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1 Introduction

Herpes zoster (HZ), known as shingles, is a skin condition that caused by the reacti-
vation of a latent varicella zoster virus. This virus is known to cause chickenpox (Lee
et al., 2013). After a person recovers from chickenpox, the virus stays inactive in the
body and can reactivates years later for reasons not fully known, causing shingles (CDC,
2015). Every year, the number of new cases of HZ in the United States is approxi-
mately 1 million (Lee et al., 2013). In Europe, the overall annual HZ incidence varied
from 2.0 - 4.6/1000 person-years (PY). The incidence was lower in Iceland, Germany
and Switzerland (around 2/1000 PY), medium in the United Kingdom, the Netherlands
and France (around 3/1000 PY) and higher in Belgium, Spain and Italy (around 4/1000
PY) (Pinchinat et al., 2013). One major complication with HZ is postherpetic neuralgia
(PHN), which is dermatomal pain after the resolution of rash that can be exquisitely
painful and last months to even years (Lee et al., 2013).
It is now a challenge to understand the mechanisms that connect to humoral immu-
nity’s long-term endurance. This knowledge is pivotal for further studies in the field
of immunology and health policy(Andraud et al., 2012). Currently, there are not many
studies which provides insight knowledge of the quantitative assessment underlying the
biological kinetics of immunity activities in human body, especially for HZ disease. The
current study provides some basic results which could be contributed to further researches
on immunology, especially in the field of humoral and vaccine immunity, not only for HZ
disease but also could be a beginning step to further study immunity for other diseases.
The analysis uses unbalanced repeated measurements from a study enrolling 61 pa-
tients to investigate antibody dynamics during HZ infection. We use the imprinted
lifespan model proposed by Amanna and Slifka (2010) which was then applied to an-
alyze the dynamics of plasma cell and antibody populations illustrated for hepatitis A
virus by Andraud et. al. (2012). This model employs an Ordinary Differential Equation
(ODE) where it describes the change in subpopulations of short-lived plasma cells, long-
lived plasma cells and antibodies. Our model assumes that the long-lived plasma cells
have a relatively long lifespan hence, this subpopulation is considered constant (this is
called asymptotic models). Later on, the effects of some important covariates, including
AGE,AV, V L (stand for age of patients at entry, antiviral usage and viral load obtained
at the first measurement for each patient) are incorporated into the model. Furthermore,
the reduced asymptotic models (model with and without covariates) assuming the av-
erage decay rate of short-lived plasma cells much shorter compared to that of antibody
are fitted. The results under these models are than compared to the asymptotic models.
Non-linear mixed effects model involving ODE is fitted using Monolix software.
As mentioned earlier, PHN is a common complication of HZ. Along with fitting a math-
ematical kinetics model to antibody data, we additionally aim to investigate the lon-
gitudinal relationship between the probability of having PHN over time and antibody
titers. Firstly, a GLMM model where time, LOGAB (LOGAB is the log10 scale of anti-
body titers) are covariates is fitted to answer the question of interest. It is documented
that age is a factor which might affect the appearance of PHN (Dworkin and Schmader,
2001). Moreover, the usage of antiviral drug plays a role to the control of PHN (Dworkin
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and Schmader, 2003). Based on these backgrounds, a model considering AGE,AV as
additional covariates is fitted later. We use a random effect (partial) proportional odds
model to deal with this problem as the response is an ordinal variable.
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2 Literature review

2.1 Herpes Zoster virus diseases

Herpes zoster (HZ) is a distinctive syndrome caused by reactivation of varicella zoster
virus (VZV). This reactivation occurs when immunity to VZV declines because of aging
or immunosuppression. HZ can occur at any age but most commonly affects the elderly
population (Sampathkumar et al., 2009b). The diagnosis of HZ is mainly made clinically,
except in patients with atypical manifestations or certain complications, such as central
nervous system involvement, in which laboratory virologic testing is required (Bader,
2013).

2.2 Postherpetic neuralgia (PHN)

Post-herpetic neuralgia (PHN) is defined as pain persisting more than 3 months after the
rash has healed. PHN is a debilitating and difficult to manage consequence of HZ (Sam-
pathkumar et al., 2009a). The risk of PHN after HZ increases with age (Sampathkumar
et al., 2009a; Gerhson, 1996). More than 50% of HZ patients older than 60 years will
develop PHN and this may persist for months, even years (Gerhson, 1996). PHN is often
severe and, unfortunately, refractory to most forms of treatment. As a result, established
PHN is usually difficult to manage, often leading to serious morbidity, depression and
high costs in healthcare resources (Gerhson, 1996).

2.3 Mathematical models of antibody kinetics

Humoral immunity following vaccination or infection is mainly derived from two types of
cells: memory B cells and plasma cells (Amanna and Slifka, 2010). Amanna and Slifka
suggests 6 models of sustained humoral immunity. They are chronic infection/cross-
reactivity, repeated infection/vaccination, persisting antigen, polyclonal stimulation, com-
petition for bone marrow (BM) and imprinted lifespan. The first four models belong to
memory B-cell (MBC)-dependent and -independent models. They have been developed
to explain how long-term antibody responses are maintained (Amanna and Slifka, 2010).

Chronic infection/cross-reactivity model: ”Under this model assumption, chronic
infection or cross-reactivity to either self or environmental antigens is expected to
stimulate memory B cells to proliferate and differentiate into antibody-secreting
daughter cells and result in increasing antibody responses over time due to contin-
uous stimulation and accumulation of memory B cells and plasma cells” (Amanna
and Slifka, 2010).
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Repeated infection/vaccination model:” The model assumes that repeated infec-
tion or booster vaccination will likely lead to periodic increases in antigen-specific
memory B-cell activation and subsequent increases in antibody responses that
would decline during the intervening periods between outbreaks or vaccinations”
(Amanna and Slifka, 2010).

Persisting antigen model: ”In this model, there is persisting antigen in the form
of antibody: antigen immune complexes on the surface of follicular dendritic cells
(FDCs) will stimulate memory B cells in an antigen-specific manner, resulting in
antibody response that will decline at the rate of antigen decay or consumption by
the memory B-cell pool” (Amanna and Slifka, 2010).

Polyclonal stimulation: ”It is said that non-antigen-specific polyclonal memory B-cell
stimulation by Toll-like receptor (TLR) engagement or bystander T-cell activation
will trigger antibody responses to spike during heterologous infections or vacci-
nations and increase antibody response to all pre-existing antibody specificities”
(Amanna and Slifka, 2010).

However, these models, according to Amanna and Slifka, are not relevant to capture
the progression of antibody titers over time after exposure to viral or vaccine antigens
(Amanna and Slifka, 2010; Andraud et al., 2012). Furthermore, long-term antibody re-
sponses may be maintained by long-lived plasma cells (PCs) (Amanna and Slifka, 2010)
which is not reflected in these four models. Therefore, Amanna and Slifka (2010) propose
two other models where plasma cells are recognized as an independent B-cell subpop-
ulation. This subpopulation is long-lived even without the replenishment by memory
B-cells (Amanna and Slifka, 2010; Andraud et al., 2012), they are the competition for
bone marrow (BM) model and the imprinted lifespan model.

Competition for BM model: ”This model is based on plasma cell competition for
space in the bone marrow in which pre-existing plasma cells are dislodged by in-
coming plasmablasts, and antibody responses decline as a function of plasma cell
displacement. Amanna and Slifka argued that because there was finite space in the
bone marrow, this model would suggest that antibody responses will decline more
rapidly during advanced age as a function of increased competition in the bone
marrow compartment” (Amanna and Slifka, 2010).

Imprinted lifespan model: ”The model is based on the theory that plasma cells are
imprinted with a specified lifespan, which is determined during the induction phase
of the antigen-specific antibody responses” (Amanna and Slifka, 2010).
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2.4 Plasma-cell imprinted lifespan model - An application by
Andraud et al.

The ”plasma-cell imprinted lifespan model” proposed by Amanna and Slifka was used
by Andraud et al. (2012) to estimate persisting endurance of anti-HAV antibodies from
two 10-year follow-up studies conducted in adults who were vaccinated with inactivated
hepatitis A vaccines. The basic idea in this model is that it accounts for the dynamics of
plasma cell (P) and antibody (A) populations. The plasma cell population is divided into
two subpopulations, which are short- and long-lived cells based on their lifespans, denoted
as Ps and Pl. Under this model, these plasma cells are assumed to have no renewal,
meaning that they decline over time. Additionally, lifespan of antibody is assumed to be
relatively short compared to that of plasma cell. The model is said to demonstrate the
kinetics of plasma cell populations (Andraud et al., 2012).
The complete model
Following these presumptions, the dynamics of plasma cells and antibody are described
by the Ordinary Differential Equations (ODE) below:

dPs

dt
= −µsPs (1)

dP l

dt
= −µlPl (2)

dA

dt
= ϕsPs+ ϕlPl + µAA (3)

This is called a complete model, where µs, µl, µA are the average decay rates of Ps, Pl and
A; ϕs, ϕl are the average production rates of A by short- and long-lived plasma cells. Let
denote P 0

s , P
0
l , A0 as the initial population sizes of Ps, Pl and A, the ODE system has the

analytical solution:


Ps(t) = P 0

s e
−µst

Pl(t) = P 0
l e

−µlt,

A(t) =
φs

µA − µs
e−µst +

φl
µA − µl

e−µlt + (A0 −
φs

µA − µs
− φl
µA − µl

)e−µAt

where φs = ϕsP
0
s and φl = ϕlP

0
l .

The asymptotic model
Assuming that the lifespan of short-lived plasma cells is infinity (µl = 0), Andraud et.
al (2012) proposed a model where the asymptotic total antibody production rate is a

constant different from zero (
φl
µA

). The analytical solution for antibody at time point t

becomes:

A(t) =
φl
µA

+
φs

µA − µs
e−µst + (A0 −

φl
µA
− φs
µA − µs

)e−µAt
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The plasma cell driven kinetic model
This model assumes that the antibody lifespan is relatively short compared to those
of short- and long-lived plasma cells (µs, µl << µA). ”The antibody kinetics can be
considered as being an immediate reflection of the underlying kinetics of plasma cell
populations” (Amanna and Slifka, 2010; Andraud et al., 2012). The analytical solution
for antibody is then given by:

A(t) = βse
µst + βle

µlt

where βs =
φs
µA

, βl =
φl
µA

.
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3 Data

The original data was collected on 61 patients being diagnosed as HZ infection in general
practitioners. The data are repeated and unbalanced in the sense that the number
and time points of measurements vary from subjects to subjects. There are total 233
observations and 9 variables. Table 1 gives the details of all variables collected in the
data set.

Table 1: Variables explanation

Variable Type Explanation
ID NA Unique Identification of patients
AGE Continuous Age of patients at time point 0
GEN Binary Genetic characteristics of patients (1 or 0)
AV Binary Indication of using antiviral treatment (1 if Yes and 0 if No)
DUR Continuous Duration of using antiviral drug
TIME Time Time point of measurement
AB Continuous Antibody level at each measurement
CMV Binary Indication of Cytomegalovirus (1 or 0)
VL Continuous Viral load at each measurement
PHN Categorical Postherpetic neuralgia status at each visit

(0 if no pain, 1 if dyskinesia but no pain and 3 if PHN)
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4 Methodology

4.1 Data Exploratory

Data exploratory is applied to get general information about the data. The individ-
ual profile and mean structure are explored using the methods applied to unbalanced
longitudinal data.

4.2 Mathematical models of antibody kinetics - Application
into the current data set

4.2.1 Why the approach of Andraud et al. might not reasonable for the
current data set

The mathematical model proposed by Andraud et al. assumes a simple decay trend
over time of antibody levels in vaccinated adults with inactivated hepatitis A vaccines.
This assumption seems to be unfeasible in our study. To make clear this argument, it is
necessary to have a short overview about the correlation of antibody titers with various
phases of vaccine or virus response (humoral immunity). The initial antigen exposure
(virus, bacteria,...) elicits an extrafollicular response resulting in the rapid appearance
of low IgG antibody titers. When B cells proliferate in germinal centers and differentiate
into plasma cells, IgG antibody titers increase up to a peak value usually reached 4
weeks after immunization. Due to the short lifespan of these plasma cells, it results in a
rapid decline of antibody titers, which might eventually return to baseline levels. In the
secondary immune responses, booster exposure to antigen reactivates immune memory
and results in a rapid (less than one week) increase of IgG antibody titer. Short-lived
plasma cells maintain peak antibody levels during a few weeks after which serum antibody
titers decline initially with the same rapid kinetics as following primary immunization.
Long-lived plasma cells having reached survival niches in the bone marrow continue
to produce antigen-specific antibodies, which then decrease with slower kinetics. It is
noted that this generic pattern may not apply to live vaccines triggering longterm IgG
antibodies for extended periods of time (Siegrist, 2015).
In the paper of Andraud et al., blood samples were taken before vaccination, between
primary and after booster administration. As the purpose of their study is to investigate
the durable endurance of antibodies after a full vaccination program, they only limited
the use of data at those time-points after boosting, i.e. at 1, 12, 18, 24, 30, 36, 42, 48,
50, 66, 78, 90, 102, 114 and 126 months after boosting. This might explain why a simple
decay model is appropriate in this analysis.
Our study collected data from the time of diagnose of HZ for all 61 patients. As a result,
a model that reflects a continuous exposure rather than a simple decay model could be
more appropriate since it is assumed that there is continuous exposure in the population.

10



4.2.2 A proposed model without covariates

Having realized that the model proposed by Andraud et al. is appropriate for modeling
a simple decay problem, we adapt their approach so that it can be applied to model the
antibody kinetics when there is continuous exposure. Our model is developed based on
the idea of Andraud et al., but taking into account the fact that antibody levels could
be firstly increased to a peak (before a time point t1), and then decline over time (after
time point t1).
This proposed model is reasonable with the biological ground. As we have known, there
are primary and secondary responses to antigen exposure. The initial immune response
is called the primary response. When an antigen appears again, it triggered a more
extensive and prolonged secondary response. During the primary response, the antibody
titer (level of antibody activity) in the plasma does not peak until 1 or 2 weeks after
the initial exposure. If the individual is no longer exposed to the antigen, the antibody
concentration decreases. In the secondary response which is characterized by a very rapid
increase in IgG antibody concentration and titer, the antibody titer rises to a much higher
levels than those of primary response. Antibody activity remains elevated for an extended
period after the second exposure to the antigen (Martini and Nath, 2011).
Based on these argument, we propose the model with two ODE systems:
Stage 1: Before time point t1, antibody titer increases over time. We have the following
ODE system which is a consideration between a mathematical/biological model and a
statistical model, under the assumption that AB decay only starts from a time point t1.

dPs

dt
= −µsPs (4)

dP l

dt
= −µlPl (5)

dA

dt
= ϕsPs+ ϕlPl (6)

Stage 2: From time point t1, antibody titer starts declining over time. The following
ODE system is employed:

dPs

dt
= −µsPs (7)

dP l

dt
= −µlPl (8)

dA

dt
= ϕsPs+ ϕlPl − µAA (9)

where µs, µl and µA respectively stand for the average decay rates of short-, long-lived
plasma cells antibodies in the body. ϕs, ϕl are the production rates of antibodies by
short- and long-lived plasma cells. Ps0, P l0, A0 are subsequently the number of short-
lived plasma cells, long-lived plasma cells and antibody titers at time point t = 0.
By fitting this model in Monolix, it turns out that the parameter t1, µl, ϕl are very close
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to 0. This motivates our choice to fit a model with only one ODE system, and assume
that µl = 0, i.e, the average decay rate of long-lived plasma cells could be forever ignored.

i. The Asymptotic Model
The final ODE system to be considered in this case is given as following:

dPs

dt
= −µsPs (10)

dA

dt
= ϕsPs+ φl − µAA (11)

This model is called the asymptotic model which is one of three models proposed
by Andraud et al. (2012). This means that although the complete model proposed
by Andraud et al. seems not be appropriate, the asymptotic one might show a better

behavior. This model omits the dynamic equation
dP l

dt
= −µlPl, reflecting the fact

that long-lived plasma cells are assumed to survive for a long period. It is said that the
number of long-lived plasma cells that disappear could be ignored. Moreover, looking at
the formula 11, it can be seen that now the parameter ϕl and Pl0 are absorbed into one
parameter φl reflecting the number of antibodies secreted by long-lived plasma cells at
the baseline.
The ODE system has the analytical solution:

The asymptotic model:

A(t) =
φl
µA

+
φs

µA − µs
e−µst + (A0 −

φs
µA − µs

− φl
µA

)e−µAt (12)

where φs = ϕsPs
0.

ii. The reduced model
Assuming that µs << µA, i.e., the lifespan of short-lived plasma cells is relatively larger
compared to that of antibody. The analytical solution 12 becomes:

The reduced asymptotic model:

A(t) =
φl
µA

+
φs
µA
e−µst + (A0 −

φs
µA
− φl
µA

)e−µAt (13)

Parameter estimation
Non-linear mixed effects model approach was employed to estimate population param-
eters (µs, ϕs, µA , Ps0, A0, φl). The individual parameters (ψi) are assumed to have
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log-normal distributions. That is log(ψi) = log(θ) + ηi where the subscript i represents
the individual i, log(θ) is the fixed effect parameter representing the mean value of the pa-
rameter in the population and ηi is the random effect accounting for the inter-individual
variability. ηi is assumed to have a normal distribution, that is ηi ∼ N(0, ω2). Individual
parameter estimates are used to predict the individual antibody titer at each time point
(Apred,ij). The measured antibody titers are log10-transformed for the computational
convenience since the range of this value is quite large. The model for log10-transformed
data is described as following:

log10(AObs,ij) = log10(APred,ij) + εij (14)

The constant error model is used. εij is assumed to be normally distributed, that is
εij ∼ N(0, a2). While ω2 reflects inter-individual variability, a2 quantifies the resid-
ual variability. Population parameters are estimated using SAEM algorithm in Monolix
(Lixoft, 2014).

Model diagnostic
We use AIC for the purpose of selecting the most appropriate model. Goodness of fit of
models were checked by using plots for individual predictions, the individual weighted
residuals (IWRES) and normalized prediction distribution errors (NPDE). This makes
sense since population based diagnostics were not very instructive (Andraud et al., 2012;
Karlsson and Savic, 2007).

4.2.3 A proposed model with covariates

i. The Asymptotic Model
This model takes into account the covariates which are viral load (V L), AGE of patients,
antiviral drug used (AV ), duration of using antiviral drug (DUR), genetic characteristics
(GEN) and CMV. Since AV and DUR give more or less the same information, i.e., if
the antiviral drug is used then the usage duration is larger then 0, otherwise, the usage
duration is 0, it is decided here to use only one variable AV instead of using both AV
and DUR variables. The covariates are assumed to influence the parameters µA and
µs. The model for individual parameters µA,i and µs,i are described as following (More
motivation could be found under Section 5.2.2):

log(µs,i) = log(µs,pop) + βµs,AGEAGEi + βµs,AVAVi+

βµs,V L(log10(V Li)− log10(V Li)) + +ηµs,i

ηµs,i ∼ N(0, ω2
µs)

log(µA,i) = log(µA,pop) + βµA,AGEAGEi + βµA,AVAVi+

βµA,V L(log10(V Li)− log10(V Li)) + ηA0,i

ηA0,i ∼ N(0, ω2
µA

)
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Since V L is measured at every visits (i.e changes within occasion ), only the first valid
value is taken by Monolix. In the data set, there are two missing values of viral load
for patient ID 2 at visit 3 and patient ID 34 at visit 2. So viral load values are taken
into analysis by using the measurements at the first visit, i.e., at time point t = 0 for all
subjects.

ii. The reduced asymptotic model
In the reduced asymptotic model, we assume that three covariates AGE,AV and V L
influence to the individual parameter estimates of µs, µA and φs. The motivation for
this choice could be found under Section 5.2.2. The models for individual parameters
µA,i, µs,i, φs,i are specified as following:

log(µs,i) = log(µs,pop) + βµs,AVAVi + βµs,AGEAGEi + βµs,V L(log10(V Li)− log10(V L)) + ηµs,i

ηµs,i ∼ N(0, ω2
µs)

log(µA,i) = log(µA,pop) + βµA,AVAVi + βµA,AGEAGEi + βµA,V L(log10(V Li)− log10(V Li)) + ηA0,i

ηA0,i ∼ N(0, ω2
µA

)

log(φs,i) = log(φs,pop) + βφs,AVAVi + βµs,AGEAGEi + βµs,V L(log10(V Li)− log10(V Li)) + ηφs,i

ηφs,i ∼ N(0, ω2
φs)

4.3 Model to investigate the relationship between PHN and
antibody titers

At visit 2, 3 and 4, patients were evaluated by physicians to see if they had experienced
PHN. The clinical judgement at visit 1 was not taken, but it was assumed that all patients
had had no pain at this visit, i.e, PHN = 0. To investigate the relationship between an-
tibody titers and having PHN, a model takes into account the inter-individual variability
between measurements is considered. Having realized the fact that the response variable
PHN is an ordinal one, a proportional odds ratio model could be appropriate. Both
marginal and mixed effects proportional odds ratio model could be employed. Another
proposed model for ordinal responses is the continuation-ratio logits model. However,
this model might be convenient and useful only for subjects that gradually go through a
number of states, where no return is possible (for example, cancer stages) (Molenberghs
and Verbeke, 2005), or when a sequential mechanism, for example, survival through var-
ious age periods, determines the response (Agresti, 2002). That is why in this problem,
we only consider to use proportional odds model.
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4.3.1 Proportional Odds Model assumption

The proportional odds model is of the form (more motivation could be found under
Section 5.3.1):

logit[P (PHNij ≤ k)] = β0 + β1tij + β2LOGABij + β3tijLOGABij + β4t
2
ij

k = 0, 1, 2.

If the model deviates from the proportional odds assumption, they can take on the form
of either a partial proportional odds model (a model where a subset of covariates is
assumed to have different parameters for each logit) or a non-proportional odss model
(a model where all covariates are assumed to have different parameters for each logit)
(Hedeker and Gibbons, 2006). We use the likelihood ratio test to see which models fit
the data best.

4.3.2 Random-Effects Model with proportional odds assumption

Model with LOGAB as covariate
A generalized linear mixed model (GLMM) which is the most frequently used random-
effects model in the context of discrete repeated measurements (Molenberghs and Ver-
beke, 2005) is considered. First of all, a model with random intercept and random slope is
fitted but the convergence could not be achieved. We then consider the random intercept
only model. The proportional odds model takes the form:

logit[P (PHNij ≤ k|bi)] = β0 + bi + β1tij + β2LOGABij + β3tijLOGABij + β4t
2
ij (15)

k = 0, 1, 2.

The model assumes that the logit evolves linearly over time. Here, bi is the random inter-
cept reflecting the variation of the logit of subject i from the population. It is assumed
that bi ∼ N(0, σ2

b ).

Model with additional covariates: AGE,AV
As mentioned earlier, some recent researches have showed that older age, greater acute
pain during HZ and greated rash severity are identified as risk factors for PHN (Whit-
ley et al., 1999; Dworkin and Schmader, 2001, 2003). Moreover, it is concluded that
early diagnosis with HZ and treatment with antiviral drugs decreases the risk of PHN
(Sampathkumar et al., 2009a). In this analysis, the baseline effects of age and antiviral
treatment indication are considered as additional baseline covariates in the model. It
takes of the form:

logit[P (PHNij ≤ k|bi)] = β0 + bi + β1tij + β2LOGABij + β3tijLOGABij + β4t
2
ij+

β5AGEij + β6AVij + β7AGEijtij + β8AVijtij (16)

k = 0, 1, 2.
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Again, bi is the random intercept representing the within-subject variability, assumed to
have normal distribution bi ∼ N(0, σ2

b ).

4.4 Software

The data analysis is proceeded using Monolix software version 4.3 and SAS version 9.3.
Monolix uses the SAEM algorithm to estimate the maximum likelihood estimator for pop-
ulation parameters. SAEM is a stochastic extension version of Expectation-Maximization
algorithm (Lavielle, 2015). In non-linear mixed effects model, the regression function f
does not linearly depend on the random effects (individual parameters), the E step in
the Expectation-Maximization (EM) cannot be performed in a closed-form. The SAEM
algorithm replaces the E step in EM algorithm by a stochastic procedure including simu-
lation step and stochastic approximation. Convergence of SAEM can strongly depend on
the initial guess if the likelihood possesses many local maxima. The simulated annealing
version of SAEM improves the convergence of the algorithm toward the global maximum
of likelihood (Lixoft, 2014).
A significance level of 5% is used for decision making.
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5 Results

5.1 Data Exploratory

Our analysis uses data from a longitudinally unbalanced study. The time point t = 0
indicating the baseline when subjects were diagnosed as HZ infection at general practi-
tioners. After successfully obtaining informed consent form to participate into the study,
these patients were followed up with a longest period of 240 days. The maximum number
of measurements per each subject is 4 and there is only one patient (ID = 55) has one
measurement. There are four missing measurements for AB and two missing measure-
ments for V L. Table 2 shows summary statistics for AB and V L. It can be seen that the
values of V L vary a lot from measurements to measurements with very high standard
deviation.

Table 2: Summary statistics for AB and V L

Var N Mean SD Min Max
AB 229 6116.27 7751.95 121 53952
VL 231 5440.82 15434.93 0 151685

5.1.1 Individual profile

(a) Individuals profile for all subjects
(b) Individuals profile for 30 random sub-
jects

Figure 1: Individuals profile: The left panel shows the profile for all 61 subjects; the
right panel shows the one for 30 randomly selected subjects.

Figure 1 shows the individuals profile for all subjects (the left panel) and for 30
randomly selected subjects (the right panel). It is seen that most subjects have low
starting antibody levels (t = 0), increasing at the next time point and decreasing later
on. There are some subjects that have very high antibody levels at the beginning (t = 0),
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then decreasing over time. These subjects might come to the general practitioners very
late after having the symptoms. Hence, the antibody levels at time point 0 are very high.

5.1.2 Mean structure

The mean structure of antibody levels as well as log10 of antibody levels over time are
shown in the Figure 2. The left panel shows the plot for antibody levels and the right
panel shows the plot for log10 of antibody levels. It can be seen that antibody levels (or
log10 of antibody titers) firstly increase from time point t = 0 to the pick at around time
point t = 40 and then decrease onward.

(a) Mean structure of antibody levels over
time

(b) Mean structure of log10 of antibody lev-
els over time

Figure 2: Mean structure: The left panel shows the mean structure of antibody levels
over time; the right panel shows the mean structure of log10 of antibody levels over time.

5.2 Mathematical models of antibody kinetics

5.2.1 Model without covariates

i. The Asymptotic Model
It turns out that µA, φl are highly correlated. The correlation between the two parameters
when running the model in Monolix is 0.95. To be able to account for this nearly perfect
correlation, we let φl = b ∗ µA. The updated analytical solution has the form:

The updated analytical solution (asymptotic model):

A(t) = b+
φs

µA − µs
e−µst + (A0 −

φs
µA − µs

− b)e−µAt (17)
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Now it is of interest to estimate P 0
s , A0, µs, µA and b.

Model diagnostics
We run the model long enough (number of iterations per stage 1 and stage 2 in SAEM
algorithm are subsequently 18000 and 4000) so as to reach convergence. The conver-
gence could be assessed quickly by looking at Figure 10 (saem convergence plot) in the
Appendix.
Figure 3 shows the plot between individual observations vs. model prediction, both are
presented on log10 scale. It can be seen that the model shows a nice prediction ability as
the points resemble the 450 line. Residual plots over time are shown in Figure 4, the right
panel shows the normalized prediction distribution errors (NPDE), the left panel shows
the individual weighted residual errors (IWRES). NPDE are a non-parametric version
based on rank statistic of population weighted residuals (PWRES) which are defined as
normalized difference between observations and their means. IWRES are estimates of
standardized residuals based on individual predictions (Lavielle, 2015). The residuals
plots confirm the suitability of the constant error model except there is a small concern
when looking at the plot of IWRES over time as the residuals at time point 0 are quite
small compared to the residuals at other time points. The plot between NDPE over time
does not confirm this observation. The model gives an AIC of 113.05.

Figure 3: Individual observations v.s model prediction, both are presented on log10 scale
(Asymptotic model without covariates).

Parameter estimation
The population parameter estimates and their standard errors are provided in Table 3.
The standard errors (s.e (lin)) are estimated by using linearization method in Monolix.
The estimated relative standard errors (r.s.e) are calculated by dividing the estimated
standard errors by their corresponding values of the estimated parameters. The values
of r.s.e are relatively small meaning that the model and data allow us to estimate the
parameters well (Lavielle, 2015). The initial antibody titer is estimated around 2040
(mIU/ml). The estimated decay parameter for short-lived plasma cells (µs) is 0.0347
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Figure 4: The residual plots: Individual weighted residuals (IWRES) v.s time (left) and
normalized prediction distribution errors (NPDE) v.s time (right) (Asymptotic model
without covariates).

and the decay parameter for antibody (µA) is higher (0.1180). Antibody decreases over
time with a higher rate (nearly 3.4 times faster). Consequently, the estimated lifespan of
short-lived plasma cells (1/µs) is approximately 29 days which is longer compared to 8.5
days of estimated lifespan of antibody (1/µA). It should be kept in mind that the model
assumes the decay parameter of long-lived plasma cells is 0, hence this subpopulation
could be considered constant over the investigated time.

ii. The Reduced Asymptotic Model

Let denote
φl
µA

= b. The updated analytical solution is given by:

The updated analytical solution (reduced asymptotic model):

A(t) = b+
φs
µA
e−µst + (A0 −

φs
µA
− b)e−µAt (18)

Model diagnostics
The model is run in Monolix (number of iterations K1 = 18000, K2 = 4000) and the
convergence is quickly assessed by looking at the SAEM convergence plot (the plot is
not shown). The appropriateness of the model could be checked by looking at Figure 5
and Figure 12 in the Appendix. It can be seen that the model fits to the individual
observations very well. The model gives AIC of 119.48.

Parameter estimation
Table 4 shows the population parameter estimates with their standard errors. The rela-
tive standard errors (r.s.e) are relatively small which indicates that the data and model
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Table 3: Parameter estimates and their standard errors (Asymptotic model without
covariate)

Parm s.e. (lin) r.s.e. (%)
φs 763 120 15
µA 0.1180 0.0470 40
µs 0.0347 0.0110 33
b 2250 200 9
A0 2040 360 18
ωφs 0.4000 0.1700 42
ωµA 1.6000 0.2400 15
ωµs 0.7530 0.4000 53
ωb 0.5770 0.0680 12
ωA0 1.3500 0.1300 10
a 0.1060 0.0120 11

Table 4: Parameter estimates and their standard errors (Reduced asymptotic model
without covariate)

Parm s.e. (lin) r.s.e. (%)
φs 1440 960 67
µA 0.3350 0.2400 72
µs 0.0137 0.0023 17
b 2030 240 12
A0 2040 360 18
ωφs 0.9680 0.5000 52
ωµA 1.3100 0.4400 33
ωµs 0.5530 0.1500 26
ωb 0.6140 0.0840 14
ωA0 1.3500 0.1300 10
a 0.1090 0.0110 10
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Figure 5: Individual observations v.s model prediction, both are presented on log10 scale
(Reduced asymptotic model without covariates).

allow to estimate the parameters well. Comparing the outputs from Table 4 and Table 3,
we see that the estimates of A0 and b are quite close to each other. In the reduced asymp-
totic model, the estimate of φs is relatively higher compared to one in asymptotic model.
The reduced asymptotic model gives estimate of µA higher than µs about 24 times. It is
difficult to judge if the assumption of µs << µA appropriate based on this observation.
The lifespans of short-lived plasma cells and antibodies are respectively about 73 days
and 3 days.

5.2.2 Model with Covariates

i. The Asymptotic Model
Model diagnostics
The model with all covariates as specified in Section 4.2.3 is fitted in Monolix with a
large number of iterations. This model does not converge in Monolix may be due to
overparameterization. It is then of interest to take into account three most important
covariates including AGE, V L,AV . First of all, we fit the model where we assume these
three covariates connecting to φs, µs, µA and A0 (We call it Model (i)). This model gives
AIC of 95.35 and −2LogL = 49.35. Secondly, models where covariates are assumed to
influence a subset of any three parameters are fitted. All models give AICs larger than
the one obtained from Model (i). Hence, Model (i) is more appropriate to our data at this
stage. Thirdly, we fit the model where we assume these three covariates connecting to a
subset of any two parameters. Only the model where it is assumed that these covariates
influence individual estimates of µs, µA gives lower AIC compared to 95.35. This model
is considered for making inference.
The convergence of this model could be quickly checked by looking at Figure 11 in the
Appendix. Moreover, Figure 6 shows a good individual prediction ability since all the
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points lie around the 450 line. Compared to the model which does not take into account
the covariates, this model appears to perform better prediction ability.

Figure 6: Individual observations v.s model prediction, both are presented on log10 scale
(Asymptotic model with three covariates).

Figure 7: The residual plots: Individual weighted residuals - IWRES v.s time (left) and
normalized prediction distribution errors - NDPE v.s time (right) (Asymptotic model
with three covariates).

Figure 7 shows the residual plots. While the IWRES are quite small at time point
0, it shows no special pattern at the later time (left panel). The plot of NDPE over
time seems to be quite reasonable under the constant error model assumption. Hence,
the assumption of the model could be relaxed and the parameter estimation could be
obtained based on this model. The model gives an AIC of 94.87.
Performing a global test by using the means of likelihood ratio test, we have p− value <
0.0001 (the −2LogL under the model without covariates is 91.05 and the −2LogL under
the model with three covariates is 60.87, number of degree of freedom is 6). It leads to
the conclusion that the model with covariates are preferable. This could be illustrated
by better prediction ability when comparing Figure 3 and Figure 6.
We also fit the model with only two covariates (AGE and V L, V L and AV , AV and
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AGE) and performing the likelihood ratio test. It leads to the conclusion that the model
with 3 covariates is more appropriate (p − values are respectively 0.0129, 0.0013 and
0.0003 ).
Parameter Estimation
The parameter estimates are provided in Table 5. The relative standard errors are rea-
sonably small meaning that the model and data allow us to estimate parameters well.
While p-values for βµs,AGE, βµs,AV , βµA,V L and βµA,AV are highly significant (with corre-
sponding p− values are 0.0044, < 0.0001, 0.0088 and 0.0270), the p− values for βµA,AGE
and βµs,V L are not significant (0.90 and 0.84 respectively).

Table 5: Parameter estimates and their standard errors (Asymptotic model with three
covariates AGE, V L,AV )

Parm s.e. (lin) r.s.e. (%) p-value
φs 765 190 25 -
µA 0.0480 0.0310 65 -
µs 0.0055 0.0023 42 -
b 2110 230 11 -
A0 2030 360 18 -
ωφs 0.6700 0.2100 31 -
ωµA 1.0900 0.1800 17 -
ωµs 0.2540 0.3200 126 -
ωb 0.6220 0.0760 12 -
ωA0 1.3500 0.1300 9 -
a 0.1010 0.0099 10 -
βµA,AGE 0.0014 0.0110 811 0.9
βµA,AV 1 1.0900 0.4900 45 0.0270
βµA,tV L -0.4110 0.1600 38 0.0088
βµs,AGE 0.0362 0.0082 49 < 0.0001
βµs,AV 1 -1.0700 0.3800 35 0.0044
βµs,tV L -0.0244 0.1200 487 0.84

Comparing the estimated population parameters from Table 3 (asymptotic model with-
out covariates) and Table 5 (asymptotic model with covarites), we can see that while the
estimates of φs, A0 and b seem stable, the estimates of µs, µA in model with covariates
is much smaller compared to the one obtained in model without covariates. As a result,
the lifespan of short-lived plasma cells and antibody in the model with covariates are
longer, respectively, 182 and 21 days. The lifespan of short-lived plasma cells is much
longer compared to that of antibody in two models.
From the estimates of covariates, it is seen that the transformed viral load influences nega-
tively to the estimates of the µA,i (with βµA,tV L = −0.4110) while age has a positive effect
to the estimates of µs,i. The usage of antiviral drug (AV = 1) affects positively to the es-
timate of µA (βµA,AV 1 = 1.0900) but negatively to the estimate of µs (βµs,AV 1 = −1.0700)
indicating that these subjects have shorter lifespan of antibody but longer lifespan of
short-lived plasma cells.
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ii. The Reduced Asymptotic Model
Model diagnostics
For the reduced asymptotic model, we still consider three most important covariates,
namely AGE, V L and AV . We fit the model where we assume these covariates affect-
ing four parameters (φs, µA, µs, A0). The converged model in Monolix gives an AIC of
115.06 and −2LogL = 69.06 (Model a). Next, we fit the model where three covariates
are assumed to affect the estimates of subset of any three parameters. The model where
the covariates assumed to influence the estimates of µA, µs and φs (Model b) gives small-
est AIC (97.98) which is even smaller compared to the AIC obtained from Model a.
Furthermore, we fit the models assuming that three covariates only affect the estimates
of subset of any two parameters. These models give AICs higher compared to the one
obtained under Model b. Hence, model b could be considered for making inference.
The convergence of this model in Monolix is confirmed by looking at the SAEM con-
vergence plot (the result is not shown). The appropriateness of the model is viewed by
looking at the plot between individual observations v.s model prediction in Figure 8 and
the individual fits plot shown for first 12 patients in Figure 13 (Appendix). It can be
seen that the model fits data well.

Figure 8: Individual observations v.s model prediction, both are presented on log10 scale
(Reduced asymptotic model with covariates)

Parameter Estimation
Table 6 shows the parameter estimates with their standard errors obtained under the final
reduced asymptotic model. Compared results from Table 6 and Table 5, it is seen that
the estimates of b and A0 are quite stable while the estimates of φs, µs and µA in reduced
asymptotic model are lower compared to those obtained under asymptotic model. In
the reduced asymptotic model, the lifespan of short-lived plasma cells is approximately
five times longer to those of antibodies. This number is even smaller than the number
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obtained under asymptotic model in which the lifespan of antibodies is nearly 9 times
shorter than short-lived plasma cells. Hence, the assumption of µs << µA in this case
might not be reasonable.
V L significantly affects estimates of µA with a negative coefficient of −0.4990 (p−value =
0.0310) meaning those patients with higher V L might have smaller estimated antibody
decay, i.e., having longer antibody lifespan. Both AGE and AV significantly affect
the estimate of µs. Those patients were treated with antiviral drug would have lower
estimated decay rate of short-lived plasma cells, leading to a longer lifespan of these cells
(βµs,AV 1 = −0.6410). Reversely, patients are older would have on average larger estimates
of µs meaning the lifespans of these cells are shorter (βµs,AGE = 0.0227). It is noticed
that the older patients also have higher estimated φs, i.e, having either higher initial
long-lived plasma population size (P 0

l ) or higher average production rate of antibody
from these cells.

Table 6: Parameter estimates and their standard errors (Reduced asymptotic model with
three covariates AGE, V L,AV )

Parm s.e. (lin) r.s.e. (%) p-value
φs 562 260 46 -
µA 0.0281 0.0220 79 -
µs 0.0057 0.0018 31 -
b 2010 240 12 -
A0 2040 360 18 -
ωφs 0.0357 1.3000 3720 -
ωµA 1.3900 0.1700 13 -
ωµs 0.1400 0.1800 130 -
ωb 0.6640 0.0830 13 -
ωA0 1.3500 0.1300 9 -
a 0.1070 0.0094 9 -
βµA,AGE 0.0414 0.0170 40 0.130
βµA,AV 1 1.9900 1.3000 68 0.1400
βµA,tV L -0.4490 0.2100 46 0.0310
βµs,AGE 0.0227 0.0066 29 0.0006
βµs,AV 1 -0.6410 0.2600 40 0.0120
βµs,tV L -0.0323 0.0740 231 0.6600
βφs,AGE 0.0313 0.0120 38 0.0077
βφs,AV 1 1.1200 1.2000 107 0.3500
βφs,tV L 0.0395 0.1200 308 0.7500
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5.3 Model to investigate the relationship between PHN and
antibody titers

5.3.1 Random-Effects Model

Model with LOGAB as covariate
The proportional odds model is fitted using PROC NLMIXED in SAS. First of all, the
model containing only time, logab, time∗ logab as covariates is fitted with the assumption
of proportional odds. At the next step, the time2 effect is added to the model. The
likelihood ratio test gives a very small p − value (< 0.0001) indicating that the model
with time2 effect is preferable over the model without time2 effect. Again, based on the
likelihood ratio test, it is shown that the addition of the interaction term between time2

and logab to this model is not necessary. Moreover, the addition of time3 effect is not
important. The model 15 as specified in Section 4.3.2 is considered as the final one.
Given the mean structure specified as in Model 15, a non-proportional odds model and
14 partial proportional odds model (4 models which have parameters different in subset
of 1 covariate, 6 models assuming parameters different in subset of any 2 covariates and
4 models having parameters different in subset of any 3 covariates) are fitted. Table 9
in the Appendix shows the −2LogL, AIC, and p − value for the likelihood ratio test
to see if the proportional odds model is preferable over non-proportional odds ratio and
partial proportional odds model. It can be seen that models (2), (3), (5), (8), (11) having
p− value < 0.05 which indicates that these models are preferable over proportional odds
model. Among the four models, model (8) has the smallest p − value. It is decided to
use this model for making inference. The model could be written as:

logit[P (PHNij ≤ 0)] = β01 + bi + β11tij + β2LOGABij + β3tijLOGABij + β41t
2
ij

logit[P (PHNij ≤ 1)] = β02 + bi + β12tij + β2LOGABij + β3tijLOGABij + β42t
2
ij

where bi is the random intercept, accounting for the inter-individual variability. bi is
assumed to have normal distribution bi ∼ N(0, σ2

b ).

Model diagnostics
Fitting the model in SAS using PROC NLMIXED, it gives AIC of 339.5. There is not
many documentation about a common diagnostic methods for a GLMM model. In the
context of this thesis, we use the method to compare between predicted probabilities
and observed probabilities as a simple mean for model diagnostics. As the observed
probabilities take only two values (either 0 or 1), we employ the smoothing technique
in PROC LOESS in SAS where the probability of having PHN = k (k = 0, 1, 2) is
smoothed overy time and logab. The same technique is applied to prediction probabilities
Of having PHN = 0, 1, 2. To serve the comparison purpose, it is decided to use the same
smoothing parameter for two smoothing processes (the average of two optimal smoothing
parameters when running two separate loess procedures). The smoothed surfaces of
observed probabilities and predicted probabilities are compared. Figure 9 shows the
smoothed predicted probabilities (blue line) and smoothed observed probabilities (black
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line) for probability of having PHN, i.e., P (PHN = 2) (left panel) and probability of
having no pain, i.e., P (PHN = 0). It is seen that the two lines almost overlap each
other. The same observation is observed when looking at the plot of probabilities over
different values of LOGAB in Figure 14 (Appendix). It is concluded that the fit of the
model could be appropriate. We use this model for making inference.

(a) P (PHN = 2) (b) P (PHN = 0)

Figure 9: The smoothed lines of predicted probabilities and observed probabilities: The
left panel describes the change of P (PHN = 2) over time, the right panel shows the
change of P (PHN = 0) over time.

Parameter Estimation
The parameter estimates of this model is given in Table 7. All the effects are significant.

Table 7: Parameter estimates for partial proportional odds model (8)

Parm Logit Effect Estimate SE p-value
β01 (1) Intercept 8.9393 2.8822 0.0029
β02 (2) Intercept 9.2387 2.9548 0.0027
β11 (1) time -0.1583 0.0403 0.0002
β12 (2) time -0.1262 0.0399 0.0025
β2 (1) & (2) LOGAB -1.6632 0.7421 0.0287
β3 (1) & (2) time ∗ LOGAB 0.0234 0.0091 0.0127
β41 (1) time2 0.0004 0.0001 < .0001
β42 (2) time2 0.0002 0.0001 0.0233
σb (1) & (2) 2.2481 0.5106 < .0001

The two logits could be now written down:

logit[P (PHNij ≤ 0)] = −0.1583tij − 1.6632LOGABij + 0.0234tijLOGABij

+ 0.0004t2ij + bi + 8.9393

logit[P (PHNij ≤ 1)] = −0.1262tij − 1.6632LOGABij0.0234tijLOGABij

+ 0.0002t2ij + bi + 9.2387
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Since the effects of time, time2, LOGAB, time ∗ LOGAB are all significant, it is a
little bit cumbersome to interpret model’s parameters. Let us consider those subjects
at baseline, i.e., time point tij = 0 which do not vary from the population (bi = 0)
having LOGAB = 3.5392 (the mean value of LOGAB). The expected probability of
having PHN = 0 is 96% (with 95% CI of approximately [90%; 100%]); the probability
of having PHN ≤ 1 (having no pain or dyskinesia) is 97% (95% CI of [91%; 100%])
and the probability of having PHN is very small of 3% (95% CI of [0; 8%]). This re-
sult is reasonable as we do not expect to see PHN at the baseline. Next, we consider
those subjects at later time points, i.e., t = 60, 120, 200 respectively (equivalently as visit
2, 3 and 4), having LOGAB = 3.5392. The expected probabilities with their CIs are
provided in Table 8. We notice that the probability of having PHN, i.e. P (PHN = 2)

Table 8: Expected probabilities and their 95% CI for those subjects with no deviation
from the population, i.e., bi = 0 at 4 different time points corresponding approximately
to visit 1, 2, 3 and 4 provided that LOGAB = 3.5392

Time Probability Estimate SE Lower Upper

t = 0
P (PHN = 0) 0.9549 0.0293 0.8964 1.0134
P (PHN ≤ 1) 0.9662 0.0273 0.9117 1.0207
P (PHN = 2) 0.0338 0.0273 -0.0207 0.0883

t = 60
P (PHN = 0) 0.4755 0.1072 0.2611 0.6899
P (PHN ≤ 1) 0.8189 0.0717 0.6755 0.9623
P (PHN = 2) 0.1811 0.0717 0.0377 0.3245

t = 120
P (PHN = 0) 0.3742 0.1093 0.1555 0.5928
P (PHN ≤ 1) 0.7627 0.1041 0.5544 0.9709
P (PHN = 2) 0.2373 0.1041 0.0291 0.4456

t = 200
P (PHN = 0) 0.9602 0.02905 0.9021 1.0183
P (PHN ≤ 1) 0.9547 0.03525 0.8842 1.0252
P (PHN = 2) 0.0453 0.035 -0.0252 0.1158

is higher at approximately days 60 and 120 (corresponding to visit 2 and 3). However,
it is worth emphasizing that these probabilities also depend on the magnitude of LOGAB.

Model with additional covariates: AGE,AV
The model with covariates is fitted in SAS using PROC NLMIXED. Firstly, only covari-
ates AGE,AV are considered without the interaction with time. The partial proportional
odds model (taking the same form as in the model with only LOGAB as covariate) shows
non significant effects of both age and antiviral usage. The inclusion of interaction term
between these two covariates and time into the model also gives non significant p−values.
It is concluded that the effects of age and antiviral usage on the probability of having
PHN are not significant.
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6 Conclusion and Discussion

In this thesis, the imprinted lifespan model is employed to study the longitudinal dynam-
ics of HZ. The model represents the actual process including three time-scales (antibody,
long-lived plasma cells and short-lived plasma cells) (Amanna and Slifka, 2010). It turns
out that the asymptotic model proposed by Andraud et. al. (2012) shows a good fit
to the data. However, the model could not estimate the production rates of antibodies
by short- and long-lived plasma cells, i.e., ϕs, ϕl due to its formulation. It is only able
to estimate the quantity φs, φl which could be interpreted as the number of antibodies
produced by short- and long-lived plasma cells at beginning. In the limitation of this
thesis, only estimated standard errors obtained with model linearization are presented.
In addition to these numbers, bootstrap methods can also be proceeded. This technique
is useful for estimating the distribution of statistics without using asymptotic theory and
with very few assumptions on the data distribution (Lavielle, 2015). This has not been
done but it could be applied for further analysis.
The inclusion of covariates AGE, V L,AV improves the fit of the model. Viral load at the
beginning of the study and antiviral treatment significantly influence the individual esti-
mates of µA. Those patients on antiviral treatment have higher estimated antibody decay
rate, i.e., shorter antibody lifespan (while keeping other factors as fixed) compared to
those were not prescribed antiviral drug. Age of patients at entry and antiviral treatment
are important in estimating the individual estimates of µs. If the viral loads at baseline
are higher, the estimated antibody and short-lived plasma cells decay rates are lower.
This leads to longer antibody and short-lived plasma cells lifespan. Older patients have
lower estimated short-lived plasma cells decay meaning shorter lifespan of these cells.
Viral load data are collected repeatedly at each measurements, hence a non-linear mixed
model with two ouputs (antibody level and viral load) or a model considering viral load
as design variable could be considered. These approaches will take all the information of
viral load into account.
As stated earlier in the Methodology part, the approach of Andraud et al. (2012) might
be not appropriate to our data since we have continuous exposure. However, we see that
only by assuming the decay rate of long-lived plasma cells could be ignored, the model
fits our data well. One possible explanation could be that some patients came to the
clinic quite late after having symptoms of HZ. For those patients, their antibodies are
highest at the first measurement and decline over time.
The reduced asymptotic model also shows a good fit. However, given the fact that this
model put more constraints on the parameters, it might have the limitation to generate
the method to analysis of other diseases or processes.
GLMM approach is used to investigate the relationship between having PHN at each
measurement and antibody levels. The random intercept partial proportional odds model
shows that time, time2, LOGAB significantly affect the probability of having PHN. Gen-
erally, one might expect that the probability of having PHN (P (PHN = 2)) is low
at the very beginning of the disease, higher at the middle period and decreasing again
in very late time. The inclusion of two covariates AGE,AV shows that they are not
significantly influencing the probability of having PHN. This result shows inconsistent

30



conclusion against claims that age and antiviral usage play important roles in the ap-
pearance and control of PHN in HZ patients. There is no solid explanation for this. One
possible reasoning is that age and antiviral drug treatment possibly influence antibody
levels in human body. Since the model takes antibody titers at each measurements into
account, consequently, age and antiviral treatment no longer play vital role in predicting
the probability of having PHN.
A Generalized Estimating Equations (GEE) model could be employed to investigate the
population relationship between antibody titers and having PHN . This model takes
into account the inter-individual variability in a repeated measurements study and could
be fitted in SAS using GENMOD procedure. However, If the response of interest is a
multi-categorical variable, there is only one choice of independent working correlation
for proportional odds model (Molenberghs and Verbeke, 2005). Furthermore, if the pro-
portional odds assumption is not satisfied, it is not possible to fit non-proportional odds
or partial proportional odds model by using marginal approach. Since the partial pro-
portional model is shown to be the most appropriate one in this study, the marginal
approach is not considered.
The data set contains missing values for AB. Our non-linear mixed effects models are
fitted within Monolix which uses SAEM algorithm to estimate the maximum likelihood
for population parameters. SAEM algorithm is a stochastic approximation of EM al-
gorithm which was developed initially to estimate models with missing or non-observed
data such as random effects (Panhard and Samson, 2009). Hence, using this algorithm,
the missing data could be deal with, the analysis still gives valid estimates.
For GLMM model, we report results from fitting the model with original data (the data
with missing observations). Later on, we use the model developed in the first part (model
relates AB on log10 scale with time) to predict antibody titers for those missing data
points. GLMM mode is refitted with imputed dataset. The results show that parameter
estimates, standard errors and p−values between the two fits are very close. The GLMM
model used could be viewed as less sensitive to those missing values. The inference made
from this model could be valid.
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Appendix

Figures

Figure 10: Convergence of SAEM (Asymptotic model without covariates). The vertical
dotted line indicates where the algorithm switches from the first phase to the second.

Figure 11: Convergence of SAEM (Asymptotic model with three covariates:
AGE, V L,AV ). The vertical dotted line indicates where the algorithm switches from
the first phase to the second.
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Figure 12: Individual fits for first 12 patients (Reduced asymptotic model without co-
variates).

Figure 13: Individual fits for first 12 patients (Reduced asymptotic model with covariates)
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(a) P (PHN = 2)
(b) P (PHN = 0)

Figure 14: The smoothed lines of predicted probabilities and observed probabilities: The
left panel describes the change of P (PHN = 2) with different values of LOGAB, the
right panel shows the change of P (PHN = 0) with different values of LOGAB.
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Tables

Table 9: Models information for non-proportional odds and partial proportional odds
models

Model -2LogL -2deltaL DF p-value AIC
Non-PO (0) 320.6 8.8 4 0.0663 342.6

Same parameter in subset of 1 covariate
β1 (1) 323.1 6.3 3 0.0979 343.1
β2 (2) 321.3 8.1 3 0.0439 341.3
β3 (3) 321.4 8 3 0.0460 341.4
β4 (4) 325.3 4.1 3 0.2509 345.3

Same parameters in subset of 2 covariates
β1, β2 (5) 323.1 6.3 2 0.0429 341.1
β1, β3 (6) 324.4 5 2 0.0821 342.4
β1, β4 (7) 325.6 3.8 2 0.1496 343.6
β2, β3 (8) 321.5 7.9 2 0.0195 339.5
β2, β4 (9) 325.7 3.7 2 0.1572 343.7
β3, β4 (10) 325.7 3.7 2 0.1572 343.7

Same parameters in subset of 3 covariates
β1, β2, β3 (11) 324.5 4.9 1 0.0269 340.5
β1, β2, β4 (12) 325.7 3.7 1 0.0544 341.7
β2, β3, β4 (13) 325.7 3.7 1 0.0544 341.7
β1,β3, β4 (14) 328.1 1.3 1 0.2542 344.1
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Codes

R Code for Data Management: Data without PHN

#***************************** MANAGEMENT WORK **************************#

setwd("D:\\MASTER PROGRAMME\\...\\MY THESIS\\Data And Analysis\\Data")

getwd()

#***************************** READ IN DATA **************************#

data <- read.table(file.choose(), sep = "\t", na.strings = ".",

header = TRUE) # Choose file: data_MPTT

str(data)

dim(data)

range(data$AGE)

table(data$AGE)

data$AGEcls <- NULL

data$AGEcls[data$AGE <= 50] <- 0

data$AGEcls[data$AGE > 50] <- 1

table(data$AGEcls)

#View(data)

#write.csv(data,file="dataSAS.csv", row.names = F)

# Check missing data according to AB

miss.AB <- which(is.na(data$AB) == TRUE )

miss.AB

miss.data.AB <- data[which(is.na(data$AB)==TRUE),]

miss.data.AB

# Check missing data according to VL

miss.VL <- which(is.na(data$VL == TRUE))

miss.VL

miss.data.VL <- data[which(is.na(data$VL) == TRUE),]

miss.data.VL

# How many patients

check <- unique(data$ID)

check

length(check)

# Check frequency

freq <- data.frame(table(data$ID))

View(freq)

freq1 <- freq[which(freq[,2]==1),]

freq1

freq2 <- freq[which(freq[,2]==2),]

freq2

freq3 <- freq[which(freq[,2]==3),]
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freq3

# Need some

vl <- data$VL[complete.cases(data$VL)]

sdvl <- sd(vl); sdvl

meanvl <- mean(vl); meanvl

age <- data$AGE[complete.cases(data$AGE)]

meanage <- mean(age); meanage

sdage <- sd(age); sdage

R Code for Data Management: Data with data on PHN

# Read in data: Read file PHN.csv

setwd("D:\\MASTER PROGRAMME\\...\\MY THESIS\\Data And Analysis\\PHN_Analysis")

phn2 <- read.csv(file.choose(),header = T, sep = ",",dec = ".",na.strings="#NULL!")

str(phn2)

library(plyr)

phn2= rename(phn2,c("IGG_V1"="ABV1","IGG_V2"="ABV2","IGG_V3"="ABV3","IGG_V4"="ABV4",

"LOGIGGV1"="LOGV1","LOGIGGV2"="LOGV2","LOGIGGV3"="LOGV3","LOGIGGV4"="LOGV4",

"V2STATUS"="PHNV2","V3STATUS"="PHNV3","V4STATUS"="PHNV4"))

str(phn2)

# Reshape the data

phn3 <- phn2[,-c(6,7,8,9)]

str(phn3)

#View(phn3)

phn <- reshape(phn3,direction="long",varying=c("ABV1","ABV2","ABV3","ABV4"),

v.names = "AB", idvar = "ID",timevar = "visit", times = c(1,2,3,4))

str(phn)

#View(phn)

phn <- phn[order(phn$ID),]

#View(phn)

# Save the file in CSV format

write.csv(phn,row.names = F, file = "phn2.csv")

# Create the data with corresponding PHNV status

phnV2_0 <- phn[phn$PHNV2 ==0,]

str(phnV2_0) # 268 observations

phnV3_0 <- phn[phn$PHNV3 ==0,]

str(phnV3_0) # 264 observation

phnV3_1 <- phn[phn$PHNV3 == 1,]

39



str(phnV3_1) # 0 observations

phnV3_3 <- phn[phn$PHNV3 == 3,]

str(phnV3_3) # 4 observations

phnV4_0 <- phn[phn$PHNV4 == 0,]

str(phnV4_0) # 0 observation

phnV4_1 <- phn[phn$PHNV4 == 1,]

str(phnV4_1) # 260 observation

phnV4_3 <- phn[phn$PHNV4 == 3,]

str(phnV4_3) # 8 observations

# Remove those subjects NOT having measurements of AB at all out of the data set

# so as to we have the same data set with part I

# View(phn)

phn_same <- phn[which(phn$ID != 3 & phn$ID !=8 & phn$ID != 22 &

phn$ID != 33 & phn$ID != 40 &phn$ID != 42),]

# View(phn_same)

str(phn_same)

str(phn)

phn_ab <- write.csv(phn_same, file = "phn_ab.csv", row.names = F, quote = F)

# Read in the data file from the first part

data <- read.csv(file.choose(),header = T, sep = ",",dec = ".",na.strings="#VALUE!")

str(data)

SAS Code for Data Exploratory

/*READ IN DATA*/

data initial;

infile ’D:\MASTER PROGRAMME\...\Data\dataSAS.csv’ firstobs = 2 dlm = ",";

input ID age gen av dur time ab cmv vl;

run;

proc print data = initial;

run;

/*EXPLORE DATA*/

/*Simple statistics summary*/

proc contents data = initial;

run;

proc means data = initial;

var ab vl;

run;
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/*Explore the individual profile*/

goptions reset = all ftext = swiss device = psepsf gsfname =fig0 gsfmode = replace

rotate = landscape i = join;

proc gplot data = initial;

plot ab*time = ID / haxis = axis1 vaxis = axis2;

axis1 label=(h=2 "Time since entry") value=(h=1.5) minor=none order=(0 to 250 by 50);

axis2 label = (h=2 "AB level") value = (h=1.5) minor =none;

run;

/*Individual profile of a subset*/

data id; set initial; by ID; if last.ID then output; proc print; run;

data toselect; set id; proc print; run;

proc sql OUTOBS=30 ;

create table subID as

select A.*

from toselect as A

order

by RANUNI(4537) ;

quit;

proc print data = subID; run;

data sub; set initial; where ID in (4 50 13 20 69 73 65 31 48 30 59 38 1

53 24 15 63 11 46 2 6 21 68 49 45 71 56 61 70 43);

proc print; run;

goptions reset = all i = join;

proc gplot data = sub;

plot ab*time = ID / haxis = axis1 vaxis = axis2;

axis1 label=(h=2 "Time since entry") value=(h=1.5) minor=none order=(0 to 250 by 50);

axis2 label = (h=2 "AB level") value = (h=1.5) minor = none;

run;

/*Missing: 2 missings of vl, 4 missings of ab */

/*Unbalanced data: Use smoothed loess*/

/*Explore The Mean Structure - Unbalance Data*/

/*Calculate mean for each time point with their s.e*/

proc loess data = initial;

ods output scoreresults = out;

model ab = time;

score data = initial;

run;

proc sort data = out; by time; run;

proc print data = out; run;

proc means data = out;

var p_ab;

run;
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goptions reset = all ftext = swiss rotate = landscape;

proc gplot data = out;

plot ab*time = 1 p_ab*time = 2 / overlay haxis = axis1 vaxis = axis2;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5)

minor=none order=(0 to 250 by 50);

axis2 label = (h=2 A=90 "AB values") value=(h=1.5) minor = none;

run;

/*Transform AB into log10(AB)*/

data initial; set initial; logab = log10(ab); run; proc print; run;

proc loess data = initial;

ods output scoreresults = out2;

model logab = time;

score data = initial;

run;

proc sort data = out2; by time; run;

proc print data = out2; run;

proc means data = out2;

var p_logab;

run;

proc gplot data = out2; /*Transform AB to log(AB)*/

plot logab*time = 1 p_logab*time = 2 / overlay haxis = axis1 vaxis = axis2;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5)

minor=none order = (0 to 250 by 50);

axis2 label = (h=2 A=90 "log10(AB) values") value=(h=1.5) minor = none;

run;

Monolix Code

DESCRIPTION:

Complete Model - 2 ODEs

INPUT:

parameter = {Rs,muA,mus,b,A0}

EQUATION:

A = (Rs/(muA-mus))*exp(-mus*t) + b + (A0 - Rs/(muA-mus)-b)*exp(-muA*t)

AB = log10(A)
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OUTPUT:

output = {AB}

SAS Code: GLMM analysis

data phn;

infile "D:\MASTER PROGRAMME\...\phn_part2_ok.csv" dlm = "," firstobs = 2;

input AB ID TIME PHN VL PHNV2 PHNV3 PHNV4 VISIT LOGAB;

run; /*Fit PO model for PHN*/

/*TIMECLASS*/

data phn_time; set phn; timecls = time; TIMELOG = time*LOGAB;

time2 = time**2;time3 = time**3; run;

/*Combine output 0 and 1*/

data phn_com; set phn_time; if PHNV2 = 0 | PHNV2 = 1 then V2STATUS = 0;

else if PHNV2 = 2 then V2STATUS = 1; else V2STATUS = PHNV2;

if PHNV3 = 0 | PHNV3 = 1 then V3STATUS = 0;

else if PHNV3 = 2 then V3STATUS = 1; else V3STATUS = PHNV3;

if PHNV4 = 0 | PHNV4 = 1 then V4STATUS = 0;

else if PHNV4 = 2 then V4STATUS = 1; else V4STATUS = PHNV4;

run;

/*GEE*/

proc genmod data = phn_com;

class ID timecls;

model PHN = time LOGAB time*LOGAB / dist = multinomial link = cumlogit;

repeated subject = ID/ type = ind covb corrw within = timecls modelse;

run; /*QIC = 397.9084. All are significant*/

proc genmod data = phn_com;

class ID timecls;

model PHN = time LOGAB time*LOGAB time2 / dist = multinomial link = cumlogit;

/*Model with time^2 term*/

repeated subject = ID/ type = ind covb corrw within = timecls modelse;

run; /*QIC = 374.1342. LOGAB is not significant*/

proc genmod data = phn_com;

class ID timecls;

model PHN = time LOGAB time*LOGAB time2 time2*LOGAB /

dist = multinomial link = cumlogit;

/*Model with time^2 & time^2 * LOGAB term*/

repeated subject = ID/ type = ind covb corrw within = timecls modelse;

run; /*Don’t use this model*/

proc genmod data = phn_com;

class ID timecls;

model PHN = time LOGAB time*LOGAB time2 time3 / dist = multinomial link = cumlogit;
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/*Model with time^2 & time^3*/

repeated subject = ID/ type = ind covb corrw within = timecls modelse;

run; /*Don’t use this model*/

/*GLMM*/

/*Mixed model: Random intercept + Random slope*/

proc glimmix data = phn_com method = RSPL;

title "PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)";

class timecls id; /*PO: Not put cat2 into class statement*/

nloptions maxit = 100;

model phn = time LOGAB time*LOGAB / dist = multinomial link = cumlogit solution;

random intercept time / subject = id type = un;

/*Random intercept and slope*/

/*Variance structure: unstructure: DID NOT CONVERGE*/

run;

proc glimmix data = phn_com method = RSPL;

title "PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)";

class timecls id; /*PO: Not put cat2 into class statement*/

nloptions maxit = 50;

model phn = time LOGAB time*LOGAB/ dist = multinomial link = cumlogit solution;

random intercept time / subject = id type = cs;

/*Random intercept and slope*/

/*Variance structure: DID NOT CONVERGE*/

run;

/*Model: Random Intercept only*/

proc glimmix data = phn_com method = RSPL ;

title "PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)";

class timecls id; /*PO: Not put cat2 into class statement*/

nloptions maxit = 50;

model phn = time LOGAB time*LOGAB / dist = multinomial link = cumlogit solution ;

random intercept / subject = id type = un;

/*Random intercept */

/*Variance structure: unstructure*/

run; /*All are significant, except for LOG*AB, -2L1 = 1543.60*/

proc glimmix data = phn_com method = RSPL ;

title "PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)";

class timecls id; /*PO: Not put cat2 into class statement*/

nloptions maxit = 50;

model phn = time LOGAB time*LOGAB time2/

dist = multinomial link = cumlogit solution ;

random intercept / subject = id type = un;
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/*Random intercept */

/*Variance structure: unstructure*/

run; /*All are significant, -2L2 = 1712.45*/

/*-2(L2-L1) = -2L2 + 2L1 = 1712.45 - 1543.60 = 168.85*/

/*Model with interaction between time2 and logab*/

proc glimmix data = phn_com method = RSPL;

class timecls id;

nloptions maxit = 50;

model phn = time logab time*logab time2 time2*logab/

dist = multinomial link = cumlogit solution;

random intercept / subject = id type = un;

run; /*-2L = 1757.44. This model does not improve fit*/

/*Model with time3 term*/

proc glimmix data = phn_com method = RSPL;

class timecls id;

nloptions maxit = 50;

model phn = time logab time*logab time2 time3/

dist = multinomial link = cumlogit solution;

random intercept / subject = id type = un;

run; /*-2L = 1994.96. This model does not improve fit*/

/**************** USING NLMIXED *******************/

/*Assume the same slope*/

proc nlmixed data = phn_com qpoints = 20 TECH = NEWRAP;

title ’Herpes Zoster Data, Proc Nlmixed, ordinal, adaptive, q = 20’;

parms beta1 = -0.0433 beta2 = -0.8194 beta3 = 0.0118 int1 = 3.7085

int2 = 4.2871 d = 2;

eta = beta1*time + beta2*LOGAB + (b2 + beta3)*time*LOGAB + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta - int2) + 1) - 1/(exp(-eta - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 b2 ~ normal([0,0],[d1*d1, d12, d2*d2]) subject = id; /*Unstructured*/

estimate "var1" d1*d1;

estimate "cov" d12;

estimate "var2" d2*d2;

run; /*Optimization can not be completed*/

/*Fixed effects model to get initial values*/

proc glimmix data = phn_com method = RSPL;

title "PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)";
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class timecls id; /*PO: Not put cat2 into class statement*/

nloptions maxit = 50;

model phn = time LOGAB time*LOGAB time2/

dist = multinomial link = cumlogit solution;

run;

/* Model assume PO */

proc nlmixed data = phn_com qpoints = 20; /*If specify NOAD, almost same result*/

title ’VZV Data, Proc Nlmixed, ordinal, adaptive, q = 20’;

parms beta1 = -0.0433 beta2 = -0.8194 beta3 = 0.01177 int1 = 3.7085

int2 = 4.2871 d = 2;

eta = beta1*time + beta2*LOGAB + beta3*TIMELOG + b1;

/*random intercept*/

if phn = 0 then z = 1/(exp(-eta - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta - int2) + 1) - 1/(exp(-eta - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var1" d*d;

run; /* -2logL = 364.3*/

/*Model with time^2*/

proc nlmixed data = phn_com qpoints = 20; /*If specify NOAD, almost same result*/

title ’VZV Data, Proc Nlmixed, ordinal, adaptive, q = 20’;

parms beta1 = -0.09716 beta2 = -0.6936 beta3 = 0.01573 beta4 = 0.000207

int1 = 4.1650

int2 = 4.8017 d = 2;

eta = beta1*time + beta2*LOGAB + beta3*TIMELOG + beta4*time2 + b1;

/*random intercept*/

if phn = 0 then z = 1/(exp(-eta - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta - int2) + 1) - 1/(exp(-eta - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var1" d*d;

run; /* -2logL = 329.4*/

/*All are significant*/

/*Assume different slopes - Non PO model*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207
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int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta22 = -0.6936 beta32 = 0.01573 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta22*LOGAB + beta32*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /* -2logL = 320.6, -2DeltaL = 8.8. DF = 4*/

/*LR Test: p-value = 0.06629764 > 0.05*/

/*Assume different slopes - Partial PO model (same parm in subset of 1 covariate).

DF = 3*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta22 = -0.6936 beta32 = 0.01573 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta22*LOGAB + beta32*time*LOGAB + beta42*time2 + b1;

/*beta11 = beta12*/

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /* -2logL = 323.1, -2DeltaL = 329.4- 323.1 = 6.3. DF = 3

p-value = 0.09789265*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta32 = 0.01573 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta32*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);
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else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run;

/*-2logL =321.3. -2DeltaL = 329.4-321.3 = 8.1. DF = 3

p-value = 0.04398959*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta22 = -0.6936 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta22*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 321.4. -2DeltaL = 329.4-321.4 = 8. DF = 3

p-value = 0.046*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta22 = -0.6936 beta32 = 0.01573;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta22*LOGAB + beta32*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.3. -2DeltaL = 329.4-325.3 = 4.1
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p-value = 0.2509*/

/*Assume same parameters in subset of 2*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta32 = 0.01573 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta21*LOGAB + beta32*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 323.1. -2DeltaL = 329.4-323.1 = 6.3. DF = 4-2 = 2

p-value = 0.0429*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta22 = -0.6936 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta22*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 324.4. -2DeltaL = 329.4-324.4 = 5. DF = 2

p-value = 0.0821*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta22 = -0.6936 beta32 = 0.01573 ;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta22*LOGAB + beta32*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);
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else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.6. -2DeltaL = 329.4 - 325.6 = 3.8. DF =2

p-value = 0.1496*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 321.5. -2DeltaL = 329.4-321.5 = 7.9

p-value = 0.0195*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta32 = 0.01573;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta32*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.7. -2DeltaL = 329.4-325.7 = 3.7

p-value = 0.1572*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207
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int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta22 = -0.6936;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta22*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.7. -2DeltaL = 3.7.

p-value = 0.1572*/

/*Parameters different in subset of 3. DF = 1*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 324.5. -2DeltaL = 329.4-324.5 = 4.9. DF = 1

p-value = 0.0269*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta32 = 0.01573;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta21*LOGAB + beta32*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);
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ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.7. -2DeltaL = 329.4-325.7 = 3.7

p-value = 0.0544*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2LogL = 325.7. -2DeltaL = 329.4=325.7 = 3.7

p-value = 0.0544*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta22 = -0.6936;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta11*time + beta22*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id;

estimate "var" d*d;

run; /*-2Logl = 328.1. -2DeltaL = 329.4-328.1 = 1.3

p-value = 0.2542*/
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/*MODEL FOR INFERENCE*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id out = random;

estimate "var" d*d;

/*At baseline*/

estimate "P(0)" exp(int1+beta21*3.5392)/(1+exp(int1+beta21*3.5392));

estimate "P(<= 1)" exp(int2+beta21*3.5392)/(1+exp(int2+beta21*3.5392));

/*3.5392 = mean(logab)*/

estimate "P(2)" 1 - exp(int2+beta21*3.5392)/(1+exp(int2+beta21*3.5392));

/*At t = 60*/

estimate "P(0)2" exp(int1+beta11*60+beta21*3.5392+beta31*60*3.5392+beta41*60*60)/

(1+exp(int1+beta11*60+beta21*3.5392+beta31*60*3.5392+beta41*60*60));

estimate "P(<=1)2" exp(int2+beta12*60+beta21*3.5392+beta31*60*3.5392+beta42*60*60)/

(1+ exp(int2+beta12*60+beta21*3.5392+beta31*60*3.5392+beta42*60*60));

estimate "P(2)2" 1-exp(int2+beta12*60+beta21*3.5392+beta31*60*3.5392+beta42*60*60)/

(1+ exp(int2+beta12*60+beta21*3.5392+beta31*60*3.5392+beta42*60*60));

/*At t = 120*/

estimate "P(0)3"exp(int1+beta11*120+beta21*3.5392+beta31*120*3.5392+beta41*120*120)

/(1+exp(int1+beta11*120+beta21*3.5392+beta31*120*3.5392+beta41*120*120));

estimate "P(<=1)3" exp(int2+beta12*120+beta21*3.5392+beta31*120*3.5392+beta42*120*120)

/(1+exp(int2+beta12*120+beta21*3.5392+beta31*120*3.5392+beta42*120*120));

estimate "P(2)3"1-exp(int2+beta12*120+beta21*3.5392+beta31*120*3.5392+beta42*120*120)

/(1+ exp(int2+beta12*120+beta21*3.5392+beta31*120*3.5392+beta42*120*120));

/*At t = 200*/

estimate"P(0)4"exp(int1+beta11*200+beta21*3.5392+beta31*200*3.5392+beta41*200*200)

/(1+exp(int1+beta11*200+beta21*3.5392+beta31*200*3.5392+beta41*200*200));

estimate"P(<=1)"exp(int2+beta12*200+beta21*3.5392+beta31*200*3.5392+beta42*200*200)

/(1+ exp(int2+beta12*200+beta21*3.5392+beta31*200*3.5392+beta42*200*200));

estimate"P(2)"1-exp(int2+beta12*200+beta21*3.5392+beta31*200*3.5392+beta42*200*200)

/(1+ exp(int2+beta12*200+beta21*3.5392+beta31*200*3.5392+beta42*200*200));

run; /*-2LogL = 321.5. -2DeltaL = 329.4-321.5 = 7.9

p-value = 0.0195*/
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/*Make prediction curve*/

proc nlmixed data = phn_com qpoints = 20;

parms beta11 = -0.09716 beta21 = -0.6936 beta31 = 0.01573 beta41 = 0.000207

int1 = 3.7085 int2 = 4.2871 d = 2

beta12 = -0.09716 beta42 = 0.000207;

eta1 = beta11*time + beta21*LOGAB + beta31*time*LOGAB + beta41*time2 + b1;

eta2 = beta12*time + beta21*LOGAB + beta31*time*LOGAB + beta42*time2 + b1;

/*random intercept and slope*/

if phn = 0 then z = 1/(exp(-eta1 - int1) + 1);

else if phn = 1 then z = 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1);

else if phn = 2 then z = 1-1/(exp(-eta2 - int2) + 1);

ll = log(z);

model phn ~ general(ll);

random b1 ~ normal(0, d*d) subject = id out = RE;

predict 1/(exp(-eta1 - int1) + 1) out = prediction0;

/*Probability of having PHN = 0*/

predict 1/(exp(-eta2 - int2) + 1) - 1/(exp(-eta1 - int1) + 1) out = prediction1;

predict 1-1/(exp(-eta2 - int2) + 1) out = prediction2;

/*Probability of having PHN = 2*/

predict 1/(exp(-eta2-int2)+1) out = prediction01;

/*Probability of having PHN <= 1*/

run;

/*VISUALIZE THE DATA*/

/*Predicted curve and Observed curve for probability PHN = 2*/

data phn_com_PHN; set phn_com;

if PHN = 2 then PHN2 = 1; else if PHN = 1 | PHN = 0 then PHN2 = 0; else PHN2 = PHN;

if PHN = 0 then PHN0 = 1; else if PHN = 1 | PHN = 2 then PHN0 = 0; else PHN0 = PHN;

run;

/*LOESS: Probability of having PHN = 2 : Observed Data*/

proc loess data = phn_com_PHN;

ods output scoreresults = out2obs; model phn2 = time logab /

scale = sd(0.1) details(ModelSummary OutputStatistics);

score data = phn_com_PHN;

run; /*Smoothing parameter = 0.48712*/

proc sort data = out2obs; by time; run;

proc means data = out2obs; var p_phn2; run;

/*LOESS: Probability of having PHN = 2: Predicted Data*/

proc loess data = prediction2;

ods output scoreresults = out2; model pred = time logab / scale = sd(0.1);

score data = prediction2; run; /*Smoothing parameter = 0.44421*/

proc sort data = out2; by time; run;

proc means data = out2; var p_pred; run;
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goptions reset = all ;

data combine2; set out2 out2obs; keep time pred p_pred phn2 p_phn2 logab; run;

legend1 label=none

position=(bottom center outside)

;

proc gplot data = combine2;

plot phn2*time = 1 p_phn2*time = 2

pred*time = 3 p_pred*time = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 2")

value=(h=1.5) minor = none;

run;

/*Use the same smooth parameter 0.465*/

proc loess data = phn_com_PHN; ods output scoreresults = out2obs_smooth;

model phn2 = time logab /scale = sd(0.1) smooth = 0.465;

score data = phn_com_PHN; run;

proc sort data = out2obs_smooth; by time; run;

proc loess data = prediction2; ods output scoreresults = out2_smooth;

model pred = time logab/ scale = sd(0.1) smooth = 0.465;

score data = prediction2; run;

proc sort data = out2_smooth; by time; run;

data combine2_smooth; set out2_smooth out2obs_smooth;

keep time pred p_pred phn2 p_phn2 logab; run;

/*Plot probability over time*/

proc gplot data = combine2_smooth;

plot phn2*time = 1 p_phn2*time = 2

pred*time = 3 p_pred*time = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 2")

value=(h=1.5) minor = none;

run;
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/*Plot probability over logab*/

proc sort data = combine2_smooth; by logab; run;

proc gplot data = combine2_smooth;

plot phn2*logab = 1 p_phn2*logab = 2

pred*logab = 3 p_pred*logab = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "LOGAB over time") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 2")

value=(h=1.5) minor = none;

run;

/*Predicted curve and Observed curve for probability PHN = 0*/

/*LOESS: Probability of having PHN = 0 : Observed Data*/

proc loess data = phn_com_PHN;

ods output scoreresults = out0obs; model phn0 = time logab;

score data = phn_com_PHN;

run; /Smoothing parameter = 0.50858;

proc sort data = out0obs; by time; run;

proc means data = out0obs; var p_phn0; run;

/*LOESS: Probability of having PHN = 0: Predicted Data*/

proc loess data = prediction0;

ods output scoreresults = out0; model pred = time logab;

score data = prediction0; run; /Smoothing parameter = 0.62446;

proc sort data = out0; by time; run;

proc means data = out0; var p_pred; run;

goptions reset = all ;

data combine0; set out0 out0obs; keep time pred p_pred phn0 p_phn0 logab; run;

legend1 label=none

position=(bottom center outside)

;

proc gplot data = combine0;

plot phn0*time = 1 p_phn0*time = 2
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pred*time = 3 p_pred*time = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 0")

value=(h=1.5) minor = none;

run;

/*Use the same smooth parameter*/

proc loess data = phn_com_PHN;

ods output scoreresults = out0obs_smooth; model phn0 = time logab/

scale = sd(0.1) smooth = 0.5663;

score data = phn_com_PHN;

run;

proc sort data = out0obs_smooth; by time; run;

/*LOESS: Probability of having PHN = 2: Predicted Data*/

proc loess data = prediction0;

ods output scoreresults = out0_smooth; model pred = time logab/

scale = sd(0.1) smooth = 0.5663;

score data = prediction0; run;

proc sort data = out0_smooth; by time; run;

goptions reset = all ;

data combine0_smooth; set out0_smooth out0obs_smooth;

keep time pred p_pred phn0 p_phn0 logab; run;

legend1 label=none

position=(bottom center outside)

;

/*Plot probability over time*/

proc gplot data = combine0_smooth;

plot phn0*time = 1 p_phn0*time = 2

pred*time = 3 p_pred*time = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "Time since entry") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 0")

value=(h=1.5) minor = none;

run;
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/*Plot probability over logab*/

proc sort data = combine0_smooth; by logab; run;

proc gplot data = combine0_smooth;

plot phn0*logab = 1 p_phn0*logab = 2

pred*logab = 3 p_pred*logab = 4 /

overlay haxis = axis1 vaxis = axis2 legend = legend1;

symbol1 c = red v = dot h = 0.4 mode = include;

symbol2 c = black i = join w = 2 mode = include;

symbol3 c = green v = dot h = 0.4 mode = include;

symbol4 c = blue i = join w = 2 mode = include;

axis1 label = (h=2 "LOGAB over time") value=(h=1.5) minor=none ;

axis2 label = (h=2 A=90 "Probability of having PHN = 0")

value=(h=1.5) minor = none;

run;
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