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Abstract

Streaming video in parallel over the internet is popular these days. The challenge in this is to divide
bandwidth over the streaming videos in order to improve the QoE of the users. The QoE is related to
four parameters, namely the startup/inital delay, the number of times that the buffer underrun during
the media stream, the amount of quality switches and the media throughput rate. While existing
techniques divide the available bandwidth over the clients according to priority or the amount of
streams, the first part of this thesis presents a development of bandwidth distribution logics for video
multistreaming with MPEG-DASH. MPEG-DASH is developed for adaptively streaming media over
HTTP. The four parameters to improve the QoE of the users are taken into account when developing
the distribution logics.

Omni-directional video provides a new way to demonstrate 360 degree video of a scene. In this
setup, it is the intention to show only a particular part of the 360 degree video. The user can change
the visible part of the 360 degree video by interacting with it. By tiling the 360 degree video, we
can save bandwidth for the hidden tiles. The second part of this thesis will relate to tiled video
with MPEG-DASH. The extension of MPEG-DASH, called SRD, is used to provide spatial information
about the tiles to the clients. We present six bandwidth distribution logics for tiled video. The user
can interact with the 360 degree video by panning in it. Therefore the hidden tiles can be visible in
a short period of time. We have made different distribution logics to divide the bandwidth over the
tiles according to different approaches. For example, one distribution logic focuses on the quality
of the 360 degree video and ensures that the quality of the 360 degree video is the same for all
the tiles. Other approaches focus on the particular part that is visible for the user. Because we use
MPEG-DASH, the quality of the video can change during the stream by requesting media segments
of a higher or lower quality representation. This technique of adaptively streaming of media is used
by the distribution logics to select the quality of video for the tiles.

We organized a user test with 14 particpants to subjectively and qualitatively measure the QoE of
the users with MPEG-DASH tiled video streaming. We selected four distribution logics of the six and
changed the bandwidth and the segment duration for every test case. We measured the interaction of
the variables with the perceived values with a three-way ANOVA test. A conclusion and future work
on the basis of the outcomes of the user test is given to end this thesis.
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Chapter 1

Introduction

1.1 Problem statement

In a world where almost every device is connected to the internet, the utilization of the available band-
width in a network plays an important role. Bandwidth is the amount of data that can be transferred
over a network in a time period, measured in either bits or bytes per second. The past years there
has been a big revolution in network capacity and network throughput, but the network bandwidth
remains scarce, especially in mobile and wireless networks. Because network bandwidth is limited,
applications must use it thoughtfully.

In video streaming scenarios the problem is the same, video content is captured and stored on the
server. To view the video content, the user must download the content and therefore consumes the
available bandwidth in the network.

In this master thesis the focus is placed on video streaming with MPEG-DASH. To know what MPEG-
DASH is, read Chapter 2. When streaming video to a client computer, the content is streamed in one
quality at a certain bitrate. When the bandwidth is enough for the stream, there is no problem. But
when the bandwidth drops and is below the bitrate necessary for the video stream, the delivery of the
video is delayed. The user must wait until the video segment is downloaded and can be displayed.
MPEG-DASH solves this problem by dynamicly and adaptively streaming content over HTTP.

Bandwidth in dynamic networks like wireless and mobile networks can fluctuate a lot. This is due
to people continuously joining and leaving the network, or it is caused by applications consuming
non-constant amounts of bandwidth. When using MPEG-DASH in these situations, there are other
problems. MPEG-DASH ensures that the viewer can watch a video without experiencing the playback
to stall, however at the cost of reduced video quality. When bandwidth is changing frequently, the
video quality will also change frequently.

The Quality of Experience (QoE) is a measure of a customer’s experience with a service [70]. The
service in this master thesis is video streaming. Like the website of Bitmovin [23] explains, there are
four parameters that influence the QoE with video streaming. These four parameters are:

1 Initial/start-up delay: The QoE is lower when the user has to wait a long period before the
video starts playing.

2 Buffer underruns/stalls: The QoE is lower when the playback stalls because this will cause
the video to temporarily freeze.
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3 Quality switches: The QoE is lower when the quality of the video is changing frequently be-
cause this shows a change in quality multiple times.

4 Media throughput: The media througput is measured in bits per second. The lower the media
throughput, the lower the quality of the video will be. This will lower the QoE.

So the QoE may be negatively impacted by one of the four parameters. In this master thesis we are
focused on these four parameters. To reduce the initial/start-up delay we use the quick start method.
This method ensures that an image can be displayed as soon as possible to the user. This is done by
downloading a lower quality of the video as fast as possible. Because a lower quality has a lower
bitrate, the data is downloaded faster than is the case with higher quality video.

By using MPEG-DASH, we can ensure that the buffer will never underrun and the playback will never
stall, at the expense of visual quality. Because we are switching between qualities, there will be always
video content in the buffer. The full explanation for this is done in Chapter 2.

The downstream throughput in a network is the amount of bits or bytes that the client computer
receives within a time period. The throughput is measured in bits per second or bytes per second.
How faster the data can be delivered to the client, the higher the quality of the video. Because how
faster the data is delivered, the more data the client can receive within a time period. If the client
can receive more data, the quality of the video is better because higher quality video is larger in file
size than lower quality video.

When the quality is changed frequently, the QoE is lower than when the quality will not change too
often. Dynamic networks play an important role in this. Dynamic networks are networks where
the available bandwidth per client can change frequently, due to network link congestion, people
continuously joining and leaving the network, etcetera. Because of the changing bandwidth available
for the clients, the quality of the video can change frequently while streaming.

This problem is the main study of this master thesis. The aim of this master thesis is to implement
an MPEG-DASH framework and to do a literature study of the problem of bandwidth distribution.
The framework consists of multiple parts that together make a complete video player with bandwidth
distribution logics attached to it. The implementation is explained in Appendix B.The framework has
also been coupled to ODV tiled content, see Section 4.6.

In video multistreaming applications, the use of MPEG-DASH could improve the performance of it.
Video multistreaming means that videos are streamed in parallel to the client. During the streams,
the quality of the videos can vary due to changing bandwidth. It might be a good idea to give streams
priority above others or divide the available bandwidth fairly across the streams.

With ODV tiled streaming, a 360 degree video is displayed to the viewer, the 360 degree video is
referred to as omni-directional video. The meaning of ODV tiled streaming is that the viewer sees a
spatially restricted part of the ODV and that the viewer can look arround in the ODV. An additional
reason can be that the physical screen of some devices, for example low cost smartphones, has a
limited resolution. As such, the omni-directional video cannot be displayed integrally on the screen.
The viewer has a viewport that shows a particular part of the ODV and panning is enabled to view
other content of the full video frame. The details and purpose of ODV are given in Chapter 4.

To stream such a high resolution video, the video is divided in multiple tiles. Every tile has its own
bandwidth need and therefore the bandwidth distribution logics are required. Because only the tiles
contained in the viewport are displayed to the user, it might be a good idea to allocate less bandwidth
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to the hidden tiles compared to the visible tiles. The problem here is when the viewer pans a lot in
the video, the hidden tiles are displayed, but at a lower quality and therefore the QoE of the viewer
drops. The implementation of the distribution logics are explained in Appendices H to M.

1.2 Research questions and outline of thesis

The goal of this master thesis is to implement a basic MPEG-DASH framework for video multistream-
ing and ODV tiled streaming, which is discussed in Appendix B. The basic implementation includes
all the necessary classes to start streaming video to the video player. For video multistreaming and
ODV tiled streaming the framework is extended with classes that are required for every application.

Every stream has its own bandwidth need related to the context. Because bandwidth is limited in
networks, the distribution of bandwidth will have an impact on the QoE of the viewer. Since the
distribution of bandwidth is highly related to the application in which it is used, we formulate the
following research questions in two types of applications.

1 Video multistreaming: What impact will every distribution logic have on the bandwidth allo-
cation and on the QoE of the viewer in a dynamically changing environment involving multiple
media streams?

2 ODV tiled streaming: What impact will every distribution logic have on the QoE of the viewer
and what are good distribution logics depending on contextual factors?

In this master thesis the focus is more on ODV tiled streaming. The literature study for video mul-
tistreaming will give us the best approach for this type of application. For ODV tiled streaming we
have done user testing to subjectively and qualitatively measure the performance of every bandwidth
distribution logic.

The rest of this chapter will give an introduction of MPEG-DASH. To answer the above research ques-
tions, we will do a case study for video multistreaming in Chapter 3. Chapter 4 will introduce ODV
with SRD and will discuss related work. To evaluate the distribution logics for ODV tiled streaming,
we have done user testing. The user testing scenarios and results are explained in Chapter 5. The
conclusion is given in Chapter 6, to end this master thesis. We will identify the best bandwidth dis-
tribution logic for every situation we have defined for ODV tiled streaming and formulate the future
work for video multistreaming and ODV tiled streaming applications.
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Chapter 2

MPEG-DASH

MPEG-DASH stands for Moving Picture Experts Group Dynamic Adaptive Streaming over HTTP. MPEG
[1] is a group consisting of people of the business world and people from academia. This group en-
gages in the development of standards for coding and decoding video and audio content and in other
topics like metadata representation with MPEG-7 [6], network communication for MPEG-DASH,
etcetera.

This group of people have made a new standard for adaptive streaming, namely MPEG-DASH [76].
Streaming video over the internet is nowadays popular and bandwidth distribution plays a role in
this scenario. MPEG-DASH is a standard that uses HTTP [62] to deliver media content. In Figure
2.1 the scope of MPEG-DASH is shown. We can see that Media Presentation Description, MPD parser
and Segment parser fall within the scope. The control heuristics and media player are controlled by
the client. MPEG-DASH delivers basic components, the implementation of the video player can be
vendor specific. Therefore the client must implement the logic to switch between qualities, this is
supported but not implemented in the standard.

Figure 2.1: MPEG-DASH scope [10]
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In a network where multiple users, named clients or viewers in this master thesis, are connected, the
bandwidth is divided among all the users. The bandwidth can fluctuate a lot in scenarios like wireless
networks, mobile networks, etcetera because many parameters can change the available bandwidth,
like for example the number of users connected to the network.

MPEG-DASH focuses on live and on-demand streaming of media content. Live streaming is when
media is recorded and immediately sent to the viewers. On-demand streaming means that the media
is stored on the server and that the viewers can download the segments when they like to. With live
streaming the viewer downloads the segments captured at that moment. The viewer cannot pause
the media or seek in the media. With on-demand the viewer decides which segments it downloads.
Here the viewer can rewind the media because the segments are stored on the server and the viewer
decides which segments to download. In this master thesis we will focus on on-demand streaming of
video content.

When users are receiving media content in dynamic networks, the users are obtaining one quality of
the media. When the available bandwidth for the users is smaller than the needed bandwidth for the
media, the playback will be jittery. This is due to the available network bandwidth. The available
bandwidth is not enough for the media stream and therefore the delivery of the media is delayed. As
such, it takes longer to download media parts at the currently available bandwidth than it does to
consume them, which introduces playback freezes. The media parts are named as media segments in
this master thesis.

To solve this problem, the MPEG group has developed MPEG-DASH. MPEG-DASH works with multiple
qualities of the media and divides every quality in media segments of a specific duration, measured
in seconds.

MPEG-DASH requires that the viewer downloads the media segments in a specific quality from the
server. The client decides which quality it downloads based on characteristics like the available band-
width, terminal capacities, mobile battery percentage, etcetera.

First the client must know which qualities at which bitrates the server provides. This information is
communicated by means of an MPD file. The format and parameters of an MPD file are explained in
Section 2.3 and Section 2.4, respectively.

When the client knows the available bandwidth and received the MPD file from the server, it can
choose which quality to download. When the bandwidth changes, the client can change qualities on
the fly. Because the media is hosted in multiple qualities and every quality is segmented in consecutive
segments of a specific temporal length, the user can download segments of other qualities.

When downloading a higher or lower quality segment of the media, the viewer is likely to experience a
quality change. When changing qualities, it will take some time before the change will be noticeable
for the viewer. This is because the previously buffered media segments must finish their playback
before the higher or lower quality media segment starts playing. The smaller the playback buffer size
and/or the duration of the segments is, the faster the quality change happens.

This quality change is caused by the changing bandwidth available to the client. Because MPEG-
DASH is developed for this, the client can still watch the video without experiencing any delay. A
disadvantage for the user is that he/she can experience quality changes.

A big advantage of MPEG-DASH is that it is a standard that can be used by a lot of devices connected
to the internet. It works over HTTP, this is because nowadays almost every device has a web browser.

18



For example Smart TVs, smartphones, tablets, etcetera all support HTTP and hence support media
streaming over HTTP. MPEG-DASH supports multiple form factors of devices by including parameters
in the MPD file. For example, a mobile device’s resolution is much lower than a HD TV’s resolution.
MPEG-DASH is a good approach for heterogeneous consumption contexts, because different content
resolutions can be defined in the MPD file.

There are not only advantages for the client devices, but also for servers. A firewall [63] is a system
which contains a set of rules that allows or blocks network traffic to computers in the network and
to computers outside the network. The advantage for a firewall to use MPEG-DASH, is that it does
not have to define a specific rule for media streaming. When HTTP traffic is allowed to enter in the
network, the media content can be received by clients in the network. If HTTP traffic is allowed to
leave the network, the media content can be distributed to client computers. For HTTP, the destination
port is 80, so no additional port must be assigned for the traffic exchange, which is beneficial for NAT
[60] devices. A NAT device is a system which maps private internal network addresses to public
external network addresses and vice versa.

2.1 Before MPEG-DASH

Before MPEG-DASH was developed, streaming protocols, like RTP [74] and RTSP [75] were used to
stream media to the clients. RTP is a transport protocol which is built on UDP [71] and is designed
for real-time transfers. When using UDP, it is not sure that the data will arrive. Stated differently, UDP
does not offer a reliable transmission channel. RTCP was used in combination with RTP to provide
feedback on the quality of the data distribution. RTCP is a control protocol, which is also discussed
in RFC 3550 [74], that provides feedback, synchronisation and other features for the media stream.
The protocol does not send any media content, it transports information, like the delay, jitter and
other network properties experienced by the receiver in the course of the streaming session [51].

RTSP [75] uses RTP to deliver media content. RTSP is an application level protocol that is used to
establish and control media sessions between clients and media servers. With this protocol, clients
typically send commands to the media server, like play and pause, to control the playback of media
content [50]. With MPEG-DASH, the client controls the playback of media. The client does not
send commands, like start and stop, to the server to control the playback. This will be advantageous
for the server because it does not need to keep the resources for the client reserved and it will also
reduce network traffic. RTSP uses RSVP [56] to reserve resources accross the network path on which
the media content is transported. RSVP is an IPv4 and IPv6 transport layer protocol that provides
resource reservation for unicast and multicast topologies [52].

In contrast with HTTP, RTSP is a stateful protocol. A stateful protocol ensures that session information,
referred as the state, is stored on the server. HTTP is stateless what means that no information about
the session is stored on the server and that every request is treated independently. The state typically
contains the identifier of the session to track concurrent sessions and other parameters. RTSP requires
more processing power and storage space from the server than HTTP because of the stored state for
every client session.

MPEG-DASH does not define information about the network properties, like RTCP does with RTP. With
MPEG-DASH, the clients decide which media segments are downloaded and therefore they determine
in which order the media segments are played. All the information about the media segments and
the needed bandwidth are defined by means of an MPD file (see section 2.3 and 2.4). The client
decides on the basis of the available bandwidth in which quality it downloads which media segments.
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Therefore measuring the available bandwidth is necessary for the clients.

With RTP, separate protocols (RTCP, RTSP, RSVP) are used to provide information about network
properties, to control the playback of the media content and to reserve resources across the network
path. With this approach, a firewall must open all the necessary ports for these protocols in order to
make them work. This approach is less secure than with MPEG-DASH because it has more open ports
that can be abused. With MPEG-DASH, only the standard HTTP port (80) is used to stream media
content.

With RTP streaming, UDP is used for transferring data, while TCP is used with HTTP streaming.
The advantages of UDP are that it delivers the content fast and that it supports unicast and multi-
cast transmission of media. The disadvantages of RTP are that the transmission is not reliable and
adaptive streaming is not directly supported. HTTP streaming only supports unicast transmission and
introduces delay because of the reliable transmission of media over TCP. With TCP, there is congestion
control which is not included in UDP. With HTTP streaming, TCP ensures that the client receives the
data in order and that no data is missing. Because RTP uses UDP, the data is rapidly delivered but
data can be missing or is not received in sequence. When the data is not received in sequence, the
client must properly order the content. This requires extra processing power and buffering for the
client. With RTP, data that is not received is skipped by the video player. In Table 2.1, the comparison
is made between RTP/UDP streaming and HTTP/TCP streaming that is used by MPEG-DASH.

Property RTP/UDP streaming HTTP/TCP streaming
Transport protocol UDP TCP
Supported topologies Unicast, multicast Unicast
Delay Fast delivery Delay introduced by delivering

media with TCP
Reliable transmission chan-
nel?

No Yes

Adaptive streaming sup-
ported?

Not in standard version of RTP Yes

Separate protocol needed
to control quality of media?

Yes No

Firewall friendly? No Yes
Congestion control? No Yes

Table 2.1: Comparison of RTP with MPEG-DASH

Another technique, that is often used, is progressive downloading [36] of media. Progressive down-
loading can be used in networks where the bandwidth is not sufficient to download the entire media
file. With progressive downloading, the media may begin playback before the download is complete.
The video player needs information about the data it downloads. It needs to know how many data
must be downloaded before playback can start. This information is communicated via metadata in
the form of a header that is prepended to the data. The advantage of progressive downloading is
that the client can download as many data as the network can handle. It allows the user to play the
media while the file is being downloaded to the client. The disadvantage for this approach is that
the metadata must be added to the data to stream the media. This will introduce extra overhead
and consumes bandwidth. The setup is more complicated than with the other approaches and it
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continues to download data when the users are, for example, looking at other web pages and pause
the video stream. The video will continue to download in the background and will slow down their
connection. When downloading the video file, the playback can freeze as a result of low bandwidth.
This can happen when the video files are downloaded slower than they are consumed. In constrast
with MPEG-DASH, MPEG-DASH ensures that the video keeps playing when the available bandwidth
reduces, but at cost of reduced video quality.

To solve the problems of previous streaming protocols and progressive downloading, MPEG devel-
oped MPEG-DASH. Like said before in this chapter, MPEG-DASH supports adaptive streaming of me-
dia over HTTP. The problems of streaming protocols, like not being firewall friendly, having no reliable
transmission channel and having no support for adaptive streaming are resolved by the MPEG-DASH
standard. A problem with MPEG-DASH is that it does not support multicast. A solution for this prob-
lem is given in Section 3.3.1. The problem of adaptive streaming in previously discussed protocols is
resolved by MPEG-DASH by encoding multiple qualities of the media. The problem of downloading
media in the background with progressive downloading is also resolved by MPEG-DASH because the
video segments are not downloaded when the video pauses [42].

2.2 What is an MPD file?

An MPD file is an XML file that describes all necessary parameters for the client to be able to receive
different qualities of the media. An XML [65] file is a file where parameters, attributes, values and
other types of data are mentioned in. It is used to communicate information to devices that can read
the XML format. This file is easy to read for both human and machine.

An MPD file is needed to start streaming because the client retrieves all the media data on basis of
information included in the MPD file. The MPD file is downloaded first and the client downloads the
media segments defined in the MPD file at a later point. All parameters of the particular media quality
segments are described in the MPD file. In Section 2.4 a subset of these parameters are discussed.

2.3 MPD format

An example of an MPD file with one period, one adaptation set and two representations is shown next.

<?xml ve r s ion="1.0"?>
<MPD xmlns="urn :mpeg : dash : schema :mpd:2011" minBufferTime="PT4.000000S "
type=" s t a t i c " mediaPresentat ionDurat ion="PT0H0M46.97S "
p r o f i l e s="urn :mpeg : dash : p r o f i l e : f u l l :2011">

<ProgramInformation
moreInformationURL= " h t tp :// gpac . source forge . net ">

<T i t l e>template .mpd generated by GPAC</T i t l e>
</ProgramInformation>
<BaseURL>

ht tp :// ip−address−of−s e r ve r / r o o t d i r e c t o r y / subd i r e c to ry / . . .
</BaseURL>
<Per iod durat ion="PT0H0M46.97S">

<Adaptat ionSet segmentAlignment=" t rue "
b i t s t reamSwi tch ing=" t rue " maxWidth="600" maxHeight="200"
maxFrameRate="30" par="600:200">
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<Representa t ion id="1" mimeType=" v ideo /mp4"
codecs="avc1 .640015" width="600" he ight="200"
frameRate="30" sa r= "1:1" startWithSAP="1" bandwidth="65536">

<SegmentBase>
< I n i t i a l i z a t i o n sourceURL=" t e m p l a t e _ i n i t .mp4"/>

</SegmentBase>
<SegmentList durat ion="2">

<SegmentURL media="segment_1_1 . m4s"/>
<SegmentURL media="segment_1_2 . m4s"/>
<SegmentURL media="segment_1_3 . m4s"/>
. . .

</SegmentList>
</Representat ion>
<Representa t ion id="2" mimeType=" v ideo /mp4"
codecs="avc1 .640015" width="600" he ight="200"
frameRate="30" sa r= "1:1" startWithSAP="1" bandwidth="131072">

<SegmentBase>
< I n i t i a l i z a t i o n sourceURL=" t e m p l a t e _ i n i t .mp4"/>

</SegmentBase>
<SegmentList durat ion="2">

<SegmentURL media="segment_2_1 . m4s"/>
<SegmentURL media="segment_2_2 . m4s"/>
<SegmentURL media="segment_2_3 . m4s"/>
. . .

</SegmentList>
</Representat ion>

</Adaptat ionSet>
</Period>

</MPD>

2.4 MPD parameters

In this section we describe all the important parameters of the MPD file that was shown in Section
2.3. These parameters are necessary to understand the rest of the master thesis and are referred to
in other sections. We limit our discussion to MPD files that rely on segment lists to describe segment
URLs. This is the type of MPD file that this master thesis is focused on. MPEG-DASH supports also
other segment specification formats, like template MPD, segment range MPD, etcetera. This example
is for on-demand media and focuses on video content. MPEG-DASH supports more than this, namely
live streaming of video content, audio content streaming and many other types. Therefore this list
of parameters is not an exhaustive emumeration of all the parameters of MPEG-DASH, but only
the parameters that are necessary to understand this master thesis. Please see [12] for a complete
overview of the MPD syntax.

XML version
The version used of the eXtensible Markup Language.

<MPD>
The start tag of the MPD file to define where the MPD data begins.
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minBufferTime
This is the minimum amount of data, expressed as a duration data type [12], that the client-side
buffer must hold before playback is allowed to commence. This is to ensure that there is enough data
to play the video smoothly. This field consist of the following letters:

P: Duration designator placed at the start of the duration representation.
T: Time designator that precedes the time components of the representation.
H: Hour designator to define the amount of hours.
M: Minute designator to define the amount of minutes.
S: Seconds designator to define the amount of seconds.

mediaPresentationDuration
The duration of the full media presentation. This field consists of the same letters as the minBufferTime
attribute.

profiles
The MPEG-DASH profile used by this MPD file. The profiles are defined to enable interoperability
and to delineate the set of supported features. The profile is identified by unique uniform resource
names in the MPD.

<ProgramInformation>
Descriptive information on the program is provided for a Media Presentation within the
ProgramInformation element.

<BaseURL>
The base URL stands for the location where the content is stored. So this includes the IP-address of
the server and the path to the parent directory where all media segments and initial segments are
saved.

<Period>
The media is divided in one or multiple temporal parts, called periods. Periods temporally follow each
other in the case there are multiple parts.

duration
The duration of a specific period, expressed in the same syntax that is also exploited by the minBufferTime
attribute.

<AdaptationSet>
Set of interchangeable encoded versions of one or several media content components.

<Representation>
A representation is a single quality of the media in the adaptive streaming experience.

mimeType
The type of the content that is carried in the representation.

codecs
The codec that was used to encode the content.

width
The width of the video, measured in pixels.

23



height
The height of the video, measured in pixels.

framerate
The framerate of the video, measured in frames per second.

bandwidth
The bandwidth needed for a specific representation, measured in bits per second.

<SegmentBase>
This element is used to identify the first file needed to start viewing the media. This includes the
initialization element that is specified in the sourceURL attribute. This sourceURL is the URL for
the initialization file. The initialization file does not contain any media. It contains values to change
the settings of the video player. To download the file, the client adds the sourceURL to the BaseURL
to know the full URL of the initialization file.

<SegementList>
This element clusters all the media segments that jointly constitute a specific representation.

duration
The duration of a single segment, measured in seconds.

<SegmentURL>
For every media, segment there is a segment URL.

media
This parameter is part of the full URL of every media segment. Media segments are different from
initialization files as they contain the media itself. To download each segment, the client takes the
BaseURL and adds the media attribute value to it and downloads the file from the obtained URL.

2.5 Content preparation

The content used for this master thesis is video content. Video content can be captured in different
ways, by a camera, by computer programs, etcetera. A video consists of multiple frames and therefore
the size of video content can be large. To store and transport data in an efficient way, the data is
encoded with a codec. A codec [45] is a device of computer program capable of shrinking the media
data in size by encoding it. It is used to send the media data over a network, store or encrypte the
data. The media data can be obtained by decoding the encoded data for playback or editing.

There are different types of codecs. In this master thesis, the x264 codec is used to encode video
streams into H.264/MPEG-4 AVC format [9]. x264 [7] is a free software library, it is released under
the terms of the GNU General Public License.

The videos used in this master thesis are encoded in multiple qualities with FFMPEG [13]. FFMPEG is
used to convert the video content encoded with a specific codec into different qualities. High quality
videos typically are larger in size than lower quality videos. Therefore FFMPEG takes a long time
to convert high quality videos because of the large content size. We convert the videos using the
command terminal and the FFMPEG command. To use FFMPEG after installing it, we can execute
the FFMPEG command in the Linux terminal with parameters added to it. The command options we
used for FFMPEG are given in Appendix A.
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We recommend that the GoP size is a multiple of the frame rate of the video. The GoP size determines
how many inter-frames are between consecutive I-frames. The first I-frame is counted within the GoP
size. Because if the previous video segment is missing, the videoplayer searches for the first I-frame
of the following video segment to play. We will now show an example to make things clear. Assume
that the video segments have a duration of 1 second, the GoP size and frame rate are 5 and that we
only have I- and P-frames. So we have 5 frames per second played and there are 4 P-frames between
2 consecutive I-frames. This gives the following situation:

Figure 2.2: Video with GoP size of 5 and frame rate of 5

The plackback time is added under the boundaries of every frame, measured in seconds, so 1:00
presents 1 second. In this situation there is not a problem. Because the GoP size is a multiple of the
frame rate, the video will not jump forward when the video segment with playback time 0:00 until
1:00 is missing, referred to as the fist video segment. When the first video segment is missing, the
video player searches for the next I-frame that starts at 1:00. So the video will continue to play from
1:00. Now let’s assume that the video segments have a duration of 1 second, the GoP size is 7, the
frame rate is 5 and that we only have I- and P-frames. We get the following scenario:

Figure 2.3: Video with GoP size of 7 and frame rate of 5

In this scenario the video player will jump forward when missing the first video segment. Because
the player will search for the next I-frame, it starts at 1:24 instead of at 1:00. It skips the P-frames
that are in between 1:00 and 1:24. This is the reason why we recommend that the GoP size must
be a multiple of the frame rate. The fact that prior segments are missing can occur when the user is
seeking in the video or with ODV tiled video streaming.

MP4Box [5] of GPAC [3] is used for preparation of HTTP Adaptive Streaming content. GPAC is an
open source multimedia framework. GPAC focuses on multimedia packaging formats such as MP4
and on presentating technologies, like graphics, animation and interactivity. The core library of GPAC
is libgpac. The tools that are provided by GPAC are: a multimedia player (Osmo 4/ MP4CLIENT), a
multimedia packager (MP4Box) and server tools that are included in MP4Box.

We use MP4Box to generate the MPD files for every video and to split the video into multiple parts of a
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fixed duration, these are called segments. In this master thesis the videos are split into segments with
a duration of 1 and 2 seconds. Like FFMPEG, MP4Box can be used by the MP4Box command with
parameters added to it and the command options are given in Appendix A. FFMPEG and MP4Box
are the tools used for this master thesis but other tools offering similar functionality could have been
used to generate the files and content.

The video content is stored on an HTTP server. The HTTP server in this master thesis is a Linux
Ubuntu 14.10 desktop computer with Apache 2.4.7 [22] installed on it. Linux Ubuntu is a Debian-
based Linux operating system, with Unity as its default desktop environment. It is based on free
software. Apache is the world’s most widely used web server software.

The advantage of HTTP Adaptive Streaming is that it only requires an HTTP server to start streaming
media. Because the media is stored on the HTTP server and the server only responds to requests from
the clients, it is easy to set up and to maintain the server. The client sends requests for the content
by an HTTP GET request to the full Uniform Resource Loader and receives the content afterwards. A
URL [55] is a reference to a resource that specifies the location of the resource on a computer in the
network. With the URL, the resource can be retrieved.

26



Chapter 3

Multistreaming with MPEG-DASH

3.1 Definition

A large percentage of the current internet traffic consists of media streaming data. More and more
websites like YouTube, Netflix, Twitch, etcetera have on-demand and live media streaming features.
Media multistreaming scenarios are common in reality, like people listening to music and in parallel
watching a movie. In this master thesis we will focus on on-demand video multistreaming.

Every video player that is streaming media has its own parameters like the total duration, resolution,
necessary bandwidth, etcetera. With MPEG-DASH these parameters are all defined in an MPD file, a
separate MPD file is generated for every video. The MPD syntax has been discussed in Section 2.3.

A lot of applications have implemented a manner of video multistreaming. The example of this
master thesis is ODV where the 360 degree video is divided into tiles. Every tile is a separate video
that is streamed to the client. To perceive the tiles as a 360 degree video, the videos of the tiles
are synchronised with each other. An example is shown in Figure 4.10. The full explanation of 360
degree video is given in Chapter 4.

Video conferencing also uses video multistreaming features. For example, with Skype [40] users can
stream videos of multiple people that are calling. An example of this application is given in Figure
3.1.

The last past years, Google has successfully developed the Android operating system and applications
for smartphones and tablets. Because smartphones are getting more and more processing power built
in, they are capable of multitasking. Multitasking means that the device can execute multiple tasks
at the same time. Some applications, like Stick it Pop-up Player and other alternatives are examples
of multitasking applications. Stick it was designed for smartphones and tablets running the Android
operating system to stream multiple videos at the same time to one client device. Stick it is an
application where the user can see videos while doing some tasks with the device in the background.
For example, the user could watch a movie on YouTube and Twitch while searching for something on
the internet by using the webbrowser. In Figure 3.2 a screenshot is given of the Stick it application.
In the past, on-demand video streaming websites recorded the videos and stored them on a server.
The server then adds the necessary metadata and sends it to the clients. This costs a lot of resources
of the server, because the server must constantly stream the videos to the clients who have subscribed
to receive the stream. In this normal situation the server does multiple jobs, like recording, encoding,
storing, and sending the data to the clients, this is a big load for the server.
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Figure 3.1: Skype video multistreaming [11]

Figure 3.2: Stick it Pop-up Player[15]

To solve this problem, the involved tasks are divided over multiple servers. For our example, one
server would record the video. A second server would encode and save the data that it receives from
the first server and gives the resulting data to a third server who would add the necessary headers and
send it to the clients. An approach to send the data to the clients is that the third server subscribes to
a multicast group where the clients are subscribed to. After subscribing to the multicast group, the
server sends the data to the multicast group. All the clients that subscribed to the multicast group will
receive the data. An example that uses this idea is the transport layer of Akamai for live streaming in
a content delivery network [69].

Because this method and other similar methods will introduce a lot of processing for the routers, this
approach is not often used. The routers need to keep track of the multicast groups for the clients
connected to that router and need to do the processing of the Internet Group Management Protocol.
IGMP is a protocol that establishes multicast group memberships over the internet between hosts and
routers on IPv4 networks [57].

A better approach for this idea is to make use of MPEG-DASH. The advantages of MPEG-DASH are
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that it is a standard and that there is no need for an additional protocol for streaming, like RTP [74]
or RTSP [75]. MPEG-DASH is used in this master thesis to stream videos to the clients. MPEG-DASH
is not only made for streaming video content, the standard implementation of MPEG-DASH supports
media multistreaming. For example when a video is streamed, the audio is streamed in parallel to the
client. When the clients use MPEG-DASH, the clients first request the MPD file and the initial file of
every media. They decide which quality of the video they want to download based on their available
bandwidth and based on the necessary bandwidth of a particular quality of the video. This parameter
is mentioned in the MPD file by the bandwidth parameter (see section 2.4). When streaming video
content, the clients can change the quality of the video on the fly by requesting segments of other
qualities.

The mostly used technique to measure the available bandwidth is to send a file over the network and
keep track of the download time. This is just a simple approach to measure the available bandwidth.
A lot of parameters play a role to determine the available bandwidth, like jitter, router processing
time, etcetera. An easy way to calculate the throughput is

throughput = L
T

where L is the file size and T the transmission time [67]. There are a lot of bandwidth measuring
tools that do the calculations and take the necessary parameters into account, for example Cacti [2]
is such a tool that is widely used by network administrators. For this master thesis, the focus is not
on measuring the bandwidth. We artificially set the bandwidth limit and we can hereby determine
which quality is streamed to the clients.

Figure 3.3: Video multistreaming example

In Figure 3.3 an example of video multistreaming involving three instantiations of the Big Buck Bunny
video clip [8] is given. We see that the three videos are streamed in the same moment to the client
and they are paused at the same playback time.

3.2 Implementation MPEG-DASH framework for video multistream-
ing

To stream video to the clients, it is the intention to make an MPEG-DASH framework. We extended
our framework for video multistreaming. In this section we will generally describe the components
and functionality of the framework for video multistreaming. We made the framework in a way that
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every component can be replaced for other needs. The framework consists of multiple classes which
each of them can be replaced by other classes.

The main component of our framework is the Downloadmanager class, which ensures that ev-
ery stream starts streaming. This implies that for every stream the MPD file and initiale video file
are downloaded. All the files are downloaded with an HTTPDownloader. Every stream has an
HTTPDownloader object that downloads the files for that stream through HTTP. After the stream has
downloaded the initial file, the Downloadmanager creates a Scheduler object for every stream.
The Scheduler triggers the Downloadmanager, on an interval basis, to download the next video
segment for a stream. The interval time is the segment duration, measured in seconds. We have cho-
sen to download one video segment per segment duration because in that time period the last played
segment ends its playback. If we download one video segment when the last played segment finishes
its playback, the buffer stays stable and does not underrun. The Downloadmanager gives the re-
quest for a video segment to the HTTPDownloader for the specific stream to download the next video
segment. When the Downloadmanger receives the file from the HTTPDownloader, it adds the file
to the MediaSourceBuffer. The MediaSourceBuffer maintains the SourceBuffer [41] object
that stores the video segments for playback.

To manage the available bandwidth, the Downloadmanager has a distribution logic object. This
object ensures that the available bandwidth is divided among the streams. When the available band-
width changes, the distribution logic ensures that the allocated bandwidth per stream decreases or
increases. The streams decide on the basis of their allocated bandwidth which quality of the video is
downloaded. Like section 2.4 explained, the needed bandwidth for every quality of the video is com-
municated via the bandwidth attribute in the MPD file. The quality of the video is selected of which
the needed bandwidth is less or equal to the allocated bandwidth for the stream. The functionality of
the QualityAdaptation object is that it selects the quality of the video according to the allocated
bandwidth for the stream. One QualityAdaptation object is made for the Downloadmanager.
The QualityAdaptation object performs the quality selection for all the streams in the multi-
streaming setup. To return which quality of the video the stream can play, the QualityAdaptation
object reads the MPD files of the streams and selects the highest quality for the stream’s allocated
bandwidth. The full explanation of all the classes of the framework can be found in Appendix B.

3.3 Related work

In the past years, streaming media content over the internet has become popular. Several streaming
protocols were proposed for streaming the media and to control the transmission. When using these
streaming protocols, some problems were discovered, like adaptivity, reliable transmission, etcetera.
In this section we discuss related work and some usefull topics for video multistreaming with MPEG-
DASH.

3.3.1 Cache servers and CDNs

HTTP streaming of media does not support multicast streams. For this problem a lot of solutions
have been proposed. In this section we discribe one such commonly used solution and relate it to
MPEG-DASH. Figure 3.4 shows a distribution architecture for HTTP-based streaming involving mobile
devices. This architecture is called a CDN [44]. A content delivery network (CDN) is a network of
distributed servers, connected with each other, that delivers web content to a user. The network
consists of origin servers, cache servers and clients. The origin servers provide the content while the
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cache servers store copies of the content. The cache servers are located nearby the users to provide
quick access to the content.

Figure 3.4: Media distribution architecture [77]

The server does the media preparation and encodes the video into multiple quality versions. The
segments and MPD files are hosted on the media HTTP origin servers. In the networks between the
origin servers and the client devices, HTTP cache servers are placed. These cache servers download
the video segments from the origin server once. They are constantly polling the origin servers to find
out whether the data has changed. If so, they request the new data and store it. The clients typically
request the data from the HTTP cache servers that are located nearby. A longer distance for delivering
data will introduce more latency and intermediate links can cause the media throughput to be lower.

This approach is a solution for the multicast problem of HTTP streaming. With multiple HTTP cache
servers are installed in networks, one copy of the data can be distributed to multiple client devices
with one cache server. An advantage of this approach is that the HTTP cache server only needs to
download one copy of the data and stores it for the clients. The media throughput is high because the
clients are requesting the data from the cache server that is located nearby. When the data transfer is
fast, more data can be downloaded by the clients and a better quality can be streamed. The content
can be delivered faster which will decrease the initial/startup delay. Therefore the QoE of the user
is higher when using a CDN to distribute the content. An example of a CDN for media streaming is
made by Akamai [69].

Bandwidth can be saved with CDN architectures because the links between the origin servers and
the cache servers are not congested with multiple copies of the data. Only one copy of the data is
downloaded by the cache servers. When the data is modified, the data is again downloaded by the
cache servers. This is bandwidth efficient because the data is not frequently sent over the link if the
data is not modified on the origin server. This technique has minor overhead because the messages
exchanged between the cache server and the origin server consume only small amounts of bandwidth.
The origin server sends the new data back when the data is modified or answers to the cache server
that the data is not modified. When the data is not modified, no content is sent to the cache server.

3.3.2 Dividing bandwidth over clients in public-shared networks

In cities where the population is large, FON routers are installed. FON routers [25] are cheap WiFi
access points that connect the users to the internet. The meaning of this approach is to connect as
many people as possible to the internet through the FON routers. On basis of this idea, we formulate
an approach for public-shared networks. PSnet is such an approach that uses FON routers. The
infrastructure of PSnet is shown in Figure 3.5.
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Figure 3.5: PSnet of FON routers for public-shared networks [66]

The network consists of one PSnet-S server that manages the whole system. The streaming source is
typically a server that streams the media content to the interested clients. The PSnet-G architecture
delivers the streams to the clients and is composed of serveral groups of organized access points,
referred as PSnet-Ns, and a backup pool of access points, referred as PSnet-P. Clients wishing to
receive the media stream are connected to one PSnet-G access point. As we can see on Figure 3.5,
the system is represented by a tree structure.

The PSnet-S constructs the PSnet-G by organizing the PSnet-Ns to groups based on the requests from
clients. These PSnet-Ns are also organized as a complete binary tree structure. In Figure 3.6, we see
such a tree structure with 16 clients connected and two subtrees where each circle represents one
PSnet-N access point.

Figure 3.6: PSnet with two subtrees serving media to the clients [66]
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In this setup, two clients are served by the same PSnet-N access point. In our example, the right
subtree has a link speed of 512 Kbps and the left subtree has a link speed of 256 Kbps. When media
content is streamed to the clients, the root node of the subtree replicates the media content to all the
nodes which are located on the path to the interested client.

When the intermediate links of the subtrees are congested, the delivery of media content is delayed.
An approach to solve this problem is to add more PSnet-N access points for delivering the data to the
clients. In this case the client receives data from multiple PSnet-N access points. The backup pool
of PSnet-N access points is used to add more subtrees to the tree structure. Multiple PSnet-N will
deliver parts of the stream to the client. The setup is shown in Figure 3.7.

Figure 3.7: PSnet with three subtrees serving media to the clients [66]

This setup will allow the clients to receive media parts from multiple PSnet-N access points. The
disadvantage of this approach is that the client must properly order the received parts. The advantage
for the client is when a link is congested, the client can receive media parts from other PSnet-N access
points. This will result in efficient use of the available bandwidth. Because MPEG-DASH works with
media segments, every PSnet-N access point can deliver one or multiple media segments to the client.
The client must properly order the media segments for playback.

This approach can be used in networks where multiple access points are installed and multiple clients
are streaming media. When the system determines that links are congested, the PSnet-G can add more
subtrees to the tree structure. The subtrees consist of multiple PSnet-N access points that deliver the
media to the interested clients. In this case the clients are receiving media segments of multiple PSnet-
N access points. This can increase the speed of media throughput for the clients when intermediate
links are congested. When the media throughput is increased, more data can be delivered to the
clients. The more data can be deliverd to the clients, the better the quality of the video. This will
result in a better QoE for the users.
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3.3.3 QoE Fairness Framework

In this section we introduce the OpenFlow-assisted QoE Fairness Framework (QFF) [64] that works
with MPEG-DASH. The framework maximises the users’ QoE in multimedia networks and allows
vendor-agnostic functionality to be implemented for network management and active resource allo-
cation. QFF monitors all the DASH clients in a network and dynamically allocates network resources
to each device. This ensures that the QoE of the streams is optimised to achieve the maximum user-
level fairness [64]. The QFF framework is typically installed on a central network device that passes
traffic to the clients. The framework is shown in Figure 3.8.

Figure 3.8: QoE Fairness Framework [64]

The Network Inspector informs the OM core of the number of clients streaming media in het network,
the streaming bitrate each device is currently requesting and the available bandwidth capacity. The
MPD Parser informs the parameters and attributes in the MPD files requested by the clients, like the
segment duration, available encoding bitrates and the size of the media segments, to the OM core.
To communicate the information to the OM core, the Network Inspector and the MPD Parser use the
OpenFlow protocol [49].

The Utility Functions map the bitrate of a video to the QoE perceived by the user. Structural Similarity
(SSIM) index is used as the quality metric for the Utility Functions. SSIM calculates a value for the
similarity between two images. The value, referred as the SSIM index, is a decimal value between -1
and 1. A higher value results in more similarity between two images. It uses the initial uncompressed
version of the image as the reference frame [53] and the image encoded at a certain bitrate to compare
with each other. A database consisting of a Utility Function per video would need to be constructed to
store the SSIM indexes for every version of one video encoded at a certain bitrate. The Optimisation
Function finds a combination of all the bitrates for all the streaming videos in the network that result
in equivalent QoE level for all the clients according to the SSIM indexes. Please read paper [53] to
known how such optimum set of bitrates for all the clients is selected. The intention of this framework
is to provide approximately the same QoE for every active stream in the network.

The Flow Tables Manager adds the appropriate streams to the OpenFlow switches, so that each client
receives the media segments. The OpenFlow switches are responsible for delivering the media con-
tent to the clients. The DASH plugin is used to inform all the DASH clients of the bitrate that they
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should request to achieve network-wide QoE fairness [64]. QFF can also be used for other streaming
technologies and is not restricted to DASH.

This approach can also be used in video multistreaming scenarios. Because in those scenarios the
user is playing videos in parallel, the framework can be used for this. The total bandwidth is the
available bandwidth for the client. The framework could divide the bandwidth among the streams
to achieve single user QoE fairness between the streaming videos. A disadvantage of this approach is
that for every video a database must be managed to store all the SSIM indexes and it would take more
processing power than other approaches to determine which quality of video is requested for every
stream. An advantage is that the quality change would occur only if the Utility functions determine
that the allocated bandwidth is reduced or increased for a stream. When the user changes between
streams, like in previous cases where the user streams multiple videos in parallel in different tabs, the
quality of the streams that were active before the change (and that remain active after the change)
will remain constant. In this case the QoE is higher for the user because the quality change less often.
Because the bandwidth is divided fairly among the streams based on the QoE level of every video, the
quality could be lower than with priority-based streaming. With priority-based streaming, the streams
with high priority typically are streamed at higher quality. The downside of this is that streams with a
lower priority can be streamed at a lower quality than in the case a uniform distribution of bandwidth
is used. The QFF is similar to our approach of equal distribution of bandwidth, discussed in Section
3.4.1. Our approach will divide the bandwidth equally over the active streams. In this approach we
can not assure that the QoE is approximately the same for all the active streams. Because videos can
be streamed at different bitrates, equally dividing the bandwidth can not assure the qualities with the
same QoE is chosen for all the active streams. With the QFF this is assured but takes more processing
power and more network traffic to communicate all the necessary information.

3.3.4 Client based bandwidth management

Bandwidth management plays an important role when streaming media with MPEG-DASH. On the
basis of the available bandwidth the clients decide which quality of the media is downloaded. How-
ever, so far we have discussed the bandwidth management issue in a network where multiple clients
are streaming media simultaneously. We will now discuss the bandwidth management issue when
the client is streaming media in parallel. To divide the allocated bandwidth for one client over the
streams it is interested in, we explain the approach of the NIProxy [79]. NIProxy divides the allocated
bandwidth for a client over the streams it receives.

The NIProxy works with a tree structure to allocate bandwidth to the streams the client is interested
in. The tree structure consists of multiple nodes, each of a special type. The internal nodes of the tree
structure have a certain bandwidth distribution strategy. The leaf nodes are the streams in which the
client is interested.

The first type of internal node is the mutex node. The child nodes of this node compete for the
available bandwidth allocated to their parent node. This ensures that at all times at most one child
node is assigned bandwidth. The child node that gets the bandwidth is the node that requests less
or equal bandwidth than the mutex node has available. If there are no child nodes that satisfy this
constraint, none of the child nodes get any bandwidth.

Another type of internal node is the priority node. The child nodes of this node have priorities as-
signed. According to these priorities, the bandwidth from the parent node is assigned to the child
nodes. The child node with the highest priority gets the requested bandwidth if there is enough band-
width available. The residual amount of bandwidth is allocated to the child node with the second
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highest priority. This continues untill there is no more bandwidth.

A third type of internal node is the weight node. This node operates in two phases. In the first phase
the bandwidth is divided over the child nodes accoring to their maximal bandwidth consumption and
their weight value. Every child node receives BWi = wi ∗MaxBWi ∗ f bandwidth. wi stands for the
weight of the node, the value is minimum 0 and maximum 1. MaxBWi corresponds to the maximum
bandwidth the child node can consume and f stands for a scaling factor. The scaling factor ensures
that the sum of all the allocated bandwidths for all the child nodes is not larger than the allocated
bandwidth of their parent node. When the child nodes are not consuming the bandwidth they were
allocated, the weight node performs a second bandwidth distribution phase. In this phase the excess
bandwidth is assigned to child nodes on a one-by-one basis, in order of decreasing weight value [79].
In this phase unused bandwidth is allocated to nodes which can consume it.

The last type of internal node is the percentage node. Every child node of this node has a percent-
age assigned. This percentage determines which amount of bandwidth every child node gets. The
assigned bandwidth is calculated via pi ∗ BW with pi representing the percentage of the child node
and BW representing the assigned bandwidth for the parent node. When the parent node determines
that some bandwidth remains unused, it behaves like the weight node in phase two. It allocates the
excess bandwith to the child nodes in order of decreasing percentage value.

The next point to discuss is the type of the leaf nodes. A first type is the discrete stream hierarchy
leaf node. This node sets the stream’s bandwidth consumption to a discrete number of values. A
simple type of this node has two consumption levels, namely 0 and the associated stream’s maximum
bandwidth usage. With this, the node is capable of turning the network stream on and off. The node
can support a discrete number of increasing bandwidth levels according to the quality of the media
that is requested.

A second type of leaf node is the continuous leaf node. This node is capable of setting a stream’s
transmission rate to a continuous range of values. These values are lying in the interval [0, maximum
stream bandwidth usage]. It does this by buffering the content locally and forwarding the content at
a bitrate that is reserved for this node.

We explained the basic understandings of the nodes in the tree structure for this approach. NIProxy
can operate with real-time and non real-time network traffic. For real-time network traffic the discrete
leaf node can be used and for non real-time network traffic the continuous leaf node can be used. In
Figure 3.9 a simple example of the tree structure is shown.
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Figure 3.9: Simple example of tree structure of NIProxy [79]

To stream video with MPEG-DASH, the priority and the discrete stream hierarchy nodes are the ap-
propriate to use. With the priority node, we can give streams more priority than others. This will
result in more allocated bandwidth and better quality of video for those streams. For example, when
users are watching multiple videos in parallel in different tabs of the web browser, the streams that
are in the active tab can have more priority than the streams in the inactive tabs. With active, we
mean that the tab is currently open and the others are closed but the videos of those tabs are still
playing.

The discrete stream hierarchy node can set discrete values for every quality of the video. In the MPD
file, the bandwidth attribute stands for the needed bandwidth to stream a particular quality of the
video. The discrete stream hierarchy node can maintain all the values of the bandwidth attribute
for all the video qualities of one stream. When the priority changes for the leaf nodes (discrete
stream hierarcy nodes), the quality of the video can change according to the allocated bandwidth.
With this approach, we can dynamically change the quality of the video without experiencing the
screen to freeze. The disadvantage, like said before, is that the quality will change during the video
playback because the playback of the previous segments must finish before the lower or higher quality
video segments start playing. NIProxy was developed for streaming protocols, like RTP. They provide
continuous streams of media data. DASH works with discrete downloads of segments and does not
continuously stream media. Because of this difference, the NIProxy is not optimally suited for the
management of bandwidth with MPEG-DASH streams.

3.3.5 User-adaptive video streaming with MPEG-DASH

When using MPEG-DASH for streaming to mobile devices, an important topic is user-adaptive video
streaming. This topic is about investigating the user behavior to improve the efficiency of streaming
delivery [73]. The approach relies on sensors of mobile devices to detect the presence of the user,
while other types of techniques are used to detect the context. Figure 3.10 illustrates these ideas.

The visual field and viewing angle of the user is determined. The visual field is the field in which the
user can immediately interact but does not interact directly with it. The viewing angle determines
what the user sees. The mobile device keeps track of information about the user with sensors, like
the front-facing camera, accelerometer and gyroscope to detect the presence, proximity and viewing
angle of the user. All processing is done on the mobile device. The mobile device knows by means of
the MPD file all the information about the videos it can receive.
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Figure 3.10: Proximity of the user to the mobile device screen

The mobile device decides on the basis of the perceived information from the sensors which quality
or which video segments must be downloaded. For example, when the sun is shining on the screen
and the sensors detect that the user can not see much of the video because of the reflection of the
sun, the quality of the video can be reduced. Afterwards, when the sensors detect that the reflection
of the sun is gone, the quality can be upgraded. Other examples are when the user is sitting far away
from the mobile device or is not constantly looking at the screen. In such cases the mobile device
can stream the video at a low quality or possibly even stop streaming the video. This approach could
improve the usage of the mobile device. Large mobile devices have large screens that take up a lot
of capacity of the battery. With this approach we could extend the battery life, reduce the usage of
bandwith and improve the QoE of the users.

The sensors can detect, for example in scenarios where multiple videos are played in parallel on the
screen, which video(s) the user is watching. On the basis of this information, we can detect which
video(s) require(s) more bandwidth so that they might be streamed at a higher quality. The user can
see only a fraction of information projected on the screen, by this we can improve the QoE for the
users. For mobile devices with a small screen, this is not applicable because all the parts of the screen
fall in the user’s viewing angle. The fraction of the screen that the user is watching can be streamed
at higher quality and the other parts can be streamed at lower quality or not streamed at all. In this
way, the bandwidth consumption efficacy is improved.

We can relate this idea to our approach with a webpage or application where multiple videos are
played in parallel. Mobile devices with large screen will typically have more advantages than devices
with small screens. For this approach, we can use priority-based video streaming. When mobile
devices detect that the quality of the video can be reduced due to the information perceived by the
sensors, the priority of the stream can be reduced. This will result in less allocated bandwidth for the
stream and a lower quality of video. When the mobile device sensors detect that the quality must be
increased, the priority of the stream can be raised. This will cause the video quality to be better.

For mobile devices with small screens, there is a restriction, like said before, that the full screen falls
in the viewing angle of the user. With larger screen we can apply the viewing angle technique. The
videos, that fall in the viewing angle of the user, can have higher priority than the other ones. Our
approach to divide the bandwidth among the clients according to priorities is discussed in Section
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3.4.3. We divide the available bandwidth according to the priorities, expressed in percentages, to
the clients. The higher the percentage, the more bandwidth is allocated and the better the quality of
the video. For devices with small screens, we can apply other techniques with information perceived
from the sensors. Like when the sun is shining on the screen, we can decrease the priority for the
streams and when the screen is clearer, we can increase the priority of the streams. A prerequisite is
that the sensors should work well because on the basis of their information the quality will be higher
or lower.

3.4 Experimental evaluation

The performance of video multistreaming depends on the operation of a scheduler component. The
scheduler is responsible for deciding when to download a video segment for a video player. The
scheduler will first schedule as many video segments to download as the available bandwidth can
handle. When the buffer has enough segments cached, the player can start playing. Afterwards the
scheduler keeps scheduling one video segment to download per time interval corresponding with
the segment duration, measured in seconds. This scheduler is called a buffering/steady scheduler
[54]. So every segment duration, a video segment is downloaded. Therefore the buffer’s fill level
will not decrease. Aside from the scheduler, we will focus on bandwidth distribution logics for video
multistreaming. Let’s assume in our case that the available bandwidth is 250 000 bps and that we
have three video qualities as specified in Table 3.1.

Quality Needed bandwidth, measured in bits per second
1 45 652
2 89 283
3 131 087

Table 3.1: Example of three qualities of video with their bitrates

3.4.1 Equal distribution of bandwidth

A simple but good approach for a bandwidth distribution logic is to divide the available bandwidth
equally among the video players streaming on that moment. Normally the equation of the bandwidth
per stream is:

total bandwid th
amounto f videopla yerscur rent l yst reaming

The distribution logic must take the number of active video players into account. So when video
streams start playing or stop playing, the distribution logic must do the calculation again by consid-
ering the new amount of active streams. This approach is also applicable for video players pausing
the stream and resuming the stream. With this approach we have made a distribution logic for video
multistreaming. The implementation details are explained in Appendix D. In this section we want
to give an example of streaming with this distribution logic and show how the distribution logic will
react when video players start streaming. In Figure 3.11, the downloaded data for the first video
player is measured.
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Figure 3.11: Multistreaming with equal bandwidth distribution

We will now explain the graph in detail. In the graph, we see that the peaks are higher than the
bandwidth limit. This is because we did not limit the network speed on the network card. In our
example, we have two second segments. We simulate the amount of downloaded bits per segment
duration, in our case per two seconds. Because every peak will drop to 0 in each segment duration
interval, the bitrate per two seconds will not exceed the bandwidth limit. In a real-world situation,
the consumed bandwidth will stay below the bandwidth limit and the peaks will not drop to 0. Also,
please note that the size of the media segments can be slightly larger or smaller than the value
dictated by the bandwidth attribute defined in the MPD file. This is because the target bitrate is
averaged over the segment boundaries. Averaged, we get the target bitrate. The minimum buffer
time is expressed in video segments. Like Section 2.4 explained, this is the minimum amount of
data, expressed as a duration data type [12], that the client-side buffer must hold before playback is
allowed to commence. In our case the video segments have a duration of 2 seconds. The minimum
buffer time is 10 seconds. To buffer 10 seconds, we must download 5 video segments. The client
downloads one segment extra to make sure that the buffer keeps having 5 video segments stored
when playing.

• Quick start: In the quick start period, the intent is to download video segments of a lower
quality to fill the buffer as quickly as possible. Because we want to display a decent quality,
we have chosen to download not quality one but quality two when we start downloading. In
the graph we see that the bandwidth consumption is above 300 000 bps. Because the video
segments are two seconds long, the video player receives bandwidth for two seconds. Because
the video player gets bandwidth for two seconds, it must wait two seconds to request the next
video segment. That is the reason why the curve goes to zero after each peak. This gives us the
following equation:

allocated bandwidth per second * video segment duration (expressed in seconds)

So the video player gets 500 000 bps allocated (250 000 * 2). For that amount, the video player
can download two video segments in quality two. The bandwidth needed for the stream is 89
283 bps and the video segments have a duration of two seconds. So to download one segment,
we will need (89 283 * 2) = 178 566 bps. Because 89 283 bps is the bandwidth needed for
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a video segment of one second, we must multiply it by two for a two seconds video segment.
We have an available bandwidth of 500 000 bits per two seconds, so we can download two
video segments every 2 seconds. The consumed bandwidth is (178 566 * 2) = 357 132 bits,
like shown as the first peak in the graph.

• t0: After the quick start period, the buffer is filled with 6 video segments to start playing.
Because the video player plays the video segments after each other, we can download one
video segment when the currenlty playing video segment ends its playback to keep the buffer’s
fill state stable. After t0, we see that the bandwidth consumption peak drops below 300 000
bps. That is because we download one segment of quality three. The needed bandwidth for this
video segment is 262 174 bps. Because we have segments of two seconds, we must multiply
the needed bandwidth per second (131 087 bps) by two. We see that the peaks approximately
reach 262 174 bps in the graph.

• t1: At this time a second stream starts playing and downloading video segments. We see that
the allocated bandwidth for the first player drops to 250 000 bits per two seconds. 250 000
bps is calculated via:

(available bandwidth * segment duration) / amount of video players = (250 000 * 2 / 2)
= 250 000 bits per segment duration

We can see this in the graph: the curve will not go higher than 200 000 bps after t1. The
available bandwidth is no longer sufficient for quality three and therefore video segments of
quality two are downloaded.

• t2: At t2 a third stream starts playing. This again results in a drop in available bandwidth per
stream:

(available bandwidth * segment duration) / amount of video players = (250 000 * 2 / 3)
= 166 667 bits per segment duration

In this case we see that, after t3, the curve will not go higher than 100 00 bps. The quality is
also dropped because with 166 667 bits per segment duration video segments of quality two
can not be downloaded anymore. So now the video player downloads one segment of quality
one. The bandwidth needed for quality one is 45 652 bps. The video segments have a duration
of two seconds, so one video segment is maximum (45652 * 2) = 91 304 bits in size.

3.4.2 Changing bandwidth during streaming

Allocated bandwidth for every player can change when more video players start streaming or video
players stop streaming. The bandwidth capacity itself can change, which will also impact the amount
of bandwidth that is allocated to individual video players in a multistreaming context. Let’s assume
that the available bandwidth is equally distributed over the streaming video players, like in Section
3.4.1, and that the bandwidth capacity is variable. We will show an example for one video player in
Figure 3.12.
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Figure 3.12: Multistreaming with changing bandwidth and equal bandwidth distribution

In this figure we also have the quick start period and the time when the player starts playing = t0.
We will not explain these matters again because we have already explained them in the previous
example. We will explain the other times:

• t0 to t1: Steady state with quality two (see Section 3.4.1).

• t1: At this time, the bandwidth changes from 250 000 bps to 50 000 bps. Because the segment
duration is two seconds, the available bandwidth is also calculated for two seconds. The total
bandwidth the player has allocated is 100 000 bits per segment duration (50 000 * 2). For this
amount of bandwidth, we can download one video segment of quality one (45 652 bps). The
consumed bandwidth is 91 304 bps (45 652 * 2). We see that the peaks after t1 and before t2
are not higher than 100 000 bps.

• t2: The bandwidth changes from 50 000 bps to 125 000 bps at t2. We can download 250 000
bits per segment duration (125 000 * 2). For this amount of bandwidth, one video segment of
quality two is downloaded. The total consumed bandwidth for downloading one video segment
of quality two is 178 566 bps (89 283 * 2). We see in the graph that the peaks after t2 are not
higher than 250 000 bps.

3.4.3 Priority-based distribution of bandwidth

The last topic for video multistreaming we will discuss, is priority-driven distribution of bandwidth.
This distribution method gives priorities to streams, expressed in percentages. On the basis of the
priorities, it decides which amount of the available bandwidth every stream gets. The percentage per
stream determines the amount of allocated bandwidth for a stream, so 100% will give a video player
all the available bandwidth and 0% will give a video player no bandwidth at all. In our example,
we have given one video player 50% priority and the other two video players each 25% priority. In
Figure 3.13 the downloaded data for the high priority video player is shown. In this scenario a second
player will join on t1 and a third on t2.
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Figure 3.13: First example of multistreaming with priority-based bandwidth distribution

For the three times t0, t1 and t2, this gives us the following explanation:

• t0 to t1: Steady state with quality two (see Section 3.4.1).

• t1: At this time, the second video player starts streaming, so the allocated bandwidth per stream
is recalculated. Because the measured video player has a priority of 50%, the video player still
receives 125 000 bps. For this amount of bandwidth, the video player can download quality
two (89 283 bps). Because we have two second segments, the video player can consume two
seconds of it’s allocated bandwidth. The allocated bandwidth is 250 000 bits per segment
duration (125 000 bps * 2). The bandwidth needed for a two seconds video segment of quality
two is 178 566 bps (89 283 * 2). We see after t1 and before t2 that the peaks are not higher
than 200 000 bps.

• t2: A third video player starts streaming, the allocated bandwidth for the measured video player
does not change, because it has 50% priority. This means that the video player receives 50% of
the available bandwidth. The video player hance keeps downloading quality two of the video.

In the previous example we saw that the priority is high for the measured video player and that the
allocated bandwidth for that video player stays the same when the third stream becomes active at
time t2. Now we will investigate a second scenario. We will give video player one 25% priority, video
player two 50% and video player three 25%. The downloaded data over time for video player one is
shown in Figure 3.14.
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Figure 3.14: Second example of multistreaming with priority-based bandwidth distribution

We will now explain t1 and t2.

• t1: The second video player starts streaming. The second video player has a priority of 50%,
so that video player receives 125 000 bps of the available bandwidth. Video player one has a
priority of 25%, but because there is not any other streaming video player, this video player
will also receive 50% of the available bandwidth. So the allocated bandwidth for video player
one is 125 000 bps. With 125 000 bps, the video player can download quality two of the video.
The consumed bandwidth for one video segment of quality two is 178 566 (89 283 * 2). We
see that the peaks are not higher than 200 000 bps after t1 and before t2.

• t2: At this time, video player three starts streaming. Because video player two has a priority
of 50%, it receives 125 000 bps of the available bandwidth. Video player one has a priority of
25%, so it receives 62 500 bps and this is also the case for video player three. With 62 500 bps
allocated, video player one can download quality one of the video (45 652 bps). The consumed
bandwidth is also the needed bandwidth for quality one multiplied by two, so the value is 91
304 bits per segment duration (2 * 45 652).

Our implementation differs slightly from the presented results. The difference lies in the case when
video players start streaming. In the previous example, videoplayer one got 50% of the total band-
width and when video player two started streaming, this one got also 50% of the total bandwidth,
even though the latter had only 25% priority. To make this more dynamic, we have implemented
a logic that will give the actively watched video players twice the priority of the inactively watched
video players. Like said in previous sections, with active we mean that players are directly watched
while inactive players play video on the background. So in this case when video player one is playing
and video player two starts playing, video player one gets 66,66% priority and video player two gets
33,33% priority. When video player three starts playing, video player one gets 50% priority, video
player two and three get each 25% priority. The implementation of this logic is discussed in Appendix
E. We did not generate any graphs of the final implementation because these will be similair to the
results in this section.

For videos that are played in parrallel, like is the case in ODV tiled streaming, the equal distribution
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of bandwidth among videos can apply in a simple case. This approach however is not used much for
ODV tiled streaming because the relative importance of the tiles can differ greatly from each other.
We therefore have taken other approaches for ODV tiled streaming. Please read Section 4.6 for more
information.

For example, in scenarios where users have multiple videos playing in parrellel in different tabs of
the web browser, the priority distribution of bandwidth can apply. Because only one set of video
streams can be watched at the same time with tabs in the web browser, the other video players are
not watched. So the video streams that are watched actively, get the highest priority. When the user
switches between tabs, the users gets a lower quality image of the video to see because the video had
a lower priority before. When the distribution logic for priority distribution of bandwidth determines
the change between tabs, the active video player get more bandwidth and the quality is upgraded
after some time.

3.4.4 Rate adaptation for adaptive HTTP streaming

A problem with streaming media with MPEG-DASH is that the quality of the video can change quickly
due to changing bandwidth. Therefore current video players have different approaches for streaming
video, they use different rate-adaptation algorithms. Rate-adaptation means that the speed of data
transfer is adjusted in order to ensure the integrity of the datastream, matching the conditions of
the medium where the datastream is transferred over [19]. Therefore the rate-adaptation algorithm
determines the quality of the video that is played. The algorithm takes the available bandwidth into
account when determining the quality.

A simple approach for the rate-adaptation algorithm ensures that the quality changes when the avail-
able bandwidth is not suffucient to stream the currently playing quality of the video. In this case
when the available bandwidth is lower the bitrate for the quality of the video that is currently play-
ing, the quality is reduced. The quality of the video that is selected, is the quality with the bitrate that
is lower than or equal to the available bandwidth. This approach ensures that the client-side buffer
will not underrun because the available bandwidth is enough to download the quality of the video.

The available bandwidth of a computer connected to a network can change over time, caused by
a lot of things. For example, computers joining or leaving the network, applications consuming
non-constant amounts of bandwidth, etcetera. In our case the available bandwidth for a client device
changes when the user is watching more or less videos in parallel. Two popular video players, namely
the Smooth Streaming player of Microsoft and the Nextflix player are discussed. We will investigate
their rate-adaptation algorithms and describe their mode of operation. We explain how they react
to positive and negative bandwidth changes. The following explanations are made with help of the
evaluation of rate-adaptation algorithms paper [54]. This is a paper from 2011, so there is a chance
that the results are not completely representive any more.

3.4.4.1 Smooth Streaming player

The Smooth Streaming player of Microsoft [34] is a popular player for audio and video content.
Smooth Streaming is another approach of HAS like MPEG-DASH but it is vendor specific. It uses a
Silverlight application on the client for dynamic bitrate switching. So the algorithm for switching
between qualities of the video is vendor specific. Like MPEG-DASH, it also uses a manifest file which
includes information about the segments, like the codecs used, which bitrates and resolutions are
available, a list of the available chunks and their start times and duration, etcetera. The big different
with MPEG-DASH lies in the manner in which chunks, in our case segments, are stored on the server.
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With MPEG-DASH, the individual media segments are stored on the server and these can be requested
directly by the client. Smooth streaming uses a different approach, it uses two formats, namely the
wire format and the disk format [20]. The video is stored in full length on the hard drive of the server.
The contiguous file is sent in a series of chunks to the clients. The wire format defines the structure of
the chunks that are sent to the clients and the disk format defines the structure of the contiguous file
on the hard drive. The server typically splits up the full video into fragments with one fragment per
video GoP. All the fragments are stored within a single contiguous MP4 file. The client can request
fragments by timecode instead of by index number. This will give the server more work because the
server must be able to translate URL requests into exact byte range offsets within the MP4 file [20].

The player operates in one of two states, namely buffering or steady-state. In buffering state the
player requests a new segment as soon as possible, so when the previous segment was downloaded.
That is why it is called the buffering state, it tries to fill the buffer as soon as possible to start or to
resume streaming. This is because the client-side buffer must store enough segments to avoid buffer
underruns and therefore avoid the video player to stall. In steady-state the video player requests one
segment per predefined time interval. Typically this interval equals the segment duration, measured
in seconds. So in buffering state, the player tries to build up a target playback buffer as soon as
possible and in steady-state it tries to maintain a constant fill level for the playback buffer.

The time when the steady-state starts, depends on the available bandwidth. The video player starts
with the buffering state and when it has buffered enough data, it switches to the steady-state. So if the
amount of available bandwidth is high, the buffering state is completed quickly and the steady-state
can begin. When the buffer deflates as a result of decreasing bandwidth, the player switches back
to buffering state until the constant fill level is reached again. The fill level of the playback buffer is
measured in seconds. For this player, the playback buffer is 30 seconds, which is a long time. First
of all the steady-state is reached when 30 seconds of video segments are buffered, this will delay the
initial play time of the video. This is because the video player only starts playing when the steady-
state is reached. When the buffer underruns, the video player stalls. When the video player stalls
during the stream, the player fills the buffer until the playback buffer has reached a total duration
of 30 seconds. If the buffer is totally deflated, it takes longer time to refill the buffer and the video
player will stall a longer time, this will lower the QoE of the users.

The previous case assumes unlimited bandwidth availability. We now investigate the player for sce-
narios where the bandwidth is restricted and changes frequently. In Figure 3.15 the playback buffer
size in seconds is shown under restricted bandwidth variations.
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Figure 3.15: Microsoft Smooth Streaming: Playback buffer size in seconds with long bandwidth
decreases [54]

To explain this graph, we assume that the video is encoded with eight bitrates between 0.35 Mbps
and 2.75 Mbps. Let’s assume that t stands for the time. From t= 0 to t= 40, the player is in buffering
state. At t = 73 the player is in steady-state. At the same time, the available bandwidth is dropped to
2 Mbps, the player switches from the highest quality (bitrate = 2.75 Mbps) to a quality lower (bitrate
= 1.52 Mpbs) after 25 seconds of delay. We see that the playback buffer decreases by 3 seconds,
this is because the available bandwidth is not much lower than the bitrate necessary for the highest
quality (2 Mpbs < 2.75 Mpbs). After 25 seconds the player downloads a lower quality with bitrate
of 1.52 Mpbs. So at approximately t = 100, the player switches from steady-state to buffering state.
When the buffer again holds 30 seconds of playback time, the player switches from buffering state
to steady-state, this is at approximately t = 120. The large reaction delay of 25 seconds ensures
that the player does not react to bandwidth changes based on the latest per-fragment throughput
measurements. It averages the per-fragment measurements over a longer time period. By this way,
it can act based on a smoother estimate of the available bandwidth variations. The QoE of the users
will be high in this case because when the bandwidth increases again within 25 seconds, the quality
is not reduced.

Let’s assume in the next scenario that the bandwidth increases for a short period. Take the next graph
as an example of a bandwidth increase for a short period.
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Figure 3.16: Microsoft Smooth streaming: Playback buffer size in seconds with short bandwidth
increases [54]

In Figure 3.16, we see that when the bandwidth increases for a short period, the quality is not in-
creased, like at t= 70, t= 140 and t= 320 for example. When the duration of the bandwidth change
is longer, but still fairly short, like at t= 180, t= 380 and t= 500, we see that the quality is upgraded.
Therefore the QoE of the users will be low because the quality can change quickly.

We can conclude that this player works well in situations where the bandwidth decreases for a long
period. When the bandwidth increases for a short period, the video player will react aggressively. This
aggressive behavior will cause the quality of the video to change frequently when short bandwidth
changes occur. This will cause a lower QoE for the users.

3.4.4.2 Netflix player

The Netflix [35] player uses Microsoft Silverlight [33] for media representation and a different rate-
adaptation logic than the Microsoft Smooth Streaming player. The player starts playing after a time
period or when the buffer size reaches a certain size. When the buffer is deflated, the Netflix player
stops the playback and shows a message that the player is adjusting to a slower connection. After-
wards the player resumes when the certain buffer size is reached again.

Like the Microsoft Smooth Streaming player, the Netflix player will start in a buffering state and then
switches to a steady-state. In Figure 3.17, we see that the player changes the quality immediately
when the bandwidth reduces. In Figure 3.18, we see the reaction of the Netflix player with short
bandwidth increases.
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Figure 3.17: Netflix player behavior with long bandwidth decrease [54]

Figure 3.18: Netflix player behavior with short bandwidth increases [54]

We see in both figures that in the begin of the stream the player starts requesting bitrates above
the defined bitrates. We see this in Figure 3.17 at t=0 until approximately t=40 and in Figure 3.18
at t=0 until approximately t=30. This is because the player starts measuring the capacity of the
underlying path before it starts streaming. We see in both figures that the Nextflix player will react
aggressively to bandwidth changes. When the bandwidth changes for a long time period, the video
player will display the same quality for the whole period, this is a good thing about this video player.
For bandwidth changes with a short period, the player does not perform well. This is because the
video player will immediately change the quality. We also see that the larger the peaks are, the more
the quality changes. This will introduce many quality changes and lower the QoE of the users.
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We can conclude that the Microsoft Smooth streaming player performs well in situations where the
bandwidth decreases for a longer period because it changes the quality only after 25 seconds. It
reacts more aggressively when the bandwidth increases, what will cause the quality to change. For
the Netflix player, we see it reacts aggressively for both negative and positive bandwidth changes.
So the Netflix player will perform well in situations where the bandwidth changes for a long period,
independent whether the bandwidth increases or decreases. The Netflix player however fails to cope
with bandwidth fluctuations of short duration, as in these cases it tends to switch the playback quality
to quickly. A better video player would wait a time period for modifying the quality in both cases
where the bandwidth decreases or increases. The video player can then act better on a smoother
estimate of the available bandwidth when the bandwidth increases or decreases and the quality is
not changing rapidly. A disadvantage of this approach is that the buffer can underrun, so the video
player must determine a good time period to wait for switching the quality whereby the buffer will
not underrun and the time is long enough to avoid rapidly changing the quality.
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Chapter 4

ODV Tiled Streaming with
MPEG-DASH

4.1 Definition

Before explaining what omni-directional video tiled streaming is, we discuss some necessary compo-
nents to fully understand the idea. ODV is like normal video but has some differences. ODV is a video
where the viewer can see 360 degree content, in contrast to normal video where only a particular
angle is displayed. Figure 4.1 shows a 360 degree video frame and Figure 4.2 shows only a part of
that frame.

Figure 4.1: ODV full frame

If we want to relate the two video types with each other, we say that Figure 4.1 is referred to as
the full video frame and that Figure 4.2 is the viewport. The resolution of the full video frame from
Figure 4.1 is 2400x800 pixels. The resolution influences the quality of the image, in this case there
are 2400 pixels horizontally and 800 pixels vertically. More pixels yield higher image sharpness. The
reason for selecting a part of the full video frame is that we humans can only look at a certain angle
what is in front of us. We can not see 360 degree around us. That is why we pick a part out of the full
video frame to display, that is called the viewport. It is not the intention to show the full 360 degree
video to the users, only the spatially restricted viewport.
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Figure 4.2: ODV viewport

The viewport can be manipulated to make other parts of the full video frame visible. The full video
frame is captured with multiple cameras placed in a 360 degree position. When the frames are
captured, they overlap because the cameras are standing to closely to each other. We want the full
video frame with no overlapping subframes, which is solved in software during the stitching process.
Figure 4.3 shows a 360 degree stand with 7 off-the-shelf GoPro [27] cameras as an example of an
ODV capturing solution.

Figure 4.3: 360 degree ODV camera stand involving 7 GoPro cameras

In this masterthesis, 16 video elements are made out of the full 360 degree video, these are called
tiles. Every part of the grid is a video and is streamed separately to the client. Every tile is a video and
has therefore its own parameters, like the necessary bandwidth and quality of streaming. The full
video frame is split into multiple video elements. Figure 4.4 shows the full video frame from Figure
4.1 divided into a 4x4 grid. The viewport from Figure 4.2 is hightlighted as a rectangle in the middle
of the full video frame in Figure 4.4. The viewport is the only part of the full video frame the viewer
can see.
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Figure 4.4: Full ODV frame tiled into a 4x4 grid with an inidication of the current viewport

ODV streaming could be used in multiple scenarios, like concerts, festivals, sport events, indoor nav-
igation, Oculus rift [37], 3D omnidirectional games, etcetera. To give the reader an idea, we will
show some examples. In Figure 4.5 an omni-directional image is shown of a music concert. In this
figure we see that the cameras are placed on the stage. The singer and the band are displayed at the
center of the video, they are the main parts of this video. Still, a part of the audience is included in
the captured footage as well. In Figure 4.6 a 360 degree image is shown of the interior of a museum.
The intention of this scenario is that the user can choose which path is selected through the museum
and the user can look around. In Figure 4.5 the cameras do not move, in Figure 4.6, the cameras
move.

Figure 4.5: Omni-directional view at a concert

53



Figure 4.6: 360 degree image of a museum

4.2 ODV tiled streaming using MPEG-DASH

We have chosen to spatially divide the full 360 degree video into tiles, like shown in Figure 4.4. An
alternative approach would be to stream the ODV frames integrally, without first subdividing them.
This latter approach leaves little room for optimizing the bandwidth consumption behavior of the
ODV stream, as it mandates that the integral ODV frame is streamed in a single, uniform quality.
With tiled video streaming, we can stream the important tiles at higher quality and the other tiles at
lower quality. Tiled streaming hence unlocks the opportunity to allocated bandwidth more efficiently
and effectively than it is in the case the 360 degree video is streamed as one video. Every tile is a
separate video and has its own parameters, like the spatial location in the full ODV frame, height,
width, necessary bandwidth, quality of streaming, etcetera. For every video, an MPD file is generated,
like Section 2.2 explained, this means that every tile can be streamed at different qualities.

All the content and MPD files are generated with FFMPEG and MP4Box as explained in Appendix
A, after which all the resulting files are stored on an HTTP server. Segments of a particular tile can
be requested by sending an HTTP GET request to the HTTP server. Like said in Section 2.4, all the
parameters are listed in the MPD file that are necessary to receive the video stream.

The amount of tiles for the full video frame is chosen when the video is encoded. In this master
thesis the full video frame is divided into 16 tiles with 4 rows and 4 columns. The amount of tiles
determines the performance of ODV streaming. Table 4.1 shows 2 scenarios we distinguish from this
idea.
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Low amount of tiles in full video
frame (scenario 1)

High amount of tiles in full video
frame (scenario 2)

Tile area large small
HTTP overhead low high
Flexibility low high
Granularity low high
Bandwidth efficiency low high
Processing (encoding, decoding) low high

Table 4.1: Comparison tiled streaming with low and high amounts of tiles in the full video frame

With a low amount of tiles in the full video frame, referred to as scenario 1 in Table 4.1, the tiles are
bigger because they take up more space in the full video frame. With a large amount of tiles, referred
to as scenario 2 in Table 4.1, the tiles are smaller because they take up less space in the full video
frame.

When we have less tiles in the video frame, like in scenario 1, the HTTP overhead will be lower than
in scenario 2. For every tile an HTTP request and response is sent for one segment. Every request and
response includes an HTTP header. In scenario 1, we have less tiles, so the overhead will be smaller
than in scenario 2.

There is more flexibility in scenario 2 than in scenario 1. Since in scenario 2 the tiles are smaller, we
get more flexibility in assigning qualities to tiles. When we have a small amount of tiles, larger areas
of the full video frame have the same quality. In scenario 2, we can assign specific qualities to more
tiles than in scenario 1.

Granularity in scenario 1 is lower than in scenario 2. Granularity is the extent to which level of detail
is present in the video frames [46]. When there are less tiles in the full video frame, there is less detail
in the image when the quality of the tiles is low. When we have more tiles in the full video frame,
we can better assign qualities to tiles because tiles are smaller. Therewith we can assign intermediate
qualities to smaller tiles instead of assigning low quality to larger tiles. So the quality is better with
more tiles in the full video frame and therefore the level of detail is higher.

Mapping larger tiles to the viewport can ensure that relatively large parts of the tiles fall out of the
viewport. This will waste bandwidth because the part of the tile that falls out of the viewport is
streamed in the same quality than the part that falls in the viewport. In Figure 4.7, we see the full
video frame divided into a 4x4 grid and in Figure 4.8, we see the same video frame divided into a
2 x 2 grid. The viewport is denoted by the rectangle in the middle of the full video frame and the
unvisible parts of the viewport tiles are denoted in green.
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Figure 4.7: ODV full frame divided into a 4x4 grid with indication of the current viewport and un-
visible parts

Figure 4.8: ODV full frame divided into a 2x2 grid with indication of the current viewport and un-
visible parts

We see in Figure 4.7, with smaller tiles, that the unvisible parts of the viewport tiles are smaller than
in Figure 4.8. Because we want the viewport tiles to stream at a higher quality, the unvisible parts
will also be streamed at higher quality. If we have larger tiles, more bandwidth is needed for the
whole tile to stream at high quality. This will result in wasted bandwidth if the user is not panning
to the unvisible parts.

In scenario 2 there is more processing power needed than in scenario 1. Because we have more tiles,
more data headers must be prepared and more data has to be sent. The client also must place the
tiles on the right position. When there are more tiles, the client must determine more positions for
the received video segments.

The standard maximum header size of the last version of Apache Tomcat 8 [21], which is also appli-
cable for Apache web server, is defined by the parameter maxHTTPHeaderSize. The default value
of this parameter for a request or response is 8 KB. For other webservers this value can vary. So the
total size of HTTP header overhead in the worse case is defined with the following formula:

(AMOUN TREQU ESTS + AMOUN TRESPONSES) ∗MAX HT T PHEADERSI Z E

Typically, the HTTP overhead will be small in comparison with the media payload size.
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4.3 ODV Viewport Manipulation

In our implementation, the client can change the viewport by using mouse interactions. In our ODV
viewer the mouse can be used to pan by dragging it while clicking and holding the left mouse button.
The mouse can be used for zooming in and out by using the scroll wheel. Within this implementation,
the screen is automatically updated in response to whichever movement is performed. Figure 4.9 [59]
shows the different viewport interactions that are considered in this master thesis.

Figure 4.9: ODV viewport manipulation

Scaling down the video occurs when the zoom level is increased, namely when the user scrolls up
with the mouse. The video can be scaled up by scrolling down with the mouse. It speaks for itself
that zooming in can reduce the amount of tiles in the viewport and that zooming out can increase
the amount of tiles in the viewport. When panning, the viewport is moved to another part of the full
video frame. In this process, the visible tiles can also change.

The intent of the viewport is that the video(s) in the viewport are streamed at high quality because
the user is directly interacting with these tiles of the video. But the question that arises then is what
will happen when the viewport changes? To give an answer to this question, we will explain it for
the two scenarios in Figure 4.9.

First we must know the coordinates of all the tiles, where they are placed in the full video frame.
This is supported by an extension of MPEG-DASH, called spatial relationship description. Please read
Section 4.4 to get more information about that.

With panning and scaling of the video, the visible tiles can change. Suppose in this scenario that
the visible tiles will change, so that the viewport includes other tiles when panning or scaling up
the viewport than before the interaction occurred. The visible tiles can be a subset of the tiles in
the viewport before the interaction occurred but can also be totally new tiles. To provide a good
experience to the user, the quality upgrade for the new tiles in the viewport must occur fast when
the quality is intended to change. The only part of the 360 degree video that the user sees, is the
viewport. So it is necessary to stream the tiles of the viewport at high quality. The other tiles are
streamed at a lower quality. This is for immediately showing an image when the user pans and for
saving bandwidth for the tiles in the viewport.

Every tile of the video has a buffer which stores all the video segments to play for that video element.
Like said in Section 2.3, the MPD syntax includes a segment duration attribute. This duration
attribute implies the duration of every segment expressed in seconds. In our experiments the duration
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is set to either 1 or 2 seconds, so every video segment has a playback time of 1 or 2 seconds. A video
consists of multiple video segments played sequentially.

The viewport can move quickly to other tiles when the user pans or scales the video quickly. The
more video segments are buffered, the longer it takes for quality changes to become apparent. If we
buffer a large amount of video segments at low quality for all the other tiles around the viewport, the
playback of these segments must end before other video segments of a higher quality are played. In
Figure 4.10 an example with a buffer playback time of 6 seconds is shown.

Figure 4.10: Time line which indicates the passed time to change the quality of the video

In this example, the viewport is changed in the begin of the video (playback time = 0 seconds) and
the quality of the video is the lowest (quality 1). It will take 6 seconds to change the quality to quality
two because 6 seconds of playback is cached in the buffer of quality one when the viewport changes.

If we choose to replace the old video segments with higher quality video segments, we must wait
for the new segments to be downloaded and rebuffering can be necessary. The lower quality video
segments or a part of the lower quality video segments are downloaded in vain because we replace
them with the new segments of higher quality. This approach is hence bandwidth inefficient.

If we buffer high quality video segments for the tiles that are not in the viewport, the bandwidth is
wasted if these tiles will not be displayed. A different approach is to predict the movement of the
user from previously captured movements; this topic is however not in the scope of this master thesis.
So the amount of buffered video segments will determine how fast the quality change occurs for the
tiles in the viewport when the tiles in the viewport change.

This reasoning is used for pannable and scaled up video. With both scenarios the tiles in the viewport
can change. When the viewport changes, we determine its new location within the ODV frame. With
this information, we know which tiles are included in the new viewport, so we know for which tiles
we want to download higher quality video segments. Like said before, the quality change only occurs
when the playback of the lower quality video segments that are already stored in the client-side buffer
for the involved tils ends.

So we have one approach for panning and scaling up the video. This approach is also applicable to
a combination of pannable and scaled up video. For scaled down video, the amount of tiles in the
viewport can only drop. Therefore the tiles that fall out of the viewport by scaling down the video are
streamed at low quality instead of at high quality. No other changes occur when the video is scaled
down.

4.4 MPEG-DASH Spatial Relationship Description (SRD)

SRD stands for spatial relationship description. A spatial relation specifies how some object is located
in space in relation to some reference object. The reference object in this case is the left upper corner
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of the full video frame with coordinates (0,0). The first 0 stands for the start position in the horizontal
direction and the second 0 stands for the start position in the vertical direction. In Figure 4.11 the
used coordinate system is marked on the full video frame.

Figure 4.11: ODV coordinate system

MPEG has made an extension on their MPEG-DASH standard, named SRD [18]. Besides the tiled
streaming use case, SRD also supports zoomable video. The start x, start y, width and height, mea-
sured in pixels, can be defined in the MPD file by some extra parameters. The following is an example
of an MPD file with the SRD included.

<?xml ve r s ion = "1.0" encoding="UTF−8"?>
<MPD
xmlns="urn :mpeg : dash : schema :mpd:2011"
type=" s t a t i c "
mediaPresentat ionDurat ion="PT10S "
minBufferTime="PT1S "
p r o f i l e s="urn :mpeg : dash : p r o f i l e : i s o f f −on−demand:2011">

<ProgramInformation>
<T i t l e>Example of a DASH Media Pre sen ta t i on Desc r i p t i on
using S p a t i a l R e l a t i o n s h ip s Des c r i p t i on to i n d i c a t e
t i l e s of a video</T i t l e>

</ProgramInformation>

<Period>
<!−− Main Video −−>
<Adaptat ionSet segmentAlignment=" t rue "
subsegmentAlignment=" t rue " subsegmentStartsWithSAP="1">

<Role schemeIdUri="urn :mpeg : dash : r o l e :2011"
value="main"/>

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0,0,0,1280,720,1280,720"/>

<Representa t ion mimeType=" v ideo /mp4"
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codecs="avc1 .42 c01e " width="1280" he ight="720"
bandwidth="226597" startWithSAP="1">

<SegmentBase>
<BaseURL> f u l l _ v i d e o _ s m a l l .mp4</BaseURL>

</SegmentBase>
<SegmentList>

. . .
</SegmentList>

</Representat ion>
</Adaptat ionSet>

<!−− T i l e 1 −−>
<Adaptat ionSet segmentAlignment=" t rue "
subsegmentAlignment=" t rue " subsegmentStartsWithSAP="1">

<Role schemeIdUri="urn :mpeg : dash : r o l e :2011"
value=" supplementary "/>

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0,0,0,640,360,1280,720"/>

<Representa t ion mimeType=" v ideo /mp4"
codecs="avc1 .42 c00d " width="640" he ight="360"
bandwidth="218284" startWithSAP="1">

<SegmentBase>
<BaseURL> t i l e 1 _ v i d e o _ s m a l l .mp4</BaseURL>

</SegmentBase>
<SegmentList>

. . .
</SegmentList>

</Representat ion>
</Adaptat ionSet>

<!−− T i l e 2 −−>
<Adaptat ionSet segmentAlignment=" t rue "
subsegmentAlignment=" t rue " subsegmentStartsWithSAP="1">

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0,640,0,640,360,1280,720/>

. . .
</Adaptat ionSet>

<!−− T i l e 3 −−>
<Adaptat ionSet segmentAlignment=" t rue "
subsegmentAlignment=" t rue " subsegmentStartsWithSAP="1">

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0,0,360,640,360,1280,720"/>

. . .
</Adaptat ionSet>
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<!−− T i l e 4 −−>
<Adaptat ionSet segmentAlignment=" t rue "
subsegmentAlignment=" t rue " subsegmentStartsWithSAP="1">

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0,640,360,640,360,1280,720"/>

. . .
</Adaptat ionSet>

</Period>
</MPD>

The important element in this MPD file is the SupplementalProperty where the value attribute
defines the SRD. The format of SupplementalProperty is:

<SupplementalProperty schemeIdUri="uri" value="source_id, x, y, w, h, W, H/>

The source_id is a decimal number providing the identifier for the source of the content. The id is
used to know which tiles belong to which reference video. The x is the decimal number that expresses
the horizontal position of the top-left corner of the spatial object and y stands for the decimal number
providing the vertical position of the top-left corner of the spatial object. The attributes w and h stand
for the width and height of the spatial object, expressed as decimal numbers. W and H attributes are
optional, they express the width and height of the reference space, in our case the full video frame.
The commands in XML are embedded in the AdaptationSet scope. For the given MPD, this gives
us the following interpretation:

• For the main video, annotated with <!– Main Video –> comment in the MPD, in our case the
full video frame, the value attribute is value="0,0,0,1280,720,1280,720"

– The first 0 stands for source_id

– The next 2 values (0,0) stand for the horizontal and vertical positions in the reference
space; in this case the main video frame starts at the top-left corner.

– The following pair (1280,720) expresses the width and height of the video frame. The
width of the video frame is 1280 pixels and the height of the video frame is 720 pixels.

– The last pair (1280,720) stands for the width and height of the reference space. In this ex-
ample, the reference space equals the full video frame. These cooridnates hence express,
like the previous values, the width and height of the full video frame.

We will now explain the values for the first tile; the same reasoning is also applicable to the other
tiles defined in the MPD file.

• For the first tile (<!– Tile 1 –>), the value attribute is value="0,0,0,640,360,1280,720"

– The first 0 stands for source_id, this is the same as the main video.

– The next 2 values 0 and 0 stand for the horizontal and vertical position. In this case 0
in the horizontal direction and 0 in the vertical direction, so this tile starts at the top-left
corner of the reference space.
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– The following pair (640, 360) expresses the width and height of the tile, so the width is
640 pixels and the height is 360 pixels.

– The last pair (1280, 720) stands for the width and the height of the full video frame, the
width is 1280 pixels and the height is 720 pixels.

So for the scenario described in the MPD shown above, Figure 4.12 shows the setup.

Figure 4.12: Full video frame composed of 4 tiles with a width of 640 pixels and a height of 360
pixels

The zoomable feature of SRD allows the user to see high resolution frames of the video while zooming.
An example based on the previous MPD is shown next.

<?xml ve r s ion = "1.0" encoding="UTF−8"?>
<MPD
xmlns="urn :mpeg : dash : schema :mpd:2011"
type=" s t a t i c "
mediaPresentat ionDurat ion="PT10S "
minBufferTime="PT1S "
p r o f i l e s="urn :mpeg : dash : p r o f i l e : i s o f f −on−demand:2011">

<ProgramInformation>
<T i t l e>Example of a DASH Media Pre sen ta t i on Desc r i p t i on using S p a t i a l
R e l a t i o n s h i p s Des c r i p t i on to i n d i c a t e tha t a video i s a zoomed par t of
another</T i t l e>

</ProgramInformation>

<Period>
<!−− Panorama Video −−>
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<Adaptat ionSet segmentAlignment=" t rue " subsegmentAlignment=" t rue "
subsegmentStartsWithSAP="1">

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0, 0, 0, 1920, 1080, 1920, 1080"/>

<Representa t ion id="1" bandwidth="5000000" width="1920"
he ight="1080" . . . >

<SegmentBase>
<BaseURL> panorama_video .mp4</BaseURL>

</SegmentBase>
<SegmentList>

. . .
</SegmentList>

</Representat ion>
</Adaptat ionSet>

<!−− Zoomed Video −−>
<Adaptat ionSet segmentAlignment=" t rue " sfubsegmentAlignment=" t rue "
subsegmentStartsWithSAP="1">

<SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014"

value="0, 960, 540, 1920, 1080, 3840, 2160"/>

<Representa t ion id="2" bandwidth="5000000" width="1920"
he ight="1080" . . . >

<SegmentBase>
<BaseURL> zoomed_video .mp4</BaseURL>

</SegmentBase>
<SegmentList>

. . .
</SegmentList>

</Representat ion>
</Adaptat ionSet>

</Period>
</MPD>

In this example, we discuss the first tile which is annotated by the "<!– Zoomed Video –>" XML
comment. We see in the example the important element that differs from the previous example is the
value attribute of the SupplementalProperty parameter. The SupplementalProperty of the
panaorama video, annotated by the "<!— Panorama Video –>" XML comment, shows that the full
video’s resolution is 1920x1080 pixels.

We see that the resolution of the zoomed video is 1920x1080 pixels by the width and height
attributes of the Representation parameter. The zoomed video, annotated by the "<!– Zoomed
Video –>" XML comment has a different reference space than the panorama video. We can see this in
the last two parameters of the SupplementalProperty of the zoomed video. We can see that the
zoomed video is positioned at 960 pixels horizontal and 540 pixel vertically in the reference space.
The zoomed video has a resolution of 1920x1080 pixels. The setup of this MPD file is shown in Figure
4.13.
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Figure 4.13: Panorama video and zoomed video [58]

4.5 Related work

In this section we will discuss related work to ODV tiled streaming. We will explain every approach
and relate it to our approach.

4.5.1 Mixing tile resolutions in tiled video

In networks where multiple clients are watching the same tiled video, reducing duplicative transmis-
sions of content is important. In such scenarios when the clients are watching the tiles of the video at
different qualities, the different qualities are streamed separately to the clients. By mixing resolutions
of the tiles to one resolution, we can reduce the transmissions of content. A server in the network
can cache the video of the tile, which multiple users are watching, before sending it to the clients.
The dupiclative transmissions are reduced with this approach because one version of the video is only
transferred to the cache server. The cache server, that is placed in the same network as the clients,
sends the cached version of the tile video to the clients. Figure 4.14 shows an normal situation where
multiple copies of the video are sent to the clients.
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Figure 4.14: Multiple transmissions of the same video with intial qualities[78]

In Figure 4.14 we see that there are five qualities of the video. Quality three, four and five are sent
to three different clients. We see that the video streamed at quality three includes 8 tiles, quality four
includes 6 tiles and quality five includes 4 tiles. In the figure we see that there are overlapping tiles,
referred to with the ’3,4’ and ’4,5’ marks. A solution for this is to stream the overlapping tiles at one
uniform quality to the clients. In this way a cache server can cache the uniform quality of the video
for the overlapping tiles. The uniform quality can be selected using a variety of divergent strategies.
The first approach taken for this is to stream the highest quality among all requests. In Figure 4.15
this approach is shown.

Figure 4.15: Reduced transmissions of the same video with best qualities [78]

The tiles with quality three, that overlap with tiles with quality four, are changed to quality four
because this is the best quality. The same is true for the overlapping tiles with quality four and five
where quality five is chosen. Another approach that reduces bandwidth, is to stream the unpopular
tiles at lower quality. This approach is shown in Figure 4.16.
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Figure 4.16: Multiple transmissions of the same video with lower quality for unpopular tiles[78]

This approach could save bandwidth because higher quality video is bigger in size than lower quality
video. A disadvantage of this approach is that the QoE of the client can be lower because the transition
between high and low quality tiles can be more noticeable. In our approach, we focus on the QoE of
the clients. We developed our distribution algorithms to improve the QoE for the client by upgrading
the quality of the viewport. With our idea of thinking, multiple copies of the overlapping tiles are
sent to the clients. In the just described approach, the viewport is not taken into account which could
reduce the QoE of the clients. A combination is possible of this approach and our approach where the
highest possible quality for overlapping tiles in the viewport can be streamed to the clients by using
a cache server. This would require that the other tiles are also streamed at a higher quality because
otherwise the transition of quality is more noticeable. This approach would only work if multiple
clients are watching the video and some or all tiles of the viewport overlap with viewport tiles of
other clients.

The athors of [78] did some tests with participants for different videos and different resolutions.
They decide to randomly mixing tiles with different resolutions with each other. Figure 4.17 shows
the cummulative distribution function (CDF) of the acceptance scores of the particpants. These scores
resprent a number from 0 to 1 of how acceptable the video is for the users. A higher score means that
the video is more accepted. The pairs of numbers on the x asis are represented in the format (RH , RL).
The RH and RL are the levels or resolutions combined with each other. The levels of resolutions are
shown in Figure 4.18.
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Figure 4.17: CDF distribution function of quality acceptance score when mixing multiple tile resolu-
tions [78]

Figure 4.18: Different levels of resolutions used in measuring the acceptance score by mixing different
resolutions of tiled videos [78]

We can see in Figure 4.17 that resolution 5 is mixed by resolution 1, 2, 3, 4 and 5 respectively. In
the next figure, we see the videos that are used for the tests. They included videos with low, medium
and high amount of movements (motion) to do the test.

In Figure 4.17, we see that with little movement the video is always accepted. So when the resolution
is low or high, the video is accepted by the user. We see that when there is more movement in the
video, the video acceptance value is lower. The more movement in the video, the lower the acceptance
score is when low and high resolution tile videos are mixed. In this case if the resolution is larger,
the acceptance score will also be larger. This idea of thinking can be used in our approach. When
there is little movement in the video, the tile videos can be streamed at low quality . When there
is more movement in the video, the tile videos can be streamed at higher quality. This can be an
approach to make a distribution logic for it that checks if there is little or a lot of movement in the
video. On the basis of the movement, the distribution logic can assign the available bandwidth to
the tiles. With more movement, the distribution logic could allocate more bandwidth to the viewport
tiles and with less movement it could allocate less bandwidth to the viewport tiles. This would reduce
the bandwidth consumption in the network and assure that the viewers are satisfied.
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Figure 4.19: Dense motion, medium motion and little movement video used for measuring the ac-
ceptance score by mixing different resolutions of tiled videos [78]

4.5.2 Video streams based on user access patern

In scenarios where multiple clients are streaming tiled video in a fixed scene, parts of the tiles can fall
out of the viewport. This would waste bandwidth for the unvisible parts of the tiles. In figure 4.20
an example is given. On the right side of the figure, the RoI or in our case the viewport is marked by
the rectangle.

Figure 4.20: Multiple transmissions of the same video with best qualities[68]

We see on the right side of the figure that there are parts of the tiles that fall out of the viewport.
These parts are streamed to the client because they are part of the viewport. To reduce this overhead,
a server could store the specific coordinates of the viewport the user is watching and tile the video
dynamically to match the coordinates. This would require a lot of processing power of the server
because when multiple clients are requesting data, the server is heavily loaded. Another disadvantage
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is that the client must first send the coordinates to the server. After receiving the coordinates, the
server must process the request. This will delay the delivery of the content and therefore the QoE of
the user is lower. An approach to solve this is to log the user selections of the viewport. In Figure
4.21 this approach is shown.

Figure 4.21: User access patterns of viewed parts of the video[68]

This approach would require the client to log the coordinates of the viewport every time the viewport
changes. This consumes more network traffic and when the user starts streaming, this approach
would not work optimally due to no logs are received by the server. When more logs are received
the algorithms can better perform. The video is dynamically tiled according to the user’s behavior
with regard to viewport positioning. The tiles that are watched the most, referred as the red parts in
Figure 4.21, are streamed at higher quality. The other tiles that are watched, referred to as the other
colored parts, except the blue parts in Figure 4.21, are streamed at lower quality. Like said before, if
multiple clients are watching, the server must process every request and also store the logs of every
user. For every user a log file is kept by the server. Another disadvantage of this approach is that it
only works when the scene stays the same. When the scene changes to another perspective, the user
patterns can change also.

Bandwidth can be saved by not streaming parts that fall out of the viewport but it would require a lot
of processing power. In our approach we use small to medium sized tiles to stream tiled video. We
have chosen not to tile the video into a lot of tiles because this would also require more processing
power to encode and decode the tiles. With small to mediuim sized tiles, the overhead of parts falling
out of the viewport is minimal and it would not require a lot of processing power to play the videos.
In our approach, we consume slightly more bandwidth than this approach, but that is a trade-off we
made. An advantage of our approach is that we don not have a startup delay like this approach has.

4.5.3 Monolithic streaming of video

With monolithic streaming, the server transmits only the bits that are required for decoding of the
viewport. Monolithic streaming uses information about the macroblocks, which are used for encoding
and deconding of the video, to send the video parts of the viewport to the clients. Figure 4.21 shows
the process of monolithic streaming. j
The process exists of two phases, namely the pre-computation and the during run-time phase. The
pre-computation phase is done once before the video is streamed to the client. In the pre-computation
phase, the server analyzes the dependencies of the macroblocks of the video. Like shown in Figure
4.22 the server stores the dependencies in a tree structure. The macroblocks that are dependent of
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Figure 4.22: Monolithic streaming of video process [72]

other macroblocks are the child nodes of that macroblock in the tree structure. A child macroblock
is dependent on another parent macroblock if the bits of the parent macroblock are required to
decode the child macroblock. I, the second phase, referred to as the during run-time phase, the
sever determines which macroblocks are needed to stream the viewport. Only the macroblocks that
fall in the viewport and the macroblock on which they depend are sent to the clients. In this way
only the necessary bits for decoding the video of the viewport are sent by the server to the clients.

A prerequisite of this approach is that the client needs a robust video decoder because not all bits
from the original video are sent or regions outside the viewport are not fully decoded because they
are not needed to decode the macroblocks that fall in viewport. Bits that fall outside the viewport are
transmitted to the client, but unlike tiled streaming, these contribute to the decoding of the viewport
due to dependencies [72]. Nevertheless, the bits outside the viewport provide overhead because they
must be transferred to decode the viewport. We can minimize this by reducing the dependencies
between macroblocks. The dependencies can be reduced by encoding the video with more I-frames.
I-frames are typically larger than P or B-frames, so the challenge in this is to detect a good balance
between the amount of I-frames and the dependencies of the macroblocks.

We used tiled video streaming for our implementation. In our case, there are parts that fall out of
the viewport. These parts are invisible and bandwidth is wasted for them. We solved this by tiling
the video into an acceptable amount of tiles. The size of the tiles determines how many tiles are
streamed to the client because larger tiles take more place within the full video frame. Like Section
4.2 explained, we have chosen to use little to medium sized tiles because more tiles introduce more
encoding and decoding and with less tiles bandwidth is wasted because large parts of the video
are invisible when the user does not pan to those parts. With monolithic streaming, the server has
more processing work because during the stream it must check which macroblocks are needed to
decode the viewport. This approach will also introduce some overhead because the client must send
the coordinates of its viewport. In our approach the client decides which tiles are streamed and no
coordinate information is transferred to the server. A counterbalance of this is that only the needed
bits to decode the viewport are sent to the client with monolithic streaming.
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4.5.4 Tiled video for video conferencing

Videoconferencing applications, like Skype [40], allow multiple people to particpate in a video con-
ference. The people particpating in the video conference are not always sitting nearby the camera
that captures the images. This will result in different sizes of people in the video and will not create
an immerse video conferencing impression. In this section, we describe a solution that is used for
video conferencing within a fixed environment. With a fixed environment we mean an environment
that does not change after some time, the people stay in the same room, building, etcetera.

Figure 4.23: Scaled people participating in a video conference [61]

In Figure 4.23, the three people participating in the video conference are scalled to a uniform size. By
this way, there is an immerse video conferencing impression created. A combination of face detection,
tracking and audio analysis is used to process the input video of the camera. Each person is extracted
out of the video and scaled. Afterwards the people are placed side by side, like in Figure 4.23 on the
right hand side. This video is encoded in high resolution and sent to the MCU. The MCU is a device
that ensures that multiple terminals and gateways can particpate in a multipoint conference [48]. An
example where three streams of each three people participating in the video conference is shown in
Figure 4.24.

Figure 4.24: Multiple streams of scaled people participating in a video conference [61]

The three videos are encoded and sent to the MCU, referred to as the Media Mixer in Figure 4.24.
The MCU decodes the received videos and decodes the videos of the last most active and relevant
people. Afterwards these videos are transferred to the cliens. In Figure 4.25 this is shown for the
example of Figure 4.24. The last most active people in the conference are E, B, C and I, in descending
order.
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Figure 4.25: Example where most active people are streamed to clients [61]

The clients in the video conference are not receiving the videos of the people they are streaming to
the MCU. For the upper client, the client is receiving video of participants E and I. Because B and C are
streamed from this client, they are not received from the MCU, this is also true for the other clients.
For this approach, the MCU would have a lot of processing work to do because it must decode all the
videos received by the clients and then select and encode the specific videos per client. A solution
exists by using HEVC [28]. HEVC is a new video compression standard that is developed by the Joint
Collaborative Team on Video Coding [30]. The standard allows the video to be encoded into smaller
bitrates at the same quality.

With HEVC, multiple encoded tile videos are sent in one playload to the MCU. HEVC adds headers to
the payload that contain information about the tile videos, like the start byte position in the payload
and the length of the tile’s content expressed in bytes. By this way, HEVC allows the MCU to take
parts out of the encoded video without decoding it. The MCU just needs to change the headers of
the encoded parts the client is interested in. The MCU does not need to decode and encode the tile
video, therefore the overhead of decoding and encoding video by the MCU is reduced. Please read
[61] for the full explanation.

In our approach we tile the video into tiles with a fixed size. By using HEVC codec in place of the
x264 codec, we could extend our implementation to this idea. This approach would be applicable for
video conferencing but also for other video streaming applications. This would also save bandwidth
because HEVC can encode the video at the same quality but at lower bitrates than the x264 [7]. If
the bandwidth consumption is reduced, the quality of the video can be streamed at a higher quality
and therefore the QoE of the users is also higher. HEVC is hence compatible by MPEG-DASH [16],
this makes a good combination of HAS and reduced bitrates of the video. In our case, HEVC can
introduce more processing from the client when multiple tiles are combined in one payload. The
client needs to known where every tile video in payload is located. Therefore the payload must be
iterated at least once. With our approach, this is not needed because the tile information is once
transferred to the client and the client request the content for one or more specific tiles. But the data
is received in separate responses and this would reduce the processing of the client. But If we want
to save bandwidth, HEVC is better to use because multiple tiles can be combined in one payload. So
for one request, multiple tiles can be transfered. With our approach the client needs to send for every
tile video segment a separately request. This would introduce extra bandwidth consumption due to
the request and response overhead.
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4.6 ODV tiled streaming approach

In this section we will discuss our approach for ODV tiled streaming. Because the full video frame
is divided into tiles, there are multiple video players, one per tile. We limit the number of buffered
video segments to one because we want the quality to change quickly when the viewport changes.
When all the video players have one video segment buffered, the current time of the video is set to
0. Afterwards the video players will be started to play at the same moment, this ensures that the
video players are synchronized with each other. We have chosen four video qualities for our ODV
tiled streaming experiments; the bitrates of these qualities are as follows:

• Quality 1: 50 000 bps (lowest quality)
• Quality 2: 130 000 bps
• Quality 3: 270 000 bps
• Quality 4: 400 000 bps (highest quality)

Because the user only sees the viewport, the bandwidth distribution logic must know which tiles are
in the viewport and which are not. On the basis of the start position, the height and width of the
viewport, the tiles that fall in the viewport can be known. We gave the tiles in the full video frame
an index number to refer to them. Figure 4.26 will show the index numbers for our example of the
full video frame. The pseudocode of the algorithm to detect which tiles are in the viewport is given
in Appendix F. The tiles are represented in layers, according to their spatial distance to the viewport.
The tiles in the viewport are referred to as layer 0, the tiles around the viewport to as layer 1, etcetera.
We have opted for a column based numbering approach, but a row based approach would also be
possible. To avoid confusion, we say that tiles with numbers 5, 6, 9 and 10 lie in the viewport for our
example.

Every tile in the full video frame is assigned a layer number. This number represents the distance
of the tile to the viewport. The tiles in the viewport are defined as layer 0, the tiles that border the
viewport are defined as layer 1. The tiles that border layer 1 are defined as layer 2, etcetera. In the
next sections we will discuss our bandwidth distribution algorithms for ODV tiled streaming.

Figure 4.26: Full ODV frame with index numbers for every tile

4.6.1 Simple bandwidth distribution logic

The simple bandwidth distribution logic ensures that the quality is the same for all the tiles in the full
video frame. It does not take tiles inclusion in the viewport into account when allocating bandwidth
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to the tiles. When the user pans in the full video frame, the same quality is shown before and after
panning. Figure 4.27 shows this visually, the green tiles are streamed at the same quality. The
pseudocode of this algorithm is given in Appendix H.

Figure 4.27: Full video frame with all the tiles with the same quality colored in green

4.6.2 Viewport only distribution logic

This distribution logic will only allocate bandwidth for the tiles that are in the viewport. The other
tiles that are not in the viewport do not get any bandwidth and therefore the video players will not
play. This distrubution logic ensures that the quality of video for the tiles in the viewport is the same
and as high as possible. In Figure 4.28 the idea behind this logic is shown.

Figure 4.28: Full video frame with viewport colored in red and all other tiles colored in gray

The red tiles with numbers 5, 6, 9 and 10 are streamed at the same quality, the other tiles in gray are
not streamed. When the user pans in the full video frame, the tiles that are in the new viewport are
played and the other stop playing. In Appendix I, the pseudocode is given for this distribution logic.

4.6.3 Viewport at highest quality distribution logic

With this distribution logic, Bandwidth is first allocated for quality one to all the tiles of the full
video frame, afterwards the tiles in the viewport are treated. The algorithm for this distribution logic
iterates through all the tiles of the viewport one by one. It starts by allocating bandwidth for the
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lowest quality for those tiles. There is no guarantee that the tiles in the viewport are streamed at the
same quality like in Section 4.6.2. In our case the algorithm starts with the tile with index number 5.
The algorithm tries to allocate bandwidth for quality one. If there is remaining bandwidth, it tries to
allocate bandwidth for quality one for tile with index number 6, 9 and 10. The tiles from the viewport
have a red color in Figure 4.29. After the first iteration, it continues with the same tiles for quality
two until the available bandwidth is totally consumed or until the highest quality for these four tiles
is selected. The remaining bandwidth is used to select one uniform quality for all the other tiles. So
the other tiles are not treated one by one, the algorithm selects one quality for all of them acording
to the bandwidth amount that remains available after considering the tiles that are included in the
viewport. If there is insufficient remaining bandwidth, these tiles are not streamed to the client. In
Figure 4.29 the green tiles are the tiles for which one uniform quality is selected. The pseudocode of
this distribution logic is given in Appendix J.

Figure 4.29: Full video frame with viewport colored in red and other tiles colored in green

4.6.4 Viewport at highest quality with lowest quality peripheral tiles

This distribution logic is similar to the previous distribution logic. It also treates the tiles in the
viewport one by one and selects one quality for the other tiles. The difference is that the tiles around
the viewport are streamed at the lowest quality if there is remaning bandwidth. The quality of those
tiles is never upgraded to a better quality. The pseudocode of this algorithm is discussed in Appendix
K.

4.6.5 Upgrade layer per layer distribution logic

Every layer of the full video frame is treated one by one with this distribution logic. The algorithm
for this distribution logic starts with allocating bandwidth for the lowest quality (quality one) to all
the tiles if there is enough available bandwidth. If there is not enough available bandwidth, none of
the tiles are streamed. If there is bandwidth remaining after this initial step, the algorithm continues
by treating layer per layer. It tries to allocate bandwidth for all the tiles in the first layer. It treats
all the tiles one by one like in the viewport with highest quality distribution logic. If there is enough
bandwidth after allocating bandwidth for the second lowest quality to all the tiles in the first layer, the
quality for tile with index number 5 is upgraded to quality three. When there is remaining bandwidth,
the other tiles from the viewport (tiles with index number 6, 9 and 10) are treated in the same way.
It continues this way until all the tiles of the first layer are streamed at the highest quality or until
there is no more available bandwidth. If there is available bandwidth, tiles of layer two are treated
the same way. The algorithm stops when all the layers are treated or when the available bandwidth

75



is totally consumed. In our case we only have two layers. In Figure 4.29, the red tiles are defined as
layer zero and the green tiles are defined as layer one, see the last paragraph of Section 4.6.1 for the
explanation about the layers. The implementation details are given in Appendix L.

4.6.6 Delta distribution logic

This last bandwidth distribution logic is the most complicated of the six logics. This logic performs
well with an high amount of tiles in the full video frame. Because with an high amount of tiles,
there are more layers in the full video frame. More layers in the video frame results in less quality
transition. The approach of this logic is that the quality difference between layers cannot be larger
than a predefined value, this value is denoted as delta. The algorithm for this distribution logic starts
with the highest possible quality, given the available bandwidth, for the tiles in the viewport and
iterates through every layer of tiles around the viewport while taking into account the delta value.

The algorithm first determines the highest possible quality for the tiles in the viewport. It starts
immediately with the highest quality, so it tries to allocate bandwidth for quality four for the tiles in
the viewport. The algorithm tries to keep the quality in a layer the same. When it determines that
the available bandwidth is not enough to stream quality four for the tiles in the viewport, it decreases
the quality. It continues with allocating bandwidth for quality three for the tiles in the viewport. If
the available bandwidth is not enough to stream quality one for the tiles in the viewport, none of the
tiles are streamed. Let’s assume that there is enough bandwidth to stream a uniform quality for the
tiles in the viewport. The algorithm starts back with allocating bandwidth for the highest quality for
layer one. See the last paragraph of Section 4.6.1 for the explanation about the layers. When it has
determined a quality for this layer, it checks if the difference in quality between layer zero and layer
one is equal to or less than the delta value. If it can not determine a quality for layer one, the quality
of layer zero (tiles in the viewport) is decreased to one quality lower than before. It continues back
with allocating bandwidth for layer zero and afterwards for layer one. It does this for all the layers
and the algorithm keeps checking, after bandwidth is allocated for a layer, if the quality difference
with the previous layer is at most the delta value. If it is not, it decreases the quality of the viewport
and continues. The algorithm stops when all the layers are treated or quality one can not be streamed
for the tiles in the viewport. Like said before, the red tiles in Figure 4.29 are defined as layer zero
and the green tiles are defined as layer one. The pseudocode of this algorithm is given in Appendix
M.

4.6.7 Duration of quality change

On the basis of Figure 4.30 we will explain how long it takes to change the quality for tiles or how
long it takes until the videos start playing. This scenario is not applicable for the simple distribution
logic because the quality will not change in that case. This approach is only applicable in scenarios
where the quality changes or new videos start playing when the viewport changes. Let’s assume that:

Si: The moment that video segment i is requested.
Si+1: The moment that video segment i+1 is requested.
SDi: Segment duration = Si+1 − Si: after segment duration, measured in seconds, a new video
segment is requested.
Cvw: The moment that the viewport is changed.
At Si+1 the change of the viewport is noticed.

In Figure 4.30 we can see that after i − 1’th video segment’s play time ends, the i + 1’th segment is
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requested. We want one segment in the buffer to immediately show to the user when the previous
segment is finished playing. The reason behind this is that we want to change the quality of the
video quickly when the user pans. When we have one segment buffered, this segment must end its
playback before the higher or lower quality segment starts playing. By this we can minimize the time
that is passed until the quality changes.

When buffering only one segment in the buffer, the video player is more vulnerable to playback stalls.
In scenarios where the bandwidth dramatically drops while downloading segments, the player can
freeze due to no buffered segments. This is because the available bandwidth is not sufficient for
downloading higher quality video and this delays the delivery of the segments. This is a trade-off
that we made because we want to change the quality of the videos as soon as possible. When the
user pans a lot, we can not wait too long to change the quality. If we wait longer and the user changes
the viewport frequently, the time to change the quality will not be passed and the user will always
see low quality video.

Figure 4.30: Two video segments played after each other when viewport changes

In the depicted example, the quality will change or the video player will start playing within:

Si+1 − Cvw + Si+2 − Si+1 = Si+1 − Cvw + SDi+1seconds

First we must wait until the new segment is requested, this time equals Si+1 − Cvw because the new
video segment is requested on Si+1. We must wait Si+2 − Si+1 seconds because at Si the i’th segment
is requested. If we do not want to waste any bandwidth, we play the i’th segment. So the total time
of waiting is Si+2 − Cvw seconds.

4.7 Operations of the distribution logics

In this section, we will show how the tiled streaming distribution logics react in one specific situation.
For this situation we have chosen for 1.61 Mbps as available bandwidth. For every distribution logic
we will show how that logic distributes the 1.61 Mbps of available bandwidth over the different tiles
of a specific ODV sequence. The qualities of video, which can be selected, are the ones discussed in
Section 4.6. The viewport is indicated in each case with the rectangle in the full video frame. Figure
4.31 shows the full video frame with the qualities, expressed in numbers, of every tile with the simple
distribution logic.
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Figure 4.31: Quality per tile for the simple distribution logic

We see that quality one is selected for all the tiles. With 1.61 Mbps of available bandwidth we stream
at most quality one for all the tiles. The consumed bandwidth is (16 * 50 000 bps) = 800 000 bps.
We can not stream quality two because the consumed bandwidth would be more than the available
bandwidth (16 * 130 000 bps = 2.08 Mbps). In the next figure the quality per tile is shown for the
viewport only distribution logic.

Figure 4.32: Quality per tile for the viewport only distribution logic

In this figure we see that quality four is chosen for the four tiles in the viewport. The other tiles have
not bandwidth allocated and therefore they do not show any frames. The quality for the tiles in the
viewport must be the same. We can allocate bandwidth for quality four, this will consume (4 * 400
000 bps) = 1.6 Mbps. Figure 4.33 shows the qualities for the viewport at highest quality distribution
logic.
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Figure 4.33: Quality per tile for the viewport at highest quality distribution logic

This distribution logic starts with allocating bandwidth for quality one to all tiles, this will consume
(16 * 50 000 bps) = 800 000 bps. With the remaining bandwidth we can upgrade the quality for
tiles in the viewport. First quality two is selected, this will consume (4 * 130 000 bps) = 520 000
bps for quality two. But we must reduce this value with the previously allocated bandwidth (4 * 50
000 bps) = 200 000 bps. So the total consumed bandwidth is (800 000 bps - 200 000 bps + 520 000
bps) = 1.12 Mpbs. With the remaining bandwidth (1.61 Mbps - 1.12 Mpbs) = 0.49 Mbps we can
upgrade three tiles in the viewport. The consumed bandwidth is (1.12 Mbps - 3 * 130 000 bps + 3
* 270 000 bps) = 1.54 Mbps. This is the same for the viewport at highest quality with lowest quality
peripheral tiles and the upgrade layer per layer distribution logics. For the viewport at highest quality
with lowest quality peripheral tiles, the quality of the tiles around the viewport are not upgraded in
comparison with this approach. Because the quality of the tiles around the viewport is the lowest
one in this approach, this would not change anything for the viewport at highest quality with lowest
quality peripheral tiles distribution logic.

For the upgrade layer per layer distribution logic, all the tiles have bandwidth allocated for quality
one. Afterwards the quality of the tiles in the first layer is upgraded. Tile per tile is treated with this
distribution logic. This will result in the same allocated bandwidth per tile than with the viewport at
highest quality distribution logic. After upgrading the quality of the tiles in the viewport, like Figure
4.33 shows, the remaining bandwidth (1.61 Mpbs - 1.54 Mpbs= 0.06 Mpbs) is insufficient to upgrade
one extra tile of layer one to quality two. The quality per tile for the delta distribution logic is shown
in Figure 4.34. Layer zero is marked in red, layer one in green and layer two in blue.

Figure 4.34: Quality per tile for the delta distribution logic
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The delta value is set to 1. This will result in layers that differ at most one quality of each other. The
tiles in the viewport have bandwidth allocated for quality two, this will consume (4 * 130 000 bps)
= 520 000 bps and the tiles in the other layers have (12 * 50 000 bps) = 600 000 bps of allocated
bandwidth. If we upgrade the tiles of the viewport to quality three, the tiles in layer one must also be
upgraded because otherwise the delta value is not respected. This will totally consume (4 * 270 000
bps + 8 * 130 000 bps + 4 * 50 000 bps) = 2.32 Mbps. This is higher than the available bandwidth
and therefore we can not upgrade the quality of layer one.

4.8 Bandwidth consumption of distribution logics

In this section we will show the bandwidth consumption for the viewport only and delta distribution
logics. In every case, we will prove that the available bandwidth budget is respected. In Figure 4.35
the bandwidth consumption per tile is shown for the viewport only distribution logic. We did not
include the other tiles because they are not streamed in this case.

Figure 4.35: Bandwidth consumption per tile for viewport only distribution logic

In the graph, we see that the viewport is changed after video segment 8 is downloaded. Initially, the
tiles with index numbers 5, 6, 9 and 10 lie in the viewport. When the viewport changes, the tiles with
index numbers 9, 10, 13 and 14 are in the viewport. The available bandwidth is 1.61 Mbps. For the
tiles in the viewport, quality four is selected. To stream quality four of the video, every tile needs 400
000 bps allocated of the available bandwidth. Because we have 1.61 Mbps of available bandwidth,
every tile will have 402 500 bps allocated. We see, in the graph, after the viewport is changed, that
the tiles with index number 5 and 6 stop downloading video segments and tiles with index number
13 and 14 start downloading video segments. We see that the bandwidth consumption per tile does
not exceed 400 000 bps, so we can conclude that the available bandwidth is respected. If we do the
calculation, the consumed bandwidth is at most (4 * 400 000) = 1.6 Mbps.

In the next graph, we see the downloaded portions for every tile for the delta distribution logic. Like
in the previous example, the viewport is changed after video segment 8 is downloaded from the tiles
with index numbers 5, 6, 9 and 10 to the tiles with index numbers 9, 10, 13 and 14 and the available
bandwidth is 1.61 Mpbs.
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Figure 4.36: Bandwidth consumption per tile for delta distribution logic

As we can see in Figure 4.36, before the viewport is changed, the values of the tiles with index
numbers 5, 6, 9 and 10 are not larger than 160 000 bps. The other values lie around 60 000 bps with
a maximum of 80 000 bps. If we do the calculation, the consumed bandwidth is (4 * 160 000 bps
+ 12 * 80 000 bps) = 1.6 Mpbs. After the viewport is changed, we see that the values of tiles with
index numbers 9, 10 and 14 are not higher than 160 000 bps and the values of the other tiles, except
tile with index number 13, are not higher than 80 000 bps. For tile with index number 13, the value
is slightly higher than 160 000 bps. This will not cause the available bandwidth to be exceeded, so
we get approximately the same results. We can conclude that the available bandwidth is respected
before and after the viewport was changed.
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Chapter 5

User testing

5.1 Overview

The goal of the user testing we have done was to qualitatively measure the QoE of the users with ODV
tiled video. To do an experiment for this, we have invited participants to evaluate our distribution
logics. The meaning of the user testing is to see if the users notice a quality change during the video.
We have done a statistical analysis of our results to detect the effects of the independent variables.

This chapter continues with the description of our experiment and the apparatus. Afterwards, the
tasks that the users need to perform during the user testing are explained. Our approach is given in
Section 5.5 and the methology in Section 5.6. To end this chapter, we will present the results and the
three-way ANOVA analysis.

5.2 Description

In this section we will discuss the user testing we have done for this master thesis. We have chosen
measure the effect of two durations of video segments, two scenarios of available bandwidth and four
bandwidth distribution logics. The used durations of the video segments are:

• 1 second

• 2 seconds

The 2 scenarios of available bandwidth are:

• Low bandwidth: 1.85 Mbps

• High bandwidth: 6.2 Mbps

We have chosen the bandwidth values in such a way that the bandwidth distribution logics will react
differently from each other. The four bandwidth distribution logics are:

• Simple distribution logic (Section 4.6.1)

• Viewport only distribution logic (Section 4.6.2)
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• Viewport at highest quality distribution logic (Section 4.6.3)

• Delta distribution logic (Section 4.6.6)

We have chosen to include the simple bandwidth distribution logic because we want to detect if the
user sees any quality change with this logic. The quality of the video with this distribution logic is
not changed when the user pans the viewport, so this is a test to see if the users are seeing a quality
change when there is no.

We have included the viewport only distribution logic where only the viewport is played and no other
tiles. This distribution logic ensures that all the bandwidth is divided over the tiles in the viewport
and thereby the quality of the video viewport is maximized. We want to determine if the user is
disturbed by the black tiles around the viewport. After panning the viewport the black tiles will be
visible, but they start playing after a short period. Like Section 4.6.7 explained, the duration of the
segments determines how fast the quality change happens. For this we want to determine what the
viewer thinks about the duration of the quality change.

The viewport with highest possible quality distribution logic ensures that the tiles in the viewport are
streamed at the highest possible quality for the available bandwidth. The quality of the tiles around
the viewport is determined by the remaining bandwidth. They are streamed at the highest quality
that can be accommodated by the remaning bandwidth, but the quality is the same for all those tiles.
With this distribution logic we want to detect if the user sees any quality change between tiles in the
viewport and other tiles while panning. We also want to detect what they think about the duration
of the quality change with respectively one and two seconds video segments.

The last bandwidth distribution logic we have included is the delta distribution logic. This is a more
complicated distribution logic, this is also the reason why we included it. With this distribution logic
we want to detect if the users see any quality change between the tiles in the viewport and the
surrounding tiles.

5.3 Apparatus

To do the user testing for ODV tiled streaming, the first thing we needed was an HTTP server. Like said
before, we used a virtual machine whitin Oracle’s VirtualBox [43] version 4.3.20 r96996 software.
We used the Linux Ubuntu version 14.04 operating system with Apache [22] version 2.4.7 to host all
the necessary files. The virtual machine ran on a HP ProBook 6570b [29] with 4 GB RAM memory,
128 GB SSD internal storage and a Intel core i5-3230M 2.60 ghz processor. This laptop was also
used for the user tests. The resolution of the screen is 1600x900 pixels. Because our application is
developed in Javascript, we used a web browser for the user testing. The web browser we used is
Google Chrome version 43.0.2357.130. Before the user testing started and after every test, we gave
the user a questionnaire, which was made in Google Forms [26]. A second screen was used to show
the questionnaires to the user. The screen is a Dell [24] U2913WM 29 inch LED display. This was
done for the easiness, so that the user did not need to switch between tabs or instances of the browser.
We have chosen the same video and the same qualities like in Section 4.6 for the user tests.
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5.4 Tasks

In this section we will discuss the tasks that every user had to perform when doing the user tests. In
the middle of the viewport we have drawn a red X sign for the user testing. The X sign will not move
and stays in the middle of the screen. The tasks are related to this X sign; Figure 5.1 shows the X sign
on the viewport.

Figure 5.1: ODV viewport with X sign

To draw the X sign we placed a transparent HTML5 canvas on the viewport canvas and drew the
X sign on that canvas. Because this canvas lies on top of the canvas of the viewport, the mouse
interactions could not be performed on the canvas of the viewport. Therefore we pass on the mouse
interactions to the canvas of the viewport to solve that problem. Cathing the mouse events on the
top layer canvas and trigger them on the second layer canvas performs this action. The four tasks we
have chosen for the users to perform are:

• Task 1

In the video at the right side, you will see a black car. This is the third car at the right side
and the brand is BMW. Try to center the X sign on that car until the end of the video. The
X sign is always in the center of the screen, so it is not always possible to keep the X sign
on to the car. When you cannot hold the X sign on it, just keep it above the car.

• Task 2

Try to keep the viewport straight until you see the first woman in the video. She walks
from right to left and she gets in a car. Try to keep the X sign on the woman untill the
video ends. When she is in the car, try to keep the X sign on that car.
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• Task 3

In the video you will see a red Porsche car, try to keep the X sign on the front window
of the Porsche. When the first car on the right side completely falls out of the screen,
keep the X sign on the car that is parked opposite to the Porsche. This car is of the brand
Volkswagen (see Figure 5.1). Try to keep the X sign on that car until the end of the video.

• Task 4

In the video you will see a red Porsche car, try to keep the X sign on the front window
of the Porsche. When the first car, on the right side in the video, completely disappaered
from the screen, rotate 360 degrees to the right until the X sign is on the person who is
walking in front of the camera. When the black BMW is falling out of the screen, rotate
360 degrees to the left until the X sign is back on the person who is walking in front of
the camera.

These tasks were chosen because we wanted to measure the QoE with large and small panning move-
ments, letting us measure the effect of the different qualities of the new tiles.

5.5 Approach
This section will discuss the approach we have taken to do the user tests. We have four bandwidth
distribution logics with two durations of the video segments and two available bandwidth scenarios.
This gives us 16 test scenarios:

4 ∗ 2 ∗ 2= 16

We have excluded two test scenarios from this set, namely the test scenarios for the viewport only
distribution logic with high available bandwidth for one and two seconds segment duration. We
have excluded these tests because, with this distribution logic, it is the intention to measure how
disturbed the users are with the tiles that are not playing video. After the user tests were done,
we realized that it was better to exclude the tests for the simple distribution logic with two seconds
segment durations because in those cases the quality does not change and therefore the duration of
the segments does not play a role. Then we have only the one second segment duration tests for the
simple distribution logic with high and low bandwidth. The quality with high and low bandwidth is
the same with two seconds segment duration and with one second segment duration. So it was better
to exclude the tests for the simple distribution logic with one or two seconds segment duration. In
total we get 14 test scenarios.

First we have made random assignments of tasks and distribution logics to tests. We have chosen to
assign the bandwidth for every test scenario ourselves because the bandwidth value can not appear
more than once for the same distribution logic. This is also the same for the duration of the video
segments. The letter L stands for low bandwidth with 1.85 Mbps as available bandwidth and H stands
for high bandwidth with 6.2 Mbps as available bandwidth. All the random assignments for the user
tests are generated by the website of RANDOM.ORG [39]. In the next table the assignements for
every test scenario is shown.
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Test number Task number Bandwidth
distribution
logic

Available bandwidth Duration video segments,
measured in seconds

1 2 B L 2
2 3 B L 1
3 3 C L 2
4 1 D L 2
5 2 B H 1
6 2 D L 1
7 3 C H 2
8 1 A H 2
9 2 B H 2
10 4 C L 1
11 4 C H 1
12 4 A H 1
13 1 A L 1
14 4 A L 2

Table 5.1: Assignments per test scenario

The letters for the distribution logics stand for:

Letter Bandwidth distribution logic
A Simple
B Delta
C Viewport highest quality
D Viewport only

Table 5.2: Bandwidth distribution logics of the user tests

Before doing the user tests we have done pilot tests with two persons. These persons helped with the
implementation of the MPEG-DASH framework and the bandwidth distribution logics. They were
hence fimiliar with the framework and with the rationale behind the bandwidth distribution logics.
We did the pilot tests to see if all the algorithms worked well and to estimate the time it takes to
complete all the tests. Minimal problems were discovered such as:

• In the original version the zooming feature of the ODV player was enabled. There was no way
to guarantee that different users would use the zooming functionality identically during their
tests. Variable zooming behavior per users could give us results we could not compare with
each other, therefore the zooming feature was disabled.

• In the original version we did not use an X sign on the canvas but a square with which the user
needed to perform the tasks. The square caused confusion about the quality. Tthere was an
illusion that the quality of the video for the tiles in the square was better than the surrounding
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tiles. In reality the quality of video for the tiles in the square was not better than the surrounding
tiles. We have changed the square to the X sign in the middle of the viewport.

To reduce the learning effect while the users do the tests, we have used the Latin square [47]method
to assign the tests to the users. The result is shown in the following table:

User Test
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 3 4 5 6 7 8 9 10 11 12 13 14 1
3 3 4 5 6 7 8 9 10 11 12 13 14 1 2
4 4 5 6 7 8 9 10 11 12 13 14 1 2 3
5 5 6 7 8 9 10 11 12 13 14 1 2 3 4
6 6 7 8 9 10 11 12 13 14 1 2 3 4 5
7 7 8 9 10 11 12 13 14 1 2 3 4 5 6
8 8 9 10 11 12 13 14 1 2 3 4 5 6 7
9 9 10 11 12 13 14 1 2 3 4 5 6 7 8
10 10 11 12 13 14 1 2 3 4 5 6 7 8 9
11 11 12 13 14 1 2 3 4 5 6 7 8 9 10
12 12 13 14 1 2 3 4 5 6 7 8 9 10 11
13 13 14 1 2 3 4 5 6 7 8 9 10 11 12
14 14 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 5.3: Latin square approach of the tests per participant

We see for example that test person 7 started with test 7 as his/her first test and ended with test 6 as
his/her last test.

5.6 Methodology

The users tests were performed in the following order:

1 The users were welcomed and an explanation was given why the user tests were performed.

2 The users filled in a starting questionnaire, this questionnaire is shown in Appendix C.

3 The users could practice the mouse interactions with the ODV player in a demo version.

4 The users performed every test scenario and after each scenario they filled in a questionnaire,
this questionnaire is shown in Appendix C.

5 The detailed purpose of the user tests were explained to the users.

6 The users were thanked for their participation with a snack and a drink.
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5.7 Results

The users who did the user tests were all aged between 22 and 31. Two females and 12 males
participated in the user tests. We will first show all the observed results and afterwards analyse
them.

For the starting questionnaire we have collected the following values per question:

• How often do you watch videos on the internet (YouTube, Netflix, Vimeo, ...)?

All people daily watch videos on the internet.

• Do you know what 360 degree video is?

Just one person answered no to this question, the others all answered yes.

• How often do you watch 360 degree video on the internet?

5 people answered never and 9 people answered annually.

• How often do you watch live videos on the internet?

5 people answered annually, 4 people answered monthly, 3 people answered weekly and
2 people answered daily.

With these tests, we wanted to see if there is an effect on the results of the people who have more
experience with 360 degree video in constrast to people who have less experience. In the following
subsections, we will discuss the results for every question of the test-related questionnaire.

To measure if an independent variable has an effect on the measured scores, we did a three-way
ANOVA test [17]. For all the three-way ANOVA tests we report in this master thesis we define the
significance level 0.05. So when the value is less than 0.05, the result is significant. With significant
we mean that the variable or interaction has an effect on the measured scores. In other words, this
explains that if a variable or interaction is left out of the test, the measured scores will be changed.
Before doing the three-way ANOVA test, we must check the homogeneity of the variances for the
measured variable of every question. Homogeneity of variances means that the variances are the
same on some level. For the significance level we define 0.05 or 5%. The homogeneity is useful for
testing meaningful hypotheses. This is done by the Levene test [31] in R. When the value is larger
than 0.05, we can assume the homogeneity of the variances.

5.7.1 Question 1: Rate the quality of the video on a scale from 1 to 5

For this question the aggregated results are shown in Figure 5.2. The quality of the video is measured
with a score from 1 to 5, with 1 representing bad and 5 representing very good. The idea behind this
is that the participants give a general score for the quality of the video. We expect that the quality
scores are higher with high bandwidth than with low bandwidth. For the distribution logic D, we
expect that the quality scores are low in both cases.
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Figure 5.2: Amount of answers per quality score (1 to 5) for ODV tiled video

First we check the homogeneity of the variances. Levene’s test did not show a violoation of homo-
geneity of variances (F(13,182) = 1.13, p = 0.33), we can continue with the three-way ANOVA test.
The results of the three-way ANOVA test are:

DF Sum Sq Mean Sq F Value Pr(>F)
Logic 3 31.74 10.58 20.330 2.08e-11 ***
Duration 1 6.61 6.61 12.706 4.66e-4 ***
Bandwidth 1 110.10 110.10 211.56 < 2e-16 ***
Logic:Duration 3 1.99 0.66 1.278 0.28
Logic:Bandwidth 2 12.94 6.47 12.43 8.69e-06 ***
Duration:Bandwidth 1 7.71 7.71 14.82 1.63e-4 ***
Logic:Duration:Bandwidth 2 0.25 0.13 0.24 0.79
Residuals 182 94.71 0.52

Table 5.4: Three-way ANOVA test for quality score

With three-way ANOVA, we found significant main effects of Logic, Duration and Bandwidth on the
quality score. We also found a significant interaction between Logic and Bandwidth and a significant
interaction between Duration and Bandwidth. We will investigate these two interactions further. To
investigate the interaction between Logic and Bandwidth we will group the logics per bandwidth. We
do this by setting the bandwidth to a fixed value and execute the three-way ANOVA test again. We
did not find a significant difference between the distribution logics for high bandwidth (F(2,81) =
0.413, p=0.663). We however did find a significant difference between the distribution logics for low
bandwidth (F(3,108) = 10.17, p=5.88e-06). We investigate which logics differ from each other with
the Tukey’s [38] post-hoc test. This test compares the logics with each other on a significant level
(0.05 or 5%) and shows a significant difference between the logics if p < 0.05. We get the following
results:
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Logics diff lwr upr p adj
B-A 0.60 -0.00 1.22 0.05
C-A 1.29 0.67 1.90 1.7e-6
D-A 0.50 -0.11 1.11 0.15
C-B 0.68 0.07 1.29 0.02
D-B -0.11 -0.72 0.51 0.97
D-C -0.76 -1.40 -0.17 6.07e-3

Table 5.5: Results of Tukey’s post-hoc test for quality scores with low bandwidth for the distribution
logics

In this table, in column p adj, we read the p value and see that there is a significant difference
between logic C and A, C and B, D and C for low bandwidth. The boxlplot for the quality scores for
low bandwidth per distribution logic is shown next:
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Figure 5.3: Quality scores per distribution logic for low bandwidth

The bold line in the graph represents the median, and the upper line of the box indicates the value of
the third quartile and the lower line of the box indicates the value of the first quartile. The upper and
lower lines that are connected with a dotted line are the maximum and minimum values. In Figure
5.3 we see that the boxplot for distribution logic C lies higher than the other ones. So we can conclude
that distribution logic C has a better quality score than the other logics when the bandwidth is low.
With distribution logic C, all the tiles have initially bandwidth for quality one allocated. When there
is remaining bandwidth, the quality of the viewport is upgraded. With low bandwidth, the quality
of the viewport is upgraded to quality two. The quality is better in the viewport and the transition
of quality is hardly noticeable, that is why distribution logic C has a higher quality score with low
bandwidth than other distribution logics. The mean and variance values of the quality scores per
distribution logic for low bandwidth are shown in the next table.
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Distribution logic Mean Variance
A 2.07 0.74
B 2.68 0.45
C 3.36 0.90
D 2.57 0.99

Table 5.6: Mean and variance of quality scores per distribution logic for low bandwidth

We can see in Table 5.6 that the variance of distribution logic C and D are larger than the other ones.
This means that the values are more widespread with distribution logic C and D and that the values
of distribution logics A and B lie closer to each other.

Further we analyzed the effect of the segment duration factor in terms of the bandwidth factor. We
fixed the value for segment duration to one second. Our results are: F(1,96) = 153, p < 2e-16. We
can say that there is a significant difference between high and low bandwidth for segment duration
of one second. The boxplot for high and low bandwidth with one second segment duration is shown
in Figure 5.4.
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Figure 5.4: Quality scores per bandwidth logic for one second segment duration

We see in Figure 5.4 that the boxplot of high bandwidth lies higher than with low bandwidth. So
we can conclude that with one second segment duration, low bandwidth ensures that the quality
is lower than with high bandwidth. The mean and variance values are shown in table 5.7. We see
that the quality values with low bandwidth are more widespread than the quality values with high
bandwidth. Because the quality for high bandwidth is better than the quality for low bandwidth, the
quality scores are greater for high bandwidth. We will now investigate the effect of bandwidth with
a fixed segment duration of two seconds. We get the results: F(1,96) = 62.74, p=4.18e-12. We can
say that there is a significant difference between high and low bandwidth for segment duration of
two seconds. Figure 5.5 shows the boxplot for high and low bandwidth with two seconds segments.
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Bandwidth Mean Variance
L 2.34 0.81
H 4.33 0.37

Table 5.7: Mean and variance of quality scores per bandwidth for one second segment duration

Bandwidth Mean Variance
L 3 0.91
H 4.31 0.32

Table 5.8: Mean and variance of quality scores per bandwidth for two seconds segment duration
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Figure 5.5: Quality scores per bandwidth amount for two seconds segment duration

We see that the boxplot for high bandwidth lies higher than the boxplot for low bandwidth. So with
two seconds segments the quality score for high bandwidth is greater than for low bandwidth. The
reason why the boxplot for high bandwidth lies higher is, like the previous case, with high bandwidth
the quality is better than with low bandwidth. In table 5.8, the mean value and variance are shown
per bandwidth for two seconds segment duration. Like in the previous case, we see that the quality
values with low bandwidth are more widspread than the quality values with high bandwidth.

The participants mentioned that there were some blurry effects in the videos. They did not knew if
the quality was the same for the tiles when the quality was the same and they asked themselves if
the quality was the same or not. They rated the quality of the video lower when they saw the blurry
effect in the tile videos. When they did not saw the blurry effect and the quality was the same, they
rated the quality of the video slightly higher. The blurry effect is caused by encoder because when
there is more movement in the video, the encoder tries to encode the video accoring to the target
bitrate. So this can be at cost of the quality. When there is little movement in the video, the encoder
can encode the video at a higher quality for the same target bitrate.
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5.7.2 Question 2: Have you noticed any quality change in the video?

All the answers are shown in Figure 5.6.

62%

38%

Yes/no quality change noticed

Yes No

Figure 5.6: Yes/no amount of answers for question 2

People answered 121 times yes to this question and 75 times they answered no to this question. We
can conclude no specific findings from this data.

5.7.3 Question 3: Give a score of how different the qualities were in the video.

For this question we have selected only the 121 samples when people actually saw a quality change
(see Section 5.7.2). For this question, the difference between qualities in the video is measured with
a score from 1 to 5. 1 represents very different and 5 represents no difference. We expect that the
results are lower for the distribution logic D and high for the distribution logic A. The aggregated
values of this question are shown in Figure 5.7.
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Figure 5.7: Amount of answers per difference score (1 to 5) for ODV tiled video

To do the three-way ANOVA test, we check the homogeneity of the variances. Levene’s test did
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DF Sum Sq Mean Sq F Value Pr(>F)
Logic 3 51.53 17.18 16.39 7.57e-9 ***
Duration 1 0.01 0.01 0.01 0.94
Bandwidth 1 16.61 16.62 15.85 1.24e-4 ***
Logic:Duration 3 9.89 3.30 3.15 0.03 *
Logic:Bandwidth 2 0.75 0.37 0.36 0.70
Duration:Bandwidth 1 2.00 2.00 1.91 0.17
yLogic:Duration:Bandwidth 1 0.60 0.61 0.58 0.45
Residuals 108 113.20 1.05

Table 5.9: Three-way ANOVA test for difference score

not show a violation of homogeneity of variances (F(12,108)=0.8, p=0.6497). We can assume the
homogeneity and continue with the three-way ANOVA test. The results are shown in the next table.
With three-way ANOVA, we found significant main effects of Logic and bandwidth on the difference
score. We also found a significant interaction between Logic and Duration. We analyzed the effect of
the logic factor in terms of level of the duration factor. We fixed the duration to one second to check
if the difference scores for the logics differ from each other with one second segment duration. We
get the following results: F(3,56) = 4.865, p=0.00446, p < 0.05 indicates that there is a significant
difference between the distribution logics for one second segments. We investigate which logics differ
from each other with the Tukey’s post-hoc test. We get the following table:

Logics diff lwr upr p adj
B-A -0.63 -1.83 0.56 0.51
C-A -0.76 -1.82 0.29 0.23
D-A -1.64 -2.79 −0.50 2.05e-3
C-B -0.13 -1.24 0.98 0.99
D-B -1.01 -2.21 0.18 0.12
D-C -0.88 -1.94 0.18 0.14

Table 5.10: Results of Tukey’s post-hoc test for difference scores per distribution logic for one second
segment duration

In this table, we see that there is a significant difference between Logic D and A. The next figure
shows the boxplot for every logic with one second segment duration.
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Figure 5.8: Perceivable quality differences per logic for one second segments

From the Tukey’s test we see that distribution logic D and A differ from each other. In figure 5.8
we see that the boxplot for distribution logic D lies lower than the other distribution logics. So we
can conclude that distribution logic D has a lower difference score than the other distribution logics.
With distribution logic D, the users see more difference between qualities than with other distribution
logics for one second segments. This is due to the black tiles that are displayed to the users. After the
segment duration, measured in seconds, the black tiles change from black to an image of the video.
In the next table, the mean and variance values of the difference score for every distribution logic
with one second segment duration is shown. We see that the values for distribution logic B are very
widespread in comparison with the other ones.

Logics Mean Variance
A 3.71 1.14
B 3.08 2.27
C 2.95 1.20
D 2.07 0.84

Table 5.11: Mean and variance values of difference score for every distribution logic with one second
segment duration

For the next test we fixed the segment duration to two seconds to compare the quality difference scores
for the distribution logics with two second segments. We found a significant difference between the
logics for two seconds segments (F(3,57) = 12.8, p = 1.67e-06). With Tukeys post-hoc method, we
can determine which logics differ from each other, the results are:
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Logics diff lwr upr p adj
B-A -0.44 -1.43 0.55 0.65
C-A 0.32 -0.69 1.33 0.83
D-A -1.92 -2.99 −0.85 8.3e-5
C-B 0.76 -0.16 1.69 0.14
D-B -1.48 -2.48 −0.49 1.23e-3
D-C -2.24 -3.25 −1.24 1.20e-6

Table 5.12: Results of Tukey’s post-hoc test for difference scores per distribution logic for two seconds
segment duration

We see in the table that there is a significant difference between logics D and A, between D and B
and between D and C. From the table we can see that distribituion logic D differs from the others
and if we look to Figure 5.9 we see that the boxplot for D lies lower than the other ones. We can say
that, like in the previous case, the users see more difference between qualities with distribution logic
D than with other distribution logics. This is caused by the black tiles that change after the segment
duration from black to an image of the video. In comparison with the previous figure, we see that the
values for distribution logic D lie closer to one. We suspect that this is caused by the segment duration
because with one second segment duration it takes longer to start playing the videos with the black
screens. With one second segment duration it takes less time to start the videos with black screens.
We see that the median of distribution logic A is smaller than the median of distribution logic C. This
is contrary to our expectations but distribution logic A does have the second highest median.
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Figure 5.9: Perceivable quality differences per logic for two seconds segments

The mean and variance values of the quality difference scores per distribution logic for two seconds
segments are shown in Table 5.13. We see that the scores of distribution logic B and C are more
widespread than the others.
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Logics Mean Variance
A 3.38 0.90
B 2.94 1.23
C 3.71 1.35
D 1.46 0.44

Table 5.13: Mean and variance values of difference score for every distribution logic with two seconds
segment duration

Like said in Section 5.7.1, the participants noticed some artefacts in the video. When scoring the
difference between the qualities, they said that when they saw a quality change between tiles because
of the artefacts, they were not sure if they saw the same quality or a higher/lower quality of the video.
So we suspect that the measured difference scores are, in some way, influenced by the artefacts in
the videos.

5.7.4 Question 4: How disturbed were you with the quality change?

For this question we considered only the 121 samples were the users saw a quality change (see Section
5.7.2). We expect that the users are more disturbed with the distribution logic D because it is only
tested with low bandwidth and tiles can stay black for a short time period. For the simple distribution
logic, we expect that the users are not disturbed with the quality change. The rating distribution of
this question, expressed in absolute figures, is shown in Figure 5.10.
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Figure 5.10: Values of how disturbed the users were with the quality changes

To execute the three-way ANOVA test, we first check the homogeneity of the variances. Levene’s test
did not show a violation of homogeneity of variances (F(12,108) = 1.7935, p=0.05801). We can
continue with the three-way ANOVA test, the results are:
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DF Sum Sq Mean Sq F Value Pr(>F)
Logic 3 55.01 18.34 21.72 4.40e-11 ***
Duration 1 0.68 0.68 0.81 0.37
Bandwidth 1 32.77 32.77 38.83 9.13e-09 ***
Logic:Duration 3 19.06 6.35 7.52 1.27e-4 ***
Logic:Bandwidth 2 2.10 1.05 1.25 0.29
Duration:Bandwidth 1 1.04 1.04 1.23 0.27
Logic:Duration:Bandwidth 1 0.55 0.55 0.65 0.42
Residuals 108 91.16 0.84

Table 5.14: Three-way ANOVA test for disturbed scores

Logics diff lwr upr p adj
B-A 0.16 -0.68 1.00 0.96
C-A 1.06 0.21 1.91 0.01
D-A -1.77 -2.67 −0.86 1.82e-5
C-B 0.91 0.12 1.69 0.02
D-B -1.92 -2.77 −1.09 6-e7
D-C -2.83 -3.68 −1.98 1-e8

Table 5.15: Results of Tukey’s post-hoc test for disturbed scores per distribution logic for two second
segments

With three-way ANOVA, we found significant main effects of Logic and bandwidth on the disturbed
score. We also found a significant interaction between Logic and Duration. We analyzed the effect
of logic factor in terms of level of the duration factor. We fixed the duration factor to one second to
compare the disturbed values for the distribution logics with one second segments. We get F(3,56) =
2.276, p = 0.0896, p > 0.05 indicates that there is no significant difference between the distribution
logics for one second segments. Next we fixed the duration factor to two seconds to compare the
disturbed values for the distribution logics with two seconds segments. We get F(3,57) = 26.43, p =
7.65e-11, p < 0.05 indicates that there is a significant difference between the distribution logics for
two second segments. We investigate which logics differ from each other with Tukey’s post-hoc test.
The results are shown in Table 5.15.

We see that there is a significant difference between distribution logic C and A, D and A, C and B, D
and B and D and C. In Figure 5.11 we see the boxplot for every distribution logic. We notice in this
case that the median score of distribution logic A is smaller than distribution logic C. We expected
that the value of distribution logic A would be larger than the other ones.

For this graph we compared the disturbed values for the distribution logics for two second segments.
From the Tukey’s test and Figure 5.11 we can see that distribution logic D is different from the others.
Distribution logic D has the lowest disturbed score because the boxplot lies lower than the other ones.
This is caused by the transition of the black tiles from black to an image. Because the transition is
very clear when the users pan, they are more disturbed. The two second segment duration ensured
that the transition was even larger because it took longer time to show an image for the black tiles.
The mean and variance values are shown in the table 5.16.

99



A B C D

1
2

3
4

5

Perceivable disturbances per logic for two second segments

Distribution logic

Di
st

ur
be

d 
sc

or
e

Figure 5.11: Amount of answers per disturbed score (1 to 5) for ODV tiled video

Logics Mean Variance
A 3.23 0.86
B 3.39 1.43
C 4.29 0.35
D 1.46 0.27

Table 5.16: Mean and variance values of disturbed score for every distribution logic with two seconds
segment duration

5.7.5 Question 5: Did you find the duration of the quality change acceptable?

For this question we also took the 121 values from which the users saw a quality change. The aggre-
gated results are given in Figure 5.12.
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Figure 5.12: Segment duration acceptance scores

For the acceptance score of the duration of the quality change, we can not do a three-way ANOVA
test because there is no assurance of the homogeneity of the variances. Levene’s test did show a
violation of homogeneity of variances. The results are: F(12,108) = 2.0908, p = 0.02322, p < 0.05
indicates that there is no homogeneity of the variances. An approach for this is to transform the
data with the commonly used functions, logarithm or second power. For logarithm this gives us the
results: F(12,108) = 2.6146, p = 0.004248 and for second power function: F(12,108) = 2.398, p =
0.008656. So we can conclude in both cases that p < 0.05 and that there is no homogeneity of the
variances.

In general we can say that distribution logic C scores the best on almost every question and distribu-
tion logic D scores the lowest. We can conclude that distribution logic D is the least appreciated logic
and C is the most appreciated logic.
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Chapter 6

Conclusion

In this last chapter we make a conclusion to end this thesis. Before starting this thesis, we were
wondering what impact the bandwidth has on the QoE of the users in the specific context of video
streaming services and which improvement we could achieve on the QoE by inteligently allocating the
available bandwidth budget. We implemented an MPEG-DASH streaming framework in JavaScript,
hereby taking into account important lessons learned from a literature review. We designed a frame-
work where every part can be extended or replaced by alternative implementations serving different
purposes. For example, in our implementation, the data is downloaded via HTTP. We made the frame-
work in such a way that the data could be downloaded using other protocols, simply by substituting
the segment downloader module in the framework’s software architecture. For video multistreaming,
which is streaming video in parallel to one client, we have investigated two popular video players
(Microsoft Smooth Streaming player and Netflix player) and presented two approaches (equal band-
width division and priority-based bandwidth division) to distribute the available bandwidth over
the streaming video players. We showed how the bandwidth distribution logics react to changing
parameters, like the available bandwidth and the amount of streaming video players. For ODV tiled
streaming, we explained what the main idea is and how this concept has been standardized in MPEG-
DASH by means of the SRD extension. We discussed our approach and extended our MPEG-DASH
framework with bandwidth distribution logics for ODV tiled streaming. Each of these bandwidth
distribution logics implements a specific strategy to adaptively assign bandwidth (and hence visual
quality) to the different spatial tiles that jointly compose the full ODV image. To subjectively and
qualitatively measure the performance of every ODV tiled streaming bandwidth distribution logic
in terms of QoE, we did user testing. We discussed the results of the user study and did three-way
ANOVA tests to define the effects of the independent variables on the user-perceived video quality. We
showed that specific distribution logics are better in certain situations and that the quality depends on
the available bandwidth. In the next two subsections, we will further discuss what we have learned
from the user testing and define the future work for video multistreaming and ODV tiled streaming
applications.

6.1 User study insights

A first important finding of our study was that the QoE was better for the viewport at highest quality
distribution logic (see Section 5.7 and its subsections). By this we know that the users think the
quality of the video is better when the quality transition between adjacent tiles is not so obvious.
When the quality transition is apparent, they rated the quality worse. Because the users see more
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quality difference between tiles, the quality score and QoE of the users is lower. Secondly, we learned
that there can be a quality difference between tiles encoded at the same bitrates. These quality
differences were more noticeable with the simple distribution logic. With little motion in the video,
the quality of the video is better compared to that of a video which is encoded at the same bitrate, but
has more motion in it. This can introduce some errors while measuring the subjective video quality.
Third, We expected that the quality score for low bandwidth would be lower than for high bandwidth.
This hypothesis turned out to hold, as the users gave the quality for low bandwidth a lower score in
comparison with the quality for high bandwidth. For the viewport only distribution logic we expected
the quality score to be low as we only tested this logic under low bandwidth conditions. Like said
before, we realized after the user tests that we should not have excluded the tests for the viewport
only distribution logic with high bandwidth. In our case, the influence of the black tiles is not clear
because we did the user tests with low bandwidth for the viewport only distribution logic. With the
viewport only distribution logic, only the tiles of the viewport are streamed, the other tiles are not
streamed and stay black. After PTZ operations, it takes some time before the new tiles in the viewport
start playing (see section 4.6.7). The last thing that we can conclude is that the black tiles ensure that
the quality difference is more pronounced than when the tiles keep playing. This finding confirms
our initial hypothesis that the presence of black tiles has a detrimental impact on the perceived video
quality.

In the user tests we subjectively and qualitatively measured the quality of the video in general, the
difference between the qualities and how disturbed the particpants were with the quality difference.
The last thing we measured is the acceptance of the duration quality change. The duration of the
quality change is the time that is elapsed after the PTZ operation to change the quality of the tiles.
These variables were measured with a score from 1 to 5 (see Appendix C). For the simple distribution
logic, we expected that the users would see no difference in quality because the quality is the same for
all the tiles. We learned, like said before, that the video can show some artefacts caused by fluctuating
quality levels between different spatial regions within the same ODV frame, and this can cause the
quality score to be lower. This also applies to the quality difference score, the score can be influenced
because the user is not sure if the quality is different or there are artefacts in the video. The quality
difference is less perceived with the delta and viewport at high quality distribution logics. The findings
from the user study confirm that quality changes are more/less noticed in those distribution logics
that introduce large/small quality differences between adjacent tiles

The disturbance scores showed that the users were more disturbed with the viewport only distribution
logic. We see that this is caused by the black tiles not displaying an image. So the users are more
disturbed when they need to wait for (parts of) the video. This conclusion is also applicable to the
acceptance score of the duration of quality change. With the viewport only distribution logic, after
a PTZ operation, the tile videos are displayed to the user after some time period. The larger the
segment duration, the longer it takes to start playing the black tiles. Therefore the quality change
duration acceptance score of the viewport only distribution logic is lower. We expected the acceptance
score for the viewport only distribution logic to be lower because the time spent to start playing video
players is more noticeable than the time spent to change the quality. This is because with the quality
change, images are displayed to the user and with the viewport only distribution logic, black parts are
displayed to the users.

6.2 Future work

In this section we will discuss future work for video multistreaming and ODV tiled streaming. Band-
width distribution in video multistreaming applications plays a crucial role for the QoE of the users.
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The bandwidth distribution logics that we have presented for video multistreaming take the avail-
able bandwidth into account, but not the quality. Future work for this is to make a player that can
dynamicly adjust the waiting time before switching between qualities, however without causing the
client-side video buffer to underrun. When the bandwidth reduces dramatically, the buffer can un-
derrun because the delivery of segments is delayed. The time to wait until the quality is changed is
influenced by the time that the player notices the bandwidth change. This can not be too soon because
then the quality is immediately changed. The player must also pay attention to other parameters like
the initial/startup delay. A long initial/startup delay will introduce a lower QoE.

Bandwidth distribution for ODV tiled streaming is necessary for an application to be bandwidth
friendly. For ODV tiled streaming, we have discussed several distribution logics to have a basic
approach for dividing the available bandwidth over the tiles. These logics focus on the available
bandwidth in a network and on the viewport of the user. The distribution logics try minimizing the
time required to upgrade the quality of visible tiles when the ODV viewport has changed. These ap-
proaches only look at the available banwidth and the viewport, but there can be other approaches to
take. A dynamic approach can be taken where the users or developers of a 360 degree application
determine the main idea of the distribution logic. For example when the users or developers want the
tiles in the viewport to be streamed at the same uniform quality, there can be a rule specifying this
approach. Another approach could be that tiles around the viewport are very important in scenarios
where panning is more done than holding the viewport stable. A manager could look at the rules to
decide which distribution logic best fits the application scenario at hand. The manager maintains all
the rules and knows which distribution logic is better in which situation. In our case with bandwidth
distribution, the manager is aware of how the different bandwidth distribution logics will assign a
certain bandwidth budget to the different tiles composing the ODV frame. It can then decide based
on the available bandwidth and the rules which distribution logic to choose. The rules can be inserted
like a formula that decribes which parts are important for the application. The different constituting
factors in the formula could for example be weighed by means of percentage values. The total count
of the percentages must be 100%. By this we can insert as many pecentages that as need. For ex-
ample a percentage for the focus on the viewport, a percentage for the quality of the adjacent tiles
and a percentage for the quality of all the other tiles. By increasing the percentage, more bandwidth
is allocated to the specific rule. 100% would mean that the available bandwidth must integrally be
exploited to maximize the quality factor that is associated with the involved rule. This looks like our
approach of the priority-based distribution logic. But this would be combined with the rules that
can be inserted. This dynamic approach could make the application more usefull to all sorts of users
and developers. Developers could make their formula perfect for their application and the manager
applies the formula for the distribution logics it maintains. The developers could add logics to the
manager and extend the choices of distribution logics.
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Appendix A

Content preparation

FFMPEG for multistreaming video:

• ffmpeg -i video.mp4 -an -vcodec libx264 -x264opts keyint=30 -x264opts min-keyint=30 -x264opts
scenecut=0 -vb 400000 -r -g 30 video-400000.mp4

FFMPEG for ODV tiled streaming:

• ffmpeg -i video.mp4 -an -vcodec libx264 -x264opts keyint=30 -x264opts min-keyint=30 -x264opts
scenecut=0 -vb 400000 -r -g 30 -vf crop=600:200:0:0 video-part-0-0-400000.mp4

Now we will discuss the parameters that are used with the FFMPEG command to transcode the video
into multiple qualities.

• -i video.mp4

Theoption -i we specifies the input video that is transcoded into multiple qualities.

• -an

-an disables audio.

• -vcodec libx264

-vcodec is used to specify the codec that is used to encode the video.

• -x264opts

The option -x264opt can only be used when the media is encoded with the codec libx264.

• -x264opts keyint=30

With -x264opts keyint we specify the GOP length of the video.

• -x264opts min-keyint=30

Option -x264opts min-keyint specifies the minimum GOP length of the video.
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• -x264opts scenecut=0

The no-scenecut option is to keep x264 from generating a key frame when there is a scene
cut in the video [14].

• -vb 400000

With option -vb we specifiy the bitrate of the video. A higher bitrate results in a high
quality video and a lower bitrate results in a lower quality video.

• -r 30

Option -r specifies the frame rate of the video.

• -g 30

-g is used to define the directive for the GOP length for the video.

• -vf crop=600:200:0:0

With option -vf crop we can crop the video. Making use of this option we can spatially
divide the full video frame into tiles.

The parameters measured in pixels for the crop=x:y:v:w option are:

x: Stands for the width of the video that is cropped out of the full video.

y: Stands for the height of the video that is cropped out of the full video.

v: Stands for the start x position starting at the top left corner of the full video.

w: Stands for the start y position starting at the top left corner of the full video.

• video-part-0-0-400000.mp4

The last parameter is the output file.

MP4Box command:

• MP4Box -dash 2000 -segment-name segment -out template.mpd -rap -frag 2000 video-400000.mp4#video

The command consists out of these parameters [4]:

• -dash 2000

Enables DASH segmentation of input files with the given segment duration, expressed in
ms. For onDemand profile, where each media presentation is a single segment, this option sets
the duration of a subsegment .

• -segment-name segment

Sets the file name for generated segments .

• -out template.mpd

Specifies the output file name for the generated MPD.
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• -rap

Forces segments to begin with random access points. Segment duration may not be exactly
what is asked by -dash switch since encoded video data is not modified.

• -frag 2000

Specifies the duration of subsegments in ms.

• video-400000.mp4#video

Name of the input file. #video option defines that the input data is video content.
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Appendix B

Basic framework implementation

In Figure B.1, the Unified Modelling Language class diagram of the basic framework is shown.

Figure B.1: UML class diagram of basic MPEG-DASH implementation

The major classes of this frame are:

• Downloadmanager:

– There is only one object of the Downloadmanager class.
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– Creates the necessary objects for every stream. These objects are the MPD objects, the
Scheduler objects, the Buffer objects, the HTTPDownloader objects and the Stream ob-
jects.

– Maintains the repositories for all the necessary objects.
– Triggers the HTTPDownloader objects to download the MPD file and the initial file.
– Triggers the Scheduler object(s) to begin scheduling.
– Starts playing each video player when the player is ready and has enough data.
– Adds the downloaded video segments to the correct sourcebuffer.
– Decides when the information of the video segments is updated.
– Asks the QualityAdaptationLogic which quality of video segments to download on the

basis of the allocated bandwidth per stream.
– Triggers the HTTPDownloader object(s) to download video segments when the scheduler

event is received for that HTTPDownloader.
– Changes the resolution of the video players on the basis of the information perceived in

the MPD file.

• Buffer:

– For every stream a Buffer object is made.
– Creates a new MediaSource object per stream and adds the URL to the right DOM video

element.
– Adds a sourcebuffer with a specific type and codecs to the MediaSource object when the

Downloadmanager object calls this function.
– Stores all the downloaded video segments in the sourcebuffer.
– Updates and stores the information about every downloaded video segment when the

Downloadmanager object calls this function. The information that is maintained, is the
start time, duration and end time of every video segment, measured in seconds.

• Scheduler:

– For every stream one Scheduler object is made.
– Triggers a schedule event to the Downloadmanager object.
– Decides how many video segments to download.

• DistributionLogic:

– One DistributionLogic is made per scenario of the application.
– Divides the available bandwidth over the streams requesting bandwidth.
– Decides if there is enough bandwidth for the video players to start streaming.

• QualityAdaptation:

– One QualityAdaptation object is made per Downloadmanager object.
– Calculates the highest possible quality of video that can be downloaded with the allocated

bandwidth per stream.
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Now we will discuss the other classes of framework:

• HTTPDownloader:

– For every stream one HTTPDownloader object is made.

– Sends the Ajax [32] GET requests to the full URL of the video segment.

– Receives the video segments from the server.

– Keeps track of the video segment ID.

• Repository:

– For every type of object per stream there is an Repository object made. These objects are
DOM video elements, MPD objects, Buffer objects, Scheduler objects, HTTPDownloader
objects and Stream objects.

– Keeps track of unique objects via a dictionary.

• EventTrigger:

– Per Downloadmanager object, there is one EventTrigger object made.

– Let the Downloadmanager object know when an HTTPDownloader has finished down-
loading a video segment.

• MPDLoader:

– Per stream an MPDLoader object is made.

– Triggers the HTTPDownloader to download the MPD file.

– Triggers the MPDParser to parse the downloaded MPD file.

• MPDParser:

– Per MPDLoader an MPDParser object is made.

– Parses the received MPD file to an object where the parameters and attributes are stored
in like properties of the object.
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• DashHandler:

– Per Downloadmanager object one DashHandler object is made.

– Returns the parameters defined in the MPD file. These parameters are the width and
height of the video, the segmentlist length, all representations in the MPD file, the segment
duration, the minimum buffer time, the codecs type, the bandwidth for a specific quality
defined in the MPD file and the amount of qualities in the MPD file.

• ResponseMetaData:

– Per downloaded video segment an ResponsMetaData object is made.

– Stores information about the downloaded video segments in an object, like the start time,
duration and end time of the video segments, measures in seconds.

• IBuffer, IScheduler and IDistributionLogic:

– Interface classes where the Buffer, Scheduler and DistributionLogic classes have inherited
from.
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Appendix C

User testing questions

Starting questionnaire:

What is your age?

� 12 - 21
� 22 - 31
� 32 - 41
� 42 - 51
� > 52

What is your gender?

� Male
� Female

How often do you watch videos on the internet (Youtube, Netflix, Vimeo, ...)?

� Never
� Annually (rarely)
� Monthly
� Weekly
� Daily

Do you know what 360 degree video is?

� Yes
� No

How often do you watch 360 degree video on the internet?

� Never
� Annually (rarely)
� Monthly
� Weekly
� Daily

How often do you watch live videos on the internet?

� Never
� Annually (rarely)
� Monthly
� Weekly
� Daily
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Test scenario questionnaire:

Give a score of 1-5 how do you found the quality of the video.
1 2 3 4 5

Bad � � � � � very good

Have you noticed any quality change in the video?
� Yes
� No (Skip next 3 questions)

Give a score of how different the qualities were in the video.
1 2 3 4 5

Very different � � � � � No difference

How disturbed were you with the quality changes?
1 2 3 4 5

Very disturbed � � � � � Not disturbed

Did you find the duration of the quality change acceptable?
1 2 3 4 5

Not acceptable � � � � � Acceptable

Do you have any remarks?
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Appendix D

Equally dividing distribution logic for
video multistreaming

We declare the following variables for this distribution logic:

countSt reams: Holds the total number of streaming video players.
bandwid thAllocations: Dictionary that stores the bandwidth allocations for every stream.
st reamBooleans: Dictionary that stores booleans for every stream identifying whether the stream is
currently playing or not.
totalBandwid th: Holds a number representing the total available bandwidth.
st reamBandwid th: Holds a number allocating the bandwidth per stream.

The streams have a numerical indentifier which is used to store the allocated bandwidth in the band-
widthAllocations dictionary and to store the boolean for the stream in the streamBooleans dictionary.
The first stream has identifier 0, the second stream has identifier 1, etcetera. So the id of the stream
represents the key for retrieving the corresponding value. The function addSt ream(st reamId) is
called when a video player starts streaming or resumes playback. The removeSt ream(st reamId)
function is called when a video player stops streaming or pauses. The pseudocode for this distribution
logic is shown next.

1: function ASSIGNBANDWIDTHTOACTIVESTREAMS(streamBandwidth)
2: for i← 0, i < leng th(bandwid thAllocations), i ++ do
3: if st reamBooleans[i] == TRU E then
4: bandwid thAllocations[i]← st reamBandwid th
5: end if
6: end for
7: end function
8:

9: function ADDSTREAM(streamId)
10: countSt reams← countSt reams+ 1
11: st reamBooleans[st reamId]← TRU E
12: bandwid thAllocations[st reamId]← 0
13: st reamBandwid th← (totalBandwid th/countSt reams)
14:

15: ASSIGNBANDWIDTHTOACTIVESTREAMS(streamBandwidth)
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16: end function
17:

18: function REMOVESTREAM(streamId)
19: countSt reams← countSt reams− 1
20: st reamBooleans[st reamId]← FALSE
21: bandwid thAllocations[st reamId]← 0
22: st reamBandwid th← (totalBandwid th/countSt reams)
23:

24: ASSIGNBANDWIDTHTOACTIVESTREAMS(streamBandwidth)
25: end function
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Appendix E

Priority-based distribution logic

Like the distribution logic in Appendix D, this distribution logic makes use of the countSt reams,
bandwid thAllocations and totalBandwid th variables. Besides those variables, we declare the fol-
lowing additional ones:

st reamPercentages: Dictionary to store all percentages for every stream. The actively watched
streams get two times the priority of the streams that are not actively watched.
st reamsDict: Dictionary storing all the streams.
boolAct ive: Per stream a boolean is stored declaring if the stream is watched actively or not.
act iveSt reams: Stores the number of streams that are watched actively.
mul tipl yValue: The value with which the active video players’ priorities are multiplied.
par tPercentage: Part of the total percentage that is assigned to streams.

The pseudocode for the priority distribution logic shown on the next.

1: mul tipl yValue← 2
2:

3: function CALCULATEBANDWIDTHPERSTREAM(multiplyValue)
4: DETECTPRIORITIES(multiplyValue)
5: ALLOCATEBANDWIDTH

6: end function
7:

8: function DETECTPRIORITIES(multiplyValue)
9: par tPercentage← 100/((act iveSt reams ∗mul tipl yValue) + (countSt reams−

10: act iveSt reams))
11: for i← 0, i < countSt reams, i ++ do
12: if st reamsDict[i].boolAct ive == TRU E then
13: st reamPercentages[i]← par tPercentage ∗mul tipl yValue
14: else
15: st reamPercentages[i]← par tPercentage
16: end if
17: end for
18: end function
19:

20: function ALLOCATEBANDWIDTH

119



21: if countSt reams == 1 then
22: bandwid thAllocations[st reamId]← totalBandwid th
23: else
24: for i← 0, i < leng th(bandwid thAllocations), i ++ do
25: bandwid thAllocations[i]← f loor(totalBandwid th ∗ st reamPercentages[i])
26: end for
27: end if
28: end function
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Appendix F

Detecting layers for tiles algorithm

1: function CHECKTILES

2: repoDistances← newReposi tor y()
3: cntT iles← amountT ilesInFullV ideoF rame
4:

5: for i← 0, i < cntT iles, i ++ do
6: repoDistances[i]← cntT iles
7: end for
8:

9: wid th← wid tho f viewpor t
10: height ← heighto f viewpor t
11: star tX ← star tX coordinateo f viewpor t
12: star tY ← star tY coordinateo f viewpor t
13: endX ← endX coordinateo f viewpor t
14: endY ← endY coordinateo f viewpor t
15: rows← amountO f RowsInFullV ideoF rame
16: cols← amountO f ColumnsInFullV ideoF rame
17: videoWid th← wid thO f FullV ideoF rame
18: videoHeight ← heightO f FullV ideoF rame
19: x Pos← star tX
20: yPos← star tY
21:

22: while x Pos <= endY do
23: while x Pos <= endX do
24: x Index ← f loor(x Pos/wid th) ∗ rows
25: y Index ← f loor(yPos/height)
26: index ← (x Index + y Index)%(cntT iles)
27: repoDistances[index]← 0
28: if x Pos == endX then
29: x Pos← x Pos+with
30: else if (x Pos+wid th)> endX ) then
31: xCor ← x Pos+ (endX − x Pos)
32: if f loor(xCor/wid th) == f loor(x Pos/wid th) then
33: x Pos← x Pos+ (endX − x Pos) + 1
34: else
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35: x Pos← x Pos+ (endX − x Pos)
36: end if
37: else
38: x Pos← x Pos+wid th
39: end if
40: x Pos← star tX
41: if yPos == endY then
42: yPos← yPos+ height
43: else if (yPos+ height)> endY then
44: yCor ← yPos+ (endY − yPos)
45: if f loor(yCor/height) == f loor(yPos/height) then
46: yPos← yPos+ (endY − yPos) + 1
47: else
48: yPos← yPos+ (endY − yPos)
49: end if
50: else
51: yPos← yPos+ height
52: end if
53: end while
54: end while
55:

56: t ileLa yer ← 0
57: count ← amountO f T ilesInV iewpor t
58:

59: while count < cntT iles do
60: for k← 0, i < c tnT iles, i ++ do
61: if repoDistances[i] == t ileLa yer then
62: t ileX ← f loor(k/rows) ∗wid th
63: t ileY ← f loor(k%rows) ∗ height
64: for i←−1, i <= 1, i ++ do
65: for j←−1, j <= 1, j ++ do
66: x Point ← t ileX + ( j ∗wid th)
67: yPoint ← t ileY + (i ∗ height)
68: if yPoint > −1AN D yPoint < videoHeight then
69: x Index ← f loor(x Point/wid th) ∗ rows
70: y Index ← f loor(yPoint/height)
71: index ← (x Index + y Index)%cntT iles
72: if index < 0 then
73: index ← index + cntT iles
74: end if
75: if repoDistances[index]> (t ileLa yer + 1) then
76: count ← count + 1
77: repoDistances[index]← t ileLa yer + 1
78: end if
79: end if
80: end for
81: end for
82: end if
83: end for
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84: t ileLa yer ← t ileLa yer + 1
85: end while
86: DISTRIBUTIONLOGIC.CALCULATEBANDWIDTH

87: Call checkTiles() after 1000/30 milliseconds
88: end function
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Appendix G

Detecting viewport change algorithm

This algorithm determines when the viewport has changed, so when the viewer pans in the full video
frame. For this function we explain and declare the following functions and variables:

canvasDrawer.star tPla ying(): The canvasDrawer object starts playing every video.

canvasDrawer.star tDrawing(): The canvasDrawer object starts drawing the images of every video
to the canvas of the full video frame.

viewerW rapper.checkT iles(): Function of Appendix F.

prevV wSnapshot: Holds the index numbers of the tiles that were in the previous viewport.

curVWSnapshot: Holds the index numbers of the tiles that are in the current viewport.

betweenSegDela y: Value that is added or subtracted from the normal end time of the received
viewport tile segments.

star tBoundar y : The end time of every tile video segment must be larger than this value. star tBoundar y
= the normal end time of the received viewport tile segments - betweenSegDela y .

endBoundar y : The end time of every tile video segment must be smaller than this value. endBoundar y
= the normal end time of the received viewport tile segments + betweenSegDela y .

We use endBoundar y and star tBoundar y to detect which tiles are currently in the viewport. Oth-
erwise explained, the end time of the received tile segment must lie between these boundaries. By
this way, we know which tiles lie in the viewport because data for the other tiles is not transferred to
the client. We use these boundaries because the end time of the segments of the viewport tiles is not
always equal to each other.

dela y: Some delay to add to the highest end time to be sure that the current time of the video players
is set to a time where every video player has data to play.

1: function CHECKPERINTERVAL

2: if timeCalled == 1 then
3: canvasDrawer.star tPla ying()
4: canvasDrawer.star tDrawing()
5: viewerW rapper.checkT iles()
6:

7: for i← 0, i < c tnt iles, i ++ do
8: if repoDistances[i] == 0 then
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9: prevV wSnapshot.push(i)
10: end if
11: end for
12: else if t imeCalled > 1 then
13: endT ime← t imesCaled ∗ segmentDuration
14: curV wSnapshot ← newArra y()
15: for ( doi← 0, i < c tnT iles, i ++)
16: t ileEndT ime← repoBuf f ers.getElementAt(i).getEndT imeO f CurrentBu f f er()
17: star tBoundar y ← (endT ime− betweenSegDela y)
18: endBoundar y ← (endT ime+ betweenSegDela y)
19: if t ileEndT imebetweenstar tBoundar yAN DendBoundar y then
20: curV wSnapshot.push(i)
21: end if
22: end for
23:

24: vwChanged ← f alse
25:

26: for i← 0, i < leng th(curV wSnapshot), i ++ do
27: if !prevV wSnapShot.contains(curV wSnapShot[i]) then
28: vwChanged ← t rue
29: end if
30: end for
31:

32: if !vwChanged then
33: for i← 0, i < leng th(prevV wSnapshot), i ++ do
34: if !curV wSnapshot.contains(prevV wSnapshot[i]) then
35: vwChanged ← t rue
36: end if
37: end for
38: end if
39:

40: if vwChanged == t rue then
41: lastT ime←−1
42: for i← 0, i < leng th(curV wSnapshot), i ++ do
43: t ileIndex ← curV wSnapshot[i]
44: endT imeT ile← repoBuf f ers.getElementAt(t ileIndex).getEndT imeO f CurrentBu f f er()
45: if lastT ime < endT imeT ile then
46: lastT ime← endT imeT ile
47: end if
48: prevT ileIndex ← prevSnapShot[0]
49: endT ime← repoV ideoTags.getElementAt(prevT ileIndex).cur rentT ime
50: for i← 1, i < leng th(prevV wSnapshot), i ++ do
51: curT imeT ile← repoV ideoTags.getElementAt(i).cur rentT ime
52: if endT ime > curT imeT ile then
53: endT ime = curT imeT ile
54: end if
55: prevV wSnapshot = curV wSnapshot
56: di f f ← lastT ime− endT ime
57: if di f f < 0 then
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58: di f f ← 0
59: end if
60: Call changeCurTime(curVwSnapshot, diff, lastTime, delay) function after
61: diff seconds
62: end for
63: end for
64: end if
65: end if
66:

67: t imeCalled ← t imesCalled + 1
68: Call checkPerInterval() function after segmentDuration seconds
69: end function
70:

71: function CHANGECURTIME(curVwSnapShot, diff, lastTime, delay)
72: for i← 0, i < leng th(curV wSnapshot), i ++ do
73: t ileIndex ← curV wSnapshot[i]
74: repoV ideoTags.getElementAt(i).cur rentT ime← lastT ime+ dela y
75: end for
76: end function
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Appendix H

Simple distribution algorithm

To understand the distribution logics, we have made some property variables for them:

• arrayMpd: dictionary that stores all the MPD URLs, the key is the tile number.

• repoMPD: dictionary that stores all the MPD objects, the key is the MPD URL for every video
player.

• availableBandwidth: the currently available bandwidth

• bandwidthAllocations: dictionary that stores all the bandwidth allocations for all the tiles, the
key is the tile number.

• cntTiles: stores the total amount of tiles in the full video frame.

• dashHandler: object of the class DashHandler

• segmentDuration: duration of the video segments

• repoBuffers: dictionary that stores all the buffers of the video players, the key is the tile number.

• repoDistances: holds the distance for every tile to the viewport.

1: function CALCULATEBANDWIDTH

2: f irstM pdU rl ← arra yM pd[0]
3: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
4: (repoM pds.getElementAt( f irstM pdU rl))
5: totalBandwid ths← newArra y()
6:

7: for← 0, i < amountQuali t ies, i ++ do
8: totalBandwid ths[i]← 0
9: for j← 0, j < cntT iles, j ++ do

10: bandwid thAllocations[ j]← 0
11: mpdU rl ← arra yM pd[ j]
12: totalBandwid ths[ j]← totalBandwid ths[ j]+dashHandler.getBandwid thForQuali t y
13: (i, repoM pds.getElementAt(mpdU rl))
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14: end for
15: end for
16:

17: st reamQuali t y ←−1
18:

19: for i← 0, i < amountQuali t ies, i ++ do
20: if totalBandwid ths[i]<= availableBandwid th then
21: st reamQuali t y ← i
22: end if
23: end for
24: if st reamQuali t y!= −1 then
25: for
26: i← 0, i < cntT iles, i ++ do
27: mpdU rl ← arra yM pd[i]
28: allocatedBandwid th← dashHandler.getBandwid thForQuali t y
29: (st reamQuali t y, repoM pds.getElementAt(mpdU rl))
30: bandwid thAllocations[i]← allocatedBandwid th
31: end for
32: end if
33: end function
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Appendix I

Viewport only distribution algorithm

1: function CALCULATEBANDWIDTH

2: f irstM pdU rl ← arra yM pd[0]
3: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
4: (repoM pds.getElementAt( f irstM pdU rl))
5: totalBandwid ths← newArra y()
6:

7: for i← 0, i < amountQuali t ies, i ++ do
8: totalBandwid ths[i]← 0
9: for j← 0, j < cntT iles, j ++ do

10: bandwid thAllocations[ j]← 0
11: if repoDistances.getElementAt( j) == 0 then
12: mpdU rl ← arra yM pd[ j]
13: totalBandwid ths[ j]← totalBandwid ths[ j]+dashHandler.getBandwid thForQuali t y
14: (i, repoM pds.getElementAt(mpdU rl))
15: end if
16: end for
17: end for
18:

19: st reamQuali t y ←−1
20:

21: for i← 0, i < amountQuali t ies, i ++ do
22: if totalBandwid ths[i]<= availableBandwid th then
23: st reamQuali t y ← i
24: end if
25: end for
26:

27: if st reamQuali t y!= −1 then
28: for i← 0, i < cntT iles, i ++ do
29: if repoDistances.getElementAt[i] == 0 then
30: mpdU rl ← arra yM pd[i]
31: allocatedBandwid th← dashHandler.getBandwid thForQuali t y
32: (st reamQuali t y, repoM pds.getElementAt(mpdU rl))
33: bandwid thAllocations[i]← allocatedBandwid th
34: end if
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35: end for
36: end if
37: end function

132



Appendix J

Viewport at highest quality
distribution algorithm

1: function CALCULATEBANDWIDTH

2: tempBandwid th← availableBandwid th
3:

4: for i← 0, i < cntT iles, i ++ do
5: mpdU rl ← arra yM pd[i]
6: bandwid th← dashHandler.getBandwid thForQuali t y(0, repoM pds.getElementAt(mpdU rl))
7: bandwid thAllocations[i]← bandwid th
8: tempBandwid th← tempBandwid th− bandwid th
9: end for

10:

11: if tempBandwid th> 0 then
12: mpdU rl ← arra yM pd[0]
13: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
14: (repoM pds.getElementAt(mpdU rl))
15: for star tQuali t y = 1, star tQuali t y < amountQuali t ies, star tQuali t y ++ do
16: for i = 0, i < cntT iles, i ++ do
17:

18: if repoDistances[i] == 0 then
19: tempU rl ← arra yM pd[i]
20: neededBandwid th← dashHandler.getBandwid thForQuali t y
21: (star tQuali t y, repoM pds.getElementAt(tempU rl))
22:

23: if tempBandwid th+ bandwid thAllocations[i]−neededBandwid th> 0 then
24: tempBandwid th← tempBandwid th+bandwid thAllocations[i]−neededBandwid th
25: bandwid thAllocations[i]← neededBandwid th
26: end if
27: end if
28: end for
29: end for
30:

31: totalBandwid ths← newArra y()
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32:

33: for i← 0, i < (amountQuali t ies− 1), i ++ do
34: totalBandwid ths[i]← 0
35:

36: for j← 0, j < cntT iles, j ++ do
37:

38: if repoDistances.getElementAt( j)> 0 then
39: mpdU rl ← arra yM pd[ j]
40: totalBandwid ths[i]← totalBandwid ths[i]− bandwid thAllocations[ j]
41: totalBandwid ths[i]← totalBandwid ths[i]+dashHandler.getBandwid thForQuali t y
42: (i + 1, repoM pds.getElementAt(mpdU rl))
43: end if
44: end for
45: end for
46:

47: st reamQuali t y ←−1
48: for i← 0, i < (amountQuali t ies− 1), i ++ do
49: if totalBandwid ths[i]<= tempBandwid th then
50: st reamQuali t y ← i + 1
51: end if
52: end for
53:

54: if st reamQuali t y!= −1 then
55:

56: for i← 0, i < cntT iles, i ++ do
57:

58: if repoDistances.getElementAt(i)> 0 then
59: mpdU rl ← arra yM pd[i]
60: allocatedBandwid th← dashHandler.getBandwid thForQuali t y
61: (st reamQuali t y, repoM pds.getElementAt(mpdU rl))
62: bandwid thAllocations[i]← allocatedBandwid th
63: end if
64: end for
65: end if
66: else
67: for i← 0, i < cntT iles, i ++ do
68: bandwid thAllocations[i]← 0
69: end for
70: end if
71: end function
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Appendix K

Viewport at highest quality with
lowest quality peripheral tiles
distribution algorithm

1: function CALCULATEBANDWIDTH

2: tempBandwid th← availableBandwid th
3:

4: for i← 0, i < cntT iles, i ++ do
5: mpdU rl ← arra yM pd[i]
6: bandwid th← dashHandler.getBandwid thForQuali t y(0, repoM pds.getElementAt(mpdU rl))
7: bandwid thAllocations[i]← bandwid th
8: tempBandwid th← tempBandwid th− bandwid th
9: end for

10:

11: if tempBandwid th> 0 then
12: mpdU rl ← arra yM pd[0]
13: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
14: (repoM pds.getElementAt( f irstM pdU rl))
15: for
16: star tQuali t y = 1, star tQuali t y < amountQuali t ies, star tQuali t y ++ do
17: for
18: i = 0, i < cntT iles, i ++ do
19:

20: if repoDistances[i] == 0 then
21: tempU rl ← arra yM pd[i]
22: neededBandwid th← dashHandler.getBandwid thForQuali t y
23: (star tQuali t y, repoM pds.getElementAt(tempU rl))
24:

25: if tempBandwid th+ bandwid thAllocations[i]−neededBandwid th> 0 then
26: tempBandwid th← tempBandwid th+bandwid thAllocations[i]−neededBandwid th
27: bandwid thAllocations[i]← neededBandwid th
28: end if
29: end if
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30: end for
31: end for
32:

33: else
34: for
35: i← 0, i < cntT iles, i ++ do
36: bandwid thAllocations[i]← 0
37: end for
38: end if
39: end function
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Appendix L

Upgrade layer per layer distribution
algorithm

1: function CALCULATEBANDWIDTH

2: tempBandwid th← availableBandwid th
3:

4: for i← 0, i < cntT iles, i ++ do
5: mpdU rl ← arra yM pd[i]
6: bandwid th← dashHandler.getBandwid thForQuali t y(0, repoM pds.getElementAt(mpdU rl))
7: bandwid thAllocations[i]← bandwid th
8: tempBandwid th← tempBandwid th− bandwid th
9: end for

10:

11: if tempBandwid th> 0 then
12: t ileLa yer ← 0
13: t ilesHandled ← 0
14: dic t ionHandled ← newDict ionar y()
15: mpdU rl ← arra yM pd[0]
16: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
17: (repoM pds.getElementAt(mpdU rl))
18:

19: while t ilesHandled < cntT iles do
20: t ilesHandled ← 0
21: for star tQuali t y ← 1, star tQuali t y < amountQuali t ies, star tQuali t y ++ do
22:

23: for i← 0, i < cntT iles, i ++ do
24:

25: if repoDistances.getElementAt(i) == t ileLa yer then
26: tempU rl ← arra yM pd[i]
27: neededBandwid th← dashHandler.getBandwid thForQuali t y
28: (star tQuali t y, repoM pds.getElementAt(tempU rl))
29: dic t ionHandled[i]← t rue
30:

31: tmpbndwdth← tempBandwid th
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32: if tmpbndwdth+ bandwid thAllocations[i]−neededBandwid th> 0 then
33: tempBandwid th← tempBandwid th+ bandwid thAllocations[i]
34: bandwid thAllocations[i]← neededBandwid th
35: tempBandwid th← tempBandwid th− neededBandwid th
36: end if
37: end if
38: end for
39: end for
40:

41: t ileLa yer ← t ileLa yer + 1
42:

43: for i← 0, i < leng th(dic t ionHandled), i ++ do
44: if dic t ionHandled[i] then
45: t ilesHandled ← t ilesHandled + 1
46: end if
47: end for
48: end while
49:

50: else
51: for i← 0, i < cntT iles, i ++ do
52: bandwid thAllocations[i]← 0
53: end for
54: end if
55: end function
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Appendix M

Delta distribution logic

1: function CALCULATEBANDWIDTH

2: tempBandwid th← availableBandwid th
3: mpdU rl ← arra yM pd[0]
4: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd(repoM pds.getElementAt(mpdU rl))
5: highest La yer ← 0
6: repoQuali t ies← newReposi tor y()
7: repoBandwid ths← newReposi tor y()
8:

9: for i← 0, i < cntT iles, i ++ do
10: repoQuali t ies.inser tValueWithKe y(i, highestQuali t y)
11: repoBandwid ths.inser tValueWithKE y(i, 0)
12: if repoDistances.getElementAt(i)> highest La yer then
13: highest La yer = repoDistances.getElementAt(ke y)
14: end if
15: end for
16:

17: recursiveCalculateBandwid th(tempBandwid th, amountQuali t ies− 1,0, highest La yer,
18: repoQuali t ies, repoBandwid ths
19:

20: for i← 0, i < cntT iles, i ++ do
21: bandwid thAllocations[i]← repoBandwid ths.getElementAt(i)
22: end for
23: end function
24:

25: function RECURSIVECALCULATEBANDWIDTH(bandwidthRest, quality, currentTileLayer, highestTile-
Layer, repoBandwidths, repoQualities)

26: bandwid thUsed ← 0
27: mpdU rl ← arra yM pd[0]
28: amountQuali t ies← dashHandler.getAmountO f Quali t iesInM pd
29: (repoM pds.getElementAt( f irstM pdU rl))− 1
30:

31: for i← 0, i < cntT iles, i ++ do
32: if repoDistances.getElementAt(i) == cur rentT ileLa yer then
33: mpdU rl ← arra yM pd[i]
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34: bandwid th← dashHandler.getBandwid thForQuali t y(quali t y,
35: repoM pds.getElementAt(mpdU rl))
36:

37: bandwid thUsed ← bandwid thUsed + bandwid th
38: bandwid thRest ← bandwid thRest − bandwid th
39: repoBandwid ths.changeValueForKe y(i, bandwid th)
40: repoQuali t ies.changeValueForKe y(i, quali t y)
41: end if
42: end for
43:

44: if bandwid thRest >= 0 then
45: if cur rent La yer!= 0 then
46: previousT ileQuali t y ← 0
47: previousT ileLa yer ← cur rentT ileLa yer − 1
48:

49: for i← 0, i < cntT iles, i ++ do
50: if repoDistances.getElementAt(i) == previousT ileLa yer then
51: previousT ileQuali t y ← repoQuali t ies.getElementAt(i)
52: break
53: end if
54: end for
55:

56: if |(previousT ileQuali t y − quali t y)|<= del ta then
57: if cur rentT ileLa yer!= highestT ileLa yer then
58: recursiveCalculateBandwid th(bandwid thRest, amountQuali t ies,
59: cur rentT ileLa yer + 1, highestT ileLa yer, repoQuali t ies, repoBandwid ths)
60: end if
61: else
62: if previousT ileQuali t y > 0 then
63: previousLa yerBandwid th← 0
64:

65: for i← 0, i < cntT iles, i ++ do
66: if repoDistances.getElementAt(i) == previousT ileLa yer then
67: previousLa yerBandwid th← previousLa yerBandwid th+
68: repoBandwid ths.getElementAt(i)
69: end if
70: end for
71:

72: recursiveCalculateBandwid th(bandwid thRest + bandwid thUsed+
73: previousLa yerBandwid th, previousT ileQuali t y − 1, previousT ileLa yer,
74: highestT ileLa yer, repoQuali t ies, repoBandwid ths)
75: else
76: recursiveCalculateBandwid th(bandwid thRest + bandwid thUsed,
77: quali t y−1, cur rentT ileLa yer, highestT ileLa yer, repoQuali t ies, repoBandwid ths)
78: end if
79: end if
80: else
81: recursiveCalculateBandwid th(bandwid thRest, amountQuali t ies,
82: cur rentT ileLa yer + 1, highestT ileLa yer, repoQuali t ies, repoBandwid ths)
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83: end if
84: else
85: if quali t y > 0 then
86: recursiveCalculateBandwid th(bandwid thRest + bandwid thUsed, quali t y − 1,
87: cur rentT ileLa yer, highestT ileLa yer, repoQuali t ies, repoBandwid ths)
88: else
89: previousT ileQuali t y ← 0
90: previousT ileLa yer ← cur rent La yer − 1
91: previousLa yerBandwid th← 0
92:

93: for i← 0, i < cntT iles, i ++ do
94: if repoDistances.getElementAt(i) == previousT ileLa yer then
95: previousT ileQuali t y ← repoQuali t ies.getElementAt(i)
96: previousLa yerBandwid th← previousLa yerBandwid th+
97: repoBandwid ths.getElementAt(i)
98: end if
99: end for
100:

101: if previousT ileQuali t y > 0 then
102: recursiveCalculateBandwid th(bandwid thRest + bandwid thUsed+
103: previousLa yerBandwid th, previousT ileQuali t y − 1, previousT ileLa yer,
104: highestT ileLa yer, repoQuali t ies, repoBandwid ths)
105: else
106: tempLa yer ← previousT ileLa yer
107: tempBandwid th← 0
108:

109: while tempLa yer > −1 do
110: tempQuali t y ← 0
111:

112: for i← 0, i < cntT iles, i ++ do
113: if repoDistances.getElementAt(i) == (tempLa yer − 1) then
114: tempQuali t y ← repoQuali t ies.getElementAt(i)
115: tempBandwid th← tempBandwid th+repoBandwid ths.getElementAt(i)
116: end if
117: end for
118:

119: if tempQuali t y > 0 then
120: tempTotalBandwid th← bandwid thRest + bandwid thUSed+
121: previousLa yerBandwid th+ tempBandwid th
122:

123: recursiveCalculateBandwid th(tempTotalBandwid th, tempQuali t y−1,
124: tempLa yer, highestT ileLa yer, repoQuali t ies, repoBandwid ths)
125: end if
126:

127: tempLa yer ← tempLa yer − 1
128: end while
129:

130: if tempLa yer > 0 then
131: for i← 0, i < cntT iles, i ++ do
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132: repoBandwid ths.changeValueForKe y(i, 0)
133: bandwid thAllocations[i]← 0
134: repoQuali t ies.changeValueForKe y(i,−1)
135: end for
136: end if
137: end if
138: end if
139: end if
140: end function
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Appendix N

Dutch summary

Video’s bekijken over het internet wordt steeds meer populairder. Veel websites zoals YouTube, Twitch
en Netflix bieden on-demand en live video streaming functionaliteiten aan. De QoE (Quality of Ex-
perience) van de gebruiker en de beschikbare bandbreedte spelen een belangrijke rol bij het bekijken
van video’s. De QoE meet de waargenomen kwaliteit van de geleverde service. In deze masterproef is
de service het aanbieden van video diensten. De bandbreedte is de hoeveelheid data dat gedownload
kan worden, gemeten in bits of bytes per seconde. In het algemeen is het bekend dat de QoE van
gebruiker beïnvloed wordt door 4 variabelen:

1 Start/wacht tijd van de video: Dit is de tijd dat de gebruiker moet wachten alvorens de video
start met afspelen.

2 Aantal keren dat de videospeler stopt met spelen: Dit is het aantal keren dat de videospeler
stopt met spelen tijdens het afspelen van de video.

3 Aantal kwaliteitsveranderingen: Dit is het aantal keren dat de kwaliteit veranderd wordt
tijdens het afspelen.

4 Media throughput: Dit is de effectieve snelheid waaraan de video gedownload wordt door de
client.

De start/wacht tijd van de video kan de QoE van de gebruiker beïnvloeden wanneer de gebruiker
langer of minder lang moet wachten. Wanneer de gebruiker langer moet wachten om de video te
starten, is de QoE lager dan wanneer de gebruiker minder lang moet wachten.

Als de videospeler tijdens het afspelen van de video meerdere keren stopt met spelen wordt de
gebruiker gefrustreerd door dit gedrag. De gebruiker moet zich telkens aanpassen aan de nieuwe
kwaliteit.

Wanneer de media throughput lager is, kan er minder data gedownload worden door de client. De
throughput geef weer, in bits of bytes, hoeveel data er effectief gedownload wordt door de client. Dit
kan ervoor zorgen dat de kwaliteit van de video lager is omdat hogere kwaliteit van de video meer
bandbreedte vergt dan lagere kwaliteit en zorgt er ook voor dat de QoE van de gebruikers lager is
wanneer de video in lage kwaliteit getoond wordt.
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Dynamische netwerken zorgen ervoor dat de beschikbare bandbreedte per client frequent kan ve-
randeren. Dynamische netwerken zijn netwerken waar computers constant het netwerk kunnen ver-
laten of toe kunnen treden tot het netwerk. Bijvoorbeeld bij een toenemend aantal computers kan
de beschikbare bandbreedte verminderen per computer omdat de bandbreedte evenredig verdeeld
moet worden.

Door gebruik te maken van MPEG-DASH kan de performantie van geleverde video diensten verbeterd
worden. De afkorting MPEG-DASH staat voor Moving Picture Experts Group Dynamic Adaptively
Streaming over HTTP.

MPEG-DASH is ontwikkeld door MPEG en zorgt ervoor dat tijdens het afspelen van de video de
kwaliteit veranderd kan worden. MPEG-DASH werkt via meerdere representaties van de video,
namelijk meerdere kwaliteiten van de video. Voor dat de video data gestuurd wordt naar een com-
puter die er interesse voor heeft, wordt de video gecodeerd in verschillende kwaliteiten. Elke kwaliteit
wordt dan opgesplitst in aparte delen die segmenten genoemd worden. Elk segment heeft een vaste
duur en behoort tot 1 representatie van de video. Door de verschillende kwaliteiten in segmenten
in te delen, kan de videospeler tijdens het afspelen van de video veranderen van kwaliteit door de
volgende segmenten van een andere representatie aan te vragen.

In het eerste deel van deze masterproef wordt eerst onderzoek gedaan naar video multistreaming.
Video multistreaming betekent dat meerdere video’s parallel afgespeeld worden door 1 client. Een
voorbeeld hiervan is dat de client meerdere tabbladen in de web browser met video’s kan afspelen.
Het is de bedoeling de bandbreedte te verdelen over de video’s die afspelen. Omdat niet alle video’s
gelijktijdig getoond kunnen worden wanneer meerdere tabbladen gebruikt worden, bieden we twee
bandbreedte distributie logica’s aan voor het verdelen van de bandbreedte over deze video’s.

De eerste bandbreedte distributie logica voor video multistreaming is de distributie logica die de
bandbreedte eerlijk verdeeld over alle video’s. Met andere woorden, elke video krijg evenveel band-
breedte toegekend. In zulke situaties valt het voor dat de video’s niet dezelfde uniforme kwaliteit
tonen omdat video’s meer bandbreedte kunnen vereisen om hoge kwaliteit ervan te tonen. Wan-
neer de beschikbare bandbreedte verandert, wordt ook de toegekende bandbreedte per videospeler
veranderd.

Voor video multistreaming hebben we een buffering/steady scheduler gemaakt. Deze buffer kan in
2 fases werken, namelijk in de buffering fase en in de steady fase. De videospeler start eerst met de
buffering fase en schakelt erna over naar de steady fase. De buffering fase zorgt ervoor dat er zo
snel mogelijk video getoond kan worden door zo snel mogelijk lagere kwaliteit segmenten van de
video te downloaden. Omdat lagere kwaliteit segmenten minder data bevatten kunnen deze sneller
gedownload worden dan hogere kwaliteit segmenten. Wanneer er genoeg gebufferd is om de video
af te spelen, schakelt de videospeler over naar steady fase. In deze fase wordt er om een bepaald
interval 1 video segment gedownload. Dit is om ervoor te zorgen dat het bufferniveau stabiel blijft.

Naast het eerlijk verdelen van de beschikbare bandbreedte over de video’s hebben we een tweede
distributie logica gemaakt. Namelijk de prioriteit-gebaseerde bandbreedte distributie logica. Deze
distributie logica gaat de beschikbare bandbreedte verdelen aan de hand van percentages. Elke
videospeler wordt een percentage toegekend. De som van alle percentages mogen maximum 100
zijn. Het idee hierachter is dat actieve video’s een hoger percentage krijgen dan niet actieve video’s.
Bijvoorbeeld in het geval dat er meerdere tabbladen zijn waarin video’s afgespeeld worden. De video’s
in de gesloten tabbladen worden niet meteen bekeken, waardoor we het percentage voor deze video’s
kunnen verlagen en waarmee ze lagere kwaliteit van de video tonen. De video’s in de actieve tab-
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bladen krijgen een hoger percentage omdat hier rechtstreeks naar gekeken wordt. Door deze aanpak
kunnen we prioriteiten stellen voor video’s en kunnen bepaalde video’s in hogere kwaliteit getoond
worden dan andere video’s.

Het tweede deel van deze masterproef gaat over ODV tiled video streaming met MPEG-DASH. ODV
staat voor omni-direcitonal video en is 360 graden video waarmee de gebruiker maar een bepaald
deel van het volledige 360 graden beeld te zien krijgt. Dit is de bedoeling omdat mensen in realiteit
ook maar een bepaalde hoek voor zich kunnen zien, het viewport genoemd in ODV, en niet volledig
360 graden rond zich kunnen kijken. ODV tiled video is 360 graden video waarmee het volledige
360 graden beeld opgedeeld is in tegels van een vaste hoogte en breedte. De bedoeling hiervan
is dat tegels die in het viewport liggen aan hoge kwaliteit getoond worden. De tegels rondom het
viewport worden aan lagere kwaliteit getoond omdat de gebruiker niet rechtstreeks interageert met
deze tegels. In de volgende figuur zien we een 360 graden beeld opgedeeld in tegels en het viewport
als vierkant aangeduid.

Figure N.1: Full ODV frame tiled into a 4x4 grid with an inidication of the current viewport

Om de beschikbare bandbreedte te verdelen over de tegels van het 360 graden beeld, hebben we 6
distributie logica’s gemaakt. Elke distributie logica heeft een eigen focus en verdeelt de beschikbare
bandbreedte naargelang die focus over alle tegels van het 360 graden beeld.

De eerste bandbreedte distributie logica die we gemaakt hebben voor ODV tiled video is de simpele
distributie logica. De simpele distributie logica zorgt ervoor dat alle tegels van het 360 graden beeld
dezelfde uniforme kwaliteit van de video tonen die mogelijk is met de beschikbare bandbreedte. Dus
bij deze distributie logica is er geen verschil van kwaliteit tussen de tegels.

Een tweede distributie logica die we gemaakt hebben is de distributie logica die alleen de tegels van
het viewport bandbreedte toekent. Dit zorgt ervoor dat alle andere tegels geen bandbreedte krijgen
en ook niet afgespeeld worden. Dus de andere tegels rondom het viewport blijven zwart tijdens het
afspelen van het viewport. Wanneer het viewport naar deze tegels veranderd wordt, krijgen deze
tegels bandbreedte toegekend en starten deze met spelen. De kwaliteit wordt ook zoals de vorige
aanpak bepaald aan de hand van de beschikbare bandbreedte en er wordt ook een uniforme kwaliteit
voor de tegels in het viewport gekozen.

De volgende aanpakken werken met lagen van tegels. De tegels die in het viewport liggen zijn gemar-
keerd als laag 0, de aangrenzende tegels van het viewport als laag 1, de tegels die daaraan grenzen
aan laag 2, enzovoort. De derde distributie logica gaat eerst alle tegels van het 360 graden videobeeld
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bandbreedte toekennen om de laagste kwaliteit toe te kennen. Wanneer er bandbreedte over is wor-
den alle tegels in het viewport per kwaliteit behandeld. Dus als er bandbreedte over is, wordt er
gekeken of de kwaliteit van de tegels in het viewport verbeterd kan worden. Tegel per tegel wordt
behandeld en er wordt telkens gekeken of er genoeg bandbreedte over is om de kwaliteit te ver-
beteren totdat de hoogste kwaliteit voor alle tegels in het viewport behaald is. Wanneer de hoogste
kwaliteit behaald is en er is bandbreedte over, worden alle andere tegels rondom het viewport op
dezelfde manier behandeld.

De vierde distributie logica is gebaseerd op de vorige distributie logica en werkt gelijkaardig. In deze
distributie logica wordt ook eerst bandbreedte toegekend voor de laagste kwaliteit aan alle tegels.
Erna worden de tegels van het viewport ook tegel per tegel per kwaliteit behandeld maar de andere
tegels rondom het viewport worden niet meer behandeld. Dus deze tegels zullen altijd de laagste
kwaliteit van de video tonen in vergelijking met de vorige aanpak waarmee de tegels rondom het
viewport tegel per tegel per kwaliteit behandeld worden.

De volgende distributie logica gaat laag per laag behandelen. Deze distributie logica zorgt ervoor
dat de kwaliteit per laag uniform is. Deze start ook met bandbreedte voor alle tegels toe te kennen.
Als er bandbreedte over is, wordt het viewport behandeld. Er wordt de hoogst mogelijke uniforme
kwaliteit voor het viewpor gekozen en als er bandbreedte over is voor de volgende laag, enzovoort.
Dus laag per laag wordt behandeld en voor elke laag wordt de hoogst mogelijke uniforme kwaliteit
gekozen.

De laatste distributie logica is de meest complexe distributie logica. Deze werkt ook met lagen en
uniforme kwaliteiten per laag, maar zorgt ervoor dat het kwaliteitsverschil tussen aangrenzende lagen
maximum gelijk is aan de delta waarde. De delta waarde wordt alvorens bepaald. Het algoritme start
eerst me de hoogst mogelijke uniforme kwaliteit toe te kennen aan de tegels in het viewport. Daarna
wordt er met de overblijvende bandbreedte, de hoogst mogelijke kwaliteit voor de volgende laag
geselecteerd en gekeken of het kwaliteitsverschil maximum gelijk is aan delta. Als dit het geval is
wordt de volgende laag behandeld totdat alle lage behandeld zijn. Als dit niet het geval is wordt de
kwaliteit van het viewport verminderd. Er wordt dan weer gekeken of de kwaliteit van de volgende
laag, geselecteerd op basis van de overblijvende bandbreedte, maximum delta waarde verschilt met
de vorige laag. Er wordt telkens naar de vorige laag gekeken om het verschil tussen kwaliteiten te
berekenen. Een voorbeeld hiervan is wanneer delta=1, er 3 lagen zijn in het 360 graden beeld en er
3 kwaliteiten zijn van de video. Wanneer de tegels in het viewport (laag 0) aan kwaliteit 3 (hoogste)
getoond wordt, moeten de aangrezende tegels (laag 1) minimum kwaliteit 2 tonen omdat het verschil
met de vorige laag maar 1 (delta) mag zijn. De andere tegels (laag 3) moeten minimum kwaliteit 1
tonen omdat het verschil met laag 2 maximum 1 (delta) mag zijn.

Om deze distributie logica’s subjectief en kwalitatief te evalueren, hebben we user testing sessies
georganiseerd met 14 deelnemers. Voor deze sessies hebben we 4 distributie logica’s geselecteerd
van de 6, namelijk de simpele distributie logica, de distributie logica waarmee het viewport alleen
getoond wordt, de distributie logica waarmee het viewport in de hoogst mogelijke kwaliteit tegel per
tegel per kwaliteit getoond wordt en dit ook voor alle andere tegels en de delta distributie logica. De
beschikbare bandbreedte hebben we laten variëren tussen 1.85 Mbps en 6.2 Mbps. Deze hebben we
zo gekozen zodat de verschillende distributie logica’s verschillend konden reageren in elke situatie.
Voor de segment duur hebben we ook 2 waarden gekozen, namelijk segmenten die 1 seconde en
2 seconden lang duren. De sessies bestonden uit 14 testen waarmee elke deelnemer na een test
een vragenlijst kreeg. Alle deelnemers konden voor het starten van de testen een demo versie van
het framework proberen. De vragenlijst vroeg de deelnemer een score van 1 tot 5 te geven voor 4
variabelen. De eerste variabele was de algemene kwaliteit die de deelnemer een score van 1 (slecht)
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tot 5 (heel goed) kon geven. De tweede vraag vroeg de deelnemers of ze een verschil in kwaliteiten
zagen in de video. Als dit het geval was, moesten ze 3 extra vragen invullen en anders mochten deze
overgeslagen worden. De 3 extra vragen bestonden uit een score te geven voor het kwaliteitsverschil
(1=heel verschillend, 5=niet verschilend), hoe storend het kwaliteitsverschil was (1=heel storend,
5=niet storend) en de laatste vraag vroeg de deelnemers hoe aanvaardbaar ze de duur vonden van
de kwaliteitsverschil (1=niet aanvaardbaar, 5=aanvaardbaar). Omdat het even duurde voordat de
kwaliteit veranderde tijdens het draaien van het viewport werd de laatste vraag gesteld.

Enkele resultaten van de user testing waren opmerkelijk. De simpele distributie logica had de hoog-
ste kwaliteitsverschil score voor 1 seconde segmenten. Dit is normaal omdat de kwaliteit voor de
simpele distributie logica niet verandert. Echter voor 2 seconde segmenten had de simpele distribu-
tie logica de tweede hoogste score voor het kwaliteitsverschil. We denken dat dit te maken heeft
met enkele artefacten die verschenen tijdens de testen van de simpele distributie logica. De video’s
bij de simpele distributie logica toonden namelijk enkele blurry effecten in enkele tegels terwijl de
kwaliteit hetzelfde was dan andere tegels. Dit heeft te maken met de beweging in de video’s. Als
er veel beweging is in de video is de kwaliteit opmerkelijk slechter dan wanneer er meer beweging
is in de video, ook al zijn de video’s aan dezelfde bitrate gecodeerd. De kwaliteit was het beste bij
de distributie logica waar het viewport tegel per tegel per kwaliteit behandeld werd en de andere
tegels op gelijkaardige manier. Deze distributie logica scoorde in het algemeen ook het beste. Hieruit
leerden we dat de score hoger was wanneer de overgang tussen kwaliteiten niet duidelijk is. De
distributie logica waar alleen het viewport getoond werd scoorde in het algemeen het laagste omdat
er zwarte tegels getoond werden wanneer het viewport gedraaid werd. Voor de testen hebben we
de de simpele distributie logica met 1 en 2 seconden er niet uitgelaten. Dit hadden we beter wel
gedaan omdat de duur van de segmenten toch geen rol speelde bij deze distributie logica omdat de
kwaliteit niet veranderd werd. Het was beter de distributie logica die alleen de tegels in het view-
port bandbreedte toekende met hoge bandbreedte en 1 en 2 seconden segment duur in de testen te
zetten. Deze hadden we er namelijk uit gelaten en we zagen deze fout pas nadat de testen uitgevoerd
werden.
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