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1. Introduction

The current Ebola outbreak in West Africa that started in May 2014, is the largest since Ebola

was first identified in Sudan in 1976. Currently the disease has mostly affected Liberia, Guinea

and Sierra Leone, and as of May 2014, it has been reported that 27,443 people contracted the

disease and about 11,207 died (World Health Organization; 2015b). On 9 May 2015, Liberia was

declared Ebola free after 42 days without any new reported case, however, on June 29 a new case

was detected (Center for Disease Control; 2015a). In Guinea the epidemic is still ongoing and 3

new confirmed cases were reported in the week to 16 August, while in Sierra Leone no new case

was reported (World Health Organization; 2015a). Among all countries, Sierra Leone is the worst

affected country, with 13,534 confirmed, probable, and suspected cases, as of 23rd May 2014 (Sierra

Leone Ministry of Health and Sanitation; 2015).

To better understand the transmission dynamics of infectious diseases, mathematical modeling

is indispensable (Siettos and Russo; 2013). Over the years a wide range of mathematical models

has been developed. In the field of modeling infectious diseases, deterministic SEIR (Susceptible-

Exposed-Infectious-removed) has been extensively used. And currently, Althaus (2014) has used a

deterministic SEIR model that can be described by a set of ordinary differential equations (ODE) to

estimate the basic and the effective reproductive number for the current Ebola outbreak. However,

the deterministic SEIR model described by a set of ODE has some limitation. In first place, it

assumes that the observed process is in a continuous time, while in practice most of the times, the

data come in a time-series. Secondly it assumes that all states (susceptible, exposed, infectious and

removed) are observable while in reality only reported cases and deaths are observed (Yin; 2008;

Carlin and Louis; 2008). Furthermore, King et al. (2015) and Erickson (2015) recommend that,

whenever possible, deterministic models should be avoided, because such models tend to overesti-

mate the predictions on the course of the epidemic and substantially underestimate the uncertainty

around the estimates and the predictions. Therefore, stochastic models, which have room for

randomness and which can precisely address uncertainty, should be used instead (King et al.; 2015).

In this report we use a stochastic discrete-time SEIR model proposed by Lekone and Finken-

städt (2006) to estimate the reproductive number and the incubation period in the districts of

Sierra Leone. This model is appropriate to model the current Ebola outbreak since it accounts

for the fact that, the reported cases are time series, that is they are observed in a discrete-time,

and also has room for randomness by allowing the movements of individuals from one state

to another to be governed by probability density. Because the model has many unobservables

states, Bayesian approach using Markov Chain Monte Carlo methods is used, since it allows to

numerically integrating over the latent variables (Lekone and Finkenstädt; 2006). This report is

not limited to only estimate the reproductive number and incubation period, but also intends

to study the spatial structure of the transmission rate. Therefore, for this purpose Conditional
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Autoregressive (CAR) models are also considered.

The objective of this report was to apply a stochastic discrete-time SEIR model to study the

dynamic transmission of the current Ebola outbreak in the all affected districts of Seirra Leone. In

addition to that see how the transmission rate varies across the country.

The reminder of this report is organized as follows: Section 2.1 provides a description of the

data. In section 2.2, a discussion on compartmental epidemiological model and deterministic SEIR

model is given. Section 2.3 introduces the stochastic discrete-time SEIR model together with the

estimation procedure, and section 2.4 presents the Conditional autoregressive model for spatial

analysis. Next , results of the study are presented in section 3. Discussion and main conclusions

are described in Section 4. Finally, in section 5 we close by describing the limitations of the reports

and giving avenues for further research.
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2. Methodology

2.1. Data Description

Ebola, also known as Ebola hemorrhagic fever, is a rare and deadly disease caused by an infection

of one of the Ebola virus strains. Ebola can cause diseases in humans and nonhuman primates

(monkeys, gorillas, and chimpanzees) (World Health Organization; 2015c). It is mainly transmitted

through direct contact with infected bodily fluids and contaminated materials. At the early

stage, the disease is characterized by initial-flu symptoms , high fever, severe headache followed

by pharyngitis and abdominal pain, whereas the late stage the disease is marked by vomiting,

diarrhea, rash, and internal and external bleeding (Yamin et al.; 2015). After being exposed to the

Ebola virus disease (EVD) the symptoms can show up anywhere from 2 to 21 days, but on average

the incubation period is around 8 to 10 days (Center for Disease Control; 2015b). Breman et al.

(1978) reported that after contracting the infection, the person stays infectious for a mean period

between 3.5 and 10.7 days. Currently the disease has been affecting Liberia, Sierra Leone and

Guinea, with a case fatality rate of 30 to 90%, depending on the virus species (Baize et al.; 2014).

There are four identified strains of Ebola virus, three of which are the Zaire, Ivory Coast and

Sudan strains, and they have shown to cause disease in both humans and nonhuman primates,

with the Zaire strain exhibiting the highest fatality rate (Feldmann et al.; 1994; Sanchez et al.; 1996).

In this report we study the data of the current Ebola outbreak in 14 districts of Sierra Leone,

namely Bo, Bombali, Bonthe, Kailahun, Kambia, Koinadagu, Kenema, Kono, Moyamba, Port Loko,

Pejehu, Tonkolili, Western Area Rural, and Western Area Urban. The Ebola outbreak in Sierra

Leone had its first case on the 24th of May 2014, in the hospital of Kenema. Nevertheless, in

this report we analyze the cumulative cases counts reported by the Ministry of Health of Sierra

Leone (Sanitation Moha; 2015) from July 2014 to June 2015. From the mentioned period, in the

entire country 13,088 cases of Ebola were reported, with Western Area Urban district being the

most affected with 3,459 reported cases, and Bonthe being the least affected with 89 reported

cases. Figure 2 (b) well depicts the distribution of Ebola cases in all affected districts of Sierra Leone.

2.2. Data Transformation

The incidence counts were reported in irregular time interval, so to avoid problems associated

with considering time steps that are too large, daily incidence curves of EVD were estimated.

Additionally, when using difference equations model to model a disease, which is the case in

this report, Vynnycky and White (2010) suggest using a time step that is less than the shortest

average duration that individuals spend in a given compartment. To estimate the daily incidence

smoothing splines were fitted to the cumulative cases of EVD in each district. Then, the daily

difference of the cumulative cases were taken to obtain the daily incidence time series. The
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smoothing splines were fitted in R Core Team (2015) using the function smooth.spline. For

more details see Nishiura and Chowell (2014), and Chandler and Scott (2011). Note that in the

subsequent analyses, the models used did not account for the uncertainty introduced by the fitted

smoothing splines.

2.3. Compartmental Epidemiological Model

The use of compartmental epidemic models dates back to 1927 in a paper by Kermack and

McKendrick (1927). They developed a nonlinear system of ordinary differential equation that

opened doors for the use of many mathematical modes in modeling infectious disease, such as,

SIR (Susceptible, Infectious, Recovered) and SEIR (Susceptible, Exposed, Infectious, Recovered)

models. The modeling of infectious diseases can either be done by deterministic or stochastic

model. The deterministic models in general describe on average what happens in the population,

while stochastic models, apart from describing the average course of the disease, they also allow

the number of individuals who move from one compartment to another to vary through chance.

Therefore, providing a range in which an outcome is more likely to occur and making them more

appealing for decision making (Vynnycky and White; 2010). The well known stochastic model

in the context of compartmental epidemic models is the chain binomial model introduced by

Greenwood (1931). This model is an extension of the Susceptible-Infective-Recovered (SIR) model,

where individual transition probabilities from susceptible to diseased states are given in terms of

the binomial distribution (Tuckwell and Williams; 2007).

The Susceptible-Infective-Recovered (SIR) model is one of the basic compartmental model in

infectious disease epidemiology and is broadly used and well suited to model many infectious

diseases (Hens et al.; 2012). It assumes that hosts within a population are categorized as susceptible

(if previously unexposed to the pathogen), infective (if currently colonized by the pathogen), and

recovered (if they have successfully cleared the infection) (Keeling and Rohani; 2008). However, in

many infectious disease, infected individuals are exposed before becoming infectious. Therefore,

the hosts in the population can no longer be categorized as susceptible, infectious or recovered.

This leads the extension of SIR model to SEIR model, in which E represents the exposed compart-

ment In practice, modeling of infectious diseases is usually done by means of a deterministic SEIR

model, using a set of ordinary differential equation (Althaus; 2014; Lekone and Finkenstädt; 2006).

A graphical representation of SEIR model can be seen in Figure 1 below

The dynamics of the SEIR model in a continuous time can be described using the following set

of ordinary differential equations (ODEs):

4
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Figure 1: Graphical illustration of SEIR model showing the flows among disease state

dS(t)
dt

= −λS(t) (1)

dE(t)
dt

= λS(t)− αE(t) (2)

dI(t)
dt

= αE(t)− γI(t) (3)

dR(t)
dt

= γI(t) (4)

A distinct feature of Ebola virus disease is that individuals exposed to the virus who become

infectious do so after a mean incubation period (Bashar et al.; n.d.). Hence, to reflect this feature

a SEIR model is deemed appropriate and will be considered throughout this report. In this

model, Susceptible (S) individual in contact with the virus enter the exposed (E) state at a rate of

βI/N = λ (Known as force of infection), where β is the transmission rate per person per day. The

exposed experiences an average incubation period of 1/α days before passing to the infectious

(I) state. The exposed state is assumed to be asymptomatic as well as noninfectious. Infective (I)

individuals move to the R state, either recovered or dead, at a rate of γ.

Moreover, in the SEIR model, most often only some of the transition among compartment

are observed. This makes the development and the implementation of valid estimation meth-

ods such as likelihood-based approaches difficult (Carlin and Louis; 2008). Therefore, proper

Bayesian analysis implemented by Markov Chain Monte Carlo (MCMC) can be used to handle

the missing information by integrating over the distribution of the unobserved variables (Lekone

and Finkenstädt; 2006). In addition to that, data are often available at discrete time points while

the true underlying process is continuous in time, but the deterministic SEIR model, which is

described by set of ordinary differential equation, ignores that. In this report we use a model

proposed Lekone and Finkenstädt (2006), which is a stochastic discrete-time model, to study the

transmission dynamics of the EVD in the 14 districts of Sierra Leone, in which a Bayesian analysis

is performed.
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2.4. Stochastic compartmental model

2.4.1 Model Specification

The analysis presented in this report is based on a stochastic discrete-time susceptible-exposed-

infectious-recovered (SEIR) model wherein at time t, each individual is in one of the four states,

namely susceptible (S(t)), exposed (E(t)), Infectious (I(t)) and recovered (R(t)), and without

loss of generality, t will represent time in days. The discrete-time stochastic SEIR model can be

specified by the following set of difference of equations.

S(t + h) =S(t)− B(t) (5)

E(t + h) =E(t) + B(t)− C(t) (6)

I(t + h) =I(t) + C(t)− D(t) (7)

S(t) + E(t) + I(t) + R(t) = N (8)

where h represents the interval between the time points at which the measurements are taken,

here h = 1 day. B(t) represents number of susceptible individuals who become infected, C(t) the

number of cases by date of symptom onset, and D(t) the number of cases who are removed (die

or recover) from the infectious class during the time interval (t, t + h].

In the above stochastic discrete-time model, transition from one state to another, in a day,

follows a probability distribution where B(t), C(t) and D(t) are random variables with binomial

distribution (Bin(n, p)) , that is

B(t) ∼ Bin(S(t), P(t)), C(t) ∼ Bin(E(t), pC), and D(t) ∼ Bin(I(t), pR) (9)

with

P(t) = 1− exp
[
− β(t)

N
I(t)h

]
, pC = 1− exp(−αh), and pR = 1− exp(−γh) (10)

In the equation (9), usually the S(t) ≈ N (the population size) and as the epidemic progresses

E(t) and I(t) may get larger. Therefore, knowing that the Poisson distribution is the limiting case

of a Binomial distribution when the number of trials n gets very large and the probability p gets

small, the transition among states can me modeled through Poisson distribution instead (Yu et al.;

2010). So the equation (9) can be rewritten as follow:

B(t) ∼ Poisson
( β(t)I(t)S(t)

N

)
, C(t) ∼ Poisson(αE(t)) and D(t) ∼ Poisson(γI(t)) (11)

where the parameter β(t), α, and γ represent the time varying transmission rate, the incubation

rate and the infectious rate, respectively.
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2.4.2 The reproductive number

The basic reproductive number (R0) can be defined as the average number of secondary infections

that occur when one infective is introduced into a completely susceptible host population (Hethcote;

2000). This quantity is of major importance for epidemiologist and public health authority, because

it can be used to characterize an epidemic, wherein R0 > 1 indicates that a large epidemic outbreak

may occur, and if R0 < 1 then the epidemic will die out (Clancy et al.; 2008). For the model above

proposed by Lekone and Finkenstädt (2006), the basic reproductive number is the ratio between

the constant transmission rate (β) and the infectious rate (γ), that is R0 =
β

γ
. However, the basic

reproductive number only applies to the beginning of the epidemic, therefore, a time varying

reproductive number, which is called effective reproductive number (R(t)), has been useful in the

field of infectious disease. This is because it reports the expected number of new infections that an

individual who becomes infectious at day t will induce (Carlin and Louis; 2008). Furthermore, it

helps account for external influences on transmission such as variation in human behavior and

introduction of intervention measures. Chowell et al. (2004) define the effective reproductive

number as follow:

R(t) =
β(t)S(t)

γN
(12)

because S(t) ≈ N the effective reproductive number can be approximated by R(t) ≈ β(t)/γ.

2.4.3 Inference and Model Building

The inference on the basic and effective reproductive number depends on the estimation of

the parameters of the model.However, because the daily counts in all states are not observable,

maximum-likelihood estimation is not straightforward. In this study, the only observable quanti-

ties are the population size N and the number of cases by date symptom onset C(t). Therefore, if

one is willing to apply maximum-likelihood based estimation, a likelihood function should have

to be constructed for all the missing components in the model, and implemented through an EM

algorithm (Yin; 2008; Carlin and Louis; 2008). Nevertheless, a Bayesian approach implemented

through MCMC approach simplifies matters by allowing us to numerically integrate over the prob-

ability distribution of the unobserved processes (Lekone and Finkenstädt; 2006; Carlin and Louis;

2008). Moreover, it has a net benefit of producing posterior estimates for all latent information in

the model, and it also allows the specification of prior information through historical study and

knowledge of the experts (Stokes et al.; 2014). As the series B(t), C(t) and D(t) are conditionally

independent, then according to Lekone and Finkenstädt (2006) the likelihood function can be

approximated by

L(B,C,D|Θ) =
τ∗

∏
t=0

f1(B(t)|·) f2(C(t)|·) f3(D(t)|·) (13)

where f1, f2 and f3 are the Poisson transition density given in 11 conditioned on Θ and on all the

information up to time t. In this report, to simplify matters, we assume that infectious period
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(1/γ) is known and is equal to 7 days (Lekone and Finkenstädt; 2006; Chowell et al.; 2004). Thus,

on average, γI(t) leave the infectious compartment on day t. This implies the following

I(t + h) = I(t) + C(t)− γI(t) (14)

and consequently the likelihood in (13) can be written as follows

L(B,C|Θ) =
τ∗

∏
t=0

f1(B(t)|·) f2(C(t)|·) (15)

The parameter estimates can be obtained by maximizing (15), though the time series B(t) is latent.

Thereby, Bayesian MCMC method can be used to sample from the probability distribution of

latent process. In this scope, multiplying the likelihood function (15) by the prior distribution p(Θ)

we have, up to a constant proportionality, the posterior distribution we are going to sample from, i.e

p(Θ,B|C) ∝ L(B,C|Θ)p(Θ) (16)

To estimate the effective reproductive number, and account for possible intervention measures,

two time varying transmission models were considered:

• The transmission rate is assumed to be constant before the intervention measures, and to

decay exponentially with intervention measures (Lekone and Finkenstädt; 2006) , that is

β(t) =

β, t < t∗

βe−k(t−τ), t ≥ t∗
(17)

where t∗ is the time by which intervention measures are introduced. In this report we

assume that control measures were taken at the beginning of October 2014, as by the end of

the year a decrease in the number of new cases of EVD is observed.

• We also model the transmission rate β(t) as constant piece-wise function (Dureau et al.;

2013), assuming that for each month the transmission rate is constant.

For the parameters β, α and k we specified the same independent informative Gamma prior as

used by Lekone and Finkenstädt (2006), i.e

β ∼ Gamma(20, 100), α ∼ Gamma(20, 100) and k ∼ Gamma(2, 10) (18)

The parameters β, α and k represent the transmission rate, incubation rate; and the rate at

which the transmission rate decays, respectively. The specified priors in (18) have mean 0.2. In
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the sampling process, the gamma priors for β and α were constrained such that 0 < β < 1 and

1 < 1/α < 21, respectively.

Additionally, the estimation of the parameters depends on initialization of equations (6)-(8), so

at time zero we assume that the number of exposed individuals is equal to C(1)/γ and I(0) = 1.

Thus, the number of susceptible individuals is S(0) = N − E(0)− I(0) (Carlin and Louis; 2008).

After identifying the set of candidate models, the next step is to select the most appropriate

model, that is the model that provides a better fit to the data. Bayesian statistics offers a wide range

of selection criteria that can help select the best model among the candidates. The most popular

and widely used is the Deviance Information Criteria (DIC) which is a measure of model "support"

that intends to balance the fit (deviance) and complexity (effective number of parameters) of a

model (Spiegelhalter et al.; 2002). The DIC can be seen as a counterpart of Akaike Information

Criteria (AIC) in Bayesian context. The rule of thumb for using DIC is roughly the same as for

AIC, in which a difference in DIC of more that 10 rules out the model with higher DIC (Lesaffre

and Lawson; 2012). In this report DIC and predictive values of new cases of EVD were used to

assess the fit of the model.

2.4.4 Sensitivity analysis

The sensitivity analysis is done in order to see how the conclusion change when one changes

some aspects in the original model and also to check how plausible assumptions of the model

are. In this report it was assumed that the number of exposed individuals at time 0 (E(0)) is fixed

and known. A sensitivity analysis was done allowing the E(0) to be estimated from data. Three

different discrete uniform distribution were used to estimate E(0), namely, U(1, 50), U(1, 100) and

U(1, 1000). Additionally, instead of using the gamma priors as used by Lekone and Finkenstädt

(2006), uniform priors were used to estimated the transmission rate as well incubation period, that

is β ∼ U(0, 1) and α ∼ U(0.05, 1). The choice of the uniform prior in this range is motivated by

the constrain made by Chowell et al. (2004) where they say that 0 < β < 1 and 1 < 1/α < 21.

2.5. Spatial Analysis

Spatial analysis aims to identify and describe a spatial pattern in the data, and also helps identify

spatial dependence, where observations from units close together are expected to be more similar

than those relating to units further apart. In the literature there is a wide range of approaches

that can be used to model the spatial dependence of the data. In this report we use a Conditional

Autoregressive (CAR) model introduced by Clayton and Kaldor (1987) in an empirical Bayes

setting and developed by Besag et al. (1991), to study the spatial structure of the transmission rate

across the affected districts. The fitted mode is as follows:

Yk|µk ∼ f (yk|µk, σ2), g(µk) = θ + uk + vk (19)
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where Yk stands for transmission rate observed in the k-th region, g(·) is a link function. For this

report we assume that the transmission rate in different districts can be modeled by a normal

distribution, thus, we use an identity link. The parameter θ will be the overall transmission rate, vk

is the uncorrelated heterogeneity which is assumed to be normally distributed, i.e. vk ∼ N(0, σ2
v ),

and uk is the correlated heterogeneity and uk ∼ CAR prior, i.e

uk|u−k,W , τ2 ∼ N
(∑K

i=1 wkiui

∑K
i=1 wki

,
σ2

u

∑K
i=1 wki

)
(20)

where W is a K× K weigth matrix made of zeros and ones, entries with one indicate that two

locations are neighbors and entries with zero indicate that they are not. Moreover, the variance

parameter are given uninformative inverse gamma prior

σ2 ∼ IG(a, b), σ2
u ∼ IG(a, b) (21)

with a = 0.0001 and b = 0.001. In this model, σ2
u and σ2

v controls the variability of u and v,

respectively. The considered CAR model was fitted to district-specific transmission rate for the

first 30 days, next 30 days of the epidemic and last for the month of April 2015.
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3. Results

3.1. Exploratory Data Analysis

The total number of cases of EVD overtime and per district are well depicted in Figure 2 (a) and 2

(b), respectively. From Figure 2 (a) it is observed that the epidemic had its highest peak by the

end of 2014 and in the first quarter of 2015. Furthermore, after the first quarter of 2015 a decrease

in the number of cases is observed, however small peaks can still be observed. This suggests

that as the epidemic dies out, resurgence of new cases are possible. Turning to Figure 2 (b), it is

apparent that Western Area Urban (13), Western Area Rural (12), and Port Loko (6) were the worst

affected districts. While Bonthe (9) and Pujehun (11) were the least affected districts. In addition

to that, one can see that districts from southeast have similar number of cases of EVD as well as

the districts from northwest. This suggests a pattern in the transmission of the disease.

(a) (b)

Figure 2: Number of cases Ebola over time (a) and mapping of the number of cases of Ebola (b)

per district in Sierra Leone during 07/2014-07/2015.

In Figure 3 plots of individual time series of new cases of EVD are presented. These plots

support the findings suggested by Figure 2 (a) and (b). As can be seen in almost all districts, the

peak of the epidemic is observed in the last months of 2014. By the end of 2015, one can see that

few cases of EVD are observed, except for Western Area Urban (13) and Port Loko (6) where we

still observe a substantial number of cases of EVD. This might be an indication that in Western

Area Urban (13) and Port Loko (6), the epidemic is not yet under control.
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Figure 3: Individual time series of the number of cases of Ebola in the 14 affected district

Figure 4 shows the cumulative number of new cases of EVD for Bo (left panel) and Tonkolili

(right panel) together with the smoothing spline fits.Since the number of cases of EVD was

reported in irregular time interval, smoothing spline was fit to the cumulative cases of EVD, then

the daily difference were taken to obtain the daily incidence, which were later used in subsequent

analysis. From the plots in Figure 4 one can clearly see that the fitted smoothing spline provides

a good fit to the the cumulative cases of EVD, suggesting that the obtained daily incidence are

reasonable. The cumulative number of cases together with the smoothing spline fits for other

districts can be found in Appendix 1.
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Figure 4: Black dots are the cumulative number of EVD. The solid red line represents the

smoothing spline fitted to the cumulative number of new cases of EVD.

3.2. Statistical Analysis

3.2.1 Model Selection

Here we consider three candidate models. First, we consider a model which assumes a constant

transmission rate (model 1). Secondly, we consider a model where the transmission rate is as-

sumed to decay exponentially with control intervention (model 2). Finally, we assume a constant

piece-wise transmission rate (model 3). The DICs together with the parameter estimates of the

three mentioned models are shown in Table 1 below. Comparing the DICs of the different models,

one can clearly see that model 3 shows a better fit in 10 districts( Bombali Bonthe, Kailahum,

Kambia, Kenema, Koinadugu and Kono). For the incidence data from Pujehu, we can see that

among the fitted model, there is no clear winner as comparing their DICs the difference is not less

than 5. In addition to that, it possible to see that their parameter estimates are pretty similar, this

suggests that the three models can be used to describe the epidemic in Pujehu. In Moyamba we

observe that DIC is lower under model 2, and in Bo and Port Loko the DIC is lower under model

1. However, as model 1 is only applicable for the beginning of the epidemic ,and in addition to

that, it does not account for external influences in the transmission rate, we therefore rule it out.
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Table 1: DIC and parameter estimates under three different models: Model 1 assumes that

the transmission rate is constant, model 2 assumes that it decays exponentially with control

intervention and model 3 assumes a piece-wise constant transmission rate

Model 1 Model 2 Model 3

Districts β α R DIC β α R DIC β α R DIC

Bo 0.142 0.217 0.995 1264.2 0.165 0.18 1.154 1439.3 0.231 0.153 1.615 1794

Bombali 0.144 0.238 1.006 1707.5 0.642 0.019 4.491 1843.6 0.169 0.199 1.181 1613.1

Bonthe- 0.151 0.139 1.059 629.2 0.209 0.151 1.461 671.2 0.185 0.088 1.296 571

Kailahum 0.075 0.014 0.525 11475.2 0.241 0.01 1.684 10609.8 0.158 0.098 1.107 1050.1

Kambia 0.146 0.138 1.025 972.6 0.209 0.103 1.465 960.1 0.18 0.102 1.261 935.5

Kenema 0.127 0.198 0.888 1845 0.219 0.016 1.536 2314.2 0.05 0.244 0.353 1829.9

Koinadugu 0.141 0.107 0.989 622.7 0.32 0.094 2.237 624.9 0.236 0.103 1.65 620.1

Kono 0.125 0.041 0.874 1667 0.219 0.029 1.536 1668.7 0.101 0.189 0.705 1280.4

Moyamba 0.143 0.166 1.003 1083.5 0.161 0.157 1.124 1043.7 0.172 0.103 1.206 1075.8

Port Loko 0.143 0.374 0.999 2400 0.53 0.015 3.708 2767.8 0.134 0.133 0.937 2731.2

Pujehu 0.14 0.079 0.983 432.5 0.158 0.078 1.107 435 0.16 0.075 1.117 436

Tonkolili 0.142 0.181 0.996 1401.1 0.553 0.021 3.871 1244.2 0.232 0.148 1.624 1071.8

Western Area Rural 0.143 0.394 1.004 1341.1 0.636 0.019 4.451 1567.6 0.204 0.214 1.426 1680.7

Western Area Urban 0.144 0.156 1.011 2207 0.804 0.013 5.631 2266.3 0.164 0.068 1.151 2036

In addition to the DIC, we also assess the goodness of fit of model 3 based on the predictive

values of new cases (simulated values) of EVD. Figure 5 belows we present the plots of the

observed and the predictive number of new cases of EVD together with 95% credible interval.

From these plots it can be seen that model 3 does not have a good fit for all incidence data, for

instance, although model 3 had a lower DIC for the incidence data from Kambia, one can clear see

that the predictive values do not fit well to the data. Besides Kambia, a poor fit is also observed

in the incidence data from Pujehun. This suggests that the inference based on this model for the

mentioned districts should be made with caution.

In table 1, based on DIC, it was observed that model 3 does not fit well the incidence data from

Western Area Rural, and as the model with constant transmission rate was ruled out, model 2 was

found to be the best. However, looking at the plots of observed and predictive number of new

cases of EVD in Figure A1 under model 2 and 3, it is apparent that the curve of the predictive

values under model 2 (left panel) is much smoother than the curve of the predictive values under

model 3 (right panel). This clearly indicates that model 2 does not describe the course of the

epidemic in Western Area Rural very well. Additionally, we observed that the posterior mean

incubation rate under model 2 was very small (0.019) and so was the credible interval (0.017-0.020;

not shown in the table). This indicates that the posterior distribution was not well explored, and

therefore model 2 cannot be used to infer about the course of the epidemic in this region.
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Figure 5: Observed (black dots) and predictive (red dashed line) number of new cases. Dashed

lines are the 95% credible interval
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Similarly in Moyamba, although the DIC was found to be smaller under model 2, looking at

the predictive number of new cases of EVD in Figure A1, we also observed that both models can

reasonably describe the course of the epidemic.

Figure 6: Observed (black dots) and predictive (red dashed line) number of new cases. Dashed

lines are the 95% credible interval. Comparison of model 2 (left panel) and 3 (right panel) under

Western Area Rural, Moyamba and Bo

All the analysis done in this section points out that model 3 can well describe the course

of the epidemic. Therefore, model 3 is considered throughout the report. However, it is worth

emphasizing that there is a substantial variability around the predictive number of new cases

of EVD. This is not so surprising, because by nature, a stochastic model introduces uncertainty

(Lekone and Finkenstädt; 2006; King et al.; 2015). Furthermore, note that the number of cases

of EVD used to fit the model are not the true observed cases, but the number of cases that were

obtained based on the fitted smoothing splines to the cumulative number of new cases of EVD.

Therefore, this can also introduce variability in the data.
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3.2.2 Estimating the reproductive number per district

Here, we present the curves of the effective reproductive number per district. In addition to that,

we also present the posterior mean of the reproductive number in the month of January and the

posterior mean of the incubation period for each district.

Table 2 shows the posterior mean of the reproductive number for the month January as well

as the incubation period for each district. It can be seen that in all districts, except Kambia, the

reproductive number is less than one. This is in agreement with the exploratory data analysis,

where as of January, we observed a decrease in the number of new cases of EVD (see Figure 2

(a)). The estimated average incubation period ranges from 4.11 to 14.73 days, with kenema having

the least incubation period and Western Area Urban with the highest incubation period. A clear

distribution of the incubation period can be see in 3.2.4.

Table 2: Posterior mean for the reproductive number and incubation period together with 95%

credible interval for the month of January 2015

Reproductive number R Incubation period 1/α

Districts Mean CI Mean CI

Bo 0.804 0.57-1.063 7.41 5.413-10.432

Bombali 0.724 0.525-0.955 6.40 5.157-7.782

Bonthe 1.112 0.723-1.61 11.82 7.751-16.682

Kailahum 0.919 0.571-1.381 10.3 9.303-12.207

Kambia 1.311 1.017-1.62 10.28 6.638-14.948

Kenema 1.007 0.772-1.292 4.11 3.721-4.571

Koinadugu 0.408 0.255-0.578 9.79 8.307-11.710

Kono 0.968 0.777-1.176 5.32 4.507-6.094

Moyamba 1.073 0.826-1.33 7.40 5.13-10.394

Port Loko 0.724 0.597-0.859 7.60 5.922-9.520

Pujehu 1.161 0.709-1.713 13.86 9.214-20.186

Tonkolili 0.699 0.545-0.864 6.90 5.706-9.525

Western Area Rural 0.832 0.729-0.948 4.97 3.559-6.695

Western Area Urban 0.337 0.243- 0.442 14.73 12.322-17.338
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Figure 7 shows the curves of the estimated effective reproductive number. It can be seen that

the estimated effective reproductive number ranges between values less than 1 and around 3.

Around January to May it is possible to see that almost all district have Re(t) less than 1. Moreover,

for the last observed period some districts show estimate of Re(t) greater than 1. However, from

May to the last period of the epidemic we can observe that Western Area Rural/Urban, Port Loko,

Kambia, Bombali and Bo show an oscillation of Re(t) aroud the threshold value 1, suggesting

that reappearance of new cases cannot be ruled out in these districts. It is also important to stress

that, although the Re(t) for Pujehu is larger than 1, the credible interval covers the threshold (R=1)

suggesting that the epidemic in this region is under control , but little can be said due to the fact

that there is a substantially large variability around the it. It also is worth emphasizing that for all

districts the estimated Re(t) have a quite large variability.

Figure 7: Effective reproductive number and 95% credible interval for the 14 district of Sierra

Leone. The red dotted line represents R = 1, which is the threshold for control. Continues in

Figure 8
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Figure 8: Effective reproductive number and 95% credible interval for the 14 district of Sierra

Leone. The red dotted line represents R = 1, which is the threshold for control.
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3.2.3 Sensitivity analysis

Table 3 shows parameter estimate for the model assuming a constant piece-wise transmission rate

under different prior information. It can bee seen that estimates under vague uniform prior has

much narrower credible intervals than the estimates under informative gamma prior, and they

are substantially different. Additionally, it is worth noting that effective reproductive number

for the second month (R(2)) in both scenario is significantly larger than 1. Though, the DIC of

the model considering vague uniform prior is smaller, the estimate of the incubation rate under

uniform prior is quite close to the boundary of the uniform prior distribution. This may be an

indication that the posterior distribution of the incubation rate under vague uniform prior is not

well explored. Thus, inferences based on vague uniform prior, should be made with caution.

Table 3: Parameter estimates together with 95% credible interval for model with a constant

piece-wise transmission rate considering a vague uniform prior and and an informative gamma

prior. Western Area Urban

Scenario 1 Scenario 2

Prior β ∼ U(0, 1), α ∼ U(0.05, 1) {β, α} ∼ Gamma(20, 100)

Parameters Mean CI Mean CI

β(1) 0.069 0.003-0.233 0.164 0.103-0.238

β(2) 0.433 0.345-0.53 0.303 0.241-0.369

α 0.051 0.05-0.055 0.068 0.057-0.08

R(1) 0.486 0.018-1.631 1.151 0.721-1.669

R(2) 3.032 2.414-3.711 2.123 1.685-2.585

DIC 1987.9 2036

In table 4, we present a sensitivity analysis. In the first scenario, we estimate the parameters

with the assumption that the number of exposed is fixed. In the other scenario, we estimate the

parameters from the data by placing uniform prior on the number of exposed of individuals at

time zero. Three discrete uniform prior in the range (1, 50), (1, 100) and (1, 1000) were considered.

According to Lekone and Finkenstädt (2006) the incubation period can be approximated by a

geometric distribution with mean 1/pc. Previous studies have reported an incubation period of

7 days (Center for Disease Control; 2015b; Chowell et al.; 2004). This implies that pC = 0.143,

thus, we use an estimated number of exposed at time zero, which is compatible with pC, i.e.

E(0) = 7C(1). As at the beginning the number of cases in Western Area Urban is 4, then E(0)

is set to 28. From this table, we observe that fixing E(0) to 28 leads to a model with a lower
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DIC. We also noticed that the incubation period for model 4 is quite large (14.73 days) compared

to the incubation period estimated from the scenario where E(0) is estimated from the data.

Additionally, it is also worth noting that, although the DIC of scenario 1, 2 and 3 are quite different,

the estimates and the credible interval are pretty similar. Furthermore, the credible intervals of

the aforementioned scenarios are wider than credible interval of scenario 4. This suggests that

estimating E(0) from data introduces extra variability in the parameter estimates.

Table 4: Comparison of the parameter estimates and 95% credible interval considering that the

number of exposed at time 0 is estimated from data using a uniform prior and fixing ()E(0) = 28).

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Prior E(0) = 28 E(0) ∼ U(1, 50) E(0) ∼ U(1, 100) E(0) ∼ U(1, 1000)

Parameter Mean CI Mean CI Mean CI Mean CI

β(1) 0.164 0.103-0.238 0.22 0.143-0.303 0.217 0.152-0.295 0.218 0.147-0.299

β(2) 0.303 0.241-0.369 0.246 0.194-0.303 0.239 0.19-0.297 0.241 0.193-0.295

1/α 14.73 12.322-17.338 6.128 3.998-9.524 5.577 3.568 -8.064 5.712 4.087-8.018

R(1) 1.151 0.721-1.669 1.543 1.001-2.123 1.519 1.065-2.063 1.526 1.028-2.091

R(2) 2.123 1.685-2.585 1.72 1.361-2.118 1.676 1.331-2.08 1.684 1.348-1.348

E(0) 4.423 3-7 4.261 3-6 4.254 3-6

DIC 2036 2660 2887.6 2493.8

3.3. Spatial Analysis

In this section, we study the spatial distribution of the transmission rate across the country of

Sierra Leone. First, we begin by doing an exploratory data analysis by displaying the maps of

estimated incubation period, basic reproductive number and the estimated transmission rates.

Then, using a conditional autoregressive model we explore the structured and the unstructured

heterogeneity of the estimated transmission rate across the country. The transmission rate is

analyzed at three time points, namely, first 30 days of the epidemic, next 30 days and for the

month of April 2015.

Figure 9 shows the estimated incubation period (left panel) and basic reproductive number

(right panel) for each district across the country. From the map of the estimated incubation

period one can clearly see that for most of the districts the estimated incubation period rages

between 5 and 7.5 days. In addition to that, one can also see that the districts with the estimated

incubation period in this range are located in the center of the country. Two districts had the

estimated incubation period greater than 12 days, namely: Western Area Urban in the northwest

region of the country and Pujehun in the south region of the country. Looking at the map of the

estimated basic reproductive number, it is clearly seen than most districts have the estimated basic

reproductive number greater than one.
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Figure 9: Illustration of the estimated incubation period (left panel) and the basic reproductive

(right panel) number across the districts of Sierra Leone

In Figure 10, we give an illustration of the transmission rates across the districts of Sierra

Leone in order to see how the transmission rate varies across the different districts. The maps

were plotted at three different selected time points. Firstly, for the first 30 days, secondly for the

following 30 days and the last case for the month of April. From the maps, one can see that

for the first 30 days (top map on the left), there is no substantial difference in the transmission

rate across the districts. Moreover, the map suggests some clustering as we can see districts with

similar transmission rates close together. Looking at the map for the second selected time point,

it can be seen that it is much smoother than the previous one, suggesting more similarity in the

transmission rate among the districts. On the third map (bottom on the left), although we see a

different pattern, it can be seen that compared to the latter period the transmission rate in many

districts has decreased.
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Figure 10: Illustration of the estimated transmission rate across the region at three different

selected time points : Map (a) transmission rate for the first month days of the epidemic; Map

(b) the transmission rate for the second month of the epidemic; Map (c) transmission rate for the

April 2015

Now that we have estimated the district-specific transmission rate, we fit a CAR model in order

to study the spatial structure across the affected region . Table 5 shows the parameter estimates

from the CAR model. In all the fitted models the there is spatially structured variation as we

can see from the table. Furthermore, it is worth noting that in all the fitted models the spatial

structured variation is quite small, indicating the presence for the presence of spatial correlation

between neighboring district . Moreover, from plot (b) Figure 4, one can see the presence of two

outstanding regions with region from the southeast (green) having a lower transmission rate as

opposed to its counterpart from the northwest region (yellow) of clustering of district-specific

transmission rate.
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Table 5: Parameter estimates and 95% credible interval for the CAR model: Period 1 considers

the district-specific transmission rate for the 1st 30 days of the epidemic; Period 2 considers

district-specific transmission rate for the next 30 days of the epidemic; and period 3 consider

district-specific transmission rate for the month of April 2015.

Period 1 Period 2 Period 3

Parameter Mean CI Mean CI Mean CI

β 0.1675 0.1343-0.2006 0.2054 0.1769-0.2342 0.1573 0.1311-0.1839

σ2 0.002565 0.0004703-0.007457 0.001864 0.0003793-0.005493 0.001585 0.00037-0.004451

σ2
u 0.002253 0.0001848-0.01017 0.002306 0.0001993-0.009327 0.001427 0.000163-0.006031

σ2
v 0.001316 0.0001738-0.004673 0.001011 0.0001571-0.003547 8.86E-04 0.0001559-0.00288

Figure 11: Illustration of the estimated transmission rate across the region at three different

selected time points after smoothing : Map (a) estimated transmission rate for the first 30 days of

the epidemic; Map (b) estimated transmission rate for the second month of the epidemic; Map (c)

estimated transmission rate for the April 2015.
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4. Conclusion and Discussion

On the 8th of August 2014, the World Health Organization (WHO) declared the Ebola outbreak as

an international public health problem of extreme emergency after it had started in Guinea and

then spread to the neighboring countries of Liberia and Sierra Leone (World Health Organization;

2014b,a). Since the Ebola outbreak started, it has killed more than 11,000 people, and a number

of control measures have been applied in order to control the spread of the disease. In addition

to that, epidemiologist and mathematicians have been studying the dynamic transmission and

predicting the number of new cases using a variety of deterministic SEIR model. Nevertheless,

the deterministic SEIR model has been extensively criticized in the literature, because they do not

account for stochasticity, and they usually lead to overestimated predictions and underestimated

uncertainty. Furthermore, the models are fitted using a cumulative number of new cases by

means of ordinary least square, which assumes that the measurement errors are independent

and normally distributed with constant variance. However, when the cases are cumulated, this

assumption does not hold (King et al.; 2015). To overcome issues related to deterministic SEIR

model, in this report, we used a stochastic discrete-time SEIR model developed by Lekone and

Finkenstädt (2006) to estimate the reproduction number across the districts, to study how it evolves

overtime, and also to estimate the average incubation period. The stochastic discrete-time SEIR

model was fitted to daily incidence data of each district of Sierra Leone.

Turning to the findings, the stochastic discrete-time SEIR model was first fitted to all districts

considering three scenario. In the first cases, we considered a constant transmission rate, while in

the second case we assumed it to decay exponentially with control intervention, and finally, we

assumed a piece-wise constant transmission rate. Results showed that the model with piece-wise

constant transmission rate provides a better fit to the data. Furthermore, the model is capable

of predicting if there will be resurgences of new cases of Ebola or not. In general, the model

had good a fit to all incidence data, except for the incidence data from Kambia, Tonkolili, and

Pujehu. Despite the good fit, it was observed that the predictive values together with the parameter

estimates had substantially wide credible intervals.However, this is not surprising since according

to Lekone and Finkenstädt (2006), the analysis based on stochastic discrete-time SEIR model is

fully probabilistic, and in addition to that, many events and variables are unobserved. Therefore,

this induces variability which is reflected in the posterior estimates.

Between July and August 2014, the Rt in Kenema, Kono, and Kalilahum was less than one,

indicating that in this period the epidemic seemed to be under control. These results are in

agreement with Team et al. (2014) who analyzed the first 9 months of the epidemic in West African

affected countries and they report a substantial decrease of Rt between June and August since the

case incidence was stabilized. In Koinadugu, Rt was found to be less than one between November

2014 and January 2015, and from February to June a reproduction number larger than one was
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observed. However, the credible intervals suggested that the disease is under control as it included

the threshold value (R = 1). Similarly, Pejehun and Bonthe, though the Rt is greater than one, the

credible intervals showed evidence that the disease is in endemic state. These results line up with

what is currently being seen in the field; as 9 weeks have passed since the last case was observed

(World Health Organization; 2015a). The reproduction number in Port Loko, Western Area Urban

and Tonkolili decreased to less than one from June and January, though as of February, Rt has

been oscillating around the control value, suggesting that reappearance new cases of EVD is likely

in these districts.

Recently, Satermans et al. (2015) studied the spatiotemporal evolution of Ebola virus disease at

sub-national level. They found that between January and May 2015, the reproductive number in

Western Area Urban was less than 1. More still , their results suggested a decrease in the reproduc-

tive number between June and May 2015. These findings are in agreement with what we observed

for Western Area Urban. Our results are also consistent with the findings by Camacho et al.

(2015), who studied the temporal changes of Ebola in Sierra Leone. For the month of January 2015,

they reported a reproductive number of 0.32 for Western Area, which is in line with what we found.

In our analyses, for some districts, we observed that the basic reproduction number was less

than 1, but the epidemic still persisted. This is not surprising as Li et al. (2011) state that, when

stochastic effects are included in the SEIR model, the threshold at R0 = 1 may be disturbed as

well as variations in individuals parameters. Therefore, the reported results should be interpreted

with caution.

Furthermore, we performed a sensitivity analysis considering only the incidence data of West-

ern Area Urban. The choice of different priors did not affect the posterior mean noticeably, except

for the incubation period. Under uniform prior, for instance, the incubation rate was much smaller

than under the gamma prior. This indicates that, an individual will stay an average period of 19

days before they become infectious. However, this average incubation period may be considered

unrealistic as the average incubation period is around 8 to 10 days. Additionally, when we estimate

the number of exposed individuals at time zero, the posterior mean did not vary considerably as

compared to when we assume that it is known. Nevertheless, it was observed that when we place

a uniform prior on the number of exposed individuals at time zero the credible intervals were

wider . This suggests that allowing the number of exposed individuals to be estimated from the

data introduces variability in the posterior mean.
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The model used in this report is subject to some limitation. It assumes that the disease can

only be transmitted through contact with infected people, while it is known that the disease can

also be transmitted through contact with dead bodies. We also assume that the infectious rate is

similar to the previous outbreak, however, Meltzer et al. (2014) warn that this approach may lead

inaccurate results. Moreover, the stochastic discrete-time SEIR model proposed by Lekone and

Finkenstädt (2006), assumes perfect reporting of the new cases of EVD, while in reality this is not

the case . In this report we did not account for underreporting. Ignoring this, may lead to bias

when making inference for the model parameters (Gamado et al.; 2014). We therefore, recommend

that all aforementioned drawbacks of the model should be taken into account for further research.

Finally, after having estimated the transmission rate for all districts, we investigated the spatial

structure of transmission rate across the country. Results did not indicate much differences in

the transmission rate across the regions. However, it we noticed that districts from northwest

had a higher transmission rate than districts from the south were found have similar and lower

transmission rate. In conclusion, our analysis suggests a decline in the transmission rate during

February to June 2105. Moreover, it was observed that around the end of June and beginning of

July 2015 the Rt was around the control value indicating that the disease is under control
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Appendix

Figure A1: Black dots are the cumulative number of EVD. The solid red line represents the

smoothing spline fitted to the cumulative number of new cases of EVD.
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