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Abstract

The aging nature of our societies and the insufficient attention to the complex needs of older

people, make Palliative Care an in important Public health issue. This calls for a need not only

to improve health by preventing disease and disability but also to improve the quality of life

that remains, enabling people to live well and, when the time comes, to die well. The goal of

Palliative care is to improve the symptoms, dignity and quality of life of people approaching the

end of their lives and on the care of and support for their families and friends.

This primary palliative care is an emerging field in Belgium. The Care Pathway for Primary

Palliative Care (CPPC), developed at the University of Antwerp, is aimed at helping primary

health care workers to provide high quality palliative care. Starting from early identification

of palliative patients which was through asking a surprise question by the general practitioners

(GPs), patient- and family-centered care is believed to be delivered towards the end of life.

The objective of this thesis was to investigate whether there are patterns of health care de-

livery over time in the last year of life, to be recognized overall, per cluster, per disease category,

and or per social status.

Due to the clustered nature of the data or repeated measurements of the response variables

for this thesis; the existence of over-dispersion as a result of the variance being larger than the

mean and the occurrence of excess zeros beyond what a Poisson model can incorporate, the ex-

tensions of the Poisson model were considered. These include Zero-Inflated Negative Binomial

model to account for the Overdispersion in the data, the so-called Zero-Inflated Poisson-Normal-

Gamma model to account for excess zeros in the data, Zero-Inflated Mixed-Effects Poisson

Model to account for patient-specific effects and a marginalized multilevel model to provide the

population-average interpretation of the parameters.

As regards to cancer, dementia and social status, the probability of 0 day of stay per week

in the Palliative Care Unit depends only on cancer. At cluster level, this probability depends
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on cancer and social status of the patients and marginally, it depends solely on cancer. The

expected number of days in the Palliative Care Unit was found to be related to cancer, dementia

and social status only at cluster level. Thus, there were patterns of health care delivery over

time in the last year of life as recognised overall, per cluster, per disease category, and or per

social status of the patients.
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1 INTRODUCTION

The aging nature of our societies and insufficient attention to the complex needs of older people

make Palliative Care an in important Public health issue. This provides a need not only to

improve health by preventing disease and disability but also to improve the quality of life that

remains, enabling people to live well and, when the time comes, to die well (EAPC, 2010). The

goal of Palliative care is to improve the symptoms, dignity and quality of life of people approach-

ing the end of their lives and on the care of and support for their families and friends(EAPC,

2010).

Therefore Palliative care is seen as a health issue that provides relief from pain, affirms life

and regards death as a normal process. It intends neither to hasten or postpone death and

integrates the psychological and spiritual aspects of patient care. Furthermore, it is applicable

early in the course of illness, together with other therapies that are intended to prolong life

and includes those investigations needed to better understand and manage distressing clinical

complications(WHO, 2010).

Palliative has often been neglected and is mostly offered to people with cancer in

hospice settings. It is now offered more widely and integrated more broadly across health care

services. populations worldwide are aging, leading to a dramatic increase in the numbers of

people living into their seventies, eighties and nineties. Further more, patterns of disease in the

last years of life are also changing, with more people dying from chronic debilitating conditions,

like cardiovascular disease, chronic obstructive pulmonary disease, diabetes, cancer and demen-

tia(Ferri CP et al., 2005). It is known that many of these illnesses often occur among older

people, who mostly experience multiple health problems and disabilities.

Symptoms such as pain, anorexia, low mood, mental confusion, constipation, insomnia and

problems with bladder and bowel control often occur in their last year of life(Addington-Hall J
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et al., 1998).

Palliative care services need to be developed to meet the complex needs of older people and

these services need to be available for people with diseases other than cancer and offered based

on need rather than diagnosis or prognosis. These palliative services could be integrated in

primary care(Pro-Spinoza, 2011).

This primary palliative care is an emerging field in Belgium. The Care Pathway for Primary

Palliative Care (CPPC), developed at the University of Antwerp, aimed at helping primary

health care workers to provide high quality palliative care. Starting from early identification

of palliative patients which was through asking a surprise question by the general practitioners

(GPs), patient- and family-centered care is believed to be delivered towards the end of life(Pro-

Spinoza, 2011).

To this effect, a stepped wedge cluster design was set up with 5 regions being 5 clusters.

Volunteered General Practitioners(GPs) were involved in recruiting people with reduced life

expectancy and their informal care giver. The quality of care was measured, first, by the web-

based questionnaires filled by GPs and patients in a secured platform, and second, by health

care consumption data in the last year of life. Within and between the stepped wedge clusters,

a prospective cohort as well as a case control design were developed. For this case control de-

sign, health care consumption data have been collected for all people domiciled in the research

clusters having died a ’non-sudden’ death during the study period(Pro-Spinoza,2011).

The primary outcome of this quantitative part was hospital admission rate in the last year of

life and secondary outcomes were death at home, health care consumption, and quality of care

as perceived by the web-questionnaires. To evaluate the implementation in a qualitative way, a

multiple case study design was used and focus groups were meant to reveal the strategies every

region used in improving the local palliative care organization. At the end, a semi-structured

interviews were put in place to find how the general practitioners implement the Care Pathway

for Primary Palliative Care and how patients and/or informal carers experience receiving the
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Care Pathway for Primary Palliative Care(Pro-Spinoza, 2011).

For this Master thesis, the focus was the analysis of the health care consumption data of 4

of the 5 clusters, of which data were available. No data were available on patients to whom the

intervention was given. The objective was to investigate whether there are patterns of health

care delivery over time in the last year of life, to be recognized overall, per cluster, per disease

category, or per social class.

Due to the clustered nature of these data or repeated measurements of the response; the existence

of over-dispersion as a result of the variance being larger than the mean and the occurrence of

excess zeros beyond what a Poisson model can incorporate, the extensions of the Poisson model

was considered ( Kassahun et al.,2014). These involve Zero-Inflated Negative Binomial model to

account for the Overdispersion in the data, the so-called Zero-Inflated Poisson-Normal-Gamma

model to account for excess zeros in the data, Zero-Inflated Mixed-Effects Poisson Model to ac-

count for patient-specific effects and a marginalized multilevel model to provide the population-

average interpretation of the parameters.
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2 MATERIAL AND METHODS

2.1 Data Description

This study was a multivariate longitudinal observational in which a number of different responses

were measured repeatedly over time on a particular patient. The data in this study, comprises

of two data sets: the consumption data set which consisted of the response variables and the

patient data set which consisted of the explanatory variables. In total, there were 102,762 ob-

servations, obtained from 17,112 patients (aged 45 years and older).

The length of stay or the number of days in different settings (hospital, nursing homes and

palliative care units) and the number of home visits by a patient own GP, characterized by

excess zero counts, were taken from each patient who was in his or her last year of life. The

age category of patient and GP, gender of patient, place of death of patient, month of death,

family size, dependency of help, financial measures, palliative forfeit requested, attestation of

chronic disease, cancer, dementia, patient’s GP and territories of palliative care networks and

GPs circles, were also recorded from each patient. Table 1 gives a brief description of the vari-

ables contained in the data .

The response variables; the number of days in different settings and the number of home visits by a
patient own GP, were measured repeatedly per time points which are stratified into time frames and
are characterized by excess zero counts. The explanatory variables on their part, consisted mostly of
categorical variables.
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Table 1: A Description of the Variables
Response Variable

Variable Description
NO HOSPDAYS Number of hospitalisation days per time frame without stay in palliative care unit
NO PALLU Number of days in the palliative care unit per time frame
WZC Number of days in the nursing home
WZC KORT Number of days in the short stay department of a nursing home
TV DAYS Total number of days with home care nursing
TV P DAYS Number of home care nursing days with an official palliative care approach
HA HB Number of home visits by own GP

Explanatory Variable

Variable Description
ID National number of patient at least 45 years old
GP CHOICE The Patient’s GP
GP AGE05 CAT Age Category of GP: Per 5 Years
KANKER 0= No Cancer, 1 = Cancer
DEMENT 0 = No Dementia, 1 = Dementia
CLUSTER Territories of palliative care networks( 1=Antwerp ; 2= Mons; 4=Brussels; 5=Limburg)
SUBCLUSTER Territories of GP Circles
GENDER 0=Female, 1= Male
AGE05 CAT Age Category Patient, Per 5 Years
MAJOR COVERAGE YN 0=Normal reimbursement; 1= Higher reimbursement (low social-economic status)
CHRONZ ATTEST 0=No Attestation for a chronic disease;1= Attestation for a chronic disease
FAM SIZE Family Size (1 : 1 Person, 2 : 2 Persons,......, 12: 12 or more Persons)
PF 0=No Palliative Forfeit requested; 1= Palliative Forfeit requested
DEPENDANCY Dependancy of help
MAF MAF is a Financial Measure of how much a family spend for health care( 0=MAF limit not exceeded;1=MAF limit exceeded).
CHRONZ FF 0=No Forfeit for chronic disease;1=Received Forfait for chronic disease
GMD A ’GMD’ is a Financial Measure to bind patients to their general practitioners (0=no GMD; 1=has GMD)
PLOD Place of Death (1=at home; 2=nursing home; 3=hospital; 4=palliative care unit; 5=anywhere else).
PERIOD D Month of Death
TIMEFRAME 1=[12M,6M[, 2=[6M,3M[, 3=[3M,1M[, 4,=[1M,2W[, 5=[2W,1W[, 6=[1W,date of death[

2.2 Exploratory Data Analysis(EDA)

Prior to statistical modeling, the EDA was performed using graphs to gain a substantial insight into
the data. To achieve this, the individual profile of each outcome was plotted which gives a comparison
of the between- and within-patient variability. A mean profile of each outcome was also plotted to
visualize how the proportion of the length of stay in different settings and of home visits by a patient
own GP vary over the time frame. Further, a variance structure was not left out to provide a picture
of the type of model to be fitted.

2.3 Statistical Analysis

Count data are most commonly modeled using the Poisson model. Due to issues like clustering in
the data, repeated measurements of the response; the existence of overdispersion and the occurrence
of excess zeros beyond what a Poisson model can incorporate, the extensions of the Poisson model is
usually considered (Kassahun et al.,2014). Such issues can effectively be accounted for through the use
of random subject-specific effects (Molenberghs and Verbeke, 2005), through the use of an Overdisper-
sion model, such as, the negative-binomial model for count data (Breslow, 1984; Lawless, 1987) and
through the use of the so-called zero-inflated models(Lambert ,1992; Greene, 1994), respectively.

To this effect, in order to investigate whether there are patterns of health care delivery over time,
to be recognized overall, per cluster, per disease category or per social status or class, Poisson models,
Negative Binomial models, Zero-Inflated Models; Zero-Inflated Negative Binomial models ; a Mixed-
Effect Poisson Models and a Marginalized Zero-Inflated Combined Models were used . Since the Data
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set for this study is characterized by excess of zero counts, these excess zero counts must be accounted
for. Accounting for the excessive zeros assumes that zeros may come from two processes: a point-mass
or a Poisson-normal-gamma process, as a mixture, leading to Zero-Inflated Poisson-Normal-Gamma
model- ZI(PNG) ( Kassahun et al., 2014), as a good start to analyse this data set.

2.3.1 Standard Poisson Models

Poisson regression model is traditionally known to model count data. Unlike the familiar Gaussian
distribution which has two parameters N(µ,σ2), the Poisson distribution is described by a single pa-
rameter, λ as both the mean and the variance. Thus a Poisson distribution is characterized by two
parameters having the same value, the expected value (mean) and the variance. This can be a strong
assumption. However, this does not always apply to count data. It is not usually uncommon that
the observed variance of a count variable is greater than the observed mean, a situation referred to as
over-dispersion. In this case, using Poisson regression to model data is not appropriate.

When there is over-dispersion, as a consequence of omission of important covariates, data in ques-
tion can be modeled using Negative Binomial (NB) regression model. Negative binomial regression,
like Poisson model, examines the relationship between predictors and count dependent variable through
log link, which assumes a mixture distribution for count variable.
Suppose that Yi ∼ Poisson(λi), where λi is a random variable with gamma distribution, with mean
E(λi) = µi and variance, var(λi) = µi

k . Then the unconditional distribution of Yi is Negative Binomial
with the probability density function given by:

f(Yi = yi) =
Γ(yi + k)

Γ(k)yi!

(
k

k + µi

)k ( µi
k + µi

)
yi

This distribution has mean, E(Yi) = µi and variance, V ar(Yi) = µi(1+µik
−1), where k is the dispersion

parameter. When k = 1, the mean and the variance become same, and thus Negative Binomial
distribution will be reduced to Poisson distribution. On the other hand, when k−1 > 0, the variance will
exceed the mean and the distribution will be overdispersed. A characteristic feature of this distribution
is that it accounts only for overdispersion, not for underdispersion (i.e. the variance is smaller than
the mean).

2.3.2 Zero-Inflated Models

When the data are characterized by excess zero counts, the data can no longer be modeled using
Ordinary Poisson Regression Model. There exists substantial literature on the modeling of these
zero-inflated count data using the Hurdel Model(Mullahy, 1986) and the Zero-Inflated Poisson model
(Lambert, 1992).

The hurdle model is seen as a two-part model for count data. The first part is the model for the
binary variable which indicates whether the response outcome is zero or positive. Conditional on a
positive outcome, the second part of the model uses a truncated Poisson distribution or a truncated
Negative Binomial (NB) distribution to model the positive variable. Let Yi denote the observation
matrix for subject i (i = 1, ..., n). The probability P (Yi > 0) = 1− Pi and P (Yi = 0) = Pi. A logistic
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regression model was used for Pi and a log-linear model was used for the mean of the truncated Poisson
distribution or truncated Negative Binomial (NB) distribution. However, when the non-zero part is
a discrete random variable, a popular approach to analyse count data with excess zeros is to use a
zero-inflated Poisson (ZIP) regression model (Lambert, 1992).

In zero-inflated poisson models, it is assumed that there are two processes that can generate zeros.
The first process generates only zeros (ie the zeros can come from a point mass) with probability, say
πij for observation i at time point j, and the second process generates counts (ie from count compo-
nents) with probability, say 1 - πij (Hinde and Demetrio, 1998). The general form of the zero-inflated
poisson-normal -gamma model is given as follows:

Yij ∼

{
0 with probabilityπij ,

fi(yij |b1i, ξ, θij) with probability(1− πij),
,

which leads to the probabilities P (Yij = yij |b1i, ξ, θij , πij) given by

P (Yij = yij |b1i, ξ, θij , πij) ∼

{
πij + (1− πij)fi(0|b1i, ξ, θij) ifyij = 0,

(1− πij)fi(yij |b1i, ξ, θij) ifyij > 0,

where Yij is the jth outcome measured for subject i = 1,.......,N, j = 1,........ni; bi ∼ N(0,D),
and θij ∼ Gamma(α,β), xij and zij are p-dimensional and q-dimensional vectors of known covariates,
and ξ is a p-dimensional vector of unknown fixed regression coefficients.
The zero-inflated component πij = π(x′ijξ + z′ijb2i) can be modeled using a Bernoulli model having
only an intercept in its simplest form, with x2ij and z2ij as covariates and β as a vector of zero-inflated
coefficients to be determined together with the random effects b2i (Kassahun et al., 2014). In modeling,
the link function such as logit or probit could be applied. On the other hand, the covariates x1ij and
z1ij together with b2i are used on the non-zero count part.
It should be noted that in fitting this model, the covariates in the count and zero-inflation component
can either be overlapping, a subset of the regressors can be used for the zero-inflation, or entirely
different covariates for the two parts can be used (Kassahun et al., 2014).

Also, the Variance-Covariance matrix, where the random effects are assumed to be normally distributed
and possibly correlated with correlation parameter ρ, is given by

D =

 d1 ρ
√
d1
√
d2

ρ
√
d1
√
d2 d2

 ,

where d1 is the Standard deviation of the non-zero part random effect, d2 is the Standard deviation
zero part random effect and ρ is the Correlation of random effects.
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Furthermore, the conditional mean and variance of this Zero-Inflated Poisson-Normal-Gamma model,
ZI(PNG), are stated as:

E(Yij |b1i, ξ, θij) = θijkij(1πij)

,
V ar(Yij |b1i, ξ, θij) = θijkij(1− πij)[1 + θijkij(πij + 1/α)]

.
From the variance expression, it can be seen clearly that the conditional variance is inflated as a result
of either overdispersion in the data (parameter α), or as a result of zero-inflation (parameter πij ), or
both.

2.3.3 Estimation

The Likelihood estimation of the Poisson- Normal-Gamma is obtained by integrating over the random
effects, combining the marginal likelihood, and maximizing it in the usual way. This can also be
marginalized analytically over the gamma random effect, with further numerical integration over the
normal random effects Molenberghs et al. (2007) and Molenberghs et al. (2010). This enables the use
of a flexible normal random-effects tool such as the SAS procedure NLMIXED (Kassahun et al., 2014).
The partially marginalized Poisson- Normal-Gamma takes the form:

f(yij |b1i, ξ) =

∫
f(yij |b1i, ξ, θij)f(θij , αj , βj)dθij

=

(
αj + yij − 1
αj − 1

)
.

(
βj

1 + kijβj

)yij
.

(
1

1 + kijβj

)αj

.kij
yij

Applying this to the Zero-Inflated Poisson-Normal-Gamma, we get that:

f(yij |b1i, ξ, b2i, β) = I(yij = 0)πij +

(
αj + yij − 1
αj − 1

)
.

(
βj

1 + kijβj

)yij
.

(
1

1 + kijβj

)αj

.kij
yij ,

with πij = π(x′2ijγ + z′2ijb2i) .

2.4 Zero-Inflated Negative Binomial Models

In order to account for overdispersion in these data, a Zero-Inflated Negative Binomial Model was
considered. The Zero-Inflated Negative Binomial (ZINB) regression model assumes that there are two
distinct data generation processes. For observation i, with probability πi the only possible response of
the first process is zero counts, and for the second process, the response with probability of (1 − πi)
is governed by a negative binomial with mean λi. The zero counts are generated from both the first
and second processes, where a probability is estimated for whether zero counts are from the first or the
second process. The overall probability of zero counts is the combined probability of zeros from the
two processes.

8



According to Greene(1994) and Yau et al.(2003) , a ZINB model for the response Yi can be formulated
as:

{
Yi = 0 with probability πi,

Yi ∼ negative binomial(λi, k) with probability (1− πi),

so that
P (Yi = 0) = πi + (1− πi)(1 + λki)

−1
k

P (Yi = yi) = (1− πi)
Γ(yi + 1/k)

Γ(yi + 1)
.

(kλi)
yi

(1 + kλ)(yi+1/k)
, yi = 1, 2, ...

As such, the mean and variance of the Yi are

E(Yi) = (1− πi)λi

and
V (Yi) = (1− πi)λi(1 + λ(πi + k))

,
where λi is the mean of the underlying negative binomial distribution, and k is the overdispersion
parameter. It should be noted that when k tend to zero, the zero-inflated negative binomial reduces to
zero-inflated poisson. The parameter πi, often known as the zero-inflation factor, is the probability of
zero counts from the binary process and can be modeled as: logit(πi) = Ziξ, where ξ is the (q+ 1)× 1
vector of zero-inflated coefficients to be estimated and is associated with the known zero-inflation
covariate vector Zi = (1, Zi1, , Ziq), where q is the number of the covariates Zs not including the
intercept. The parameter λi is modeled as a function of a linear predictor as: λi = exp(Xiβ), where
β is the (p + 1) × 1 vector of unknown parameters associated with the known covariate vector Xi =
(1, Xi1, , Xip), where p is the number of covariates not including the intercept.

2.5 Zero-inflated Mixed-Effects Models

Models such as the Negative Binomial, Zero-Inflated Poisson and Zero-inflated Negative Binomial
mentioned above, were based on assumption of independence of the responses. In this study, the obser-
vations were repeatedly measured per subject or were clustered of observations within a subject and so
the above assumptions could no longer hold. A Mixed-Effects Models are a natural choice since there
is obviously correlation within the repeated measurement of the same patient. Therefore, the valid-
ity of statistical inference in such a case can be hindered by the previous models(ie NB, ZINB and ZIP).

The introduction of the random effects into regression models can efficiently account for correlation in
the response and variability within subjects. As well noted, Hall (2004) extended the Lambert(1992)
zero-inflated count models to accommodate longitudinal data, by adding a random effect to account
for the within-subject correlation in the count data. Min and Agresti (2005) proposed a general case
by adding random effects in both components. Let Yij be the observation j (j = 1,........,ti) for subject

9



i (i= 1,........,n and let the bi=(b1i, b2i)
′ be the random effects meant to account for within-subjects

correlations. The models for λij and πij are stated as:

log(λij) = xijβ + z1ijb1i

,
logit(πij) = xijγ + z2ijb2i

where xij and z1ij are the covariate vectors pertaining to the fixed and the random effects respectively.
Furthermore, we assume that b1i and b2i are normally distributed and possibly correlated or even
uncorrelated.

2.6 Marginalized Zero-Inflated Combined Model

The generalized linear mixed model of Molenberghs and Verbeke(2005) and its extention for overdis-
persion of Molenberghs et al.(2010), together with data hierarchy and zero-inflation (Min and Agresti,
2005), do not provide population averaged interpretation for regression parameters, of which such re-
sults are usually needed in practice(Kassahun et al., 2014).

A marginalized multilevel model (MMM) is proposed by Heagerty (1999) and Heagerty and Zeger
(2000), by simultaneously defining a marginal mean and a conditional mean by considering the so-
called connector function, yields marginally interpretable covariate effects (Kassahun et al., 2014).

In this section, overdispersion and correlation of these count data with excess zeros wil be accounted for
by using the combined model idea of Molenberghs et al.(2010) and the marginalized multilevel model
of Heagerty (1999), together with concepts of zero-inflated models, and a marginalized zero-inflated
combined model as a alternative modeling strategy (Kassahun et al., 2014) . It should be noted that
the Population averaged interpretation is possible not only for the positive count component, but also
for the zero-inflation component (Kassahun et al.,2014).

The conditional zero-inflated combined model which assumes mixing of zeros with proba-
bility πcij and counts from a poisson-gamma normal process with probability 1 - πcij ,can be formulated
as:

P (Yij = yij |bi, ξ, θij , φ, πcij) =

{
πcij + (1− πcij)fi(0|λcij , θij) ifyij = 0,

(1− πij)fi(yij |λcij , θij) ifyij > 0,

where πcij = Φ(∆ij1 + z′ij1bi1), λ
c
ij = θijexp(∆ij2 + z′ij1bi2), bi = (bi1, bi2)

′ ∼ N(0, D); and θij ∼
Gamma(α, β). In addition, ∆ij1 and ∆ij2 are connector functions of the zero part and the positive
count part, corresponding to the random vectors bi1 and bi2 and regressors zij1 and zij2, respectively.
And the marginal formulation is as follows:

P (Yij = yij) =

{
πmij + (1− πmij )fi(0|λmij ) ifyij = 0,

(1− πmij )fi(yij |λmij ) ifyij > 0,

where logit(λmij ) = x′ij1γ
m and ln(λmij ) = x′ij2ξ

m, with known covariates x′ij1 and x′ij2 and a vector of
zero-inflation coefficients γ and ξ.
It should be noted that in modeling, ZI(PNG)l or ZI(PNG)p denotes the conditional zero-inflated
combined model,depending on the first-process link function applied( Kassahun et la., 2014).
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2.6.1 Estimation

Let us first consider the models with zero-inflation but without marginalization. The probability
resulting from ZI(PNG) or ZI(PNG)p, marginal over θij but still conditional upon the normal random
effect bi, is given by:

f(yij |bi, ξ, θij , φ, πij) = I(yij = 0)πci j + (1− πcij)g1(bi)

, and the likelihood for ZI(PNG) is stated as:

L(ξ, γ,D, φ) =

N∏
i=1

∫ ni∏
j=1

{πcij(bi) + (1− πij)c(bi)g2(bi)}I(yij=0) × {(1− πcij)(bi)g1(bi)}1−I(yij)φ(bi, D)dbi,

where

g1(bi) =
(
αj + yij − 1αj − 1

)
.

(
βj

1 + kijβj

)yij
.

(
1

1 + kijβj

)αj

.kij
yij

,

g2(bi) =

(
1

1+kijβj

)αj

2.7 INFORMATION CRITERIA

In order to select our model, the Akaike information criterion (AIC) (Akaike, 1973) was used and is
calculated as follows: AIC = −2× ln(L) + 2p, where L is the ML or REML of the fitted model and p
is the total number of parameters being estimated in the model. AIC provides a way to compare any
two models fitted to the same set of observations; i.e., the models do not need to be nested. A smaller
value of AIC indicates a better fit of the model. The Bayesian information criterion (BIC) was also
used (values not shown) to assess the fit of a model and is calculated as:BIC = −2× ln(L) +p× ln(n),
where n is the total number of observations used in estimating the model. Model with smaller value of
BIC was considered a better fit of the model.

2.8 SOFTWARE

In this study, SAS version 9.3 was used to performed all the necessary statistical analysis of model fitting
and all p-values ¡ 0.05 were considered statistically significant. Proc GENMOD and Proc GLIMMIXED
were used to obtain the starting values and also in fitting the model with assumed Poisson distribution
and Negative Binomial distribution. Proc NLMIXED was used to fit ZINB model, Zero-Inflated mixed-
Effects model,ZI(PNG) and Marginalized Zero-Inflated Combined model(MZI).

11



12



3 RESULTS

This section made known the exploratory data analysis’ findings and the results of the various statistical
analysis on fitted models for the outcomes variables: the number of days in the different settings (
hospital, nursing homes, home care nursing, palliative care units) and the number of home visits by a
patient own GP.

3.1 Exploratory Data Analysis

3.1.1 Summary Statistics

The data used in this study as earlier mentioned, consisted of 102,762 observations from 17,112 patients
of aged 45 years and older. These data comprise of two data set: the Consumption data containing
the response variables and the Patient data which contain the explanatory variables. Table 2 shows
the summary statistics of the response variables.

Table 2: Summary Statistics For Response Variables

Variable N Mean Std Dev Variance Minimum Maximum
NO HOSPDAYS 102672 6.0282 24.6424 607.2495 0 2190

TV P DAYS 102672 1.5076 10.4491 109.1840 0 181
WZC KORT 102672 0.1940 2.8539 8.1448 0 181
NO PALLU 102672 0.2170 2.0082 4.0330 0 111
TV DAYS 102672 12.3620 33.3000 1108.8900 0 181

HA HB 102672 1.9458 3.4528 11.9220 0 93
WZC 102672 16.5533 40.14298 1611.4600 0 356

It can be observed that the variance of each response is quite larger than the corresponding
mean and this huge difference is seen clearly for the response variable: the number of days in nursing
homes, having mean value of 16.5533 and variance of 1611.4600. This is closely followed by the response
variable: the total number of days with home care nursing which has a mean of 12.3620 and variance
of 1108.8900. This indicates the presence of overdispersion in the data which has to be accounted for
in the analysis.
It can also be seen that the response variable: the number of hospitalisation days, has the minimum
value 0 and maximum value 2190, which is the highest among the responses and this closely followed by
the response variable, the number of days in the nursing home, with minimum value 0 and maximum
value 356. This indicates that most patients stay more in the hospitals than in the other settings.
On the other hand, Table 5 of APPENDIX A presents the summary statistics for the explanatory
variables. It can be observed that most of the variables have minimum value 0 and maximum value 1.
Unlike in Table 2, the variances are less than the mean of the variables except for time variable.
The histograms in Figure 7,8,9,10 of APPENDIX A pick at 0 indicating that most patients have 0
day of stay in all the settings. It can be seen that 10,241 patients (59.85%) had 0 day of stay in the
hospital, 16364 patients (93.68% ) had 0 day of home care nursing days with an official palliative care
approach, 16,948 patients (99.04%) had o day in the department of a nursing home, 16687 patients
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(97.52%) had 0 day of stay in the palliative care unit, 11,983 patients (70.02%) had 0 day of stay with
home care nursing, 8,652 patients (50.56%) had 0 day of home visits by own GP and 11,672 patients
(68.21%) had 0 day of stay in the nursing home.

It can also be observed from Figure 7,8,9,10 of APPENDIX A that the outcomes variables do
not follow normal distribution. The histograms clearly showed that the observations are non-negative
and are skewed to the right. This further contributes to the reason why the so-called Zero-Inflated
Poisson models were chosen to perform the statistical analysis for these data.

3.1.2 Individual Profiles

The distribution of the outcome variables was seen to be non-negative and skewed to the right from
the histograms in Figure 7,8,9,10 of APPENDIX A. Also, of 102,672 observations , only about 20,534
of the observed number of days stay in different settings and of home visits by a patient own GP were
non-zero ( ie almost 80% are zero), indicating that there is a non-negligible dominance of zero counts
in the data. These render the outcome variables to be adequate for the fit of the so-called Zero-Inflated
Poisson Models. Actually, the proportion of the number of days stay in various settings and of home
visits by a patient own GP per time frame was considered so as to take into account the length of
stay in different settings per time frame. As clearly noticed, measurements were taken repeatedly over
time and as such each of the outcome variable within patients is expected to be correlated and those
measurements within patients are expected to be more similar than between patients. This can be
seen in Figure 1, 2, 3 which show the profiles of number of days of various settings for 250 randomly
selected subjects where the profiles touch the zero-axis many times except for some settings.
Further, much between- and within-patient variability were observed for the number of days in hospital,
the number of days in nursing homes, the number of days in home care nursing, the number of days
in home care nursing with palliative care approach and as well as the number of days of home visits
by own GP. Precisely, at time frame 1, there is high variability in the intercepts for all stay settings
and the patients seem to evolve in a similar way. These variability are very much less observed in the
number of days in palliative care units and number of days in the short stay department of a nursing
home.

Figure 1: Individual Profiles For Hospdays and Days in N.Homes
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Figure 2: Individual Profiles For Days with HC Nursing ang HC Nursing with PCA

Figure 3: Individual Profiles For Home Visits and Days in PCU

Figure 4: Individual Profiles For Days in Dept of N.Homes
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3.2 Mean Profile Plots

Figure 5 shows the average profile of the proportion of number of days in Palliative Care Unit. It can
be observed that there is an increase in the evolution of health care delivery (number of days in the
Palliative Care Unit) as time diminishes , per cluster, per disease category and per social status or
class of the patients. That is to say, patients tend to stay longer in the Palliative Care Unit as time
decreases to zero. Specifically, cluster 4 had the highest evolution over time while cluster 2 had the
least. Patients with cancer evolve far more than those without cancer and also patients with dementia
evolved least as compared to those without dementia but with higher variability at time frame 6 than
those without dementia. Similar trend was observed for patients in the social class, where patients
with high social status evolved less (but with same variability) than those with normal social status.
The average evolution of other health care delivery are shown in APPENDIX B where there is an

Figure 5: Mean Profile Plot for Proportion of Days in PCU

increase in the average evolution for proportion of hospitalisation days per cluster, per disease category
and per social class( patients with high social class had less evolution than those in normal social class
). For the proportion of days in nursing homes, the average evolution increases up to time frame 4 and
then decreases, where patients with dementia had a very steady higher variability from time frame 1 to
time frame 6. Similar trend in average evolution was observed for others health care delivery as seen
in APPENDIX B. It is very apparent in all the average profiles that the variability tends to be low
at the beginning but as time diminishes, the variability increases.
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3.3 Variance Structure

Figure 6 shows the variance structure of the number of days in the Palliative Care Unit. It can be
observed that there seems to be a linear evolution of variance over time. That is to say that this figure
6 suggests a constant variance function and hence linear models could be fitted. The variance structure
of other responses are shown in APPENDIX B and they show the same trend as observed in Figure
6.

Figure 6: Variance Structure for Proportion of Days in PCU
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3.4 Correlation of Response Variable

The correlation between the response variables were computed and the results are presented in Table 3.
It can be observed that there seemed to be a very weak correlation between the response variables (since
the pearson correlation coefficients are less than 0.5) and a high correlation within the response variables
as expected as the patients were repeatedly measured. This explains why the response variables will
be modeled independently and why models such as Poisson, Negative Binomial, zero-inflated poisson,
zero-inflated negative binomial were modeled.

Table 3: Correlation Between Response Variable
1 2 3 4 5 6 7

1
1 -0.00732 0.02048 0.00504 0.02354 0.02122 -0.01702

2
-0.00732 1 -0.00194 -0.00181 0.28955 0.17883 -0.05866

3
0.02048 -0.00194 1 -0.00426 0.01947 0.02995 -0.00192

4
0.00504 -0.00181 -0.00426 1 -0.03095 -0.04954 -0.04044

5
0.02354 0.28955 0.01947 -0.03095 1 0.34296 -0.14212

6
0.02122 0.17883 0.02995 -0.04954 0.34296 1 0.4165

7
-0.01702 -0.05866 -0.00192 -0.04044 -0.14212 0.4165 1

1 = NO HOSPDAYS
2 = TV P DAYS
3 = NO WZC KORT
4 = NO PALLU
5 = TV DAYS
6 = HA HB
7 = WZC
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3.5 Statistical Analysis

Based on the results from exploratory data analysis, Poisson model and its extensions used in modeling
count data were considered.

3.5.1 Poisson and Negative Binomial Models

The Standard Poisson and Negative Binomial models discussed in section 2.3.1 can be modeled respec-
tively as: yi ∼ Pois(λi) , with ln(µi) = α + βxi and yi ∼ Negbin(µi, k) , so that log(µi) = ηi = xTi β
, where the parameters µ = αβ and k = 1/α are the mean and the dispersion for the case of Negative
Binomial model. These two models were fitted with same covariates of the data set, where responses
were assumed to be independent.

3.5.2 The ZIP,ZINB and MMZI Models

The ZIP,ZINB,and MMZI can be fitted on our data by modeling µij as:
ln(µij) = β0 + b1i+β1 ∗PV1i+β2 ∗PV2i+β3 ∗PV3i+β4 ∗PV4i+β5 ∗PV5i+β6 ∗PV6i+β7 ∗PV7i+β8 ∗
PV8i+β9∗PV9i+β10∗PV10i+β11∗PV11i+β12∗PV12i+β13∗PV13i+β14∗TIMEij+β15∗PV15i∗TIMEij
and the zero-inflation probability as:
logit(πij) = γ0 + b2i + γ1 ∗PV1i + γ2 ∗PV2i + γ3 ∗PV3i + γ4 ∗PV4i + γ5 ∗PV5i + γ6 ∗PV6i + γ7 ∗PV7i +
γ8 ∗ PV8i + γ9 ∗ PV9i + γ10 ∗ PV10i + γ11 ∗ PV11i + γ12 ∗ PV12i + γ13 ∗ PV13i + γ14 ∗ TIMEij ,
where
PV1 = GMD,PV2 = GP AGE05 CAT ,PV3 = AGE05 CAT ,PV4 = GMD,PV5 = GMD,PV6 =
GMD,PV6 = GMD,PV7 = GMD,PV8 = GMD,PV9 = GMD,PV10 = GMD,PV11 = GMD,PV12 =
GMD,PV13 = GMD.
It should be noted that the ZIP and ZINB models have the same modeling procedure but differ at
the level of their distributions (ie ZIP model, dist=zip and for ZINB, dist=zinb). The ZI(MEM) and
MMZI were modeled using PROC NLMIXED after obtaining starting values from ZIP model and from
GlIMMIX procedure .
Furthermore, the marginal mean model for the Poisson process is given as:
ln(kmij ) = β0+β1 ∗PV1i+β2 ∗PV2i+β3 ∗PV3i+β4 ∗PV4i+β5 ∗PV5i+β6 ∗PV6i+β7 ∗PV7i+β8 ∗PV8i+
β9 ∗PV9i + β10 ∗PV10i + β11 ∗PV11i + β12 ∗PV12i + β13 ∗PV13i + β14 ∗TIMEij + β15 ∗PV15i ∗TIMEij
The combined model assuming that the count are generated from Poisson-Normal-Gamma process has
mean λcij = θijkij with θij ∼ Gamma(α, 1/α). The marginal model for the zero-inflated probability is
modeled as:
F (πmij ) = γ0 + γ1 ∗ PV1i + γ2 ∗ PV2i + γ3 ∗ PV3i + γ4 ∗ PV4i + γ5 ∗ PV5i + γ6 ∗ PV6i + γ7 ∗ PV7i + γ8 ∗
PV8i + γ9 ∗ PV9i + γ10 ∗ PV10i + γ11 ∗ PV11i + γ12 ∗ PV12i + γ13 ∗ PV13i + γ14 ∗ TIMEij ,
where F(.) is the logit function and PVni are as defined above. Therefore, the corresponding condi-
tional models have a normally distributed random intercept, b1i, in the Poisson model and b2i, in the
binomial model such that bi ∼ (b1i, b2i) and are possibly correlated.

It should also be noted that the explanatory variables in the model fit were arrived at after model
selection. The count parts in the final ZIP, ZINB, ZI(MEM) and MMZI models consisted of the same
explanatory variables as in the Poisson and NB models. The zero-inflation parts of these models also
consisted of the same explanatory variables but for the age and time interaction for the patient.

19



The results of the Poisson, Negative Binomial, Zero-Inflated Poisson,Zero-Inflated Negative Bino-
mial,and MMZI for the response variable: the number of days in the Palliative Care Unit, are displayed
in Table 4.
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Table 4: Parameter Estimates with Standard Errors
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept βo 0.470(0.0927)* 1.980(0.5258)* 1.964 (0.0960)* 2.047(0.2007)* 2.222(0.0567)* 1.999(0.2008)*
GMD β1 -0.156(0.0168)* -0.438(0.0913)* -0.045 (0.0173)* -0.001(0.0372) -0.016(0.0034)* 0.0001 (0.0372)
GP AGE05 CAT β2 0.033 (0.0037)* 0.025(0.0191) 0.003 (0.0039) 0.001(0.0080) 0.005(0.0007)* 0.002(0.0080)
AGE05 CAT β3 -0.141(0.0038)* -0.227(0.0237)* -0.015(0.0040)* -0.023(0.0085) -0.0014(0.001) -0.021(0.0085)
GENDER β4 -0.200(0.0143)* -0.211(0.0736)* -0.060(0.0143)* -0.075(0.0289) -0.055(0.0027)* -0.074(0.0289)
FAM SIZE β5 -0.179(0.0089)* -0.263(0.0381)* -0.040 (0.0083)* -0.033(0.0165) -0.046(0.0016)* -0.032(0.0165)
PERIOD D β6 -0.040(0.0028)* -0.0447(0.0139)* 0.003(0.0028) -0.002(0.0056) -0.014(0.0005)* -0.001 (0.0056)
MAJOR COVERAGE YN β7 0.013 (0.0153 ) 0.147(0.0788) 0.026(0.0154) 0.021(0.0315) 0.010(0.0029)* 0.022(0.0315)
CHRONZ ATTEST β8 0.060 (0.0199)* 0.065 (0.0895) -0.055(0.0199)* -0.046(0.0394) 0.122(0.0036)* -0.045(0.0394)
CHRONZ FF β9 0.469 (0.0183 )* 0.762(0.0954)* 0.142 (0.0185)* 0.119(0.0372) 0.089(0.0034)* 0.120(0.0372)
MAF β10 1.074(0.0193)* 1.378(0.0789)* 0.194 (0.0195)* 0.160(0.0373) 0.312(0.0033)* 0.161(0.0373)*
PF β11 0.491(0.0160)* 0.972(0.0935)* -0.088(0.0156)* -0.053(0.0314) -0.124(0.0038)* -0.054(0.0314)
KANKER β12 1.125(0.0151)* 1.309 (0.0858)* 0.076 (0.0145)* 0.067(0.0290) -0.125(0.0034)* 0.067(0.0291)
DEMENT β13 -1.161(0.2296 )* -1.472(0.6256)* -0.411 (0.2344) -0.378(0.3798) -0.096(0.0199)* -0.398(0.3796)
TIME β14 -0.083(0.0075)* -0.126 (0.0339)* 0.056 (0.0072)* 0.067(0.0278) 0.034(0.0009)* 0.070(0.0278)
AGE05 CAT*TIME β15 0.001 (0.0005)* 0.002(0.0021) 0.002(0.0005)* 0.003(0.0018) 0.001(0.0001)* 0.003(0.0018)
DEVIANCE G 1.44 0.06
DISPERSION k 94.998(2.4601)*
Inf Intercept γo 0.926(0.2668)* 0.833(0.2903) -1.158(0.0869)* 0.877(0.2795)
Inf GMD γ1 0.077(0.0530) 0.120(0.0564) 0.087(0.0174)* 0.110(0.0557)
Inf GP AGE05 CAT γ2 -0.032(0.0114)* -0.030(0.0116) 0.0002(0.0036) -0.030(0.0115)
Inf AGE05 CAT γ3 0.143(0.0098 )* 0.147(0.0098)* 0.089(0.0033)* 0.144(0.0010)*
Inf GENDER γ4 0.168(0.0444)* 0.158(0.0446) -0.126(0.0143)* 0.161(0.0444)
Inf FAM SIZE γ5 0.134(0.0265)* 0.121(0.0264)* -0.042(0.0078)* 0.120(0.026)*
Inf PERIOD D γ6 0.054(0.0085)* 0.056(0.0086)* 0.050(0.0027)* 0.055(0.0086)*
Inf MAJOR COVERAGE YN γ7 0.076(0.0477) 0.053(0.0481) -0.142(0.0151)* 0.052(0.0478)
Inf CHRONZ ATTEST γ8 -0.090(0.0590) -0.126(0.0594) -0.075(0.0175) -0.123(0.0592)
Inf CHRONZ FF γ9 -0.314(0.0562)* -0.294(0.0566)* -0.261(0.0188)* -0.295(0.0564)*
Inf MAF γ10 -0.908(0.0546)* -0.928(0.0550)* -1.001(0.0153)* -0.925(0.0567)*
Inf PF γ11 -0.517(0.0501)* -0.525(0.0508)* 0.320(0.0197)* -0.524(0.0509)*
Inf KANKER γ12 -1.182(0.0465)* -1.159(0.0467)* -0.352(0.0182)* -1.158(0.0501)*
Inf DEMENT γ13 0.590(0.5093) 0.596(0.5076) -0.275(0.1057) 0.590(0.5080)
Inf TIME γ14 0.184(0.0064)* 0.187(0.0065)* 0.014(0.0008)* 0.185(0.0071)*
Var σ2 0.0101(0.0075)
Std Deviation σ1 0.002(0.0018) 0.043(0.0223)
Std Deviation σ2 0.048(0.0380) 0.093(0.0398)
Alpha α 0.320(0.0146)*
Tau τ -0.020(0.7160)
-2loglikelihood 147897.3 35866.5 36109 31145 36043 31154
AIC 147929.3 35900.5 36171 31213 36107 31224

∗ = significant parameter estimates
∗∗ = border line significant parameter estimates
Poisson= Poisson Model
NegBin= Negative Binomial Model
ZIP= Zero-Inflated Poisson Model
ZINB= Zero-Inflated Negative Binomial Model
ZI(MEM)= Zero-Inflated Mixed-Effects Model
MMZI= Marginalized Multilevel Zero-Inflated Combined Model
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From Table 4, it can be observed that the ratio of the Deviance of the Poisson model to
its degree of freedom was 1.44, which is greater than 1, confirming the presence of over-dispersion in
the data. Therefore the Negative Binomial model was preferred which yielded a ratio of 0.06 with a
log likelihood value of 35866.5 as opposed to that of Poisson model of 147897.3. It can also be ob-
served from Table 4 that all the parameter estimates of the Poisson model are significantly associated
with the number of days in the Palliative Care Unit unlike in the Negative Binomial model where
DEMENT(Dementia) together with age and time interaction of the patients were not significantly as-
sociated with the number of days in the Palliative Care Unit. Over-dispersion actually was needed to
be accounted for as can be seen from the dispersion parameter being significantly different from 0.

When overdispersion in the data is due to excess zeros, the Negative Binomial model is no longer
a better choice. In such a situation like ours, the data were fitted using ZIP and ZINB models to
account for overdispersion and the excess zero counts. Also, from Table 4, it can be seen clearly that
ZINB model waq a better choice than Negative Binomial model in that their the −2×loglikelihood and
AIC are smaller in value. The dispersion parameter estimates of ZINB were also smaller as compared
to that of NB model, indicating further that ZINB was a better choice.

Further, the AIC’s made known of the preference of ZINB model to ZIP model in accounting for
both the overdispersion phenomenon in the data and excess zero counts. It can also be observed that
the parameter estimates in the count part of ZIP model were significant but not in the count part of
ZINB model and some of the parameter estimates which were significant in the zero part of ZIP were
not significant in ZINB model. This indicated that overdispersion was not accounted in the ZIP model
but in the ZINB model.

As regards to KANKER(cancer), DEMENT(dementia) and MAJOR COVERAGE YN(social status),
the probability of 0 day of stay per week in the Palliative Care Unit depends only on cancer since
cancer was significantly different from zero. At cluster level, this probability depends on cancer and
social status of the patients and marginally, it depends solely on cancer. That is to say, the odds of
having 0 day of stay in Palliative Care Unit decreased by 31% for patients with cancer. At cluster
level, these odds decreased by 70% and 86% for patients cancer and for patients in the higher social
class of the patients, respectively. Marginally, the odds of having 0 day of stay in the Palliative Care
Unit decreased by 30% for patients belonging to the cancer group.
For the count part, the number of days in the Palliative Care Unit was found to be related to cancer,
dementia and social status only at cluster level (ie ZI(MEM) model), where the expected number of
days in the Palliative Care Unit was increased by 1.01 times for patients belonging to higher social sta-
tus , and the expected number of days in the Palliative Care Unit was decreased by 0.88(exp(-0.1254)
= 0.88) and by 0.91 (exp(-0.0960) = 0.91) for patients in the cancer and dementia group, respectively.
The results of number of days of stay in other settings are given in APPENDIX C and are interpreted
in the same manner, where the ZINB model explains the specific effects , the ZI(MEM) model explains
the effects at cluster level and MMZI gives the marginal interpretations.

Apparently, from Table 4, the estimates of the random effects appeared not to be significant but
the effect of cancer, dementia and social status were significantly related to the number of days in
the Palliative Care unit at cluster level. This actually calls for the application of statistical test to
make a conclusive remark. To this effect, a mixture of χ2-distributions was used, where model without
random effect, model with only random intercept and model with random intercept and slope were
considered for the test statistics; χ2

0:1 and χ2
1:2 were applied as : P−V alue = P (χ2

0:1 > 66) = 0.5P (χ2
0 >
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66) + 0.5P (χ2
1 > 66) = 2.220446e−16 < 0.05

P − V alue = P (χ2
1:2 > 4889) = 0.5P (χ2

1 > 4, 889) + 0.5P (χ2
2 > 4889) < 0.0001. Thus it could be

concluded that all the random effects had to stay in the models. These results suggest that there was
significant cluster effects and that the Zero-Inflated mixed-effects models were plausible in accounting
for the between- and within-patients variability in the health care delivery over time.

3.5.3 Model Diagnostic for ZINB Model

The estimated parameters of the ZINB model, AIC value and the test for overdispersion indicated
a preference for the negative binomial version of the zero-inflated model(P-value ¡ 0.0001 ). The
ZINB model also does a good job of estimating the proportion of zeros (exp(-1.1592)= 0.3137). There
are studies on diagnostics and influence analysis for zero inflated models (Aldo, 2011). To explore
the goodness of fit of ZINB model which merged as the better model for our analysis, the observed
proportions as well as the average predicted count proportions for the number of days in the Palliative
Care Unit from the Poisson, NB, ZIP and ZINB models were plotted as shown in Figure 6. From
Figure 6, it can be seen that the Poisson model clearly underestimated the proportion of zero number
of days in the Palliative Care Unit, while the other models (ZIP and ZINB) more accurate at zero.
Further, the average predicted count probabilities for other responses are shown in APPENDIX D.

Figure 7: Average Predicted Count Probability

It can be observed also that the Poisson model clearly underestimated the proportion of zero number
of days in the various settings, while the other models (ZIP and ZINB) more or quite accurate at zero.
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4 DISCUSSION AND CONCLUSION

Implementation of the Care Pathway for Primary Palliative Care in 4 regions of Belgium was the topic
of this project and it was aimed at investigating whether there are patterns of Health Care Delivery
over time in the last year of life to be recognised overall, per cluster, per disease category and or per
social status. The health care delivery in this study, comprises of the number of days in the different
settings (hospital, nursing homes, pallaitive care) and number of home visits by a patient own GP.
This constitutes a count data.

These count data are characterised by excess zeros, about 80% and thus Ordinary Poisson regres-
sion model cannot predict the expected number of days in the above mentioned settings. As such,
Zero-Inflated Poisson Model(ZIP) was an alternative to analysed these data with excess zero counts.
In practice, however, count data often over-dispersed and so Zero-Inflated Negative Binomial(ZINB)
was applied, being a more appropriate model than the ZIP model and Negative Binomial model which
only account for excess zero without over-dispersion and over-dispersion without excess zero counts
respectively.

To account for within-patient variations or patient-specific effects, a random effects model was in-
cluded. This was referred to as ZINB Mixed-effects model.Also, to account for the cluster effects,
a Zero-Inflated mixed-effects model (ZI(MEM)) was considered and a Marginalizes Multilevel Zero-
Inflated Combined models(a marginalized zero-inflated Poisson normal ) were also fitted for marginal
interpretation . However, according to Atkins and Gallop (2007), the inclusion of both fixed and ran-
dom effects may complicate the likelihood equations, thus leading to non-convergence problem. In the
analysis, the covariates FAM SIZE consisted of 12 levels,. This actually posed a convergence prob-
lem with the WARNING MESSAGE: Execution error for observation 7 in the SAS log window. This
problem was resolved by considering FAM SIZE as a continuous variable. Despite this, SAS failed to
provide valid estiamtes in PROC NLMIXED of ZI(PNG) and MMZI model for the responses TV DAYS,
TV P DAYS and NO HOSPDAYS for WZC and WZC KORT with WARNING MESSAGES: 1)The
final Hessian matrix is full rank but has at least one negative eigenvalue. Second-order optimality
condition violated. 2)The final Hessian matrix is not positive definite, and therefore the estimated
covariance matrix is not full rank and may be unreliable. The variance of some parameter estimates
is zero or some parameters are linearly related to other. Due to time constraint and SAS was taking
more and more hours to run, more attempt could not be made to resolve the warning messages.

In all, ZINB, ZI(MEM) ,and MMZI were the best models considered for the number of
days in different settings and for the number of home visits by own GP among others in estimating the
parameters for the health care delivery. The ZINB model fitted by Proc NLMIXED is known to be valid
under MAR mechanism. In these models, cancer and social status were seen to be significant both at
count and at the zero parts for some of the models. Cluster effects were conspicuous and dementia was
seen to be significant only at the count parts of some of the above mentioned models. Marginally, there
were cancer, social status and cluster effects. Hence, there are patterns of health care delivery over
time in the last year of life as recognised overall, per cluster, per disease category and or per social class.

It should also be noted that in this data set, there was one covariate , Age category of the GP
(GP AGE05 CAT), that had some of its values missing (1022 out of 102672 observations). To see if
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this could affect the analysis, a Complete Case Analysis was applied and a model fitted. The results
obtained were exactly the same as those of the model without the complete case analysis applied. These
results are in line with the fact that generalised linear mixed models like in our case model missing
data values. The results for these two models are shown in APPENDIX E
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5 LIMITATION OF THE STUDY

The data consisted of many explanatory variables with some categorical variables having levels 5,6
and 12. This poses a lot of convergence problems at NLMIXED ROCEDURE which takes hours upon
hours to converge. As such, in case of any error, to re-run it after correction which may not be perfect,
will take another couple of hours to realised it or have the results. This entails time consumming for a
limited duration of work . The explanatory variables were on the part too many and were all signifi-
cant which provided no room for data reduction thus leading to over-parameterization and convergence
becomes a problem.

In conclusion, the study revealed that there were patterns of health care delivery over time in the
last year of life as recognised by overall, per cluster, per disease category and or per social status of
the patients.
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6 RECCOMENDATION

Emphasis should be laid on these types of models in the lessons of Longitudinal Data Analysis so that
the techniques of handling PROC NLMIXED for the Zero-Inflated Poisson-Normal-Gamma models
and the Marginalized Multilevel Zero-Inflated Combined Models can be well understood and taken
care of against future challenges.
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APPENDIX A

6.1 Summary Statistics for Explanatory Variable

Table 5: Summary Statistics for Explanatory Variable
Variable N Mean Std Dev Variance Min Max
GMD 102672 0.795699 0.403192 0.162564 0 1
GP AGE05 CAT 96540 11.65121 1.93038 3.726366 6 18
GENDER 102672 0.470605 0.499138 0.249138 0 1
AGE05 CAT 102672 16.55078 2.318427 5.375103 10 21
MAJOR COVERAGE YN 102672 0.432737 0.495458 0.245478 0 1
FAM SIZE 102660 1.677323 0.942337 0.887998 1 12
MAF 102672 0.580353 0.493504 0.243546 0 1
CHRONZ ATTEST 102672 0.541258 0.498297 0.2483 0 1
PERIOD D 102672 16.9768 2.637776 6.957863 13 21
CHRONZ FF 102672 0.277174 0.447605 0.200351 0 1
PF 102672 0.164271 0.370523 0.137287 0 1
KANKER 102672 0.194542 0.39585 0.156697 0 1
DEMENT 102672 0.003915 0.062451 0.0039 0 1
PLOD 102672 2.65159 1.003702 1.007419 1 5
DEPEND 102672 2.459561 1.859904 3.459245 0 5
TIME 102672 8.666667 8.95673 80.223 1 26
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Figure 8: Histogram For For NO HOSPDAYS and NO PALLU

Figure 9: Histogram For For WZC and WZC KORT

Figure 10: Histogram For WZC and WZC KORT
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Figure 11: Histogram For HA HB

6.2 Histograms of the Response Variable

APPENDIX B

6.3 Mean Profile Plots

Figure 12: Mean Profile Plot For For Hospitalisation Days

APPENDIX C
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Figure 13: Mean Profile Plot For For Days in NHomes

Figure 14: Mean Profile Plot For For Days in Dept of NHomes
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Figure 15: Mean Profile Plot For For TotDays with HC.Nursing

Figure 16: Mean Profile Plot For For HC Nursing Days with PCA
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Figure 17: Mean Profile Plot For For Home Visits by own GP
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Figure 18: Variance Structures
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Table 6: Parameter Estimates with Standard Errors For WZC
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept β0 -0.833(0.0184)* -3.450(0.1622)* 2.813(0.02039)* 2.319(0.0707)* 2.807(0.0213)* 0.00006(0.0001)*
GMD β1 0.134(0.0022)* 0.067(0.0249)* 0.017 (0.0022)* 0.009(0.0091)* 0.0217(0.00230)* 0.009(0.0091)
GP AGE05 CAT β2 -0.004(0.0004)* -0.015(0.0051)* -0.001(0.0004)* -0.0005(0.0017) -0.001(0.0004) -0.0006(0.0017)
AGE05 CAT β3 0.194(0.0009)* 0.299(0.0078)* 0.002 (0.0011)** 0.002(0.0035) 0.002(0.0011) 0.002(0.0035)
GENDER β4 -0.209(0.0018)* -0.208(0.0202)* -0.022(0.0018)* -0.016(0.0074) -0.021(0.0018)* -0.016(0.0074)
FAM SIZE β5 -0.538(0.0016)* -0.419(0.0095)* -0.031 0.0013)* -0.019(0.0051) -0.031(0.0013)* -0.019(0.0051)
PERIOD D β6 0.022(0.0003)* 0.035(0.0039)* 0.003 (0.0003)* 0.005(0.0013) 0.003(0.0003)* 0.0049(0.0013)
MAJOR COVERAGE YN β7 0.010(0.0018)* 0.208(0.0217) -0.001(0.0018)* -0.004(0.0075) -0.002 (0.0018)* -0.004(0.0074)
CHRONZ ATTEST β8 0.119(0.0019)* 0.123(0.0250)* -0.009(0.0019)* -0.005(0.0081) -0.007(0.0020)* -0.004(0.0081)
CHRONZ FF β9 -0.069(0.0024)* 0.095(0.0274)* -0.0424 (0.0024)* -0.007(0.0098) -0.044(0.0024)* -0.0077(0.0098)
MAF β10 -0.565(0.0018)* -0.466(0.0215)* -0.105 (0.0018)* -0.112(0.0074)* -0.107(0.0018)* -0.112(0.0074)*
PF β11 -1.105(0.0042)* -1.017(0.0285)* -0.0525(0.0042)* -0.052(0.0165) -0.054(0.0042)* -0.053(0.0165)
KANKER β12 -0.840(0.0037)* 0.905(0.0266)* -0.06695 0.003662 -0.046(0.0142) -0.066(0.0037)* -0.046(0.0142)
DEMENT β13 -0.067(0.0118)* 0.005(0.1500) -0.073 (0.0118)* -0.046(0.0488) -0.074(0.0119)* -0.037(0.0489)
TIME β14 0.069(0.0008)* 0.069(0.0108)* 0.089 (0.0009)* 0.125(0.0053)* 0.089(0.0010)* 0.124(0.0053)*
AGE05 CAT*TIME β15 0.001(0.0000)* 0.0028(0.0006)* 0.0002(0.0001)* 0.0001(0.0003) 0.0002(0.00005)* 0.0002(0.0003)
DEVIANCE G 29.71 0.67
DISPERSION k 8.638(0.0589)* 0.292(0.0027)*
Inf Intercept γo 6.202(0.1177)* 6.247(0.1374)* 6.202(0.1177)* 6.222(0.1380)*
Inf GMD γ1 -0.1976(0.0217)* -0.253 0.0228)* -0.198(0.0217)* -0.252(0.0228)*
Inf GP AGE05 CAT γ2 0.007(0.0043) 0.013 (0.0044) 0.007(0.0043) 0.014(0.0044)
Inf AGE05 CAT γ3 -0.391(0.0050)* -0.392(0.0050)* -0.391(0.0050)* -0.392(0.0050)*
Inf GENDER γ4 0.345(0.0174)* 0.334(0.0175)* 0.345(0.0174)* 0.335(0.0175)*
Inf FAM SIZE γ5 0.735(0.0132)* 0.716(0.0132)* 0.735(0.0132)* 0.716(0.0133)*
Inf PERIOD D γ6 -0.038(0.0032)* -0.038 (0.00320)* -0.038(0.0032)* -0.038(0.0032)*
Inf MAJOR COVERAGE YN γ7 -0.036(0.0181)* -0.082(0.0185)* -0.037(0.0181) -0.080(0.0185)*
Inf CHRONZ ATTEST γ8 -0.324(0.021)* -0.362 (0.0208)* -0.324(0.0205)* -0.363(0.0208)*
Inf CHRONZ FF γ9 0.112(0.0237)* 0.126(0.0239)* 0.111(0.0237)* 0.129(0.0239)*
Inf MAF γ10 0.822(0.0178)* 0.821(0.0179)* 0.822(0.0178)* 0.822(0.0179)*
Inf PF γ11 1.521(0.0327)* 1.511(0.0329)* 1.521(0.0328)* 1.512(0.0329)*
Inf KANKER γ12 1.010(0.0287)* 1.019(0.0288)* 1.011(0.0287)* 1.017(0.0288)*
Inf DEMENT γ13 0.048(0.1213) 0.089(0.1221) 0.133(0.1219) 0.066(0.1219)
Inf TIME γ14 0.008(0.0009)* 0.009(0.0009)* 0.0084(0.0009)* 0.009(0.0009)*
Var σ2 0.00007(0.00006)
Std Deviation σ1 -0.00008(0.0037) -0.0003(0.0002)
Std Deviation σ2 0.139(0.0578) 0.141(0.0599)
Alpha α 0.292(0.0027)*
Tau τ 0.001(....)
-2loglikelihood 3028190.8 423936.4 608751 352055 608663 352055
AIC 3028222.8 423970.5 608813 352123 608727 352125
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Table 7: Parameter Estimates with Standard Errors For WZC KORT
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept β0 -4.324(0.1429)* -7.229(1.1567)* 3.228(0.1677)* 2.764(0.6612)** 3.103(0.1738)* 3.124(0.6664)*
GMD β1 -0.269(0.0176)* -0.275(0.1723) -0.197(0.01794)* -0.203(0.0795) -0.128(0.0194)* -0.203(0.0798)
GP AGE05 CAT β2 -0.048(0.0037)* -0.030(0.0337) -0.00299 (0.0036) 0.0007(0.0145) -0.004(0.0036) -0.002(0.0146)
AGE05 CAT β3 0.180(0.0071)* 0.260(0.0557)* -0.0177(0.0085)* -0.013(0.0329) -0.015(0.0084) -0.029(0.0332)
GENDER β4 -0.067(0.0157)* -0.164(0.1393) 0.004344 (0.0156) -0.001(0.0612) 0.026(0.0156) -0.002(0.0612)
FAM SIZE β5 -0.057(0.0095)* -0.023(0.0846) 0.004 (0.0156)* -0.072(0.0397) -0.068(0.0100)* -0.075(0.0397)
PERIOD D β6 -0.036(0.0028)* 0.015(0.0262) -0.012 (0.0029)* -0.003(0.0115) -0.008(0.0029) -0.005(0.0115)
MAJOR COVERAGE YN β7 0.102(0.0161)* 0.034(0.1530) 0.0670(0.0165)* 0.037(0.0671) 0.044(0.0168) 0.036(0.0673)
CHRONZ ATTEST β8 0.243(0.0183)* 0.287(0.1826) -0.101 (0.0191)* -0.038(0.0794) -0.110(0.0196)* -0.044(0.0795)
CHRONZ FF β9 -0.0831(0.0204)* -0.323(0.1891) -0.199 (0.0206)* -0.252(0.0806) -0.193(0.0206)* -0.252(0.0806)
MAF β10 0.562(0.0168)* 0.719(0.1498)* 0.088 (0.0172)* 0.084(0.0694) 0.062(0.0173) 0.079(0.0696)
PF β11 -0.659(0.0283)* -0.573(0.2035)* -0.178(0.0291)* -0.119(0.1098) -0.152(0.0293)* -0.120(0.1098)
KANKER β12 -0.240(0.0242)* -0.001(0.1928)* 0.115(0.0247)* 0.164(0.0972) 0.125(0.0248)* 0.157(0.0973)
DEMENT β13 0.471(0.0831)* -0.067(1.0409) -0.203 (0.0841)* 0.082(0.3811) -0.275(0.0846)* -0.112(0.3520)
TIME β14 -0.0009(0.0070)* 0.065(0.0758) 0.026 (0.0083)* 0.051(0.0409) 0.021(0.0082) 0.035(0.0409)
AGE05 CAT*TIME β15 0.004(0.0004)* 0.002(0.0045) 0.001(0.0005)* 0.0007(0.0023) 0.002(0.0005)* 0.002(0.0023)
DEVIANCE G 1.83 0.02
DISPERSION k 410.465 (15.6172)* 0.695(0.0411)*
Inf Intercept γo 8.348(0.4789)* 8.728(0.6492)* 8.351(0.4789)* 8.274(0.8738)*
Inf GMD γ1 0.091(0.0841) 0.236(0.0909) 0.093(0.0841) 0.235(0.0879)
Inf GP AGE05 CAT γ2 0.051(0.0169)* 0.025 (0.0169) 0.051(0.0169)** 0.023(0.0163)
Inf AGE05 CAT γ3 -0.231(0.0199)* -0.239(0.0202)* -0.231(0.0199)* -0.229(0.0261)*
Inf GENDER γ4 -0.231(0.0199) 0.086(0.0713) 0.055(0.0709)* 0.083(0.0686)
Inf FAM SIZE γ5 0.011(0.0412) 0.028(0.0428) 0.011(0.0413) 0.026(0.0410)
Inf PERIOD D γ6 0.011(0.0413) 0.010 (0.0129) 0.013(0.0129) 0.010(0.0124)
Inf MAJOR COVERAGE YN γ7 0.005(0.0734) 0.097 (0.0747) 0.004(0.0734) 0.094(0.0719)
Inf CHRONZ ATTEST γ8 -0.317(0.0847)* -0.235(0.0857) -0.316(0.0847)* -0.233(0.0844)
Inf CHRONZ FF γ9 -0.008(0.0907) -0.091(0.0919) -0.008(0.0907) -0.084(0.0881)
Inf MAF γ10 -0.635(0.0780)* -0.639 (0.0791)* -0.636(0.0780)* -0.617(0.0896)*
Inf PF γ11 0.511(0.1176)* 0.501(0.1190)** 0.510(0.1176)* 0.479(0.1195)**
Inf KANKER γ12 0.217(0.1069)* 0.250(0.1077) 0.218(0.1069) 0.239(0.1050)
Inf DEMENT γ13 -0.371(0.394) -0.245(0.4203) -0.268(0.4138) -0.308(0.3900)
Inf TIME γ14 -0.021(0.0034) -0.019(0.0035)* -0.021(0.0034)* -0.018(0.0036)*
Var σ2 0.0098(0.0071)
Std Deviation σ1 0.071(0.0410) 0.073 (0.0426)
Std Deviation σ2 0.857(0.2958) 0.319 (0.1183)
Alpha(Dispersion) α 0.695(0.0411)*
Tau τ 0.0290.9869)
-2loglikelihood 180512.8 1793.0 26215 16717 26024 16717
AIC 180544.9 17964.3 26277 16785 26088 16787
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Table 8: Parameter Estimates with Standard Errors For HA HB
EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
INTERCEPT β0 -1.969(0.0430)* -2.178(0.0734)* 0.384 (0.0502)* 0.006(0.0802) 0.382(0.05156)* 0.313(1.5032)
GMD β1 0.258 (0.0064)* 0.249(0.0120)* 0.212 0.0070)* 0.235(0.0122)* 0.221(0.0073)* 0.237(0.0124)*
GP AGE05 CAT β2 0.013(0.0012)* 0.012 (0.0024)* 0.016 (0.0013)* 0.015(0.0023)* 0.016(0.0013)* 0.015(0.0023)*
AGE05 CAT β3 0.088(0.0021)* 0.092(0.0034)* -0.013 (0.0025)* -0.012(0.0037) -0.013(0.0025)* -0.012(0.0038)
GENDER β4 -0.111(0.0049)* -0.099(0.0095)* -0.037 (0.0052)* -0.03285(0.0091) -0.037 (0.0052)* -0.031(0.0092)
FAM SIZE β5 -0.071(0.0029)* -0.067(0.0054)* -0.044 (0.0031)* -0.045(0.0053)* -0.047(0.0031)* -0.044(0.0054)*
PERIOD D β6 -0.006(0.0009)* 0.009(0.0017)* -0.005(0.0009)* -0.008 (0.0016)* -0.005 (0.00093)* -0.0083 (0.0016)*
MAJOR COVERAGE YN β7 0.209(0.0049)* 0.197(0.0098)* 0.133(0.0052)* 0.111 (0.0095)* 0.127( 0.0053)* 0.113 (0.0095)*
CHRONZ ATTEST β8 0.094(0.0056)* 0.126 (0.0113)* 0.022(0.0060)* 0.034(0.0107) 0.021(0.0061)* 0.033(0.0108)
CHRONZ FF β9 0.172(0.0062)* 0.129 (0.0125)* 0.133(0.0066)* 0.103(0.0118)* 0.132(0.0066)* 0.102(0.0119)*
MAF β10 -0.103(0.0050)* -0.126(0.0099)* -0.036(0.0053)* -0.054(0.0095)* -0.039(0.0053)* -0.053 (0.0096)*
PF β11 0.330(0.0062)* 0.574(0.0130)* 0.191(0.0067)* 0.302(0.0126)* 0.189(0.0068)* 0.318(0.0129)*
KANKER β12 -0.346(0.0072)* -0.317(0.0130)* -0.153(0.0078)* -0.124( 0.0135)* -0.150(0.0078)* -0.121 (0.0136)*
DEMENT β13 -0.172(0.0364)* -0.083(0.0704) -0.159(0.0389)* -0.129( 0.0676) -0.159(0.0390)* -0.109(0.0680)
TIME β14 0.034(0.0019)* 0.022(0.0040)* 0.014(0.0022)* 0.014(0.0040) 0.013( 0.0022)* 0.016(0.0041)**
AGE05 CAT β15 0.003(0.0001)* 0.004(0.0002)* 0.003(0.0001)* 0.004(0.0002)* 0.003(0.0001)* 0.004(0.0002)*
DEVIANCE G 2.65 0.98
DISPERSION k 1.156(0.0102)* 0.489(0.0075)*
In INTERCEPT γ0 4.449(0.1064)* 4.904(0.3574)* 4.449(0.1064)* 9.457(0.8649)*
In GMD γ1 4.449(0.1062)* -0.113(0.0344) -0.109(0.0216)* -0.148(0.0434)
In GP AGE05 CAT γ2 -0.110(0.0215)* 0.014 0.0069) 0.014(0.0043)* 0.019(0.0083)
In AGE05 CAT γ3 -0.265(0.0041)* -0.361 (0.0063)* -0.265(0.0042)* -0.448(0.0270)*
In GENDER γ4 0.217(0.0169)* 0.343(0.0257)* 0.217(0.0169)* 0.413(0.0383)*
In FAM SIZE γ5 0.056(0.0096)* 0.0947(0.0138)* 0.055(0.0096)* 0.125(0.0187)
In PERIOD D γ6 -0.004(0.0032) -0.010(0.0048) -0.003(0.0032) -0.013(0.0057)
In MAJOR COVERAGE YN γ7 -0.174(0.0178)* -0.236 (0.0281)* -0.175(0.0179)* -0.238(0.0344)*
In CHRONZ ATTEST γ8 -0.280(0.0210)* -0.363 (0.0328)* -0.280(0.0210)* -0.423(0.0445)*
In CHRONZ FF γ9 -0.002(0.0227) -0.030(0.0348) -0.002(0.0227) -0.049(0.0418)
In MAF γ10 0.354(0.0179)* 0.485(0.0278)* 0.353(0.0180)* 0.567(0.0447)*
In PF γ11 -0.748(0.0241)* -0.865(0.0380)* -0.748(0.0241)* -0.866(0.0547)*
In KANKER γ12 0.463(0.0217)* 0.580(0.0303)* 0.463(0.0218)* 0.712(0.0552)*
In DEMENT γ13 0.123(0.1325) 0.115(0.2239) 0.123(0.1327) 0.208(0.2438)
In TIME γ14 -0.064(0.0010)* -0.038 (0.0016)* -0.064(0.0010)* -0.041(0.0026)*
Var σ2 0.0005(0.0004)
Std Deviation σ1 0.018(0.0079)
Std Deviation σ2 0.482(0.2752)
Alpha(Dispersion) α 0.501(0.0079)*
Tau τ -0.989(0.0205)*
log(Stdev1) σ1 -2.429(0.7885)
log(Stddev2) σ2 0.557(0.3703)
-2Log Likelihood 401195.08 319987.46 341477 312234 341407 312107
AIC 401227.08 319993.73 341539 312302 341471 312181
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Table 9: Parameter Estimates with Standard Errors For NO HOSPDAYS
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept βo 1.748(0.0201)* 1.999(0.0961)* 2.221 (0.0203)* 1.200(0.0749)* 2.222(0.0567)*
GMD β1 -0.080(0.0032)* -0.070(0.0208)* -0.043(0.0032)* -0.014(0.0139)* -0.016(0.0034)*
GP AGE05 CAT β2 0.011(0.0007)* 0.011(0.0042)* 0.009(0.0007)* 0.011(0.0027)** 0.005(0.0007)*
AGE05 CAT β3 -0.036(0.0009)* -0.048(0.0056)* 0.00006 (0.0009) -0.0006(0.00357) -0.001(0.0010)
GENDER β4 0.012(0.0027)* 0.056(0.0170)* -0.059(0.0027)* -0.052(0.0109)* -0.055(0.0027)
FAM SIZE β5 -0.046(0.0016)* -0.019(0.0090)* -0.055 (0.0016)* -0.045(0.0056)* -0.046(0.0016)*
PERIOD D β6 -0.036(0.0005)* -0.042(0.0031)* -0.013 (0.0005)* -0.014(0.0020)* -0.014(0.0005)*
MAJOR COVERAGE YN β7 0.069(0.0029)* 0.073(0.0179)* -0.012(0.0029)* -0.0270(0.0116) 0.010(0.0029*
CHRONZ ATTEST β8 0.217(0.0036)* 0.049(0.0207)* 0.100 (0.0036)* 0.052(0.0141) 0.122(0.0036)*
CHRONZ FF β9 0.290(0.0035)* 0.268(0.0226)* 0.101 (0.0034)* 0.051(0.0143) 0.088(0.0034)*
MAF β10 0.868(0.0033)* 0.932(0.0175)* 0.305(0.0033 )* 0.328(0.0125)* 0.312(0.0033)*
PF β11 -0.203(0.0038)* -0.221(0.0231)* -0.139 (0.0038)* -0.157(0.0151)* -0.124(0.0038)*
KANKER β12 0.029(0.0034)* 0.127(0.0219)* -0.121(0.0034)* -0.079(0.0132)* -0.125(0.0034)*
DEMENT β13 0.063(0.0199)* 0.032(0.1277) -0.097 (0.0199)* -0.052(0.0784) -0.096(0.0199)*
TIME β14 0.044(0.0009)* 0.046(0.0076)* 0.035 (0.0009)* 0.045 (0.0048)* 0.034(0.0009)*
AGE05 CAT*TIME β15 -0.0002(0.0001)* 0.0001(0.0005) 0.001(0.00006)* 0.001(0.0003) 0.0007(0.00005)*
DEVIANCE G 16.76 0.78
DISPERSION k−1 6.201(0.0396)* 0.996(0.0117)*
Inf Intercept γo -1.158(0.0869)* -1.468 (0.0963)* -1.158(0.0869)*
Inf GMD γ1 0.087(0.0174)* 0.093 (0.01917)* 0.087(0.0173)*
Inf GP AGE05 CAT γ2 0.0002(0.0036)* 0.002(0.0039) 0.0002(0.0036)
Inf AGE05 CAT γ3 0.089(0.0033)* 0.097(0.0036)* 0.089(0.0033)*
Inf GENDER γ4 -0.126(0.0142)* -0.143 (0.0156)* -0.126(0.0143)*
Inf FAM SIZE γ5 -0.042(0.0078)* -0.052 (0.0087)* -0.042(0.0078)
Inf PERIOD D γ6 0.050(0.0027)* 0.050 (0.0029)* 0.050(0.0027)*
Inf MAJOR COVERAGE YN γ7 -0.142(0.0150)* -0.163(0.0165)* -0.142(0.0150)*
Inf CHRONZ ATTEST γ8 -0.075(0.0175)* -0.074 (0.0189) -0.075(0.0175)*
Inf CHRONZ FF γ9 -0.261(0.0188)* -0.287 0.0207)* -0.261(0.0188)*
Inf MAF γ10 -1.0006 (0.0153)* -1.011 (0.0165)* -1.0005(0.0153)*
Inf PF γ11 0.320 (0.0197)* 0.292 (0.0218)* 0.320(0.0197)*
Inf KANKER γ12 -0.352(0.0182)* -0.390 (0.0203)* -0.352(0.0182)*
Inf DEMENT γ13 -0.275 (0.1057)* –0.291(0.1162) -0.275(0.1057)
Inf TIME γ14 0.014 (0.0008)* 0.022 0.0008)* 0.0143(0.0007)*
Var σ2 0.010(0.0075)
Std Deviation σ1 0.012(0.0140)
Std Deviation σ2 -111E-14 (0.0001)
Alpha α
Tau τ
-2loglikelihood 1772232.6 411030.6 924694 390586 918990
AIC 1772264.6 411064.6 924756 390654 919054
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Table 10: Parameter Estimates with Standard Errors For TV P DAYS
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept β0 -2.647(0.0395)* -6.446(0.3349)* 2.260(0.0400)* 1.796(0.1522)* 2.270(0.0423)*
GMD β1 0.088(0.0071)* 0.142(0.0575)* 0.026 (0.0072)* 0.050(0.0292) 0.023(0.0076)**
GP AGE05 CAT β2 -0.009(0.0013)* 0.040(0.0119)* -0.001(0.0013) -0.002(0.0051) -0.002(0.0013)
AGE05 CAT β3 0.002(0.0018) 0.018(0.0157)* 0.016(0.0018)* 0.016(0.0065) 0.0169(0.0018)*
GENDER β4 -0.119(0.0053)* -0.300(0.0457)* -0.032(0.0053)* -0.042(0.0211) -0.030(0.0053)*
FAM SIZE β5 0.154(0.0022)* 0.631(0.0336)* -0.001 (0.0025) 0.0007(0.0108) -0.003(0.0025)*
PERIOD D β6 0.018(0.0010)* 0.028(0.0087)* 0.005(0.0010)* 0.0012(0.0041) 0.005(0.0010)*
MAJOR COVERAGE YN β7 0.371(0.0056)* 0.421(0.0470)* 0.070(0.0056)* 0.046(0.0224) 0.061(0.0056)*
CHRONZ ATTEST β8 1.293(0.0090)* 2.258(0.0585)* 0.138(0.0090)* 0.082(0.0318) 0.131(0.0090)*
CHRONZ FF β9 0.122(0.0061)* -0.279(0.0607)* -0.007 (0.0061)* 0.025(0.0244) -0.008(0.0062)*
MAF β10 -0.227(0.0057)* -0.197(0.0496)* -0.048 (0.0058)* -0.059(0.0230) -0.046(0.0058)*
PF β11 2.407(0.0062)* 4.020(0.0637)* -0.377 (0.0065)* -0.197(0.0342)* -0.378 (0.0065)*
KANKER β12 -0.119(0.0062)* -0.323(0.0604)* -0.090(0.0063)* -0.027(0.0229) -0.085(0.0062)*
DEMENT β13 -0.625(0.0552)* -2.243(0.3962)* -0.056(0.0553) 0.037(0.1820) -0.051(0.0553)*
TIME β14 -0.032(0.0018)* 0.049(0.0203)* 0.098 (0.0018)* 0.158 (0.0134)* 0.098(0.0018)*
AGE05 CAT*TIME β15 0.005(0.0001)* 0.004(0.0012)* -0.0003(0.0001)* -0.001(0.0008) -0.0003(0.0001)*
DEVIANCE G 7.39 0.161
DISPERSION k 35.469(0.5423)* 0.573(0.0169)*
Inf Intercept γo 5.894(0.2072)* 5.785(0.2287)* 5.904(0.2073)*
Inf GMD γ1 -0.060(0.0430) -0.024 (0.0471) -0.057(0.0430)*
Inf GP AGE05 CAT γ2 0.009(0.0081) 0.0079(0.0083) 0.009(0.0081)
Inf AGE05 CAT γ3 -0.038(0.0074)* -0.037 (0.0077)* -0.038(0.0074)*
Inf GENDER γ4 0.068(0.0328)* 0.069(0.0338) 0.070(0.0328)*
Inf FAM SIZE γ5 -0.144(0.0160)* -0.141(0.0167)* -0.144(0.0160)*
Inf PERIOD D γ6 -0.017(0.0064)* -0.014 (0.0065) -0.017(0.0064)
Inf MAJOR COVERAGE YN γ7 -0.258(0.0344)* -0.249(0.0357)* -0.255(0.0344)*
Inf CHRONZ ATTEST γ8 -0.913(0.0448)* -0.913(0.0462)* -0.914(0.0448)*
Inf CHRONZ FF γ9 -0.072(0.0385) -0.057(0.0399) -0.072(0.0385)
Inf MAF γ10 0.211(0.0352)* 0.177(0.0363)* 0.213(0.0352)*
Inf PF γ11 -4.044(0.0436)* -4.072(0.0444)* -4.045(0.0437)*
Inf KANKER γ12 -0.086(0.0355)* -0.086(0.0367) -0.089(0.0355)
Inf DEMENT γ13 -0.095(0.2679) -0.076(0.2744) 0.133(0.2781)
Inf TIME γ14 0.081(0.0023)* 0.087(0.0023)* 0.081(0.0023)*
Var σ2 0.0008(0.0006)
Std Deviation σ1 -111E-14(0.0004)
Std Deviation σ2 0.026(0.0191)
Alpha α
Tau τ
-2loglikelihood 740309.49 92583.90 124446 71429 124359
AIC 740341.49 92617.90 124508 71497 124423
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Table 11: Parameter Estimates with Standard Errors For TV DAYS
MODEL

EFFECT Parms Poisson NegBin ZIP ZINB ZI(MEM) MMZI
Intercept β0 0.193(0.0168)* -0.149(0.1665) 1.945 (0.01728)* 1.593(0.1014)* 1.881(0.0574)*
GMD β1 0.020(0.0024)* -0.0009(0.0266) 0.04845 (0.0024)* 0.035(0.0151) 0.040(0.0025)*
GP AGE05 CAT β2 -0.017(0.0005 )* -0.015(0.0054) -0.010(0.0005)* -0.006(0.0029) -0.007(0.0005)*
AGE05 CAT β3 0.035(0.0008)* 0.005(0.0079) 0.037(0.0009)* 0.028(0.0043)* 0.0394(0.0009)*
GENDER β4 -0.044(0.0019)* 0.0001(0.0215) -0.062(0.0019)* -0.053(0.0114)* -0.063(0.0019)*
FAM SIZE β5 0.141(0.0009)* 0.194 (0.0133)* 0.018 (0.0009) 0.008(0.0059) 0.011(0.0010)*
PERIOD D β6 -0.017(0.0004)* -0.011(0.0041)* 0.0003(0.0004) 0.0033(0.0022) 0.001 (0.0004)**
MAJOR COVERAGE YN β7 0.256(0.0020)* 0.273 (0.0226)* 0.127(0.0019)* 0.083(0.0120)* 0.100(0.0020)*
CHRONZ ATTEST β8 0.566(0.0024)* 0.478(0.0257)* 0.184(0.0024)* 0.141(0.0146)* 0.164(0.0024)*
CHRONZ FF β9 0.266(0.0023)* 0.243(0.0285)* 0.048(0.0023)* 0.060(0.0140)** 0.061(0.0023)*
MAF β10 0.307(0.0021)* 0.249 (0.0227)* -0.029 (0.0020)* -0.057(0.0125)* -0.034(0.0020)*
PF β11 0.552(0.0022)* 0.943(0.0299) 0.004 (0.0022) 0.041(0.0130) -0.005(0.0022)*
KANKER β12 -0.354(0.0027)* -0.233 (0.0283)* -0.237 (0.0026)* -0.157(0.0145)* -0.229(0.0027)*
DEMENT β13 -0.028(0.0135)* -0.066(0.1637) -0.074 (0.0135)* -0.062(0.0871) -0.081(0.0136)
TIME β14 0.032 (0.0007)* 0.039(0.0116)* 0.048 (0.0008)* 0.066(0.0056)* 0.048(0.0008)*
AGE05 CAT*TIME β15 0.004(0.0000)* 0.006(0.0007)* 0.002(0.00005)* 0.003(0.0003)* 0.002(0.00005)*
DEVIANCE G 31.30 0.63
DISPERSION k−1 10.317(0.0712)* 0.8703(0.0089)*
Inf Intercept γo 2.702 (0.0958)* 2.688 (0.1840)* 2.701 (0.0958)*
Inf GMD γ1 0.042(0.0191)* 0.060 (0.0209) 0.039 (0.0191)
Inf GP AGE05 CAT γ2 0.011(0.0039)* 0.005(0.0040) 0.0113(0.0039)
Inf AGE05 CAT γ3 -0.043(0.0036)* -0.047(0.0038)* -0.043(0.0036)*
Inf GENDER γ4 -0.048 (0.0156)* -0.040 (0.0163) -0.049(0.0156)*
Inf FAM SIZE γ5 -0.233(0.0083)* -0.217 (0.0088)* -0.233 (0.0083)*
Inf PERIOD D γ6 0.018(0.0029)* 0.016 (0.0030)* 0.018(0.0029)*
Inf MAJOR COVERAGE YN γ7 -0.201(0.0163)* -0.122(0.0171)* -0.201(0.0164)*
Inf CHRONZ ATTEST γ8 -0.549(0.0189)* -0.494(0.0196)* -0.548(0.0189)*
Inf CHRONZ FF γ9 -0.285 (0.0198)* -0.314 (0.0208)* -0.286(0.0198)*
Inf MAF γ10 -0.372(0.0166)* -0.371 (0.0172)* -0.372 (0.0166)*
Inf PF γ11 -1.467(0.0199)* -1.491 (0.0213)* -1.468 (0.0199)*
Inf KANKER γ12 0.158 (0.0203)* 0.120 (0.0213)* 0.159 (0.0203)*
Inf DEMENT γ13 -0.082(0.1141) 0.065 (0.1199) 0.039(0.1162)
Inf TIME γ14 -0.0290 (0.00082)* -0.025 (0.0008)* -0.029(0.0008)*
Var σ2 0.012(0.0085)
Std Deviation σ1 0.095(0.0338)
Std Deviation σ2 0.309(0.1118)
Alpha α
Tau τ
-2loglikelihood 3161367.6 386201.5 975383 358952 963619
AIC 3161398.80 386235.51 975445 359020 963683

∗∗ = Border line significance
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APPENDIX D

Average Predicted Count Probability

Figure 19: Average Predicted Count Probability

Figure 20: Average Predicted Count Probability
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Figure 21: Average Predicted Count Probability

7 APPENDIX E

Table 12: Poisson Model without CC
Effect Estimate Standard Error P-value
Intercept 1.6884 0.06335 0.0001
GMD -0.0494 0.00342 < .0001
GP AGE05 CAT 0.007978 0.00109 < .0001
AGE05 CAT -0.03608 0.00094 < .0001
GENDER 0.05337 0.00428 < .0001
FAM SIZE -0.03589 0.00157 < .0001
PERIOD D -0.03686 0.00052 < .0001
MAJOR COVERAGE YN 0.09392 0.00288 < .0001
CHRONZ ATTEST 0.2408 0.00358 < .0001
CHRONZ FF 0.2776 0.00347 < .0001
MAF 0.8753 0.00335 96513 < .0001
PF -0.1862 0.00382 < .0001
KANKER 0.02226 0.00343 < .0001
DEMENT 0.06306 0.01991 0.0015
TIME 0.04853 0.00122 < .0001
AGE05 CAT*TIME -0.00034 5.7E-05 ¡.0001
GP AGE05 CAT*TIME -0.00016 6.8E-05 0.018
GENDER*TIME -0.00288 0.00027 ¡.0001
-2loglikehood
AIC
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Table 13: Poisson Model with CC
Effect Estimate Standard Error P-value
Intercept 1.6884 0.06335 0.0001
GMD -0.0494 0.00342 < .0001
GP AGE05 CAT 0.007978 0.00109 < .0001
AGE05 CAT -0.03608 0.00094 < .0001
GENDER 0.05337 0.00428 < .0001
FAM SIZE -0.03589 0.00157 < .0001
PERIOD D -0.03686 0.00052 < .0001
MAJOR COVERAGE YN 0.09392 0.00288 < .0001
CHRONZ ATTEST 0.2408 0.00358 < .0001
CHRONZ FF 0.2776 0.00347 < .0001
MAF 0.8753 0.00335 < .0001
PF -0.1862 0.00382 < .0001
KANKER 0.02226 0.00343 < .0001
DEMENT 0.06306 0.01991 0.0015
TIME 0.04853 0.00122 < .0001
AGE05 CAT*TIME -0.00034 5.7E-05 < .0001
GP AGE05 CAT*TIME -0.00016 6.8E-05 0.018
GENDER*TIME -0.00288 0.00027 < .0001
-2loglikelihood
AIC
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