four-arm, parallel group,
double-blind, placebo-controlled trial. The patients were randomized in a 1:1 ratio to one of
the following treatment arms: 3 active dose levels of study drug (low, medium, and high doses)
or placebo. All endpoints were then evaluated for the 3 dose levels versus placebo. Since only
the testing of efficacy endpoints are subject to the control for Type I error, the safety endpoints
were not discussed in this paper.

The trial efficacy endpoints are as follows:

Primary efficacy endpoint

• Primary: Change from baseline at Week T of the primary efficacy variable
(continuous variable, negative value indicates improvement)

Secondary efficacy endpoints

• First Secondary (S1): Change from baseline at Week T in first secondary efficacy vari-
able
(continuous variable, negative value indicates improvement)

• Second Secondary (S2): Proportion of responders based on primary efficacy variable. A
subject was considered as responder if its corresponding primary efficacy endpoint value
at Week T is below a certain threshold.
(proportion; if a patient is responder, he/she is coded as 1)

• Third Secondary (S3): Change from baseline at Week T in third secondary efficacy
variable
(continuous variable, negative value indicates improvement)

For all the endpoints, in case that there is no available measurement at Week T, the Last Ob-
servation Carried Forward (LOCF) method was used to approximate the measurement. All
endpoints included subjects from the Randomized Subjects Data Set, which consisted all ran-
domized subjects who took at least one dose of double-blind treatment.

Figure 1 presents the testing strategy used in the clinical trial considered in this paper. There
were 12 elementary hypotheses of different importance to be tested. These hypotheses are de-
noted as Hm j, where m corresponds to the mth efficacy endpoint following the sequential testing
methodology and j is the jth pairwise comparison (m = 1,2,3,4 denote the primary, S1, S2,
and S3 endpoints; j = 1,2,3 denote the high vs. placebo, medium vs. placebo, and low vs.
placebo comparisons). The diagram also shows the sequential testing methodology. In order

6



to control the Type I error rate within each treatment group at the 0.05 level, the statistical
testing of all the 4 study endpoints proceeded sequentially. More specifically, the sequential
testing procedure is reflected by the arrows linking the hypotheses within the treatment com-
parisons and the values at each hypothesis are the respective levels of significance per pairwise
comparison. The significance of the treatment comparisons for the primary efficacy endpoint
was a requirement in order to proceed in testing the secondary efficacy endpoints. That is,
for the change from baseline to Week T in secondary efficacy endpoint S1, only those active
drug treatment groups significantly superior to placebo under the primary efficacy endpoint
were tested against placebo. Similarly, testing for the secondary efficacy endpoints proceeded
sequentially. At each step in the testing sequence, only the active drug treatment groups signif-
icantly superior to placebo were tested at the subsequent step. For primary efficacy endpoint,
individual comparison of an active drug treatment group against the placebo group was per-
formed at α = 0.019 level. The (pairwise) Type I error rate for comparing each active drug
treatment group to placebo for each secondary efficacy endpoint was 0.05.

Figure 1: CSR Testing Strategy diagram

The primary efficacy analysis in this study was based on analysis of covariance (ANCOVA)-
adjusted mean change from baseline to Week T, for 3 dose levels of active drug (low, medium,
high) and the placebo group. Specifically, ANCOVA was used to compare the change from
baseline values across treatment groups, adjusting for the baseline weight and is based on the
following model [10]:
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Ykl = µ +αk +β (Xkl− X̄..)+ εkl

where

Ykl is the change from baseline to Week T primary efficacy variable value for the lth subject
belonging to a treatment group k with baseline value Xkl

X̄.. is the mean of the baseline values Xkl

µ is overall mean

αk is the effect of the kth treatment group

β is the regression coefficient parameter that represents the degree of linear relationship be-
tween Ykl and Xkl

εkl independent ∼ N(0,σ2)

k = 1,2,3,4 ; l = 1, ...,nk

Under the structure of ANCOVA model, point estimates for mean changes for each active
drug treatment group and the placebo group were obtained. A mentioned earlier, individual
comparison of an active drug treatment group against the placebo group was also performed
at α = 0.019 level. The CSR testing strategy controlled the overall Type I error rate at the
0.05 significance level for the primary endpoint because in testing the 3 primary endpoint hy-
potheses, each of the 3 significance levels were adjusted to α = 0.019 according to Dunnett’s
multiple comparison procedure for comparing several treatments with a control. This proce-
dure performs the pairwise comparisons only for the placebo group against with each of the
treatment group, hence reduces the multiple comparisons price to pay, while accounting for the
correlation of the comparisons since they all use the same placebo group as control [14].

The secondary efficacy analysis was also subjected to the sequential testing methodology and
was done in two different ways based on the nature of the endpoint. The continuous secondary
efficacy endpoints, S1 and S3, were analyzed similarly as the primary endpoint (ANCOVA).
The ANCOVA model used for the primary analysis described earlier was used, but the involved
variables are changed according to S1 (and to S3). Within the structure of ANCOVA model,
point estimates for the mean change from baseline within each treatment group as well as for
the difference in the mean change from baseline between each active drug treatment group
and the placebo group was calculated. The binary secondary efficacy endpoint S2 was also
subjected to sequential testing. Using Fisher’s exact test, the percentage of responders at Week
T between each of the active drug treatment groups and the placebo group were compared.
The frequency and percentage of responders at Week T were presented. Point estimates of the
difference in response rates between each of the active drug treatment groups and the placebo
group were obtained. The pairwise Type I error rate for comparing each active drug treatment
group versus placebo group for each secondary efficacy endpoint hypothesis was kept at 0.05.
This implies that for each secondary endpoint, the 3 hypotheses simultaneously tested were not
adjusted for multiplicity.

Table 2 presents the p-values obtained from the CSR. It can be seen that all, except for the low
versus placebo comparison for secondary efficacy endpoint S2, were lower than their respec-
tive predetermined significance levels. Thus, following the sequential testing method, the said
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comparison cannot be tested further for S3. Hence, the p-value obtained there (value=0.0073)
cannot be interpreted, even if it is lower than 0.05.

Table 2: P-values from ANCOVA (Primary, S1 and S3) and Fisher’s exact p-values (S2)

Treatment group comparison
Endpoint Low vs. Placebo Medium vs. Placebo High vs. Placebo
Primary <.0001 <.0001 <.0001
S1 0.0001 0.0085 0.0001
S2 0.0983ns 0.0245 0.0048
S3 (0.0073) 0.0096 0.0032
ns = not significantly lower than 0.05

Table 9 in Appendix A.2 shows the summary statistics at baseline, at Week T and change from
baseline per arm for primary efficacy endpoint and secondary efficacy endpoints S1 and S3.
Pairwise correlations at baseline and at Week T were presented in Table 11. The proportion of
responders based on primary efficacy variable per arm is shown in Table 10.
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3 Methodology

3.1 The Graphical Approach in Multiple Testing Adjustment

The closure principle defined in Appendix A.1 was used by Bretz et al. (2011b) to construct
powerful multiple test procedures. This procedure controls the familywise error rate (FWER)
in a strong sense at a level α (where α lies between 0 and 1) [3]. FWER is the probability
of incorrectly rejecting at least one true null hypothesis. Strong control of FWER refers to
controlling FWER under all possible combinations of true and false null hypotheses. This type
of control allows us to control the maximum probability of incorrectly rejecting at least one
true null hypothesis. Testing procedures control the FWER in weak sense when the FWER
control is secured only when all the null hypotheses are true [5]. Since in clinical trials, the
researchers aim for strong control of FWER, testing procedures which control only in a weak
sense were not the focus of this paper.

The main idea about graphical approaches is to express the resulting multiple test procedures
by directed, weighted graphs, where each node corresponds to an elementary hypothesis, to-
gether with a simple algorithm to generate such graphs while sequentially testing the individual
hypotheses. By using graphical approaches, the statisticians are able to explore different testing
strategies together with the clinical team and therefore tailor the multiple test procedure to the
given study objectives [3]. In this paper, the graphical approaches are applied using weighted
Bonferroni testing procedures and weighted Simes test.

The notation of the hypotheses introduced in the previous section will be adopted. For ease
in writing, the hypotheses will be recoded such that Hm j becomes Hi, where i = 1, ...,12, so
that H11 = H1, H12 = H2, H13 = H3, H21 = H4, H22 = H5, and so on. Let I = 1, ...,12 be
the corresponding index set. Weighting strategies are formally defined through the weights
(or local significance levels) W = (α1, ...,α12) for the global null hypothesis HI , and through
the 12x12 transition matrix G = (gi j), where 0 ≤ gi j ≤ 1 and ∑

12
j=1 gi j ≤ 1 for all i, j =

1, ...,12. The local significance levels αi are pre-determined such that they sum up to α . The
transition matrix fully determines the edges, i.e., the weight gi j controls the fraction of the
local level αi that is allocated to H j in case Hi was rejected. Specifically, for a given index set
J ⊆ I, let Jc = I\J be the set of indices that are excluded in J. The graph is updated using the
algorithm described in Table 12 in Appendix A.3 as follows: Test the null hypothesis Hi having
an assigned local significance αi larger than zero. If the hypothesis is rejected, update the graph
by splitting and reallocating its αi to the succeeding null hypothesis(es) as determined by the
pre-specified rules represented by a weighted graph. The edges gi j will also be updated. All
the edges coming from the rejected hypothesis will be removed and all the edges going towards
it will be deflected to the subsequent hypothesis(es) with the updated local levels. With the
reduced graph and updated local significance levels αi, repeat the step for the remaining 11
non-rejected hypotheses. This process is repeated until no further hypothesis can be rejected.
The algorithm of the above procedure is detailed in Section 2 of Bretz et al. (2011b) [3] [2].

The procedure is illustrated in Figure 5 of Appendix A.5. The initial α weights for the 3
primary endpoint hypotheses are 0.05

3 = 0.0167 and zero for all the secondary endpoint hy-
potheses. The transition matrix used is given is Table 15 in Appendix A.5. When a hypothesis,
say H1, is rejected, its local level is divided and propagated to the subsequent hypotheses (H2
and H4) according to the weights determined in the edges (1

2 , 1
2 ). The edges coming from H1

to H2 and to H4 will then be removed. The other edge coming from H11 to H1 will be detached
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and attach to the H2 and H4. Since there are 2 subsequent hypotheses following H1, the edge
will split into two and its weight will be divided equally (from 1, two 1

2 ’s will be produced).

The chosen weighting scheme of our improved CSR testing strategy is visualized in Figure
2. The hypotheses H1, ...,H12 are represented by vertices with associated weights (local sig-
nificance levels) α1, ...,α12. Any two vertices Hi and H j are linked together through directed
edges (H j is the tail), in which the associated weights gi j determine the part of the significance
level αi to be propagated to H j if Hi has been rejected. In a case when no propagation of the
significance level is anticipated, the edge will be given a weight gi j = 0 and is not shown in
the graph [3]. For simplicity purposes, the edges of Figure 2 are renamed such that γ1 = g12,
γ2 = g23, γ3 = g21, γ4 = g32, and γ5 = g11,1.

Figure 2: General Scheme of Improved CSR Testing Strategy Using Graphical Approach

The CSR testing procedure described in Section 2 is enhanced by establishing a suitable graph
designed for the study objectives. This is done by allocating to α1, α2, and α3 of the 3 primary
hypotheses H1, H2, and H3 some values greater than zero, while setting all the other initial
local significance levels of the secondary hypotheses to zero. The edge pointing toward the
subsequent S1 indicates that the primary hypotheses needs to be rejected first before the asso-
ciated S1 will be tested. The same concept applies for the associated S2 and S3 hypotheses. In
addition, only the primary hypotheses are tested in the initial step because they are given more
importance. As mentioned earlier, if a primary hypothesis is rejected, its local significance level
will be divided in a way that some will be propagated to the remaining primary hypotheses to
be tested and some are propagated to the associated S1. This reflects the desire to further test
also the other primary hypotheses rather than testing only the S1 associated with an already
rejected primary hypothesis at higher significance level. In a case when S3 is rejected, its local
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significance level will be propagated back to the remaining primary hypothesis(es) to be tested.
This increases the chance for significant results in another active dose. Furthermore, the three
primary hypotheses are treated equally, as reflected by the edges connecting them. It is also
worth noting that there are no edges that connect any two non-adjacent dose groups (high to
low or low to high edges), hence the two adjacent doses becoming significant is preferred [2].

Based on the raw (unadjusted) p-values denoted as p = (p1, ..., p12) obtained from the pri-
mary and secondary efficacy analyses described in Section 2, a test procedure such as weighted
Bonferroni or weighted Simes were then performed. In order to describe the outcome of the
multiple testing strategy, the adjusted p-values defined by the graph (and hence, on the im-
posed testing strategy) was obtained. Any elementary null hypothesis is rejected if its corre-
sponding adjusted p-value is below the predetermined significance level 0.05 [3].

3.2 Weighted Bonferroni procedure

The most basic multiplicity adjustment is the Bonferroni-based adjustment, which is simply
splitting the significance level into the number of hypotheses to be tested [4]. In the weighted
Bonferroni procedure, the weighted p-values were incorporated. The hypotheses to be tested
H1, ...,H12 will be given nonnegative weights w1, ...,w12, where ∑

12
i=1 wi = 1. For hypothesis

Hi, when wi > 0, reject Hi if pvaluei ≤ wiα , and fail to reject Hi otherwise. The weights are
pre-specified using available prior information [8].

The weighted Bonferroni procedure controls FWER at level α . This procedure is known to be
conservative and lacks power. [4] [8]

3.3 Weighted Simes procedure

Simes test is a modification of the Bonferroni procedure which is based on the ordered p-values
of the individual tests. This procedure is still simple to apply and is less conservative than the
Bonferroni procedure. It is more advantageous over the latter when many highly correlated
tests are involved [11].

The weighted Simes test rejects the null hypothesis if for some i p(i)≤ i
12α , i = 1, ...,12 where

the p(i) are the ordered values of pi
wi

, ∑
12
i=1 = 12 and max(wi)≤ 1

α
[15].

[11].

3.4 Calculations

3.4.1 Exploratory data analysis on observed data

Summary statistics and and plots were used to obtain insight about the data. The four variance-
covariance matrices for the 3 active drug treatment groups and the placebo group were calcu-
lated for the simulations.
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3.4.2 Simulation

In order to examine the underlying power and FWER of the CSR testing strategy and to investi-
gate the multiple testing procedures in the framework of graphical approaches, simulation was
performed as follows: Three independent treatment groups of different dose levels of active
study drug and a placebo group were considered. The 4 groups were treated as independent
since the observations obtained from the different patients were independent from the other
treatment groups. For each group, 4 correlated study endpoints were considered and measured.
These endpoints were treated as dependent with each other because for each patient, the mea-
surement of one endpoint is related to the other. Following the CSR, the secondary endpoint
S2 was derived from the simulated primary endpoint. In order to be consistent with the as-
sumptions in the CSR sample size calculation, increasing dose groups were assumed not to be
ordinal in efficacy.

For each of these simulated samples (10,000 for weighted Bonferroni, 2,000 for weighted
Simes), raw p-values were calculated as specified in the CSR (using ANCOVA and Fisher
exact test). These raw p-values were then fed in the gMCP package to obtain the adjusted
p-values.

Once obtaining the adjusted p-values, the local power for the 12 hypotheses were calculated.
By definition, power is the probability of rejecting the null hypothesis when the alternative is
true. Bretz et al. (2011a) proposed a power calculation by simulating the power under different
realistic scenarios in order to understand the operating characteristics of a given multiple test
procedure. The power is calculated for the non-null scenarios (described in Table 3), in which
we assume that the alternative hypotheses are true. The power is obtained by calculating the
percentage of correctly rejecting the null hypothesis for all the simulated date sets, giving the
approximate power of the specific scenario considered. The FWER is calculated in the same
manner as the power calculation, but to the null scenarios (described in Table 4). In the null
scenarios, we assume that the null hypotheses are true. [2].

The Improved Testing Strategy based on Weighted Bonferroni tests

In an attempt to improve the CSR testing strategy discussed in Section 2, a weighted Bonferroni
was applied to each of the intersection hypotheses (Hi, where i = 1, ...,12) under the framework
of graphical approaches. This method ensures that the strong control of FWER is preserved and
allows recycling of the significance level α j corresponding to the rejected hypothesis H j.

Within the framework of graphical weighting strategy considered in this paper, the application
of Bonferroni tests leads to shortcut procedures given that monotonicity condition (see Ap-
pendix A.1 for definition) is satisfied. The algorithm that is based on the weighted Bonferroni
tests is presented in Table 13 [1][3].

Bonferroni-based test procedures are simple and often easier to communicate with other re-
searchers as compared to other potentially more powerful tests available. However, one dis-
tinguished general disadvantage of using Bonferroni-based approaches is power loss, hence,
another testing strategy called weighted Simes test was also utilized [3].

The Improved Testing Strategy Based on Weighted Simes tests

The Simes test is a known test when certain restriction in the correlations between the test
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statistics are imposed, although these correlations are unknown. It assumes that the test statis-
tics follow a joint multivariate normal distribution with positive correlations. The weighted
Simes test rejects HI for some j ∈ I p( j) ≤ ∑

j
i=1 α(i), where α(i) = w(i)α where w(i) is the

weight associated with p(i).

The same weights vectors (W1, W2, W3), transition matrices (M1, M2, M3), and diagrams used
for the weighted Bonferroni were utilized to apply the weighted Simes test on the framework
of graphical approach.

Scenarios

It is essential to know how much significance level can be passed from one hypothesis to the
other (for instance, from H1 to H2). As mentioned earlier, this is determined by the weights
vector W and G. In order to investigate the effects of assigning different weights, 3 sets of initial
alpha weights (denoted by W1, W2, and W3) and 3 transition matrices (denoted by M1, M2 and
M3), hence nine combinations of W and G are considered. Sample diagrams [combinations:
(a) M1W1, (b) M2W2, and (c) M3W3] of the weighting schemes and an illustration of the
alpha propagation are presented in Figure 4 in Appendix A.4.

The values of the weights in W1 are predetermined in a way that there is a balanced alloca-
tion of the weights for the 3 primary hypotheses H1, H2, and H3 (α1 = α2 = α3 = 0.05

3 ) and
no allocation for the weights of the secondary hypotheses. The values of initial alpha weights
in W2 are assigned so that half of weights correspond to the high dose vs. placebo pairwise
comparison of the primary hypothesis (α1 = 0.05

2 , α2 = α3 = 0.05
4 ). The weights in W3 re-

flect the extreme situation wherein most of the weights are allocated to high dose vs. placebo
pairwise comparison of the primary hypothesis, thus giving the highest significance level to it
(α1 =

0.05∗9
10 , α2 = α3 =

0.05
20 ). Similarly, the values of gi j’s in transition matrices M1, M2, and

M3 were designed in a way that M1 propagates the local level α in a balanced manner, M2
propagates half of the local level α j of the rejected hypothesis H j to the high dose vs. placebo
pairwise comparison of the primary hypothesis, and M3 is the extreme case of M2 wherein
most of the local level of the rejected hypothesis is propagated to the high dose vs. placebo
pairwise comparison of the primary hypothesis. The values assigned for weights vectors and
transition matrices are presented in Tables 15 to 18 Appendix A.5.

Tables 3 summarizes the weighting schemes where the observed means of the baseline and
Week T measurements of the subjects for the primary and first and third secondary endpoints
were used as starting values for the simulation of different scenarios. It also presents the non-
null scenarios which will be used to calculate the power. Corresponding null scenarios will be
calculated to obtain the FWER.
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Table 3: Description of Non-null Scenarios

Description
Scenario Simulated data Testing strategy
1. Without graphical approach
1.1 CSROrig CSR-based means, variances and

correlations
per CSR

1.3 CSRIndep Independent correlations per CSR
2. Weighted Bonferroni-based improved testing strategy using graphical approach*
2.1a WBOrigM1W1 CSR-based means, variances and

correlations
Balanced α propagation, equal initial α

weights for 3 primary endpoint hypotheses
2.1b WBOrigM1W2 CSR-based means, variances and

correlations
Balanced α propagation, More initial
weights allocated to high dose vs. placebo
comparison of primary hypothesis

2.1c WBOrigM1W3 CSR-based means, variances and
correlations

Balanced α propagation, Most initial
weights allocated and adding to high dose vs.
placebo comparison of primary hypothesis

2.1d WBOrigM2W1 CSR-based means, variances and
correlations

More α weights adding to high dose vs.
placebo comparison of primary hypothesis,
equal initial α weights for 3 primary
endpoint hypotheses

2.1e WBOrigM2W2 CSR-based means, variances and
correlations

More weights allocated to high dose vs.
placebo comparison of primary hypothesis

2.1f WBOrigM2W3 CSR-based means, variances and
correlations

More α weights adding to high dose vs.
placebo comparison of primary hypothesis,
most initial α weights allocated to high dose
vs. placebo comparison of primary
hypothesis

2.1g WBOrigM3W1 CSR-based means, variances and
correlations

Most α weights adding to high dose vs.
placebo comparison of primary hypothesis,
equal initial α weights for 3 primary
endpoint hypotheses

2.1h WBOrigM3W2 CSR-based means, variances and
correlations

Most α weights adding to high dose vs.
placebo comparison of primary hypothesis,
More initial weights allocated to high dose
vs. placebo comparison of primary
hypothesis

2.1i WBOrigM3W3 CSR-based means, variances and
correlations

Most weights allocated and adding to high
dose vs. placebo comparison of primary
hypothesis

3. Weighted Simes improved testing strategy using graphical approach
*Same description apply for respective scenarios in weighted Simes test

In order to establish that the CSR testing strategy does not control the FWER in a strong sense,
different CSR null scenarios were also performed.
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Table 4: Description of CSR Null Scenarios

Description
Scenario Simulated data Testing strategy
1. Without graphical approach
1.2a CSRNulla All means, variances and correlations set to equal to

those of the placebo group
per CSR

1.2b CSRNullb Equal means, except primary endpoint hypotheses
CSR-based variances and correlations

per CSR

1.2c CSRNullc Equal means and variances, independent
correlations

per CSR

1.2d CSRNulld Equal means, variance and correlations for medium
dose, low dose, and placebo groups

per CSR

3.5 Software used

Exploratory analysis for all endpoints was done in SAS 9.3 and R version 3.1.2. Preliminary
simulation analyses, covariance matrices, means, ANCOVA, and t-tests for the primary and
secondary endpoints were obtained using SAS 9.3. Data simulation, ANCOVA, Fisher’s exact
test, multiplicity adjustment techniques, and graphical approaches using gMCP package were
performed using R version 3.1.2 [9].
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4 Results

4.1 Exploratory data analysis

Summary statistics of the 3 continuous endpoint variables P, S1, and S3 for each dose group
were presented in Appendix A.2. Boxplots of the mean change from baseline values presented
in Table 9 are shown in Figure 3. It can be seen that for P, S1, and S3, the placebo group is
always the closest to zero, indicating that the placebo group has the least treatment effect as
compared to the active treatment group. There is an ordinality of efficiency for low-medium-
high dose groups for Primary and for S2. It was observed that for S1 and S3, the medium dose
seems to perform slightly worse than the low dose. Furthermore, normality seems to be met for
the continuous variables.

Moderate to strong positive correlations were observed. Stronger positive correlations were
observed for the same variables measured at different times (for example, Baseline P vs. Week
T P correlation = 0.65), while weaker correlations are observed different variables measured
at different times (for example, Baseline P vs. Week T S3 correlation = 0.34). In general, the
correlations seem to be comparable across the treatment groups.

Figure 3: Summary Plots of the Change for Baseline values of the Endpoint variables

17



4.2 Simulation

4.2.1 CSR Testing Strategy

Table 5 presents the proportion of rejections or the approximate power of the original CSR test-
ing strategy. These two scenarios were simulated using the CSR-observed means. As expected
based on the hierarchical approach, for each group (high, medium, low), there is a decreasing
trend in the power as the testing is done sequentially from testing the primary variable P to
testing the third secondary variable S3. Ignoring the underlying correlations between the vari-
ables, the power goes down slightly for each individual hypothesis. This was due to ignoring
the positive correlations, hence the generated samples are expected to have larger variability
than those with correlation. In addition, the powers obtained for P and S1 are much higher than
for S2 and S3. Although the original CSR testing strategy gives reasonable power, this strategy
does not control the FWER in strong sense, as shown in Table 6, where the FWER in scenario
1.2b is larger than 0.05.

In addition, the p-values in Table 5 shows ordinality for P and S2. There is also a big drop in
the p-values for S2, may be due to losing information by categorizing the continuous variable
P to binary. The p-values of S2 and S3 were also close to each other, indicating that once S2 is
significant, S3 will be significant as well.

Table 5: Proportion of Rejections per Individual Hypotheses for CSR-based Testing Strategy
under Non-Null Scenarios

P S1 S2 S3
Scenario High Med Low High Med Low High Med Low High Med Low
1.1 CSROrig 0.9988 0.9887 0.9782 0.9833 0.8262 0.9547 0.4219 0.2980 0.1913 0.4218 0.2973 0.1912
1.3 CSRIndep 0.9703 0.8129 0.8232 0.8313 0.5667 0.6176 0.3616 0.2180 0.1435 0.3616 0.2012 0.1376

Table 6: Familywise Error Rate for CSR-based Testing Strategy under Null Scenarios

Scenario FWER
1.2a CSRNulla 0.0245
1.2b CSRNullb 0.1523
1.2c CSRNullc 0.0026
1.2d CSRNulld 0.0314

4.2.2 Graphical Approaches-based Testing Strategies

The powers for the individual hypothesis obtained from generating different scenarios of graph-
ical approaches using weighted Bonferroni and weighted Simes under the structure of graphical
approaches are presented in Table 7.

As compared to 1.1, there is a monotone decrease of power from P to S3 and the power for
each individual hypothesis is smaller in scenario 2.1. This is due to smaller initial alpha values
used in 2.1 , that is 0.0167 is smaller than 0.019. There is also a big drop of power from P to S1
due to splitting the propagated α to the other primary endpoints. For P, S1 and S3, ordinality
on the powers was also observed.
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The above observations are the same for the other scenarios in Table 7. This indicates that any
of the transition matrix-initial α weight combination does not affect these trend. Nevertheless,
some of these combinations lead to a slightly higher power.

Similar to the results in scenarios 1.1 and 1.2, there is a drastic drop of power from S1 to
S2. Furthermore, the powers for S2 and S3 within each dose level are very close to each
other, indicating that once the adjusted p-value was rejected for S2 the adjusted p-value of the
following hypothesis corresponding to S3 tend to be rejected as well.

Based on Table 7, the weighted Simes give very similar results as in weighted Bonferroni in
terms of power, but not larger. Both multiple testing procedures also control the FWER is
strong sense, as shown in Table 8.

Table 7: Proportion of Rejections per Individual Hypotheses for Graphical Approaches-based
Testing Strategies under Non-Null Scenarios

P S1 S2 S3
Scenario High Med Low High Med Low High Med Low High Med Low
2.1a WBOrigM1W1 0.9824 0.9412 0.8871 0.7849 0.3755 0.6888 0.0503 0.0261 0.0146 0.0502 0.0257 0.0144
2.1b WBOrigM1W2 0.9854 0.9393 0.8790 0.7995 0.3711 0.6736 0.0565 0.0258 0.0134 0.0564 0.0255 0.0132
2.1c WBOrigM1W3 0.9905 0.9364 0.8443 0.8275 0.3596 0.6211 0.0672 0.0245 0.0103 0.0671 0.0242 0.0101
2.1d WBOrigM2W1 0.9830 0.9367 0.8815 0.8176 0.3345 0.6716 0.0629 0.0209 0.0127 0.0628 0.0206 0.0125
2.1e WBOrigM2W2 0.9857 0.9327 0.8687 0.8289 0.3242 0.6504 0.0691 0.0206 0.0119 0.0690 0.0203 0.0118
2.1f WBOrigM2W3 0.9905 0.9179 0.8135 0.8501 0.2892 0.5645 0.0855 0.0197 0.0096 0.0855 0.0195 0.0094
2.1g WBOrigM3W1 0.9838 0.9346 0.8708 0.8395 0.2173 0.6428 0.0804 0.0141 0.0117 0.0804 0.0140 0.0117
2.1h WBOrigM3W2 0.9862 0.9263 0.8569 0.8462 0.2100 0.6162 0.0857 0.0153 0.0104 0.0857 0.0151 0.0103
2.1i WBOrigM3W3 0.9905 0.8946 0.7769 0.8596 0.1721 0.4972 0.0912 0.0155 0.0089 0.0912 0.0154 0.0088

3.1a SiOrigM1W1 0.9820 0.9465 0.8890 0.7915 0.3835 0.6860 0.0410 0.0265 0.0150 0.0410 0.0265 0.0150
3.1b SiOrigM1W2 0.9840 0.9450 0.8805 0.8050 0.3770 0.6720 0.0480 0.0265 0.0145 0.0480 0.0265 0.0145
3.1c SiOrigM1W3 0.9900 0.9385 0.8455 0.8300 0.3640 0.6180 0.0560 0.0255 0.0120 0.0560 0.0255 0.0120
3.1d SiOrigM2W1 0.9835 0.9420 0.8835 0.8215 0.3415 0.6700 0.0525 0.0205 0.0135 0.0525 0.0205 0.0135
3.1e SiOrigM2W2 0.9845 0.9365 0.8720 0.8320 0.3295 0.6485 0.0585 0.0190 0.0125 0.0585 0.0190 0.0125
3.1f SiOrigM2W3 0.9900 0.9215 0.8080 0.8545 0.2885 0.5575 0.0740 0.0170 0.0100 0.0740 0.0170 0.0100
3.1g SiOrigM3W1 0.9845 0.9390 0.8750 0.8455 0.2165 0.6395 0.0690 0.0130 0.0125 0.0690 0.0130 0.0125
3.1h SiOrigM3W2 0.9860 0.9335 0.8585 0.8520 0.2110 0.6160 0.0750 0.0130 0.0105 0.0750 0.0130 0.0105
3.1i SiOrigM3W3 0.9900 0.8965 0.7725 0.8635 0.1655 0.4940 0.0795 0.0130 0.0090 0.0795 0.0130 0.0090
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Table 8: Familywise Error Rate for Graphical Approaches-based Testing Strategies under Null
Scenarios

Scenario FWER
2.2a WBNullM1W1 < 0.001
2.2b WBNullM1W2 < 0.001
2.2c WBNullM1W3 < 0.001
2.2d WBNullM2W1 < 0.001
2.2e WBNullM2W2 < 0.001
2.2f WBNullM2W3 < 0.001
2.2g WBNullM3W1 < 0.001
2.2h WBNullM3W2 < 0.001
2.2i WBNullM3W3 < 0.001
3.2a SiNullM1W1 < 0.001
3.2b SiNullM1W2 < 0.001
3.2c SiNullM1W3 < 0.001
3.2d SiNullM2W1 < 0.001
3.2e SiNullM2W2 < 0.001
3.2f SiNullM2W3 < 0.001
3.2g SiNullM3W1 < 0.001
3.2h SiNullM3W2 < 0.001
3.2i SiNullM3W3 < 0.001
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5 Discussion and conclusion

Multiplicity issues are common in clinical trials and may easily arise in many situations. If
ignored, multiplicity can lead to false findings and misleading conclusions. Through the years,
many multiplicity adjustment procedures have been developed to handle specific multiplicity
problems. Recently, Bretz et al. (2009) proposed a method called graphical approaches that
offers advantages such as flexible to cater complex designs, allows for recycling of signifi-
cance level, and ensures strong FWER control for closed test procedures. It also enables the
researchers to show the flow of statistical thinking in trial design and can coordinate different
requirements from the clinical trial team [1][2]. Since graphical approaches are newly intro-
duced in clinical trials, there is still a lot of room for research.

This paper is investigating the ways to improve the testing strategy of an already completed
Phase III confirmatory clinical trial by finding a better multiplicity adjustment technique under
the framework of graphical approach. The said CSR testing strategy was adjusted for multi-
plicity only for the primary endpoint hypotheses; the secondary hypotheses, however, are just
adjusted within each dose group. The results of the trials are fully valid, and the strategy is
the best that could have been designed with the multiplicity techniques of that time - how-
ever, with the most recent developments in statistical literature, this strategy leaves place for
improvement. As a result, the FWER is only weakly controlled.

Under the framework of graphical approaches, two testing strategies were applied to improve
the testing strategy: weighted Bonferroni test and weighted Simes test using the gMCP package
in R. In order to compare the multiple testing procedures, simulations of different scenarios
were performed and the local power for each hypotheses as calculated. Bretz et al (2011b)
showed that the graphical approach provides a strong control of FWER. Indeed, we illustrated
that when improving the original CSR testing strategy using the graphical approach, FWER
strongly controlled. In addition, the power of the testing strategy depends on the predetermined
weighting schemes.

In conclusion, the use the graphical approach offers improvement to the original testing strategy
by ensuring strong control of FWER while flexibly allowing the recycling of significance level.
However, the individual power decreases.

6 Limitations and Recommendations

For further studies, it is recommended to investigate the improvement of CSR testing strategy
using other powerful tests that take into account the correlation between the test statistics such
as parametric tests or Dunnett-based tests under the framework of graphical approaches.
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A Appendix

A.1 Glossary

Term Definition
Familywise error rate (FWER) probability to erroneously reject at least one true null hypothesis, beyond

the pre-specified significance level α ∈ (0,1)
Transition matrix G is a mxm matrix containing the elements gi j in which each element is

the fraction of the level of Hi that is allocated to H j. [1]
α allocation rule is used in nonparametric and parametric chain procedures. This rule

defines the initial distribution of the overall error rate among the null
hypotheses. [6]

α propagation rule is used in nonparametric and parametric chain procedures. This rule
defines the process of redustributing the available error rate among the
nonrejected null hypotheses after each rejection according to the pre-
specified logical relationships among the null hypotheses. [6]

Closure principle Given a set of m hypotheses to test simultaneously with pre-specified
α-level test for each HJ . If all intersection hypotheses HJ , J is a subset
of I, are rejected by their corresponding α-level tests, then the resulting
closed test procedure rejects Hi, i is an element of I.
The closure principle states that an FWER-controlling testing procedure
can be constructed by testing each hypothesis in the closed family using
a suitable local α-level test. This procedure rejects a hypothesis if all
intersection hypotheses containing this hypothesis are rejected by the
associated local tests. [6]
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A.2 Summary statistics

Table 9: Summary statistics of Primary, S1 and S3 at Baseline, at Week T, and Change from
Baseline per Group

Low Medium
P S1 S3 P S1 S3

Baseline N 95 96 69 98 100 74
Mean 7.945 178.100 45910.000 8.004 171.500 46197.000
SD 0.955 40.659 11095.050 1.095 42.657 10860.830
Min 6.100 85.000 22800.000 6.100 109.000 21680.000
Max 11.200 263.000 71500.000 10.600 303.000 74970.000

Week T N 95 96 72 98 100 76
Mean 7.508 161.800 38790.000 7.508 162.800 39180.000
SD 1.109 45.969 10539.800 1.307 50.102 11925.470
Min 5.400 94.000 20320.000 4.100 94.000 17680.000
Max 10.400 305.000 71840.000 11.900 353.000 78260.000

Change from baseline N 95 96 69 98 100 74
Mean -0.437 -16.320 -7254.000 -0.496 -8.700 -6965.000
SD 1.048 37.714 11602.750 1.003 39.849 11263.110
Min -5.500 -137.000 -44980.000 -3.000 -112.000 -39150.000
Max 2.000 76.000 26910.000 2.200 107.000 26120.000

High Placebo
P S1 S3 P S1 S3

Baseline N 90 92 68 87 87 61
Mean 7.878 176.000 44680.000 7.868 172.900 46339.000
SD 0.887 43.721 11607.570 0.915 46.808 11635.630
Min 6.300 106.000 22980.000 6.300 92.000 17300.000
Max 10.300 315.000 75030.000 10.100 315.000 81680.000

Week T N 90 92 70 87 87 64
Mean 7.331 159.300 36430.000 8.114 180.100 44821.000
SD 0.983 38.529 10152.790 1.610 55.756 12567.100
Min 5.500 99.000 13560.000 5.600 91.000 16780.000
Max 10.700 265.000 62520.000 13.600 339.000 80700.000

Change from baseline N 90 92 68 87 87 61
Mean -0.547 -16.660 -7837.000 0.246 7.241 -1608.000
SD 0.784 32.873 11043.620 1.245 52.299 13677.400
Min -3.400 -110.000 -39600.000 -2.000 -191.000 -27500.000
Max 1.800 83.000 24840.000 6.000 141.000 47970.000

Table 10: Proportion of responders based on Primary per group

Low Medium High Placebo
N 95 98 90 87
*Responders (Proportion %) 32(33.68) 37 (37.76) 36(40.00) 19 (21.84)
*Proportion of responders based on primary efficacy variable
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Table 11: Pairwise correlations of Primary, S1 and S3 at Baseline and at Week T per group

Baseline Week T
P S1 S3 P S1 S3

High Baseline P 1 0.6057 0.5952 0.6528 0.5030 0.3436
S1 0.6057 1 0.6168 0.5171 0.6872 0.4014
S3 0.5952 0.6168 1 0.3738 0.4197 0.4821

Week T P 0.6528 0.5171 0.3738 1 0.7443 0.6608
S1 0.5030 0.6872 0.4197 0.7443 1 0.5721
S3 0.3436 0.4014 0.4821 0.6608 0.5721 1

Medium Baseline P 1 0.6600 0.6668 0.6638 0.4790 0.4725
S1 0.6600 1 0.6336 0.4901 0.6415 0.6287
S3 0.6668 0.6336 1 0.4281 0.5066 0.5218

Week T P 0.6638 0.4901 0.4281 1 0.7252 0.7137
S1 0.4790 0.6415 0.5066 0.7252 1 0.8302
S3 0.4725 0.6287 0.5218 0.7137 0.8302 1

Low Baseline P 1 0.5649 0.5380 0.4926 0.3828 0.2920
S1 0.5649 1 0.6374 0.5041 0.6270 0.4106
S3 0.5380 0.6374 1 0.3996 0.4151 0.4338

Week T P 0.4926 0.5041 0.3996 1 0.8095 0.7895
S1 0.3828 0.6270 0.4151 0.8095 1 0.7041
S3 0.2920 0.4106 0.4338 0.7895 0.7041 1

Placebo Baseline P 1 0.7308 0.5771 0.6378 0.5299 0.5037
S1 0.7308 1 0.5682 0.5418 0.4913 0.4399
S3 0.5770 0.5682 1 0.2187 0.2866 0.3792

Week T P 0.6378 0.5418 0.2187 1 0.8565 0.7032
S1 0.5299 0.4913 0.2866 0.8565 1 0.7135
S3 0.5037 0.4399 0.3792 0.7032 0.7135 1

A.3 Algorithms for Generation of Weighted Graphs

Table 12: Algorithm for Weighting Strategy

Step 1 Select j ∈ Jc and remove H j
Step 2 Update the graph:

old value new value
I I\{ j}
Jc Jc\{ j}
wl(I) wl(I)+w j(I)g jl , if l ∈ I; 0, otherwise
glk

glk+gl jg jk
1−gl jg jl

, if l,k ∈ I, l 6= k,gl jg jl < 1 ; 0, otherwise

Step 3 If |Jc| ≥ 1, go to step 1; otherwise wl(J) = wl(I),l ∈ J, and stop.
Source: [3]

Table 13: Algorithm for Weighted Bonferroni Test

Step 1 Select j ∈ I such that p j ≤ w j(I)α and remove H j, otherwise stop.
Step 2 Update the graph:

old value new value
I I\{ j}
wl(I) wl(I)+w j(I)g jl , if l ∈ I; 0, otherwise
glk

glk+gl jg jk
1−gl jg jl

, if l,k ∈ I, l 6= k,gl jg jl < 1 ; 0, otherwise

Step 3 If |I| ≥ 1, go to step 1; otherwise stop.
Source: [3]
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Table 14: Algorithm for Weighted Simes Test

Step 1 If pi > α for all i ∈ I, stop and retain all 12 hypotheses.
Step 2 If pi ≤ α for all i ∈ I, stop and reject all hypotheses.
Step 3 Perform the Bonferroni-based graphical test procedure in the previous subsection.

If the |Ic
r |< 3, stop and retain the remaining hypotheses.

Step 4 If Ic
r ≥ 3 use the weights wi(Ic

r ), i ∈ Ic
r and transition matrix G defined on Ic

r as the new initial graph
for the remaining hypotheses. Using the algorithm in Table 12, calculate the weights wk(J) for all J ⊆ Ic

r .
Step 5 If for each J ⊆ Ic

r with i ∈ J, there exists an index such that p j ≤ α ∑k∈J j wk(J), then reject Hi

Ir = index set of rejected hypotheses
|Ic

r | = complement of Ir in I
Source: [3]
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A.4 Weighted Bonferroni-based Improved Testing Strategy diagram

Figure 4: Weighted Bonferroni-based Improved Testing Strategy diagram

(a) Balanced alpha propagation,
Equal initial weights primary hypotheses

(b) More weights adding to
high dose primary hypothesis

(c) Most weights adding to
high dose primary hypothesis
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Figure 5: Improved testing strategy using Bonferroni-based sequentially rejective multiple test
procedure for proposed weighting strategy M1W1

(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i) (j)

k l
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A.5 Transition matrices and initial alpha weights

Table 15: M1

1 2 3 4 5 6 7 8 9 10 11 12
H1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2 0.33 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H3 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
H4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
H5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
H6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
H7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
H8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
H9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

H10 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H11 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 16: M2

1 2 3 4 5 6 7 8 9 10 11 12
H1 0.00 0.25 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2 0.50 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H3 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
H4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
H5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
H6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
H7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
H8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
H9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

H10 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H11 0.75 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 17: M3

1 2 3 4 5 6 7 8 9 10 11 12
H1 0.00 0.10 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2 0.90 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H3 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
H4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
H5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
H6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
H7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
H8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
H9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

H10 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H11 0.90 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 18: Initial α weights

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
W1 0.0167 0.0167 0.0167 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
W2 0.0250 0.0125 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
W3 0.0444 0.0028 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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