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Abstract

Background: HIV attacks an immune cell called the CD4 cell which is responsible for the bodys

immune response to infectious agents. As such, the number of CD4 cell per cubic millimeter of

blood is widely used as an important biomarker for progression to AIDS when studying the efficacy

of drugs to treat HIV-infected patients. Also Hemoglobin concentration of the blood is widely used

as an aid in assessment of the state of health. People with HIV often experience low or declining

hemoglobin levels. In order to monitor the immunity system of HIV infected patients, World Health

Organization (WHO) guidelines suggest the use of simple laboratory tests such as hemoglobin (Hb)

and total lymphocyte count (TLC) as an indicator of initiation of antiretroviral treatment (ART)

and also as a surrogate marker to monitor immune response to therapy in symptomatic HIV patients.

Objectives: The study was aimed at describing the evolution of CD4+ cell counts and Hemoglobin

concentration level and to make comparisons between selected antiretroviral (ART) regimens and

patient characteristics.

Methods: A total of 1636 HIV-1 patients from Mildmay Uganda on first line antiretroviral treat-

ment (ART) between January 1 2009 to December 31 2012 were included into the study. Thin-plate

regression spline under General Additive Mixed Modelling (GAMM) framework was applied for each

outcome to describe their evolution independently. Also joint parametric mixed effect modelling was

implemented for the two outcomes together in order to explore the evolution of the association be-

tween them.

Results: The initiation of ART for HIV-1 patients scaled up the level of their CD4 cell counts

as well as Hemoglobin level. CD4 counts level was increased in the first 5 to 9 months from ART

initiation and then showed stable evolution around the threshold (350 cells/µL). Hemoglobin level

was also increased in the first 7 to 13 months and then a stable evolution around the normal range

(12.5 g/dL) on average was observed. The evolution of CD4 cell counts showed significant variation

between some selected ART regimens, especially ART that had AZT + 3TC backbone showed rel-

atively slow evolution (the time needed to reach to the threshold) compared to TDF + 3TC. Also

gender, baseline age, and baseline WHO clinical stages were important predictors to describe the

evolution. On the other hand, on average the evolution of Hemoglobin level also showed significant

difference between ART backbones depending on the sex of patients. The joint analysis of the two

outcomes also indicated a weak linear association between their evolution.

Key Words: Antiretroviral Treatment, CD4 cell Counts, Hemoglobin level, Mixed Effect

Model, Thin-Plate Spline
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1 Background of the Study

1.1 Introduction to HIV-1 and Blood Laboratory Tests for HIV-1 Patients

Human immunodeficiency virus (HIV) is the virus that causes acquired immunodeficiency syndrome, also

known as AIDS. HIV kills or damages the cells of the body’s immune system, destroying CD4 positive

(CD4+) T cells, a type of white blood cell vital to fighting off infection. Because HIV compromises the

immune systems, HIV-positive people are vulnerable to other infections, diseases, and complications.

A blood test is used to confirm the presence of HIV in the body and once it is confirmed a number

of laboratory tests are important for initial evaluation of HIV-infected patients upon entry into care;

during follow-up if antiretroviral therapy (ART) is not initiated; and before and after initiation or

modification of therapy to assess the virologic and immunologic efficacy of ART and to monitor for

laboratory abnormalities that may be associated with antiretroviral (ARV) drugs [18].

On the other hand, Hemoglobin is a protein in RBCs that carries oxygen to the body. Normal

hemoglobin levels are 12.0-16.0 grams per deciliter (g/dl) in women and 14.0-18.0 g/dl in men. People

with HIV often experience low or declining hemoglobin levels, usually due to a decline in the number

of RBCs produced by the bone marrow [17]. Because of the lack of laboratory technologies in resource-

limited countries due to the high prices of tests such as immuno-phenotyping by flow cytometry or

labeling with monoclonal, and plasma viral load testing antibodies in order to monitor the immunity

system of HIV infected patients, World Health Organization (WHO) guidelines suggest the use of simple

laboratory tests such as hemoglobin (Hb) and total lymphocyte count (TLC) as an indicator of initiation

of antiretroviral treatment (ART) and also as a surrogate marker to monitor immune response to therapy

in symptomatic HIV patients [4, 27].

Laboratory tests can give important clues about the health status of people with HIV. Some of

these tests—specifically complete blood counts (CBC), chemistry screens, T-Cell counts and viral load

tests—should be done shortly after someone finds out they are HIV positive to establish a ”baseline”

measure of immune status and viral activity. Establishing this baseline helps people and their health

care providers monitor disease progression as well as the effects of treatments. Age, sex, stress, current

therapies, active infections and other factors can affect the results of these tests, and test results should

be interpreted with these other factors in mind [17].

1.2 HIV-1 in Africa, Uganda

HIV/AIDS is a major public health concern and cause of death in many parts of Africa. Although the

continent is home to about 15.2% of the world’s population,[34] Sub-Saharan Africa alone accounted for

an estimated 69% of all people living with HIV [13] and 70% of all AIDS deaths in 2011. According to
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the 2013 report on HIV/AIDS in Uganda, HIV epidemic in Uganda continues to be generalized, and has

not changed pattern in the last three decades. The country achieved impressive success in the control

of HIV during the 1990s, bringing down HIV prevalence among adults aged 15-49 years from a national

average of 18.5% in 1992 to 6.4% as reported in the 2005 sero-survey [16]. The 2011 AIDS Indicator

Survey in Uganda reported HIV prevalence at a national average of 7.3% and important variations by

sex and in specific regions. Although Uganda continues to experience a high rate of new HIV infections;

the trend over the last three years before the end period of this study shows a decline, from an estimated

162,294 in 2011 and 154,589 in 2012, to 140,908 in 2013 [16].

1.3 Antiretroviral Therapy (ART) for HIV-1

The introduction of highly active antiretroviral therapy (ART) as treatment for HIV infection has greatly

improved mortality and morbidity for adults and adolescents living with HIV around the world [26, 27].

Standard antiretroviral therapy (ART) consists of the combination of at least three antiretroviral (ARV)

drugs to maximally suppress the HIV virus and stop the progression of HIV disease. Huge reductions have

been seen in rates of death and suffering when use is made of a potent ARV regimen, particularly in early

stages of the disease [27]. According to the World Health Organisation (WHO) recommendation, adults

and adolescents start with two nucleoside reverse-transcriptase inhibitors (NRTIs) plus a non-nucleoside

reverse-transcriptase inhibitor (NNRTI) on a first line therapy [27] [32]. The most commonly used NRTIs

in resource-limited countries, such as in Mildmay Uganda, are zidovudine (AZT) + lamivudine (3TC),

tenofovir (TDF) + lamivudine (3TC), abacavir (ABC) + lamivudine (3TC), or stavudine (d4T). Also

efavirenz (EFV), and nevirapine (NVP) are widely used types of NNRTIs [3, 17, 18].

In 2012, 68% of people living with HIV in sub-Saharan Africa had access to antiretroviral treatment

(ART). 10 countries reported reaching universal access (at least 80% of adults eligible for ART) under

the World Health Organizations (WHO) 2010 guidelines (those with a CD4 counts of 350 cells/µL or

less) [28]. The WHO’s 2013 guidelines have subsequently made many more people eligible for treatment

by expanding the CD4 treatment initiation to 500 cells/µL or less for adults, adolescents and older

children [32].

1.4 Objectives

The main objective of this retrospective observational study was to describe the progression of CD4 cell

counts and Hemoglobin concentration level over time, for patients on first line antiretroviral therapy

(ART) in Mildmay Uganda and to compare the progression between selected combinations of antiretro-

viral drugs (ARV) regimens. It was also aimed at determining whether the evolution depends on selected

patient characteristics.
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1.5 Motivations to the Study

The therapeutic benefits of ART are often limited by long-term toxicities and evolution of drug-resistant

virus [5, 13, 34]. In resource-rich countries, HIV treatment is monitored routinely with laboratory mea-

sures such as blood chemistry, HIV viral load, and CD4 counts for early detection of side effects of

medications and drug-resistant virus [5, 14]. Due to the lack of accessible and affordable laboratory

services, routine laboratory monitoring is not feasible in most resource-limited countries [5, 13, 34].

Without laboratory monitoring, many patients may experience prolonged virologic failure and develop

drug resistance mutations, which could ultimately limit second-line treatment options, increase morbid-

ity, mortality and increase transmission of resistant viruses in the population [14, 28, 32]. The World

Health Organization (WHO) recommends CD4 counts monitoring every six months and viral load test-

ing only when the capacity exists [27]. There are limited data on laboratory monitoring of treatment

from real world pediatric HIV clinics in resource-limited countries where there are frequent shortages of

laboratory reagents, breakdown of equipment in addition to poor compliance with clinic appointments

making testing at fixed intervals impossible [27]. In this retrospective study we tried to describe the

long-term effect of selected ART regimens on the evolution of CD4 cell count that are directly related

to the immune status of HIV-1 patients.

In addition, the advent of potent antiretroviral therapy has altered the expected natural history of

human immunodeficiency virus (HIV) infection and of many previously associated opportunistic com-

plications, including malignancies. At the same time, HIV suppression hasn’t affected all of these

complications equally and the longer expected survival of infected patients may allow the development

of newer complications. Additionally, the use of potent antiretroviral combination therapy may itself

lead to hematological toxicities [30]. Drug therapy for HIV infection or its subsequent complications is

also a common cause of anemia [22]. Severe anemia, defined either as a hemoglobin level of less than 7.5

- 8.0 grams per deciliter or anemia that requires transfusion, can be seen in 24% of those who receive

Zidovudine (AZT) 1500 mg daily [19]. This study also tries to describe the trajectory of Hemoglobin

concentration level in HIV-1 patients treated with different ART regimens in Mildmay Uganda.
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2 Review of Literatures

A research [20] was conducted aiming at describing the evolution of CD4 cell counts for patients on

ART at Mildmay Uganda, which had almost the same study population with this study. They fitted a

linear mixed effect model to describe the evolution of CD4 cell counts for patients on ART at Mildmay

Uganda and from their result they discussed that the trajectory of CD4 cell count (in logarithmic scale)

can be explained with cubic time effect. They also discussed that the effect of gender on the evolution

depends on the patient’s baseline CD4 category, also on the NNRTI drug that the patient uses. In their

conclusion they added that patients who started ART at higher baseline CD4 counts evolved higher than

those who started at lower CD4 counts.

Also, a retrospective study [1] was conducted to investigate the longitudinal analysis of change in

CD4+ cell counts of HIV-1 patients on antiretroviral therapy (ART) based on secondary data from the

HIV/AIDS Monitoring Program at the Builsa District hospital, in which patients were enrolled and their

CD4+ cell counts were regularly monitored and thus generating repeated measures of their CD4+ cell

counts. The purpose of the study was to investigate some plausible determinants of change in CD4+ cell

count. They used Mixed effects modelling approach for modelling the CD4+ cell counts of the patients.

Their results showed that, the initial CD4+ cell count of a patient, the duration of treatment and the

drug type used in the treatment, were the factors that significantly determined a patients current CD4+

cell count. They also added that there is strong positive association between CD4+ count and duration

of treatment (time). The effect of age on change in CD4+ cell count was also statistically significant

at the 5% significance level. A patient has an average of 2.551 count disadvantage for every year older

he/she is at the time of diagnosis. There was also significant gender differential among patients that

were on treatment, that is, they found that the average CD4+ cell count for males is about 29 counts

higher than that of their female counterparts.

On the other hand, [2] carried out a study to determine the prevalence of autoimmune haemolytic

anaemia in HIV-infected patients and to compare the haematological/immunological characteristics of

subjects with anaemia and those without. They used a total of 350 HIV-infected subjects attending

the Lagos University Teaching Hospital who consented were recruited for the study. This included 250

subjects with anaemia (haemoglobin concentration <10 g/dl) as cases and 100 subjects without anaemia

as controls. From their result they discussed that subjects with anaemia had lower mean CD4 cell count

(284.3 cells/µl).

From a study [15] on the variation of Hemoglobin level with age and sex, it was discussed in general

that the Hemoglobin concentration of the blood is widely used as an aid in assessment of the state of

health. Therefore, they added that it is necessary to establish the trend of Hemoglobin values in relation

to age and sex. From their result they discussed that men on average have higher level of Hemoglobin

especially during younger age compared to women. Also, they mentioned that elderly people are usually
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associated to lower level of Hemoglobin. Besides to this, they suggested that altitude of the location

where subjects reside should be taken into account. However, in our study we did not consider altitude

as a factor variable because all patients included in the study live almost in the same place which was

in Kampala, Uganda and near by villages where the altitude variation is very small.

Another interesting research on the correlation between CD4 cell count and Hemoglobin level was

[4] and we briefly discussed this research as follows. Lymphocyte CD4+count, a standard laboratory

test for staging of HIV infection, is expensive and unavailable in resource-restricted countries. Total

lymphocyte count (TLC) and hemoglobin (Hb) are recommended as simple & inexpensive surrogates.

The aim of the study was to assess the correlation, sensitivity and predictive power of these parameters

as substitutes for CD4 counts. One hundred HIV patients enrolled in this analytic descriptive study in

Ahvaz, a city in the South of Iran, from 2005 to 2006. They were tested for CD4 counts, TLC, Hb,

and hematocrit (Hct). The cutoffs were determined as: 200 cells/µL, 1200 cells/µL, 12 g/dl and 30%,

respectively. The correlation coefficient established correlation between values. Sensitivity, specificity

and positive predictive values were also calculated. From their result, a strong correlation was observed

between CD4 counts and TLC (R = 0.645, P = 0.001), but no correlation was seen between CD4 counts

and Hb or Hct (R= 0.451, P=0.056 and R= 0.375, P=0.816 respectively). This study shows that TLC

is a suitable surrogate marker for CD4 counts. Hb and Hct are of limited value in predicting CD4 counts

and should not be substituted for CD4 counts.

On the other hand, in [11] a possible association between serum neopterin concentrations and blood

cell counts (CD4+ T cells, white blood cells, platelets, red blood cells) and hemoglobin and hematocrit in

94 HIV-1-seropositive individuals was investigated. They found significant negative correlations between

neopterin concentrations and CD4+ T cells, hemoglobin, hematocrit and platelets. These correlations

were also significant if either only the sub population or the entire set of data were considered for

calculations. Finally they discussed that hematological abnormalities are associated with chronic immune

activation in patients with HIV-1 infection.
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3 Methodology

3.1 Study Population

Mildmay Uganda (MUg) opened in 1998 to provide palliative outpatient care for people living with

HIV/AIDS, and to act as a teaching and training centre for HIV/AIDS health care personnel in Uganda.

MUg is primarily a treatment centre for persons living with HIV/AIDS and their families. It currently

offers family centered care and support to approximately 24,000 clients. MUg has one central clinic

located in Lweza, 12km out-side Kampala, the capital of Uganda. MUg is also involved in a district

health systems strengthening programme to build HIV/AIDS health care capacity in existing health

centres in 18 local districts [12]. On this background, this study was conducted using routine data

for patients who started ART between 2009 and 2012 at MUg, and were on first line regimen drugs.

Blood parameters including CD4 cell counts and Hemoglobin are normally measured for patients on

ART on routine basis every 6 months. The criteria for starting ART in Uganda followed the WHO

guidelines. First-line ART comprised a Nucleoside Reverse Transcriptase Inhibitor (NRTI) backbone i.e.

Lamivudine (3TC) plus one of Zidovudine (AZT), Stavudine (d4T) or Tenofovir (TDF), plus a Non-

nucleoside Reverse Transcriptase Inhibitor (NNRTI) drug i.e. either Nevirapine (NVP) or Efavirenz

(EFV). However, in this study the comparison of the evolution of CD4+ cell count and Hemoglobin

level was solely focused on AZT + 3TC and TDF + 3TC from NRTI and NVP and EFV from NNRTI.

Because of the high level and variability of CD4+ cell counts in children [17], patients with baseline

age 12 and above were used to describe the evolution of CD4+ cell count where as patients from all

age groups were used to describe the evolution of Hemoglobin. Informed consent was not obtained

from individual patients but the analysis was done anonymously. It is worth mentioning however, that

patients in care at Mildmay Uganda, consent and assent to use of their data for scientific research.

3.2 The Data and Patients Characteristics

Gender and baseline age are usually considered in many studies on HIV-1 and related areas. Some studies

on the same topic such as [1, 20, 21] have found that these two patient characteristics are potential factors

in influencing the level of CD4+ cell count also they have interaction effect with other factors. These

factors are also recommended by many studies [15, 30, 31] to be considered when some one wants to

study the concentration level of Hemoglobin. Also, the clinical staging and case definition of HIV for

resource-constrained settings were developed by the WHO in 1990 and revised in 2007 [6, 27]. Staging

is based on clinical findings that guide the diagnosis, evaluation, and management of HIV/AIDS, and it

does not require a CD4 cell count. Clinical stages are categorized as 1 through 4 (labeled as I, II, III,

and IV in this study), progressing from primary HIV infection to advanced HIV/AIDS. These stages are

defined by specific clinical conditions or symptoms and the higher the stage the lower CD4 cell counts
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is expected [6, 27], consequently we included WHO clinical stages at the start of ART into the study as

patients baseline characteristics.

A total of 1636 patients (1422 for CD4 counts study and 1567 for Hemoglobin study) were eligible

for the study and the characteristics of these patients with respect to selected study variables is shown

in Table 2. Regarding the distribution of ART regimens among patients, the data was quite unbalanced,

for example from Table 1 we can see that 1336 (81.7%) of patients were given ART which had AZT +

3TC backbone and only 300 (18.3%) patients were given ART which had TDF + 3TC backbone. From

the same table we can also see that NVP was the dominant NNRTI (covering 80%) compared to EFV

(covering 20%) for patients with ART backbone of AZT + 3TC, whereas the proportion of these two

NNRTIs was nearly balanced among patients with ART that had TDF + 3TC backbone. Regarding

patients baseline characteristics, in Table 2 it is shown that 67.5% of the study patients were female and

the rest 32.5% were male. With respect to age composition, most of patients (75%) were between 12 to

45 years and the rest 25% of them were children and elderly patients. Similarly, 77.6% of them were on

the first WHO clinical stage at the time of ART start, 21.3% of them were on the second stage, and the

rest 1% of them were on the third and fourth WHO stages. 32 (2%) patients’ baseline WHO clinical

stage was not registered, or perhaps missed, when they start ART but not excluded from the analysis.

Since the number of patients under WHO stage III and IV were considerably small, the analysis was

based on a new group that combines these two groups as stage III and IV are associated to sever AIDS

progression [27]. Additionally, patients entered to the study in different times between January 2009 to

December 2012, as a result we classified patients according to the year they were entered to the study

and shown in Table 2. 44% of the patients entered into the study in 2009, among these patients most

of them (91%) were given ART that had AZT + 3TC backbone and also 78% of them were given ART

that had NVP. Similarly, 20% of the patients were entered to the study in 2010, and the rest 24% and

13% were entered in 2011 and 2012 respectively.

Table 1: ART Regimens distribution

NRTI NNRTI Frequency Percent Conditional Percent

AZT+3TC EFV 269 16.44 20.13

AZT+3TC NVP 1067 65.22 79.87

Sub Total 1336 81.66

TDF+3TC EFV 157 9.6 52.33

TDF+3TC NVP 143 8.74 47.67

Sub Total 300 18.34

Total 1636

Figure 1 shows the follow up summary of patients included in the study and it can be seen that most

8
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of the patients were measured 2 to 4 times within the study period for Hemoglobin test and 5 to 6 times

for CD4 cell count test. The time of laboratory test was not in a regular interval even if the institution

(MUg) planned to visit each patient in 6 months interval. As a result, in this study time span between

ARV start date and laboratory test was treated as a continuous measurement with minimum value 0 for

measurements taken at the date patients started ART. Regarding the time of measurement, the data

was considered as unbalanced longitudinal data as the time gap between laboratory measurements for

the outcomes was not fixed [29].

Table 2: Patient characteristics stratified by NRTI and NNRTI

Variables

NRTI NNRTI
Total

AZT TDF EFV NVP

n (%) n (%) n (%) n (%) n (%)

Gender

Female 887 (54.22) 218 (13.33) 212 (12.96) 893 (54.58) 1105 (67.54)

Male 449 (27.44) 82 (5.01) 214 (13.08) 317 (19.38) 531 (32.46)

Baseline WHO Stage

I 1014 (63.21) 231 (14.4) 335 (20.88) 910 (56.73) 1245 (77.61)

II 281 (17.52) 60 (3.74) 77 (4.8) 264 (16.46) 341 (21.26)

III 11 (0.69) 4 (0.25) 9 (0.56) 6 (0.37) 15 (0.94)

IV 2 (0.12) 1 (0.06) 6 (0.37) 3 (0.19) 3 (0.19)

Missing 32 (1.96)

Baseline Age Group

≤ 1 29 (1.77) 0 (0.00) 1 (0.06) 28 (1.71) 29 (1.77)

1-4 75 (4.58) 0 (0.00) 7 (0.43) 68 (4.16) 75 (4.58)

5-11 106 (6.48) 4 (0.24) 33 (2.02) 77 (7.71) 110 (6.72)

12 -45 977 (59.72) 250 (15.28) 326 (19.93) 901 (55.07) 1227 (75.00)

≥ 45 149 (9.11) 46 (2.81) 59 (3.61) 136 (8.31) 195 (11.92)

ARV Start Year

2009 654 (39.98) 67 (4.10) 155 (9.47) 566 (34.60) 721 (44.07)

2010 316 (19.32) 1 (0.06) 64 (3.91) 253 (15.46) 317 (19.38)

2011 291 (17.79) 90 (5.5) 88 (5.38) 293 (17.91) 381 (23.29)

2012 75 (4.58) 142 (8.68) 119 (7.27) 98 (5.99) 217 (13.26)

Total 1336 (81.66) 300 (18.34) 426 (26.04) 1210 (73.96) 1636 (100.00)

n = number

% = Percentage
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Figure 1: Follow-up statistics of patients within the study period (from Jan 1, 2009 to Dec 31, 2012)

3.3 Statistical Methods

The data used in this study includes longitudinally recorded response variables (CD4+ cell count (in

cells/micro-liters) and Hemoglobin concentration level (in grams/deciliter)) from each participating sub-

ject. At least one measurement was taken from each participant and a maximum of up to 10 or 11

observations had been observed longitudinally on the same subject. From this fact we can deduce the

presence of non-ignorable correlation within measurements of the same patient. As a result, for statis-

tical analysis the usual assumption about independent observations of the response variable(s) may not

be reasonable and a solution to this problem is to model the data with longitudinal regression models

that take in to account the within subject correlation [8, 29]. Note that in this study two response

variables CD4+ cell count and Hemoglobin concentration level are considered. These outcomes were

measured from each patient longitudinally and hence one can expect association (correlation) between

these outcomes. In this study we passed through two approaches: first modelling the outcomes sep-

arately assuming independence between them considering the suggestions from some researches [11],

and secondly fitting a model under multivariate setting that takes into account the possible association

between them. These two approaches are briefly discussed in the next sections and the reader can go to

the cited references for their detailed theory and concept.
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3.3.1 Data Exploratory Methods

Exploration of the structure of the data, important for guiding the appropriate modeling framework,

was done using graphical techniques such as i) the individual profiles plot which gives us an idea on

the within and between subject variability, ii) the mean profile plot that suggests the initial plausible

assumption on the mean structure of model, and iii) the variance function that could tell a plausible

initial assumption on the structure of random effects [29]. Since the data was not recorded in fixed

time interval for each participant patient, it was mandatory to use smoothing techniques to explore the

mean and variance structure, as a first step Lowess smoothing technique was used [7]. In order to get

an insight on the evolution of the association between the two outcomes of interest over time, a scatter

plot diagram along with Pearson’s correlation coefficient was used.

3.3.2 Semi-parametric Mixed Effect Models

From several researches that tried to describe the evolution of CD4+ cell count such as [1, 5, 20], it

has been noted that the evolution of CD4+ cell count and other blood parameters have a non-linear

evolution which can be fitted with non-linear parametric longitudinal mixed effects model or linear mixed

effect models with non-linear time effect as [1, 5, 20] had done. Although such parametric mean models

enjoy simplicity, they have suffered from inflexibility in modeling complicated relationships between the

response and covariates in various longitudinal studies [10]. Additionally, from the statistical point of

view, the parameter estimation process for non-linear models is based on numerical algorithms which

are dependent on initial values and then iteratively finds the estimates of the parameters. Also, non-

linear parametric models may be too restrictive [24]. Semi-parametric models on the other hand offer

flexibility and can capture non-linear curve shapes without assuming any parametric structure for the

mean [24, 33]. Therefore, we proposed penalized Thin-Plate Regression Splines (TPRS) to analyze the

data. The other advantage of penalized TPRS over the other classes of semi-parametric (splines) models

is that it avoids knot selections and the placements of knots, as both of these emerge naturally from

the mathematical statement of the smooth problem [33]. Interestingly, the smoothing parameters of the

model can be estimated within the mixed model framework [10, 25, 33].

Let Yi(t) be the response of interest (CD4+ cell count or Hemoglobin level) measured at time t

on the ith subject (i = 1, 2, ... N). The penalized spline model, with patient specific random effects

b0i, b1i, ..., bpi can be expressed as

Yi(t) = Xβ + S(t) +Zb+ εi(t) (1)

S(t) =

v∑
l=1

γlfl(t)

Zb = b0i + b1it+ ...,+bpit
p

Where X is the design matrix for the covariates (fixed effects) such as NRTI, NNRTI, baseline age,
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gender, and WHO clinical stages which are parametrically modelled with parameter vector β. fi(t)s are

a set of thin plate spline basis functions, γl are the coefficients of the basis function [25, 33], Z is random

effects (time) design matrix, bT = [bi, bi, ..., bpi]
T ∼MVN(0,Σ) and random error terms εi(t) i.i.d.

N(0, σ2
ε ). The patient specific random effects bpi’s accounts for the correlated nature of the repeated

measurements of CD4+ cell count and Hemoglobin level. The need for these random effects was tested

with a mixture χ2 distribution which is an approximate likelihood ratio test[29]. Each smooth is treated

as having a fixed effects (unpenalized) component, which can be absorbed into Xβ, and a random

effects (penalized) component, which can be absorbed into Zb. The random effects component of the

smooth also has an associated Gaussian distributional assumption, based on the wiggliness measure for

the smooth, and having an unknown variance parameter, which is related to the smoothing parameter

[10, 33].

The smoothing parameter λ can be estimated using optimization criterion such as generalized cross-

validation (GCV) [24, 33]. In this study, we use the link between mixed model and splines. This is an

advantage of fitting the thin plate regression splines within the mixed model framework [24]. Roughness

is quantified by the integral of squared m-th order derivatives. We implemented the most commonly

used roughness penalty, which is m=2. Note that, for m=2 and a given λ, Ŝ is a cubic smoothing spline

[10, 24, 33]. For further properties and formulations of penalized TPRS model applied in this study, we

refer the reader to [10, 24, 33].

Different mean structures Xβ were compared using Akaike Information Criterion (AIC) (for non-

nested models), and/or Log-Likelihood Ratio test (for nested models) [29]. Model simplification was

tried by assuming different structures for the covariance structure of subject specific random effects

Σ such as Diagonal (0 covariance between random effects), Compound-Symmetric (equal covariance

between random effects), and Unstructured. At a fixed mean structure these different assumptions were

compared using AIC as well [23, 29]. AIC based comparisons and Likelihood ratio tests were done after

setting Maximum Likelihood (ML) parameter estimation method. However the final model was based

on Restricted Maximum Likelihood (REML) estimation method in order to avoid biased estimate of

the variance components [29]. So far, it was assumed that the residual variance-covariance structure is

simple, σ2
ε I, i.e. assuming independence between εi(t), but this could be false as the observations are

measured in a time sequence that result in the occurrence of serial correlation [8, 10, 29]. Hence, the

presence of serial correlation was also tested using Likelihood based test with REML method because it

reduces the well-known finite sample bias in the estimation of the covariance [29].

Further more, the thin plate spline smoothing was stratified by ART regimens (the stratum are the

combinations of the levels of NRTI and NNRTI) allowing different smoothing of the response variables

at the 4 combinations [33]. This was chosen because the intention of this study was to compare NVP

and EFV given a particular backbone (AZT + 3TC or TDF + 3TC) and also vice versa. However, the

evolution of the outcome was assumed to evolve similarly in women and men. This assumption also

12



Modelling the Evolution of CD4+ Cell Counts and Hemoglobin Level

holds to the levels of WHO clinical stages. Additionally, in order to investigate the rate of change in

CD4+ count and Hemoglobin level, the first order derivative of the model (1) was examined graphically

accompanied with 95% confidence band. In order to check the validity of the fitted model, the observed

and predicted evolution of the outcomes for randomly selected 9 subjects were compared graphically, in

this way a good model is recognized if the predicted evolution overlaps on the observed evolution with

the least error. In addition, at a randomly selected 4 time points, again the predicted and observed

values of the outcome were compared using scatter plot where a straight line pattern of the dots on a

45o line indicates a good fit.

3.3.3 Joint Modelling of Multivariate Longitudinal Data

Anemia occurs frequently among patients seropositive for human immunodeficiency virus (HIV) but the

etiology of anemia in HIV infection often remains unclear [22, 30]. Some studies such as [11] investigated

a possible association between serum Hemoglobin level concentrations and blood cell counts (CD4+ T

cells, white blood cells, platelets, red blood cells) in HIV-1-seropositive individuals and they discussed

that there is a significant negative correlations between Hemoglobin concentrations and CD4+ T cells.

In contrary to this, a non-significant correlation was observed in some studies such as [4]. This study also

aims to investigate the association, we will call it correlation later, between the two outcomes CD4+ cell

count and Hemoglobin concentration level overtime. The semi-parametric mixed effect models proposed

previously model the evolution of these two outcomes independently even if both were measured from

each patient longitudinally. Since the two outcomes were measured at time t from subject i (i=1,2,

... N) one can expect correlation between them. A joint modeling of such kind of data is necessary

to quantify the evolutions of the two responses and at the same time the evolution of the relationship

between them over time. It also ensures valid inferences as it appropriately account for the correlation

among the outcomes [9, 10].

Random effects can be used to generate an association structure between the repeated measurements

of a specific outcome [29]. The same idea can be used to construct multivariate longitudinal models [10].

Now under Multivariate set-up let Ymi(t) be the mth outcome (m=1, 2) of interest measured at time t

from patient i, i=1,2, ... N, then

Ymi(t) = XT
mβ +ZTmbmi + εmi(t) (2)

εmi(t) ∼ MVN(0,Ri) bmi ∼MVN(0,D) Cov(εmi(t), bmi) = 0

Where Xmβ is the design matrix for the fixed effect covariates that are modelled parametrically with

β the matrix of coefficients that need to be estimated from the data. Zm is also the design matrix for

the random effect covariates, which was time of laboratory test (visit time) in this study, with random

coefficients bmi. Also εmi(t) represent the random error term at time t for response m. Note that

here the assumption of conditional independence does not hold because, given bmi, the observations are
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not totally independent. Given bmi, the observations measured at same occasion on same individual

might be correlated. As a result, Ri = Ini

⊗
Σm×m. D is the covariance matrix of the random

effects bmi. Since the evolution of the association between the two outcomes was the main interest to

employ joint modelling, two kinds of correlations can be mathematically obtained as follows. (i) The

correlation between the evolution of log CD4+ cell count (Y1i(t)) and Hemoglobin level (Y2i(t)) is given

by rE = Cov(b1i,b2i)√
V ar(b1i)×V ar(b2i)

, where bmi is the random slope for the mth model (in order to express the

equations easily we assumed here only random intercept and slope for linear time effect are included in

the model), and (ii) the marginal correlation between log CD4+ cell count (Y1i(t)) and Hemoglobin level

(Y2i(t)) at time t is also given by rM = Cov(Y1i(t),Y2i(t))√
V ar(Y1i(t))×V arY2i(t)))

[9, 10]

The model building strategies such as selecting the best mean structure, covariance structure, and

serial correlation for the error terms were based on the strategies used in the univariate mixed effect

models discussed above. However, the data used in this study was unbalanced and only very few subjects

had measurements of both outcomes at the same time where as others had a gap between the time at

which the measurements was done as well as some (not few) patients had measurement for only one

outcome, as a result model convergence and related problems were obstacles to fit the joint model. The

proposed solution to overcome this problem was discretization of the measurement time into 1 month of

interval, the interval size was narrow enough to avoid multiple measurements for each patient at the same

time point, and then the analysis was carried on with the discretized time point. Since discretization

involves loss of information, the joint modelling was fitted with this limitation in mind.

3.3.4 Statistical Softwares

Data management and statistical analysis were done using SAS 9.4 R© and R 3.1.3 software packages.

Under mgcv package in R 3.1.3 the function gamm was mainly used to fit semi-parametric mixed effect

model. MIXED procedure from SAS 9.4 R© was also used mainly to fit multivariate mixed effect models.

All statistical hypotheses were tested at 5% significance level, i.e. the probability of false effect finding

was fixed to be 1 in 20 studies/experiments.
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4 Results

4.1 Exploratory Data Analysis

Prior to fitting the model, we examined the nature of the data that could be used as a guide for the

modelling framework. The CD4 cell counts data exhibited huge variability unlike the Hemoglobin level

data and it was heavily skewed to the right. To get rid of the skewness in CD4 data loge transformation

was applied and the analysis was carried on with the transformed outcome. Figure 2 (a) and (b) show

the individual profile over time and smoothed mean structure of log CD4 cell count and Hemoglobin level

respectively. The mean structure shown in (a) reveals that the average evolution of CD4 cell counts, in

log scale, seems to have a fast growth in the first about 3 months (about 100 days) after ART initiation

and continued stable around 400 cells/µL (log CD4 = 6) after 3 months. Similarly, (b) shows that

the mean concentration of Hemoglobin level rises faster in the first about 7 months (about 200 days),

which was slightly slower compared to the average CD4 growth, and shows a constant trend around 12.5

g/dl after about 7 months since the beginning of ART treatment. The mean structure shown in this

figure also depicts a non-linear evolution of both outcomes as the blue line (representing the smoothed

mean structure) had a non-linear curve. On the other hand, the individual profiles indicated with gray

color on both plots (a and b) reveal the presence of high within and between patients variability for

both responses. Also, few extreme CD4 cell counts were observed as it can be seen in Figure 2 (a) and

relatively less number of extreme Hemoglobin levels were also appeared as it can be seen in (b). These

extreme measurements, however, were left untouched because patients may experience extremely small

CD4 cell counts when they start ART at late WHO clinical stages (stage III and IV) and also patients

with severe Anemia usually encounter very small level of Hemoglobin [19, 22, 30].

Patients had considerably different CD4 cell counts and Hemoglobin level at the start of ART (at time

0) and this may suggest the need for subject specific intercepts during mixed effect modelling. Also, some

patients evolved differently, for example some showed faster growth and some others showed a declining

CD4 counts or Hemoglobin level and hence it is statistically plausible to suggest the requirement of

subject specific slopes that could capture the individual level evolutions under mixed effect modelling

framework. Additionally, the smoothed mean structure for both responses showed a non-linear trajectory

suggesting a non-linear (or possibly a high order polynomial) mean structure modelling is a good starting

assumption. This kind of average evolution is actually in line with what was observed in some researches

on the same area such as [1, 20]. On the other hand, the smoothed variance structure shown in Figure 16

(a) (in Appendix) depicts a slightly upward parabola curve for log CD4 counts outcome. This curvature

statistically implies that it is plausible to start with a model that includes both random intercept and

slope [29]. Secondly, the smoothed variance structure for Hemoglobin level also shown in Figure 16 (b)

(in Appendix) shows a slightly polynomial curve which suggests to start model building with higher

order random effects structure for Hemoglobin concentration level.
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Figure 2: Smoothed mean structure (blue line) and patient specific trajectory (gray lines) of (a) Log

CD4 counts and, (b) Hemoglobin concentration level

Figure 3: Smoothed mean structure for log CD4 counts stratified by (a) ART Regimen, (b) Gender

Figure 4: Smoothed mean structure for Hemoglobin level stratified by (a) ART Regimen, (b) Gender
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The smoothed mean structure of log CD4 cell counts stratified by ART regimens and sex of patients

is shown in Figure 3 (a) and (b) respectively. The plot depicts that NVP combined with TDF +

3TC backbone seems to result higher CD4 counts on average compared to all other regimens. Also,

patients who received EFV combined with TDF + 3TC backbone seem to have quite lower CD4 counts

compared to all other regimens. In addition, NVP and EFV seem to be equally efficient when they are

administered with AZT + 3TC backbone. On the other hand, the level of CD4 cell count was larger

for women compared to men patients but the difference became indistinguishable at the end period

of the study. Figure 4 (a) and (b) also describes the smoothed mean trajectory of Hemoglobin level

stratified by ART regimens and gender of patients respectively. The plot shows that patients taking

NVP combined to TDF + 3TC seem to have lower hemoglobin level on average. Similarly, patients

who received AZT/3TC/EFV regimen showed better Hemoglobin level compared to others. Unlike to

the CD4 counts result shown in Figure 3 (b), Figure 4 (b) shows that women seem to encounter lower

Hemoglobin level compared to men patients on average all over the time during the study.

The other interest of this study was to describe the association between the two outcomes overtime.

The association was first investigated through a scatter plot along with marginal correlation as it can be

seen in Figure 5 stratified by NRTI, NNRTI, and Gender (the stratification is indicated with different

colors) by discretizing measurement time into 6 months interval. From a general view the dots did

not show any systematic pattern which could indicate a particular type of relationship. The marginal

correlations (indicated in the bottom right corner of each plot) also suggest weak linear relationship be-

tween Hemoglobin level and CD4+ cell counts at each discretized time point. Generally, the exploratory

analysis on the association between the evolution of the two outcomes of interest did not show a positive

sign but this needs to be verified using advanced modelling of multivariate longitudinal data as the

descretized time point used in this primary analysis was not narrow enough to reduce information loss.

4.2 Penalized Thin Plate Regression Splines for CD4 Cells Count

The parameter estimates of the final model (eq. (3)) are shown in Table 4. The final model was

obtained through comparing different mean structures that contain different possible combinations of

the predictor variables using AIC and log-likelihood ratio test. The requirement of random effects

(bki for k = 0, 1, ..., p) into the model was tested using a mixture of χ2 distribution and the results

are shown in Table 7 (in Appendix). These tests were done at the same mean structure and also the

estimation method was set to Restricted Maximum Likelihood. The need for random intercepts was

significant (χ2
0:1 =1814.49, p-value <0.0001). In addition, the need for both random intercept, and

random slope for linear time effect was also significant (χ2
1:2 =53.06, p-value <0.0001). Again, the need

for both random intercept, random slope for linear time effect, and random slope for quadratic time

effect was not significant (χ2
2:3 = 1.64, p-value = 0.5454). This result led us to include random intercept

(b0i) and random slope for linear time effect (b1i) in the random part of model (1). Also, unstructured
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Figure 5: Scatter plot diagram of Hemoglobin level versus CD4+ cell count at each discretized time

point. The gap between the visits is 6 months also the indicated correlation coefficients are marginal all

over the factors.

covariance was chosen for the covariance structure of the random effects, Σ, as it resulted the lowest

AIC (AIC = 7810.63) compared to other simpler structures as shown in Table 8. After determining the

appropriate covariance structure of random effects the next step was to test whether serial correlation

should be included in the model. The result is summarized in Table 9 (also in Appendix). The inclusion

of serial correlation did not considerably improve the model because the increment in the REML based

log-likelihood values was less than 10. This increment may be important statistically but the gain is not

worthwhile because it leads to adding one more parameter that increases the complexity of the model.

Regarding to the covariates used in the analysis, WHO baseline clinical stages were not found having

a significant effects in describing the evolution as well as the interaction effect between covariates, as a

result these insignificant factors were dropped from the model.
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log CD4i(t) = β0 + β1 ∗NRTIi + β2 ∗NNRTIi + β3 ∗NRTIi ∗NNRTIi (3)

+ β4 ∗Genderi + β5 ∗Baseline Agei + β6 ∗WHOIIi + β7 ∗WHOIIIi

+

v∑
l=1

γlfl(t) + b0i + b1i ∗ t+ εi(t)

Where log CD4i(t) is log transformed CD4 cell counts of the ith subject measured at the tth time

point. NRTIi=1 for TDF and 0 for AZT. NNRTIi=1 for EFV and 0 for NVP. Genderi=1 for Male

patient and 0 for Female patient. BaselineAgei is the ith patient’s age at the start of ART respectively.

The other components are as defined in Section 3.3.2. WHOIi = 1 for WHO clinical stage II, 0

otherwise. WHOIIIi = 1 for WHO clinical stage III or IV, 0 otherwise. The estimated smoothing

parameters λ̂ (std.error) were 0.1535 (0.0617), 0.1763 (0.0291), 0.11412 (0.0408), and 0.4359 (0.2196) for

each combination of NRTI and NNRTI levels where all of them were significantly different from 0.

The result displayed in Table 4 and particular comparisons shown in Table 3 show that the interaction

effect between NNRTI and NRTI was significant (p-value=0.0070) implying that the effect of NNRTI

depends on the type of backbone with which it was combined. That is, the mean difference between the

evolution of log CD4 counts subject to different types of NNRTIs (NVP or EFV) also varied between the

type of backbone (AZT or TDF). At a particular baseline age, baseline WHO clinical stage, and gender,

the evolution level of log CD4 counts from NVP was significantly lower than EFV if the backbone is

AZT + 3TC (effect difference (EFV - NVP) = β̂2 = 0.0906, p-value=0.03146). In other words, the mean

evolution of log CD4 cell counts among patients on first line ART of AZT/3TC/NVP was lower than

those on first line ART of AZT/3TC/EFV. Again holding the effect of baseline age, gender, and WHO

clinical stages the effect of NVP was not significantly different from EFV if the backbone is TDF + 3TC

(effect difference = β̂2 + β̂3 = -0.1531, p-value=0.0591). On the other way around we can compare the

backbones at a given level of NNRTI as it can be seen also in Table 3. These findings also showed that

the average trajectory of log CD4 cell count was significantly different between the backbones depending

on of the type of NNRTI they were given with. The mean evolution was larger for AZT + 3TC compared

to TDF + 3TC if the type of NNRTI is NVP (effect difference = β̂1 = 0.2067, p-value = 0.0006). Also

for patients who were given ART that had EFV type of NNRTI, the mean evolution was not significantly

different between those who were given AZT and TDF (effect difference = β̂1 + β̂3 = -0.0370, p-value =

0.5840). These results confirmed what we have seen in the exploratory data analysis that showed some

gap between the smoothed mean evolution of log CD4 cell counts at different regimens visually (see

Figure 3 (a)). In order to make the results more imaginable, these findings are graphically explained in

Figure 6 to 9.
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Table 3: Comparisons between ART regimens

Comparison Estimate Std. Error p-value

NVP vs. EFV given NRTI = AZT 0.0906 0.04205 0.0313

NVP vs. EFV given NRTI = TDF -0.1531 0.0811 0.0591

AZT vs. TDF given NNRTI = NVP 0.2067 0.0602 0.0006

AZT vs. TDF given NNRTI = EFV -0.0370 0.0675 0.5840

The confounding factors gender, baseline age, and WHO clinical stages were also found having a

statistically significant effect on the evolution of log CD4 cell count (see Table 4). Regarding gender, on

average women showed larger log CD4 cell count than men patients (effect difference (male - female) =

β̂4 = -0.1950, p-value<0.0001) at a fixed level of all other factors included in the model and this was

in line with the result from exploratory data analysis as shown in Figure 3 (b). Similarly, baseline age

was also found one of the significant factors (p-value = 0.0002) with negative estimate of the coefficient

(β̂5 = -0.0063) implying the higher the baseline age the lower log CD4 cell count. In other words, the

increase in CD4 cell count in response to ART initiation was slower for elderly HIV-1 patients than

younger HIV-1 patients. Also, baseline WHO clinical stages had undeniable effect on the trajectory,

that is, those patient who started ART at late clinical stages showed lower evolution of CD4 counts

compared to those who started ART at earlier stages. However, WHO baseline clinical stages I and II

did not show statistically different level of the trajectory (p-value=0.0865) where as the last two stages

(III and IV) were found pulling down the evolution compared to Stage I (p-value=0.0016).

Figure 6 ((a) to (d)) shows the thin plate smoothed mean evolution of log CD4 cell count stratified

by NRTI and then by NNRTI (also first by NNRTIs and then by NRTIs) and Figure 7 ((a) to (d)) shows

the pairwise difference between the smoothed evolution accompanied with 95% confidence band. The

plots are particularly for women patents at a median baseline age 33 as well as on the first baseline WHO

stage (the same smoothed evolution applies to the other categories of the covariates except that it shifts

up or down depending on their effect, see the assumption stated in Section 3.3.2). The average evolution

of log CD4 cell count from those patients taking NVP combined with AZT + 3TC was substantially

lower compared to those who took EFV combined with AZT + 3TC (see Figure 6 (a)). The difference

was more pronounced at long run (after 18 months from ART initiation) than earlier time and this

difference was statistically significant as discussed earlier (p-value = 0.0006) and also from the figure it

can be seen that the 95% confidence bands almost did not overlap each other (slight overlap was seen

because we used approximate confidence interval using Normal distribution assumption).
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Table 4: Parameter estimates of the final model for CD4 cell count

Effects Estimate Std.Error p-value

Intercept (β0) 6.0896 0.0617 <0.0001

NRTI

TDF (β1) 0.2067 0.0602 0.0006

AZT* 0.0000 . .

NNRTI

EFV (β2) 0.0906 0.0420 0.0314

NVP* 0.0000 . .

NRT*NNRTI (Interaction Effect)

TDF*EFV (β3) -0.2437 0.0903 0.0070

Gender

Male (β4) -0.1950 0.0342 <0.0001

Female* 0.0000 . .

Baseline Age (β5) -0.0063 0.0017 0.0002

Baseline WHO stages

Stage II (β6) -0.0628 0.0366 0.0865

Stage III and IV (β7) -0.4467 0.1416 0.0016

Stage I* 0.0000 . .

Variance Components

Std.Dev(b0i) 0.5400

Std.Dev(b1i) 0.0003

Covariance(b0i, b1i) -0.0002 (ρ̂b0i,b1i = −0.5540)

Std. dev(εi(t)) 0.4048

*Reference category

Std.Dev = Standard Deviation

Figure 7 (a) also supports this finding because the over time mean difference (indicated with blue

solid line) and its confidence band (light blue shade) between NVP and EFV was lied below the reference

line 0 after the 18th month providing an evidence to conclude a difference between EFV and NVP when

the backbone is AZT + 3TC. This may also lead to a conclusion that the performance of NVP fallen

down after 18 months from ART initiation when the backbone was AZT. Similarly Figure 6 (b) shows

that NVP seems to have larger effect than EFV in the first 36 months when they are combined with

TDF + 3TC backbone, but since the two confidence bands overlapped each other widely, the superiority

of NVP over EFV was by chance. This was also discussed earlier with p-value = 0.0591 indicating
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insignificant difference. The mean difference over time shown in Figure 7(b) is also supporting this fact

because the solid line and its confidence region lied on the reference line. The width of the confidence

band for the evolution of mean difference was wider than the one shown in Figure 7 (a) which is probably

due to lower sample size for TDF + 3TC backbone (see Table 1).

Figure 6 (c) and (d) also show the smoothed trajectory of mean log CD4 counts subject to AZT

and TDF given the NNRTI was NVP (c) and EFV (d). As it can be seen in Figure 6 (c) patients

who received ART with backbone AZT+ 3TC showed lower level of the evolution throughout the study

period than those who received ART that contains TDF + 3TC backbone. The difference was even

statistically more meaningful in the first 12 months and it continued with a reduced gap. The confidence

bands were overlapped slightly until the 36th month. However both showed indistinguishable outcome

at the end period which was probably because of the high uncertainty after the 36th month as indicated

with wider confidence band that was caused probably because of lower sample size at the end period of

the study. This result was again reproduced in Figure 7 (c) with the smoothed mean difference through

time where the solid blue line and its confidence region were below 0 up to the 36th month indicating

again superiority of TDF over AZT. This result was actually in line with what we discussed earlier with

p-value 0.0006 (see Table 3). In similar ways, on the other hand, Figure 6(d) and Figure 7(d) show the

absence of evidence to conclude that AZT and TDF resulted different mean evolution when they are

combined with EFV.

The previous paragraph focused on describing the difference in the evolution of log CD4 counts

with respect to the factors of interest. Now we discuss the rate of changes in log CD4 counts over time

in response to the factors included in the study. The rate of change was described by the first order

derivative of model (3) with respect to time and the plots are shown in Figure 8 and 9. From the property

of first order derivative of a function, an increasing function will have a decreasing first order derivative

function and if there is no change in the function the first order derivative will show a constant line over

0. Keeping these properties in mind we discussed its meaning in the subsequent paragraphs.

When we start from Figure 8(a) we can see that the rate of change in log CD4 counts was higher in

the first about 6 to 7 months and it continued stable after that point. Specifically, patients who received

NVP and EFV along with AZT + 3TC backbone showed equal rate of change, which was increasing in log

CD4 counts up to the 12th month except a small difference up to the 4th month. And then they showed

almost stable level (no change) for the rest of the time as the solid lines (representing the estimated first

order derivative) and their corresponding confidence bands (indicated with shaded area) were overlapped

each other and lied over the 0 reference line after the 12th month indicating statistically insignificant

different rate of change as well as no change in log CD4 counts. The tiny difference observed in the

first few months was not significant because their confidence bands were crossed each other widely. The

overtime difference in the rate of change was also shown in Figure 9(a) and it confirms that no difference

in the rate of change as the solid blue line indicating the difference and its 95% confidence band lied over
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the reference line (0) and the tiny bump at the beginning was not also statistically acceptable as the

band lied over the reference line. This insignificant difference in the rate of change for log CD4 counts

between NVP and EFV when AZT + 3TC is the backbone was also held true when the backbone is

TDF + 3TC except that the width of the confidence band was quite larger indicating relatively high

uncertainty.

On the other hand, from Figure 8(c) we can see that TDF was associated to relatively fast growth in

log CD4 counts in the first about 7 months compared to AZT when the NNRTI was NVP. From the 7th

to 36th month both did not show any change as the first order derivative in this period was almost 0.

After the 36th month TDF showed again an increase in log CD4 counts but not AZT. However, at the

end period the confidence band was so wide and hence any justification of a change in log CD4 counts

during the last period is masked by relatively high uncertainty. Figure 9(c) shows the difference through

time and it showed that the rate of change was not statistically different between AZT and TDF when

the NNRTI was NVP. When the NNRTI is EFV the rate of change was observed much faster again for

TDF than AZT in the first 6 months and almost no change was seen after this point as it can be seen

in Figure 8(d) and the time through difference shown in Figure 9(d) also verifies that AZT showed slow

change in log CD4 counts compared to TDF.

The estimated standard deviation of the random intercepts and slopes were 0.5400 and 0.0003

respectively. The correlation between them was also estimated to be -0.5540, which indicates moderate

but indirect linear association between them. The estimated residual standard deviation was also 0.4048

indicating lower variability of residuals compared to the random intercepts. The scatter plot diagram

between the random intercepts and slopes shown in Figure 21(a) showed that there were no severe

outliers except that few subjects showed an estimate of subject specific intercept (β0 + b0i) which were

relatively deviated from the average intercept to the left. On the other hand, the normal quantile plot

shown in Figure 21(b) shows that there was no too much deviation from the normality assumption for

residuals except that the distribution showed extreme tails in both sides.

In order to check the validity of the fitted model, a comparison between observed and predicted

evolution of log CD4 cell count was done for randomly selected 9 patients as shown in Figure 17 (in

Appendix) and also at a randomly selected fixed time points as shown in 19 (also in Appendix). The plots

show that the fitted model fitted the observed data almost accurately. Also, the comparison between the

predicted and observed log CD4 counts at a particular time points showed strong and direct association

because the points were lied almost on the 45o line that represents a perfect positive association. This

strong and direct association between the predicted and observed data can be depicted to the meaning

that the model captured the real trend of log CD4 counts data with little error so that the model can be

used to make inference in comparing the evolution of CD4 cell count between different ART regimens.
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Figure 6: Fitted smoothing splines for the evolution of log CD4 cell count

(a) NVP versus EFV given NRTI is AZT + 3TC, (b) NVP versus EFV

given NRTI is TDF + 3TC, (c) AZT versus TDF given NNRTI is NVP, and

(d) AZT versus TDF given NNRTI is EFV. The shaded region is the 95%

confidence band of the curve (pink shade is for the red line and grey shade

is for the black line)

Figure 7: The difference in the smoothed evolution of log CD4 counts (a)

NVP versus EFV given NRTI is AZT + 3TC, (b) NVP versus EFV given

NRTI is TDF + 3TC, (c) AZT versus TDF given NNRTI is NVP, and (d)

AZT versus TDF given NNRTI is EFV. The shaded region (light blue) is

the 95% confidence band of the curve (blue line)
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Figure 8: The smoothed first order derivative of the evolution of log CD4

cell count in response to (a) NVP versus EFV given AZT + 3TC backbone,

(b) NVP versus EFV given TDF + 3TC backbone, (c) AZT versus TDF

given that the NNRTI is NVP, and (d) AZT versus TDF given that the

NNRTI is EFV. The shaded region is the 95% confidence band of the curve

(pink shade is for the red line and grey shade is for the black line)

Figure 9: The difference in the smoothed first order derivative of the evolu-

tion of log CD4 counts (a) NVP versus EFV given NRTI is AZT + 3TC, (b)

NVP versus EFV given NRTI is TDF + 3TC, (c) AZT versus TDF given

NNRTI is NVP, and (d) AZT versus TDF given NNRTI is EFV. The shaded

region (light blue) is the 95% confidence band of the curve (blue line)
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4.3 Penalized Thin Plate Regression Splines for Hemoglobin Concentration

level

Procedures used to arrive on the final model for log CD4 counts data were also used for modelling

hemoglobin data. Different mean structures were also compared using log-likelihood ratio test and

AIC then the final one that resulted the smallest AIC is mathematically expressed in model (4) and

its parameter estimates are shown in Table 5. Again as it is shown in Table 7 (in Appendix) both

random intercept b0i and random slope for linear time effect b1i were found sufficient (p-value <0.0001)

for the random part of model 2 to account the correlation between repeatedly measured Hemoglobin

concentration levels from a single patient. As shown in Table 8 (in Appendix), Unstructured and

Diagonal covariance structures Σ resulted almost equal AIC which suggests no clear win between these

two structures. For generalizability purpose we preferred Unstructured covariance assumption for the

random effects as it adds up only one parameter. Also, the need for serial correlation was not supported

by the data as shown in Table 9 (also in Appendix) because no improvement in the REML log-liklihood

was observed from modelling serial correlation. Interaction effect between NRTI and NNRTI was not

significant, as well as WHO clinical stages did not show a significant difference in explaining the evolution

of Hemoglobin level, as a result they were dropped from the model to reduce model complexity. Unlike

to model (3), the interaction effect between gender and NRTI was found significant and it is included to

the model.

Hemoglobini(t) = β0 + β1 ∗NRTIi + β2 ∗NNRTIi + β3 ∗Genderi (4)

+ β4 ∗NRTIi ∗Genderi + β5 ∗Baseline Agei + β6 ∗Baseline Age2i

+

v∑
l=1

γlfl(t) + b0i + b1i ∗ t+ εi(t)

Where Hemoglobini(t) is Hemoglobin concentration (in g/dL) of the ith subject measured at the tth

time point. NRTIi=1 for TDF and 0 for AZT. NNRTIi=1 for EFV and 0 for NVP. Genderi=1 for

Male patient and 0 for Female patient. Baseline Agei is the ith patient’s age at the start of ART. The

other components are as defined in Section 3.3.2.

The result displayed in Table 5 shows that the effect of NRTI in describing the evolution of

Hemoglobin level depends on the sex of the patients as the interaction effect was significant (p-value

<0.0001). This implies that at a particular baseline age, and NNRTI, female HIV-1 patients who took

ART that had AZT + 3TC backbone had higher mean evolution of Hemoglobin level than those pa-

tients with ART given with TDF + 3TC backbone (effect difference (AZT - TDF) = -β̂1 = 0.4085,

p-value=0.0027). Similarly, if the patient is male, the smoothed mean evolution was lower among pa-

tients who were given ART with backbone AZT + 3TC than those who took ART with backbone TDF

+ 3TC (effect difference (AZT - TDF)= β̂1 + β̂4 = -0.4100, p-value=0.0026). Regarding NNRTI, there

was no significant difference in the mean evolution of Hemoglobin level between EFV and NVP (effect
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difference = β̂2 = 0.0682, p-value = 0.4594) and this indifference did not depend on either the type of

backbone with which it is given or other factors included in the study as the interaction was statisti-

cally worthless. Similarly, baseline age was also found having a significant linear and quadratic effect

in predicting the mean evolution with negative leading coefficient (p-value <0.0001) implying quadratic

(slightly downward parabolic as β̂6 < 0) relationship with the mean evolution of hemoglobin level. This

suggests that for children and elderly HIV-1 patients relatively lower Hemoglobin level is observed and

for middle age slightly higher level is expected because the coefficient that determines the non-linear

(quadratic) relationship β̂6 was considerably near to 0 but different from 0 (p-value <0.0001). The stan-

dard deviation of the random intercept and slope were 1.1815 and 0.0007 respectively with covariance

-0.0002 and this resulted -0.2080 correlation coefficient which indicates indirect but weak linear associ-

ation between them. The residual standard deviation was also estimated to be 1.2716. The estimated

smoothing parameters λ̂ (std.error) were 0.5481 (0.3202), 0.5359 (0.2258), 1.0750 (0.7668), and 2.8220

(0.9864) for each combination of NRTI and NNRTI levels.

Figure 10 ((a) to (d)) shows the thin plate smoothed mean evolution of Hemoglobin level stratified

by NRTI and then by NNRTI (also first by gender and then by NRTIs) and Figure 11 ((a) to (d)) show

the pairwise difference in the smoothed mean evolution accompanied with 95% confidence band. In order

to avoid large number of plots, the presented plots are particularly for patients at a median baseline age

33. Figure 10 (a) and (b) show that the average evolution of Hemoglobin level from those patients taking

either NVP or EFV combined with any of the backbones (AZT/TDF + 3TC) was not different as the

two smoothed lines overlap each other (even their confidence band). This difference was not statistically

significant as discussed earlier and also the interaction between NNRTI and NRTI. Figure 11 (a) and (b)

also support this finding because the over time mean difference between NVP and EFV (indicated with

blue solid line) and its confidence band (light blue shade) lied over the 0 reference line. Figure 10 (c)

and (d) also show the smoothed mean trajectory of Hemoglobin level subject to AZT and TDF given

the NNRTI is NVP for female patients (c) and male patients (d). As it can be seen in Figure 10 (c)

AZT was associated to higher concentration level than TDF for female HIV-1 patients. The confidence

bands were almost do not overlap especially after the 10th month from ART initiation and in Figure

10 (d) we can see that AZT became associated to lower evolution than TDF specially in the first 12

months but they showed equal performance after the 13th month. This was also discussed earlier that

TDF performs inferior to AZT for female patients regardless of the type of NNRTI with p-value <0.0027

and TDF performs superior to AZT for male patients with p-value 0.0026. Also, Figure 11 (c) explains

the same finding that the mean difference between AZT and TDF and its confidence band were almost

above 0 for female patients and below the 0 reference line for male patients. The difference was larger

after about 12 months for females and lower for male patients.

So far we have seen the smoothed mean trajectory of Hemoglobin concentration level in response to

different ARV combinations that build up ART regimen taking into account gender and baseline age of
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Table 5: Parameter estimates of the final model for Hemoglobin concentration level data

Effects Estimate Std.Error p-value

Intercept (β0) 10.3715 0.1274 <0.0001

NRTI

TDF (β1) -0.4085 0.1361 0.0027

AZT* 0.0000 . .

NNRTI

EFV (β2) 0.0682 0.0922 0.4594

NVP* 0.0000 . .

Gender

Male (β3) 1.2136 0.0843 <0.0001

Female* 0.0000 . .

NRTI*Gender

TDF*Male (β4) 0.9800 0.2282 <0.0001

Baseline Age (β5) 0.1170 0.0085 <0.0001

Baseline Age2 (β6) -0.0015 0.0001 <0.0001

Variability components

Std. dev(b0i) 1.1815

Std. dev(b1i) 0.0007

Covariance(b0i, b1i) -0.0002 (ρ̂ = −0.2080)

Std. dev(εi(t)) 1.2716

*Reference category

Std.Dev = Standard Deviation

patients. Now we focus on the rate of change in the concentration level over time. The rate of change

was described by the first order derivative of model (4) with respect to time and the plots are shown in

Figure 8 and 9. When we start with Figure 8(a) we can see that the rate of change in Hemoglobin level

was higher in the first about 7 to 8 months (200 to 240 days), which was a little bit longer than the time

used to stabilize CD4 counts, and then it continued stable with almost no change. Particularly, NVP

showed higher change (increasing) compared to EFV at the beginning but both were showing almost

equal rate (stable evolution) after about 7 months from ART initiation when the backbone is AZT +

3TC. The difference in the rate of change was also shown in Figure 9(a) and it confirms again that higher

change in earlier time for NVP was observed compared to EFV and then it became non differentiable

as the blue line (indicating the difference) lied over the 0 reference line until about the 40th month but

after this time point increase in the concentration level was observed among patients who took ART that

contains NVP as a part of NNRTI compared to EFV. When the backbone is TDF + 3TC, see Figure 8

28



Modelling the Evolution of CD4+ Cell Counts and Hemoglobin Level

(b), quite high and almost equal rate of change in Hemoglobin level was observed from both NVP and

EFV up to 12 months and then almost stagnant evolution of Hemoglobin level was observed. However,

as shown in Figure 8 (b) the difference in the rate of change was insignificant as the confidence band of

the blue line embraced the reference line.

Similarly, Figure 8(c) and (d) show similar rate of change in the evolution of Hemoglobin level

because the interaction effect between gender and NRTI was significant but not with the type of NNRTI

and except that male patients had higher Hemoglobin level compared to female patients as shown in

Figure 10 (c) and (d) the evolution had the same trajectory movement which resulted identical type

of first order derivative trend. These plots (Figure 12 (a) and (b)) show that slow rate of change was

observed in the first about 12 months and also at the end periods. The difference in this rate as shown

in Figure 13 (a) and (b) was statistically meaningful on the first few months and the last few months as

the blue line and its confidence band were almost above (for the first few months) and below (for the

last few months) the reference line.

The scatter plot diagram between estimated random intercepts and slops shown in Figure 22(a)

shows that there were few outlying subjects who had relatively higher estimate of random intercept

and also slope. On the other hand, the normal quantile plot shown in Figure 21(b) shows that there

was no too much deviation from the normality assumption for residuals except that the distribution

showed extreme tails in both sides. Again, in order to validate the fitted model, a comparison between

observed and predicted evolution of Hemoglobin level was done for randomly selected 9 patients as

shown in Figure 18 (in Appendix) and at a randomly selected 4 fixed time points as shown in 20 (also

in Appendix). The plots show that the fitted model ’described’ the observed data almost accurately.

Also, the comparison between the predicted and observed Hemoglobin level at a particular time points

showed strong and direct association because the points were lied almost on the 45o line that represents

a perfect positive association. This strong and direct association between the predicted and observed

data can be translated to the meaning that the model had captured the real trend of Hemoglobin level

data well so that the model can be used to make inference in comparing the evolution between different

ART regimens.
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Figure 10: Fitted smoothing splines for the mean evolution of Hemoglobin

concentration level (a) NVP versus EFV given NRTI is AZT + 3TC, (b)

NVP versus EFV given NRTI is TDF + 3TC, (c) AZT versus TDF given

NNRTI is NVP for female patients, and (d) AZT versus TDF given NNRTI

is NVP for male patients. The shaded region is the 95% confidence band of

the curve (pink shade is for the red line and grey shade is for the black line)

Figure 11: The difference in the smoothed mean evolution of Hemoglobin

concentration level (a) NVP versus EFV given NRTI is AZT + 3TC, (b)

NVP versus EFV given NRTI is TDF + 3TC, (c) AZT versus TDF given

NNRTI is NVP for female patients, and (d) AZT versus TDF given NNRTI

is NVP for male patients. The shaded region (light blue) is the 95% confi-

dence band of the curve (blue line)
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Figure 12: The smoothed first order derivative of the mean evolution of

Hemoglobin concentration level in response to (a) NVP versus EFV given

AZT + 3TC backbone, (b) NVP versus EFV given TDF + 3TC backbone,

(c) AZT versus TDF given NNRTI is NVP for female patients, and (d) AZT

versus TDF given NNRTI is NVP for male patients. The shaded region is

the 95% confidence band of the curve (pink shade is for the red line and

grey shade is for the black line)

Figure 13: The difference in the smoothed first order derivative of the mean

evolution of Hemoglobin level (a) NVP versus EFV given AZT + 3TC back-

bone, (b) NVP versus EFV given TDF + 3TC backbone, (c) AZT versus

TDF given NNRTI is NVP for female patients, and (d) AZT versus TDF

given NNRTI is NVP for male patients. The shaded region (light blue) is

the 95% confidence band of the curve (blue line)
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4.4 Joint Modelling of Multivariate Longitudinal Data Using Mixed Effect

Models

The model that best fits the joint evolution of log CD4+ cell count and Hemoglobin level is expressed

mathematically in eq. (5) and the parameter estimates are shown in Table 6.

Ymi(t) = β10 + β11 ∗NRTI1i + β12 ∗NNRTI1i + β13 ∗NRTI1i ∗NRTI1i + β14 ∗Gender1i

+ β15 ∗Age1i + β16 ∗WHOII1i + β17 ∗WHOIII1i

+ β18 ∗ t1 + β19 ∗ t21 + β1,10 ∗ t31 + b10i + b11i ∗ t1 + ε1i(t1)

+ β20 + β21 ∗NRTI2i + β22 ∗NNRTI2i + β23 ∗Gender2i + β24 ∗NRTI2i ∗Gender2i

+ β25 ∗Age2i + β26 ∗Age22i + β27 ∗ t2 + β28 ∗ t22 + β29 ∗ t32 + b20i + b21i ∗ t2 + ε2i(t2) (5)

Where Ymi(t) is the value of the mth (m=1, 2) outcome from subject i (i=1, 2, ..., N) measured at

time point t (m=1 for log CD4 counts and m=2 for Hemoglobin level). Let X be one of the covariates

such as NRTI or Gender etc, then Xim is the value of the covariate for the ith subject if he/she was

measured for the mth outcome. Based on AIC and log-likelihood ratio test this model had the best

mean structure (AIC=32118.7) and it was equivalent to the independent models in terms of the fixed

effect covariates included in the models so that it is easy to make comparison more efficiently. From the

marginal models of each outcome random intercept and slope for the linear time effect were sufficient to

account the correlated nature of the repeated measurements (see Table 7 in Appendix) and this result

was also used in the joint modelling, that is, random intercept and slope were included for each response

and Unstructured covariance was also assumed for the variability measurement of the random effects.

The non linear evolution of the responses was captured with a three degree polynomial time effect,

this was also the case in [1, 20] except that they modelled the response using Univariate mixed effect

model. Another interesting part of the joint analysis was the parameter estimates and the standard

errors were close to the corresponding results obtained from the independent analysis using thin-plate

regression splines except that a small increase in the standard errors were observed in the estimates of

joint analysis which was probably because the standard errors were adjusted for the correlation between

the responses [10]. Baseline WHO clinical stage was also insignificant factor in influencing the evolution

of Hemoglobin and hence partially dropped from the final model.

With respect to the effect of the factors, the results almost resemble to the results obtained from

univariate analysis of each response. As displayed in Table 6, holding constant all other factors, NRTI

showed significant effect on the evolution of both outcomes and had also significant interaction effect

with NNRTI on the evolution of log CD4 counts (p-value = 0.0130) and with Gender on the evolution

of Hemoglobin level (p-value = <0.0001). This was also true for each separate analysis except that now

the main effect of NNRTI on the evolution of log CD4 counts was not significant (p-value = 0.2894).

Given AZT + 3TC backbone, NVP and EFV showed no significant difference (effect difference = β̂12 =

0.0445, p-value = 0.2894). But the result from the univariate analysis for CD4 counts outcome (see Table
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3) showed significant difference. Also given TDF + 3TC backbone, the evolution did not show again

significant variation between NVP and EFV (effect difference (EFV - NVP) = β̂12 + β̂13 = -0.1809, p-

value = 0.0622). Similarly, given NVP, there was significant gap between AZT and TDF (effect difference

= β̂11 = 0.2260, p-value = 0.0002), where AZT was associated to lower CD4 counts. On the other hand,

given EFV there was no significant difference between AZT and TDF (effect difference (EFV - NVP)

= β̂11 + β̂13 = 0.0006, p-value = 0.4985). Regarding to Hemoglobin concentration outcome, again the

effect of NNRTI was insignificant (p-value = 0.7474) and it had no even interaction effect with any of the

other factors. Among female HIV-1 patients, subjects with ART that had AZT backbone showed higher

level of Hemoglobin than those with TDF (effect difference (TDF - AZT) = β̂21 = -0.3402, p-value =

0.0045), where as for male patients AZT was significantly associated to lower level than TDF (effect

difference (TDF - AZT) = β̂21 + β̂24 = 0.6510, p-value = 0.0304). This result was actually in line with

the univariate analysis for hemoglobin level data.

Similarly, baseline WHO clinical stages and age showed significant effect, that is, as it was discussed

in the univariate analysis, late baseline WHO clinical stages were directly related to lower CD4 counts

where as reverse linear association between baseline age and log CD4 counts was observed, also in the

multivariate analysis it was noted again that the higher baseline age the lower log CD4 counts. Addi-

tionally, baseline age again showed downward parabolic association with Hemoglobin level suggesting

lower Hemoglobin concentration among children and elderly HIV-1 patients compared to adult patients.

In order to visualize this result the fitted average evolution of the two outcomes are shown visually in

Figure 14 particularly for patients with median baseline age 33 and at baseline WHO clinical stage I.

Each combination of NRTI, NNRTI, and gender represented with different colors. From Figure 14 (a) we

can see that the evolution of CD4+ cell count had quite gap between female and male patients where the

line associated to females was above the line associated to males. The predicted mean evolution of log

CD4 counts showed a small gap between NVP and EFV when the backbone is AZT, where as relatively

large gap was shown when the backbone was EFV for all genders but this was not significant. The gap

was wider probably because the standard error of the difference was large. Similarly from Figure 14(b)

we can notice that for female patients the gap between the evolution of Hemoglobin subject to AZT and

TDF was smaller than the gap between AZT and TDF for male patients, where AZT was over TDF in

the former one and TDF was over AZT in the later one, this was actually because of the interaction

effect between gender and backbone of the ART regimen. Also we can see that the gap between NVP

and EFV at each level of NRTI and gender was indistinguishable indicating no significant difference.

The other interesting result obtained from the joint analysis was the association structure between

the two outcomes. The correlation between the evolution of the two outcomes was estimated to be

0.0471 (i.e rE = 0.0002/
√

0.0129× 0.0014 = 0.0471). This result reveals the weak linear association

between the evolution of the two outcomes but the association may be non-linear. The marginal linear

association between these two outcome at a given time point is also summarized in Figure 15. As it can
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be seen from this plot, there was a positive but weak linear relationship in the first about 5 to 6 months

and showed negative and very weak association as the red line crossed the threshold line (0) after about

the seventh month.

Table 6: Parameter estimates for the joint mixed effect model.

log CD4+ cell count outcome Hemoglobin level outcome

Effect Estimate Std. Er. P-value Effect Estimate Std. Er. P-value

Intercept 1 5.7154 0.0837 <.0001 Intercept 2 9.2613 0.1402 <.0001

NRTI NRTI

TDF 0.2260 0.0609 0.0002 TDF -0.3402 0.1362 0.0045

AZT 0.0000 AZT 0.0000

NNRTI NNRTI

EFV 0.0445 0.0420 0.2894 EFV 0.0284 0.0941 0.7474

NVP 0.0000 NVP 0.0000

NRTI*NNRTI Gender

TDF*EFV -0.2254 0.0907 0.013 Male 1.2280 0.0843 <.0001

Gender Female 0.0000

Male -0.2197 0.0345 <.0001 NRTI*Gender

Female 0.0000 TDF*Male 0.9912 0.2301 <.0001

Baseline Age -0.0048 0.0017 0.0048 Baseline Age 0.1152 0.0085 <.0001

WHO Clinical Stages Baseline Age2 -0.0015 0.0001 <.0001

Stage II -0.0747 0.0365 0.0407 Time 0.1417 0.0113 <.0001

Stage III and IV -0.2868 0.1402 0.0409 Time2 -0.0048 0.0006 <.0001

Stage I 0.0000 Time3 0.00001 0.00001 <.0001

Time 0.0390 0.0107 0.0003

Time2 -0.0014 0.0005 0.0103

Time3 0.00002 0.00001 0.0257

Variance components

Var(ε1i) 0.8724 Var(b10i) 0.0457 Cov(b10i, b11i) -0.0555 Cov(b11i, b21i) 0.0002

Var(ε2i) 1.2405 Var(b11i) 0.0129 Cov(b10i, b20i) 0.0954 Cov(b20i, b21i) -0.0277

Cov(ε1i, ε2i) 0.0291 Var(b20i) 2.2720 Cov(b10i, b21i) -0.0050

Var(b21i) 0.0014 Cov(b11i, b20i) 0.0018

Var=Variance Cov=Covariance Std.Er=Standard Error

When we compare the univariate analysis with the multivariate one, slight change in the effect

of some factors was occurred such as NNRTI, that is, the main effect of NNRTI was significant in

the univariate analysis for CD4 counts outcome model but in the case of multivariate analysis it was

insignificant for the same outcome and hence this difference led us to make opposite conclusions about

the difference between the evolution of CD4 counts subject to NVP and EFV at a particular type of

backbone. To be specific, the significant difference between NVP and EFV observed in the univariate

analysis for CD4 counts outcome was not significant in the multivariate analysis probably because the

increase in standard error of the parameter estimates in multivariate setting. Also, the two approaches

resulted quite different AIC values. The AIC from the univariate analysis for log CD4 counts and
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hemoglobin level outcomes were 7810.63 and 20541.11 respectively, where as the multivariate analysis

resulted AIC = 32118.7 which was larger compared the AIC from the univariate analysis but we can not

make comparison, however, with the univariate analysis using AIC because the response variables in the

two approaches had different structures. The residual variability was larger in joint analysis (0.7380)

compared to the univariate analysis for CD4 counts outcome (0.4048) and smaller than the univariate

analysis for hemoglobin level outcome (1.2716).

Figure 14: The predicted average evolution of CD4+ cell count (a) and Hemoglobin level (b) from joint

modelling for patients with median baseline age 33 years and baseline CD4+ cell count 350 cells/µL

at each combination of NRTI, NNRTI, and gender. Note that in (a) the yellow and green lines are

overlapped, the purple and black lines are overlapped, also the grey and blue lines overlapped. For (b)

the purple and grey lines are overlapped, the arctic and yellow lines are overlapped, the blue and red

colors are overlapped, also the black and green line are overlapped.
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Figure 15: The marginal linear association between CD4+ cell count and Hemoglobin concentration

level at each time point. The correlation is indicated with red solid line, where as the black dashed line

is the reference line, which is 0 that indicates an absolute independence.
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5 Discussion and Conclusion

One main goal of this study was to describe the evolution of CD4 cell count and Hemoglobin concentration

level in HIV-1 patients on first line ART in Mildmay Uganda. Two approaches were implemented: semi-

parametric mixed effect model for each outcome independently, and joint mixed effect modelling of the

two outcomes together. Both approaches ended up with similar results except that the joint analysis

added up another information about the association between the two outcomes through time.

From a general view, in the first few months (0 to 7 months) from ART initiation date, an increase

in CD4 counts was observed and then it was also noted that from 6 to 9 months till the end of the study

the evolution of CD4 cell count showed on average stable level almost above 350 cells /µL, which was the

threshold during the study period. Also, Hemoglobin concentration level showed increasing trend in the

first 7 to 14 months and then showed stable level around 12.5 g/dL, which is within the normal range of

hemoglobin level for adults [30]. Patients who were taking ART that had AZT + 3TC backbone showed

relatively longer period to reach at the threshold level of CD4 counts and Hemoglobin level compared

to those who were taking ART which had TDF + 3TC backbone.

From both approaches we were able to get evidence on the difference between the evolution of

CD4 counts in HIV-1 patients on first line ART subject to different regimens. Based on the univariate

analysis the average evolution of CD4 counts (the analysis was based on logarithmic transformation)

varied between NVP and EFV when the backbone is AZT + 3TC, where as no significant difference

was observed when they are given with TDF + 3TC backbone. In this situation EFV was associated to

higher evolution level of CD4 counts compared to NVP. This result was partially in line with the result

obtained in [20], which discussed that there was interaction effect between NNRTI and time that indicates

that the difference between the evolution of CD4 counts subject to NVP and EFV varies through time,

but in our case time was modelled non-parametrically using thin-plate regression splines and from the

smoothed mean evolution of CD4 counts subject to NVP and EFV an interaction with time was not seen,

which could be shown with significant crossed predicted lines. However, in contrast to the univariate

analysis and [20], the multivariate analysis showed no difference between NVP and EFV in describing the

trajectory of CD4 cell counts. Comparing to the univariate analysis for Hemoglobin outcome, the result

from the multivariate setting also confirmed the absence of variation in the evolution of Hemoglobin level

between NVP and EFV. The difference between the backbone levels of ART in describing the evolution

of both outcomes obtained in the univariate analysis was also supported by the joint analysis. Since

the joint analysis was based on discretized time points which created artificial time scales, we conclude

about the result from the joint analysis with caution.

CD4 cell count was also found evolving differently between women and men patients based on the

result from both approaches. The evolution level was higher for female patients compared to males. This

result also conforms to the result obtained in [1, 21], which discussed that men had the lowest mean
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CD4 counts, but in [20] it was discussed that there was no difference. Also, consistent with findings in

[21], that older men had fewer CD4+ cell per microliter on average when compared with the younger

men, our study showed that treatment was less effective for elderly patients: This is expected, because

it is well known from literature that immune function declines with age.

In addition, there was also statistical evidence that proved the difference between the evolution of

Hemoglobin level subject to AZT and TDF which depends on the sex of patients. Women patients taking

ART with AZT + 3TC backbone showed higher level, where as men patients taking ART with TDF +

3TC backbone showed higher level. Age had also showed an effect in changing the trend of Hemoglobin

level. Age effect in particular showed that children and elderly patients had relatively lower level than

middle age patients. When we compare this result with what discussed in [15], it was consistent in

some aspects, that is, it was discussed that Hemoglobin level varies between sex, where women most of

the time have lower level than men, as well as age but it was also mentioned that the effect of gender

depends on age. In contrast to this, however, in our result, age and gender had no interaction effect in

describing the trajectory of Hemoglobin concentration.

The multivariate modelling, on the other hand, added up an information about how CD4 cell counts

and Hemoglobin concentration level evolve jointly in response to ART regimens taking into account

baseline patient characteristics. The result was particularly very helpful to discover the time through

association between the two outcomes of interest. Our result suggested that there was a weak linear

association between the evolution of CD4 counts and Hemoglobin level which was consistent with the

result obtained in [4] that discussed no significant association between CD4 counts and Hemoglobin

level. The marginal correlation at a particular time point obtained in our result showed also that a weak

positive association in the first 5 to 6 months and showed weak negative association between them after

the 7th month from ART initiation day and this result was actually more close to the result obtained in

[11].

Many different studies on hematology data for HIV-1 patients have used different predictor variables

and some of them arrived on different results. Therefore we recommended that further studies on this

topic include other important covariates that were not included in this study which could have a potential

confounding effect. Such covariates include: viral load results, treatment failure, opportunistic infections

and many others.
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Appendix

Figure 16: Smoothed variance structure for (a) Log CD4 cell count, and (b) Hemoglobin level

Table 7: Testing the need for random effects

Model for log CD4 Count Model for Hemoglobin

Random Effect Test-Statitic Pvalue Test-Statitic Pvalue

1 bo 1814.49 <0.0001 1279.42 <0.0001

2 bo + b1*Time 53.06 <0.0001 14.53 <0.0001

3 bo + b1*Time + b2*Time2 1.64 0.5454 4.00 0.2000

Table 8: Comparing different covariance structures of the random effects

Model for log CD4 Count Model for Hemoglobin

Covariance structure df AIC BIC ML-logLik df AIC BIC ML-logLik

Diagonal/Simple 17.00 7847.81 7959.02 -3906.91 17 20542.33 20654.66 -10254.16

Unstructured/CS 18.00 7810.63 7928.38 -3887.32 18 20541.11 20660.05 -10252.55

Table 9: Comparing different serial correlation structures

Model for log CD4 Count Model for Hemoglobin

Seria Correlation REML LogLik REML LogLik

1 No Ser. Corr -3912.45 -10086.34

2 Sp. Exponential -3904.77 -10086.34

3 Sp. Gaussian -3905.23 -10086.34
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Figure 17: Fitted versus observed trajectory of log CD4 cell count for randomly selected 9 patients.

The solid blue line represents the observed log CD4 counts and the dashed blue line is for the predicted

trajectory
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Figure 18: Fitted versus observed trajectory of Hemoglobin concentration level for randomly selected 9

patients. The solid blue line represents the observed Hemoglobin level and the dashed blue line is for

the predicted trajectory
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Figure 19: Fitted versus observed trajectory of log CD4 cell count at randomly selected 4 time points.

Figure 20: Fitted versus observed trajectory of Hemoglobin level at randomly selected 4 time points.
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Figure 21: (a) Scatter plot between random intercept and slope estimates for CD4 counts data model, (b)

A normal quantile plot of the standardized LS level-1 residuals. The large deviations from the reference

line indicates that we are dealing with a very heavy-tailed distribution.

Figure 22: (a) Scatter plot between random intercept and slope estimates for Hemoglobin concentration

level data model, (b) A normal quantile plot of the standardized LS level-1 residuals. The large deviations

from the reference line indicates that we are dealing with a very heavy-tailed distribution.
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Codes Used in the Analysis

#--------------------------- CD4 Cells count ----------------------------#

#------------------------------------------------------------------------#

CD4=read.table(choose.files(), header=T, sep="&")

#Creating new ID variable with sequence of numbers

CD4$ID=NULL

CD4$ID[1]=1

for(i in 2:dim(CD4)[1]){

if(CD4$PTIDNO[i]==CD4$PTIDNO[i-1]) CD4$ID[i] = CD4$ID[i-1]

else if(CD4$PTIDNO[i]!=CD4$PTIDNO[i-1]) CD4$ID[i] =CD4$ID[i-1] +1

}

CD4$time2=CD4$time*CD4$time

#Creating new WHO stages

WHOs=NULL

for(i in 1:dim(CD4)[1]){

if(CD4$ARTWHOStage[i]=="T1") WHOs[i]="T1"

else if(CD4$ARTWHOStage[i]=="T2") WHOs[i]="T2"

else if(CD4$ARTWHOStage[i]=="T3" |

CD4$ARTWHOStage[i]=="T4") WHOs[i]="T34"

}

CD4$WHOs=factor(WHOs)

#ART Regimens

R=NULL

for(i in 1:dim(CD4)[1]){

if(CD4$NRTI[i]=="AZT" & CD4$NNRTI[i]=="NVP") R[i]=1

else if(CD4$NRTI[i]=="AZT" & CD4$NNRTI[i]=="EFV") R[i]=2

else if(CD4$NRTI[i]=="TDF" & CD4$NNRTI[i]=="NVP") R[i]=3

else if(CD4$NRTI[i]=="TDF" & CD4$NNRTI[i]=="EFV") R[i]=4

}

CD4$ART=factor(R)

#--------------------------EDA, Profile Plots ----------------------#

#Overall Mean profile

win.graph()

par(mfrow=c(1,2))

plot(CD4$time, CD4$logCD4, type="n", xlab="Time since ARV start date (in days)",

ylab="Log CD4 Count (cells/microlitre)", sub="(a)",

main="Trajectory of CD4 Cells Count in HIV 1 Patients")

for(i in 1:dim(CD4)[1]){

lines(CD4$time[CD4$ID==i],

CD4$logCD4[CD4$ID==i], col="grey")

}

#*************** SAS Program Smoothed mean profile *****************#

proc sort data=thesis.final3_CD4 out=sorted;

by CurrentRegimen;

run;

proc loess data=sorted PLOTS(MAXPOINTS=100000);

by CurrentRegimen;

ods output scoreresults=out1;

model logCD4=time;

score data=sorted;

run;

proc sort data=out1;

by time CurrentRegimen;

run;

proc sort data=thesis.final3_CD4 out=sorted2;

by Gender;

run;

proc loess data=sorted2 PLOTS(MAXPOINTS=100000);

by Gender;

ods output scoreresults=out1b;

model logCD4=time;

score data=sorted2;

run;

proc sort data=out1b;

by time Gender;

run;

49



Modelling the Evolution of CD4+ Cell Counts and Hemoglobin Level

#*******************************************************************#

#Importing PROC LOESS result from SAS program

LWsmoothCD4=read.table(choose.files(), header=T, sep="&")

head(LWsmoothCD4)

lines(LWsmoothCD4$time, LWsmoothCD4$p_logCD4, lwd=3, col="blue")

legend(200,-2,c("Loess-Smooth mean of Log CD4 count"), lty=1, lwd=3, col="blue")

#-------------------Semi-Parametric Mixed Model Analysis -----------#

library(mgcv)

#Assigning reference groups

CD4$Gender=relevel(CD4$Gender, ref="Fema")

CD4$NRTI=relevel(CD4$NRTI, ref="AZT")

CD4$NNRTI=relevel(CD4$NNRTI, ref="NVP")

CD4$ARTWHOStage=relevel(CD4$ARTWHOStage, ref="T1")

CD4$WHOs=relevel(CD4$WHOs, ref="T1")

#Comparing Different Mean structures

fit1=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI + Gender+ Age_at_ARVstart + WHOs,

data=CD4, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit2=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI + Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+ WHOs,

data=CD4, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit3=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI + Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+Age_at_ARVstart*NRTI + Age_at_ARVstart*NNRTI +

WHOs, data=CD4, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit4=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI + Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+Age_at_ARVstart*NRTI + Age_at_ARVstart*NNRTI +

WHOs + WHOs*NRTI + WHOs*NNRTI,

data=CD4, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

#..... #Other models are omitted in the report

anova(fit1$lme, fit2$lme, fit3$lme, fit4$lme)

anova(fit1$lme, fit2$lme)

anova(fit1$lme, fit3$lme)

anova(fit1$lme, fit4$lme)

#The need for Random Effect Test (mixture chi-square test)

fit1o=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=NULL, random=NULL)

fit1a=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=NULL,

random=list(ID=pdSymm(~1)))

chi1=-2*(fit1o$lme$logLik-fit1a$lme$logLik)

pval1=0.5*pchisq(chi1,0, lower.tail=F)+0.5*pchisq(chi1,1, lower.tail=F)

fit1b=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=NULL,

random=list(ID=pdSymm(~time)))

chi2=-2*(fit1a$lme$logLik-fit1b$lme$logLik)

pval2=0.5*pchisq(chi2,1, lower.tail=F)+0.5*pchisq(chi2,2, lower.tail=F)

fit1c=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=NULL,
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random=list(ID=pdDiag(~time+time2)))

chi3=-2*(fit1b$lme$logLik-fit1c$lme$logLik)

chi3=0 #b/s the LL difference was -ve

pval3=0.5*pchisq(chi3,2, lower.tail=F)+0.5*pchisq(chi3,3, lower.tail=F)

table1=data.frame(Test=c("bo", "bo + b1*Time", "bo + b1*Time + b2*Time^2"),

Statitic=c(chi1, chi2, chi3), Pvalue=c(pval1, pval2, pval3))

table1

#Reducing Covariance Structure based on AIC (method=ML)

fit2a=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="ML", correlation=NULL,

random=list(ID=pdDiag(~time))) #Simple structure

fit2b=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time))) #Unstructured

table2=data.frame(anova(fit2a$lme, fit2b$lme, test=F))

table2

#Testing Serial Correlation based on REML-likelihood

fit3a=fit1b #No serial correlation

fit3b=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=corExp(),

random=list(ID=pdSymm(~time))) #Spatial Exponential erial correlation

fit3c=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=CD4, method="REML", correlation=corGaus(),

random=list(ID=pdSymm(~time))) #Spatial gaussian serial correlation

table3=data.frame(Seria_Correlation=c("No Ser. Corr", "Sp. Exponential", "Sp. Gaussian"),

REML_LogLik=c(fit3a$lme$logLik, fit3b$lme$logLik, fit3c$lme$logLik))

table3

#####

Final=gamm(logCD4~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+

Age_at_ARVstart+

WHOs,

data=CD4, method="REML", correlation=NULL,

random=list(ID=pdSymm(~time)))

summary(Final$gam)

summary(Final$lme)

########### Contrast ################

library(multcomp)

library(mvtnorm)

f1=Final$lme

f2=Final$gam

length(coef(f2))

names(coef(f2))

contrast.matrix1 <- rbind("NVP vs. EFV given NRTI= AZT" = c(0, 0, 1, rep(0, times=45)))

contrast.matrix2 <- rbind("NVP vs. EFV given NRTI= TDF" = c(0, 0, 1, 0, 0, 0, 0, 1, rep(0, times=40)))

contrast.matrix3 <- rbind("AZT vs. TDF given NNRTI=NVP" = c(0, 1, rep(0, times=46)))

contrast.matrix4 <- rbind("AZT vs. TDF given NNRTI=EFV" = c(0, 1, 0, 0, 0, 0, 0, 1, rep(0, times=40)))

summary(glht(f2, contrast.matrix1))

summary(glht(f2, contrast.matrix2))

summary(glht(f2, contrast.matrix3))

summary(glht(f2, contrast.matrix4))

#------------------------- Smoothed Mean Plots-----------------------------#

GammObj1<-Final

summary(GammObj1$lme)
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summary(GammObj1$gam)

###-------------------------predict---------------------------------------------

yfit1<-predict(GammObj1$lme, asList=F, level = 0:1) #BLUP

#names(yfit1)

t=seq(0,1439, 1)

time=rep(t, times=24)

v=length(t)

age=rep(33, length(time))

#blc=rep(median(CD4$blcd4, na.rm=T), length(time))

#who=rep(rep(c("T1", "T2", "T3", "T4"), each=v), times=8)

who=rep(rep(c("T1", "T2", "T34"), each=v), times=8)

sex=rep(rep(c("Fema", "Male"), each=v*3), times=4)

nnrti=rep(rep(c("NVP", "EFV"), each=6*v), times=2)

nrti=rep(rep(c("AZT", "TDF"), each=12*v), times=1)

hlp1<-data.frame(time=time, NRTI=nrti, NNRTI=nnrti, Gender=sex, WHOs=who,

Age_at_ARVstart=age)# sequence for time and ranges from 0 to 60

R=NULL

for(i in 1:dim(hlp1)[1]){

if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="NVP") R[i]=1

else if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="EFV") R[i]=2

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="NVP") R[i]=3

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="EFV") R[i]=4

}

hlp1$ART=factor(R)

#ylogfit<-CD4average$ylogm# observed mean at each time point

yfitfixef1<-predict(GammObj1$gam,hlp1, se.fit=T)# is it the mean at each time point?

hlp1a=data.frame(hlp1, yfitfixed=as.data.frame(yfitfixef1))

hlp1a=data.frame(hlp1a, lower=hlp1a$yfitfixed.fit-1.96*(hlp1a$yfitfixed.se.fit)^1.0,

upper=hlp1a$yfitfixed.fit+1.96*(hlp1a$yfitfixed.se.fit)^1.0)

####################################################################################

addTrans <- function(color,trans)

{

# This function adds transparancy to a color.

# Define transparancy with an integer between 0 and 255

# 0 being fully transparant and 255 being fully visable

# Works with either color and trans a vector of equal length,

# or one of the two of length 1.

if (length(color)!=length(trans)&!any(c(length(color),length(trans))==1)) stop("Vector lengths not correct")

if (length(color)==1 & length(trans)>1) color <- rep(color,length(trans))

if (length(trans)==1 & length(color)>1) trans <- rep(trans,length(color))

num2hex <- function(x)

{

hex <- unlist(strsplit("0123456789ABCDEF",split=""))

return(paste(hex[(x-x%%16)/16+1],hex[x%%16+1],sep=""))

}

rgb <- rbind(col2rgb(color),trans)

res <- paste("#",apply(apply(rgb,2,num2hex),2,paste,collapse=""),sep="")

return(res)

}

####################################################################################

win.graph()

par(mfrow=c(2,2))

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(a)",

main="NVP Vs EFV given NRTI=AZT",ylab="Log(CD4 Ct. (cells/microliters))",

xlim=c(0,1440), ylim=c(5, 7), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],
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hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"& hlp1a$WHOs=="T1"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(950, 5.4, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(b)",

main="NVP Vs EFV given NRTI=TDF",ylab="Log(CD4 Ct. (cells/microliters))",

xlim=c(0,1440), ylim=c(5, 7), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(950, 5.4, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(c)",

main="AZT Vs TDF given NNRTI=NVP",ylab="Log(CD4 Ct. (cells/microliters))",

xlim=c(0,1440), ylim=c(5, 7), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(950, 5.4, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(d)",

main="AZT Vs TDF given NNRTI=EFV",ylab="Log(CD4 Ct. (cells/microliters))",

xlim=c(0,1440), ylim=c(5, 7), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],
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hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV" & hlp1a$WHOs=="T1"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(950, 5.4, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

#-------------------------------------Model 1: first order derivatives ------------------------#

t.mesh<-seq(0,1439,1)

delta<-1e-5

hlp2a=hlp1

hlp2a$time<-hlp1$time-delta

X01a<-predict(GammObj1$gam,hlp2a,type="lpmatrix")#?

hlp2a$time<-hlp1$time+delta

X11a<-predict(GammObj1$gam,hlp2a,type="lpmatrix")#?

Xp1a<-(X11a-X01a)/delta

v1a<-Xp1a%*%GammObj1$gam$coef

v.sd1a<-rowSums(Xp1a%*%GammObj1$gam$Vp*Xp1a)^.5

#XDer1<-cbind(0,1,2*t.mesh)

#DerRan1<-GammObj$lme$coef$random$ID%*%t(XDer1)# the deriative of the random effect

hlp3a=data.frame(hlp1, Deriv=v1a, lowerDer=v1a-1.96*v.sd1a, upperDer=v1a+1.96*v.sd1a)

head(hlp3a)

win.graph()

par(mfrow=c(2,2))

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(a)",

xlim=c(0,1440), ylab="First derivative of g(mu)", main="NVP Vs EFV given NRTI=AZT",

ylim=c(-0.02, 0.02), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(b)",

xlim=c(0,1440), ylab="First derivative of g(mu)",

main="NVP Vs EFV given NRTI=TDF", ylim=c(-0.02, 0.02), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(c)",
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xlim=c(0,1440), ylab="First derivative of g(mu)",

main="AZT Vs TDF given NNRTI=NVP", ylim=c(-0.02, 0.02), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP" & hlp3a$WHOs=="T1"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(d)",

xlim=c(0,1440), ylab="First derivative of g(mu)", main="AZT Vs TDF given NNRTI=EFV",

ylim=c(-0.02, 0.02), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV" & hlp3a$WHOs=="T1"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

#-------------------------- Difference in CD4 Profiles ----------------------------------#

t=seq(0,1439, 2)

time=rep(t, times=24)

v=length(t)

age=rep(33, length(time))

#blc=rep(median(blc, na.rm=T), length(time))

#who=rep(rep(c("T1", "T2", "T3", "T4"), each=v), times=8)

who=rep(rep(c("T1", "T2", "T34"), each=v), times=8)

sex=rep(rep(c("Fema", "Male"), each=v*3), times=4)

nnrti=rep(rep(c("NVP", "EFV"), each=6*v), times=2)

nrti=rep(rep(c("AZT", "TDF"), each=12*v), times=1)

hlp1z<-data.frame(time=time, NRTI=nrti, NNRTI=nnrti, Gender=sex,

Age_at_ARVstart=age, WHOs=who)# sequence for time and ranges from 0 to 60

Rz=NULL

for(i in 1:dim(hlp1z)[1]){

if(hlp1z$NRTI[i]=="AZT" & hlp1z$NNRTI[i]=="NVP") Rz[i]=1

else if(hlp1z$NRTI[i]=="AZT" & hlp1z$NNRTI[i]=="EFV") Rz[i]=2

else if(hlp1z$NRTI[i]=="TDF" & hlp1z$NNRTI[i]=="NVP") Rz[i]=3

else if(hlp1z$NRTI[i]=="TDF" & hlp1z$NNRTI[i]=="EFV") Rz[i]=4

}

hlp1z$ART=factor(Rz)

############

Xp02<-predict(GammObj1$gam,hlp1z,type="lpmatrix")#?
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fv3=Xp02%*%GammObj1$gam$coef

#fv3=as.vector(predict(GammObj1$gam, hlp1z))

Vall3=Xp02%*%GammObj1$gam$Vp%*%t(Xp02)

win.graph()

par(mfrow=c(2,2))

#NVP - EFV

def2=NULL

sddef2=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*12)){

ind.extract <- c(tp, (6*length(t)+tp))

VarVini2 <- Vall3[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

def2[i]=L %*% VintE

sddef2[i]=sqrt(t(L) %*% VarVini2 %*%L)

if(i==length(t)*6) tp=tp+(length(t)*6+1)

else tp=tp+1

}

NVP_EFV=data.frame(Time=rep(t, times=12),

NRTI=hlp1z$NRTI[c(1:(length(t)*6), (length(t)*12+1):(length(t)*18)) ],

Gender=hlp1z$Gender[c(1:(length(t)*6), (length(t)*12+1):(length(t)*18)) ],

WHOs=hlp1z$WHOs[c(1:(length(t)*6), (length(t)*12+1):(length(t)*18)) ],

Dif=def2, SD.Dif=sddef2, lb=def2-1.96*sddef2, ub=def2+1.96*sddef2)

plot(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

type="n", ylab="Difference", main="NVP-EFV given NRTI=AZT", sub="(a)",

ylim=c(-3,3), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

NVP_EFV$lb[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

NVP_EFV$ub[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

col=addTrans("blue",16))

lines(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT" & NVP_EFV$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

type="n",ylab="Difference", sub="(b)", main="NVP-EFV given NRTI=TDF",

ylim=c(-3,3), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

NVP_EFV$lb[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

NVP_EFV$ub[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

col=addTrans("blue",16))

lines(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF" & NVP_EFV$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

#AZT - TDF

def=NULL

sddef=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*12)){

ind.extract <- c(tp, ((length(t)*12)+tp))

VarVini2 <- Vall3[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

def[i]=L %*% VintE

sddef[i]=sqrt(t(L) %*% VarVini2 %*%L)

tp=tp+1

}
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AZT_TDF=data.frame(Time=rep(t, times=12), NNRTI=hlp1z$NNRTI[1:(length(t)*12)],

Gender=hlp1z$Gender[1:(length(t)*12)], WHOs = hlp1z$WHOs[1:(length(t)*12)],

Dif=def, SD.Dif=sddef, lb=def-1.96*sddef, ub=def+1.96*sddef)

plot(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Dif[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

type="n", ylab="Difference", main="AZT-TDF given NNRTI=NVP", sub="(c)" ,

ylim=c(-3,3), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

AZT_TDF$lb[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

AZT_TDF$ub[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

col=addTrans("blue",16))

lines(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Dif[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="NVP" & AZT_TDF$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Dif[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

type="n", ylab="Difference", sub="(d)",

main="AZT-TDF given NNRTI=EFV", ylim=c(-3,3), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

AZT_TDF$lb[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

AZT_TDF$ub[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

col=addTrans("blue",16))

lines(AZT_TDF$Time[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

AZT_TDF$Dif[AZT_TDF$Gender=="Fema" & AZT_TDF$NNRTI=="EFV" & AZT_TDF$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

#----------------------Difference of CD4 First Derivative over time------------------

t=seq(0,1439, 2)

time=rep(t, times=24)

v=length(t)

age=rep(33, length(time))

#blc=rep(median(CD4$blcd4, na.rm=T), length(time))

#who=rep(rep(c("T1", "T2", "T3", "T4"), each=v), times=8)

who=rep(rep(c("T1", "T2", "T34"), each=v), times=8)

sex=rep(rep(c("Fema", "Male"), each=v*3), times=4)

nnrti=rep(rep(c("NVP", "EFV"), each=6*v), times=2)

nrti=rep(rep(c("AZT", "TDF"), each=12*v), times=1)

hlp11<-data.frame(time=time, NRTI=nrti, NNRTI=nnrti, Gender=sex, WHOs=who,

Age_at_ARVstart=age)# sequence for time and ranges from 0 to 60

R=NULL

for(i in 1:dim(hlp11)[1]){

if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="NVP") R[i]=1

else if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="EFV") R[i]=2

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="NVP") R[i]=3

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="EFV") R[i]=4

}

hlp11$ART=factor(R)

yfitfixef11<-predict(GammObj1$gam,hlp11, se.fit=T)# is it the mean at each time point?

hlp11a=data.frame(hlp11, yfitfixed=as.data.frame(yfitfixef11))

hlp11a=data.frame(hlp11a, lower=hlp11a$yfitfixed.fit-1.96*(hlp11a$yfitfixed.se.fit)^1.0,

upper=hlp11a$yfitfixed.fit+1.96*(hlp11a$yfitfixed.se.fit)^1.0)

head(hlp11a)

memory.limit(size = 8072)

delta<-1e-2

hlp2z=hlp11a

hlp2z$time<-hlp11a$time-delta

X01a<-predict(GammObj1$gam,hlp2z,type="lpmatrix")#?

hlp2z$time<-hlp11a$time+delta

X11a<-predict(GammObj1$gam,hlp2z,type="lpmatrix")#?
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Xp12<-(X11a-X01a)/delta

v12<-Xp12%*%GammObj1$gam$coef

v.sd1a<-rowSums(Xp12%*%GammObj1$gam$Vp*Xp12)^.5

Xp02<-predict(GammObj1$gam,hlp2z,type="lpmatrix")#?

fv3=Xp12%*%GammObj1$gam$coef

Vall <- Xp12%*% GammObj1$gam$Vp %*% t(Xp12)

#NVP - EFV

derdef4=NULL

sdderdef4=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*12)){

ind.extract <- c(tp, (6*length(t)+tp))

VarVini2 <- Vall[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

derdef4[i]=L%*%VintE

sdderdef4[i]=sqrt(t(L) %*% VarVini2 %*%L)

if(i==length(t)*6) tp=tp+length(t)*6+1

else tp=tp+1

}

dNVP_EFV=data.frame(Time=rep(t, times=12), NRTI=hlp2z$NRTI[c(1:(length(t)*6),

(length(t)*12+1):(length(t)*18))], Gender=hlp2z$Gender[c(1:(length(t)*6),

(length(t)*12+1):(length(t)*18))], WHOs=hlp2z$WHOs[c(1:(length(t)*6),

(length(t)*12+1):(length(t)*18))],Dif=derdef4, SD.Dif=sdderdef4,

lb=derdef4-2*sdderdef4^1, ub=derdef4+2*sdderdef4^1)

win.graph()

par(mfrow=c(2,2))

plot(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

type="n" , ylab="Difference", main="NVP-EFV given NRTI=AZT", sub="(a)",

ylim=c(-0.0001,0.0001), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$lb[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$ub[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

col=addTrans("blue",12))

lines(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT" & dNVP_EFV$WHOs=="T1"],

type="n" , ylab="Difference", main="NVP-EFV given NRTI=AZT", sub="(a)",

ylim=c(-0.0001,0.0001), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1440, 200)), labels=c(seq(0, 42, 6)))

segments(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$lb[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$ub[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

col=addTrans("blue",12))

lines(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF" & dNVP_EFV$WHOs=="T1"],

col="blue",lwd=3)

abline(h=0, lty=2)

#AZT - TDF

derdef3=NULL

sdderdef3=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*12)){

ind.extract <- c(tp, (12*length(t)+tp))

VarVini2 <- Vall[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], v12[ind.extract[2]])

derdef3[i]=L %*% VintE

sdderdef3[i]= sqrt(t(L) %*% VarVini2 %*%L)

tp=tp+1

}
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dAZT_TDF=data.frame(Time=rep(t, times=12), NNRTI=hlp11a$NNRTI[1:(length(t)*12)],

Gender=hlp11a$Gender[1:(length(t)*12)],

WHOs=hlp11a$WHOs[1:(length(t)*12)],

Dif=derdef3, SD.Dif=sdderdef3,

lb=derdef3-2*sdderdef3^1, ub=derdef3+2*sdderdef3^1)

plot(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP" & dAZT_TDF$WHOs=="T1"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP" & dAZT_TDF$WHOs=="T1"],

type="n", ylab="Difference", main="AZT-TDF given NNRTI=NVP", sub="(c)",

ylim=c(-0.001,0.001), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$lb[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$ub[hlp1z$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

col=addTrans("blue",12))

lines(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

type="n", xlab="Time on ART (in days) ", ylim=c(-0.008,0.008), ylab="Difference",

main="AZT-TDF given NNRTI=EFV", sub="(d)")

segments(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

dAZT_TDF$lb[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

dAZT_TDF$ub[hlp1z$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

col=addTrans("blue",12))

lines(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="EFV"],

col="blue",lwd=3)

abline(h=0, lty=2)

par(mfrow=c(3,3))

#-------------------------------- Residual Analysis -------------------------#

rand=as.data.frame(ranef(GammObj1$lme))

head(rand.effect)

re=rand[,c(1dim(rand)[2]-1, dim(rand)[2])]

head(re)

names(re)=c("b0", "b1")

r=residuals(GammObj1$lme, type = "normalized")

win.graph()

par(mfrow=c(1,2))

plot(re$b0, re$b1, xlab="Random intercept",

ylab="Random Slope", main="Random Intercept Vs Slope", sub="(a)")

qqnorm(r, xlab="Residuals", sub="(b)")

qqline(r)

qqnorm(re$b0 , xlab="Random Intercepts", sub="(c)")

qqline(re$b0)

qqnorm(re$b1, xlab="Random Slopes", sub="(d)")

qqline(re$b1)

#---------------------model check-----------------------------------------------

CD4b=CD4[complete.cases(CD4),]

CD4b$pp=predict(GammObj1$lme)

win.graph()

par(mfrow=c(2,2))

plot(CD4b$logCD4[CD4b$time==0],CD4b$pp[CD4b$time==0],xlim=c(0,10),

ylim=c(0,10),ylab="predected",xlab="log CD4 count",main="at observation time 0")

abline(0,1)

plot(CD4b$logCD4[CD4b$time==161],CD4b$pp[CD4b$time==161],xlim=c(0,10),

ylim=c(0,10),ylab="predected",xlab="logCD4 count",main="at observation time 161")

abline(0,1)

plot(CD4b$logCD4[CD4b$time==182],CD4b$pp[CD4b$time==182],xlim=c(0,10),

ylim=c(0,10),ylab="predected",xlab="logCD4 count",main="at observation time 182")

abline(0,1)

plot(CD4b$logCD4[CD4b$time==189],CD4b$pp[CD4b$time==189],xlim=c(0,10),ylim=c(0,10),
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ylab="predected",xlab="logCD4 count",main="at observation time 189")

abline(0,1)

par(mfrow=c(3,3))

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 79")

lines(CD4b$time[CD4b$ID==79],CD4b$logCD4[CD4b$ID==79],col="blue")

lines(CD4b$time[CD4b$ID==79],CD4b$pp[CD4b$ID==79],lty="dashed",col="blue")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed", main="Subject 180")

lines(CD4b$time[CD4b$ID==180],CD4b$logCD4[CD4b$ID==180],col="blue")

lines(CD4b$time[CD4b$ID==180],CD4b$pp[CD4b$ID==180],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 271")

lines(CD4b$time[CD4b$ID==271],CD4b$logCD4[CD4b$ID==271],col="blue")

lines(CD4b$time[CD4b$ID==271],CD4b$pp[CD4b$ID==271],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 1110")

lines(CD4b$time[CD4b$ID==1110],CD4b$logCD4[CD4b$ID==1110],col="blue")

lines(CD4b$time[CD4b$ID==1110],CD4b$pp[CD4b$ID==1110],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 1")

lines(CD4b$time[CD4b$ID==1],CD4b$logCD4[CD4b$ID==1],col="blue")

lines(CD4b$time[CD4b$ID==1],CD4b$pp[CD4b$ID==1],lty="dashed",col="blue")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 280")

lines(CD4b$time[CD4b$ID==280],CD4b$logCD4[CD4b$ID==280],col="blue")

lines(CD4b$time[CD4b$ID==280],CD4b$pp[CD4b$ID==280],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 321")

lines(CD4b$time[CD4b$ID==321],CD4b$logCD4[CD4b$ID==321],col="blue")

lines(CD4b$time[CD4b$ID==321],CD4b$pp[CD4b$ID==321],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 910")

lines(CD4b$time[CD4b$ID==910],CD4b$logCD4[CD4b$ID==910],col="blue")

lines(CD4b$time[CD4b$ID==910],CD4b$pp[CD4b$ID==910],col="blue",lty="dashed")

plot(c(0,1439),c(4,9),type="n",xlab="Days on ART", ylab="fitted and observed",main="Subject 527")

lines(CD4b$time[CD4b$ID==527],CD4b$logCD4[CD4b$ID==527],col="blue")

lines(CD4b$time[CD4b$ID==527],CD4b$pp[CD4b$ID==527],col="blue",lty="dashed")

#################################################################################################

#################################################################################################

#################################################################################################

#----------------------Hemoglobin Concentration Level -------------------#

#------------------------------------------------------------------------#

Hemog=read.table(choose.files(), header=T, sep="&")

head(Hemog)

Hemog$hemog=Hemog$LABRESULT

Hemog$ID=NULL

Hemog$ID[1]=1

for(i in 2:dim(Hemog)[1]){

if(Hemog$PTIDNO[i]==Hemog$PTIDNO[i-1]) Hemog$ID[i] = Hemog$ID[i-1]

else if(Hemog$PTIDNO[i]!=Hemog$PTIDNO[i-1]) Hemog$ID[i] =Hemog$ID[i-1] +1

}

Hemog$time2=Hemog$time*Hemog$time

Hemog$time3=Hemog$time*Hemog$time*Hemog$time

WHOs=NULL

for(i in 1:dim(Hemog)[1]){

if(Hemog$ARTWHOStage[i]=="T1") WHOs[i]="T1"

else if(Hemog$ARTWHOStage[i]=="T2") WHOs[i]="T2"

else if(Hemog$ARTWHOStage[i]=="T3" |

Hemog$ARTWHOStage[i]=="T4") WHOs[i]="T34"

}

Hemog$WHOs=factor(WHOs)

R=NULL

for(i in 1:dim(Hemog)[1]){

if(Hemog$NRTI[i]=="AZT" & Hemog$NNRTI[i]=="NVP") R[i]=1

else if(Hemog$NRTI[i]=="AZT" & Hemog$NNRTI[i]=="EFV") R[i]=2

else if(Hemog$NRTI[i]=="TDF" & Hemog$NNRTI[i]=="NVP") R[i]=3

else if(Hemog$NRTI[i]=="TDF" & Hemog$NNRTI[i]=="EFV") R[i]=4

}
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Hemog$ART=factor(R)

head(Hemog)

###################

plot(Hemog$time, Hemog$hemog, type="n", xlab="Time since ARV start date (in days)",

ylab="Hemoglobin Level (grams/deciliter)", ylim=c(0,25), sub="(b)",

main="Trajectory of Hemoglobin Level in HIV 1 Patients")

for(i in 1:(dim(Hemog)[1]-50)){

lines(Hemog$time[Hemog$ID==i & Hemog$hemog<=25],

Hemog$hemog[Hemog$ID==i & Hemog$hemog<=25], col="grey")

}

LWsmoothHemog=read.table(choose.files(), header=T, sep="&")

head(LWsmoothHemog)

lines(LWsmoothHemog$time, LWsmoothHemog$p_LABRESULT, lwd=3, col="blue")

legend(200,1,c("Loess-Smooth mean of Hemoglobin Level"), lty=1, lwd=3,

col="blue")

# #-------------------Semi-Parametric Mixed Model Analysis -----------#

library(mgcv)

Hemog$Gender=relevel(Hemog$Gender, ref="Fema")

Hemog$NRTI=relevel(Hemog$NRTI, ref="AZT")

Hemog$NNRTI=relevel(Hemog$NNRTI, ref="NVP")

Hemog$ARTWHOStage=relevel(Hemog$ARTWHOStage, ref="T1")

Hemog$WHOs=relevel(Hemog$WHOs, ref="T1")

#Comparing Different Mean structures

fit1=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+

Age_at_ARVstart+

WHOs,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit2=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+

WHOs,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit3=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+Age_at_ARVstart*NRTI + Age_at_ARVstart*NNRTI +

WHOs,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

fit4=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+Age_at_ARVstart*NRTI + Age_at_ARVstart*NNRTI +

WHOs + WHOs*NRTI + WHOs*NNRTI,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

anova(fit1$lme, fit2$lme, fit3$lme, fit4$lme)

anova(fit1$lme, fit2$lme)

anova(fit1$lme, fit3$lme)

anova(fit1$lme, fit4$lme)

#Random Effect Test (mixture chi-square test)

fit1o=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),
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data=Hemog, method="REML", correlation=NULL, random=NULL)

fit1a=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),

data=Hemog, method="REML", correlation=NULL,

random=list(ID=pdSymm(~1)))

chi1=-2*(fit1o$lme$logLik-fit1a$lme$logLik)

pval1=0.5*pchisq(chi1,0, lower.tail=F)+0.5*pchisq(chi1,1, lower.tail=F)

fit1b=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),

data=Hemog, method="REML", correlation=NULL,

random=list(ID=pdSymm(~time)))

chi2=-2*(fit1a$lme$logLik-fit1b$lme$logLik)

pval2=0.5*pchisq(chi2,1, lower.tail=F)+0.5*pchisq(chi2,2, lower.tail=F)

fit1c=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),

data=Hemog, method="REML", correlation=NULL,

random=list(ID=pdDiag(~time+time2)))

chi3=-2*(fit1c$lme$logLik-fit1b$lme$logLik)

chi3=0 #b/s the LL difference was -ve

pval3=0.5*pchisq(chi3,2, lower.tail=F)+0.5*pchisq(chi3,3, lower.tail=F)

table1=data.frame(Test=c("bo", "bo + b1*Time", "bo + b1*Time + b2*Time^2"),

Statitic=c(chi1, chi2, chi3), Pvalue=c(pval1, pval2, pval3))

table1

#Reducing Covariance Structure based on AIC (method=ML)

fit2a=gamm(hemog~s(time, bs="tp", by=ART,m=2)+NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdDiag(~time))) #Simple structure

fit2b=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time))) #Unstructured

table2=data.frame(anova(fit2a$lme, fit2b$lme, test=F))

table2

#Testing Serial Correlation based on REML-likelihood

fit3a=fit1b #No serial correlation

fit3b=gamm(hemog~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,

data=Hemog, method="REML", correlation=corExp(),

random=list(ID=pdSymm(~time))) #Spatial Exponential erial correlation

fit3c=gamm(hemog~s(time, bs="tp", by=ART,m=2)+NRTI*NNRTI +

Gender+Age_at_ARVstart+WHOs,
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data=Hemog, method="REML", correlation=corGaus(),

random=list(ID=pdSymm(~time))) #Spatial gaussian serial correlation

table3=data.frame(Seria_Correlation=c("No Ser. Corr", "Sp. Exponential", "Sp. Gaussian"),

REML_LogLik=c(fit3a$lme$logLik, fit3b$lme$logLik, fit3c$lme$logLik))

table3

#########################################

fit3=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender+ Gender*NRTI + Gender*NNRTI +

Age_at_ARVstart+Age_at_ARVstart*NRTI + Age_at_ARVstart*NNRTI +

WHOs,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~1)))

Final_Model1=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI*NNRTI +

Gender +

Age_at_ARVstart +

WHOs,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time)))

Final_Model2=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Gender*NNRTI +

Age_at_ARVstart,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time)))

Final_Model3=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart,

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time)))

Final_Model8=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),

data=Hemog, method="ML", correlation=NULL,

random=list(ID=pdSymm(~time)))

summary(Final_Model4$gam)

AIC(Final_Model4$lme)

AIC(Final_Model1$lme, Final_Model2$lme, Final_Model3$lme)

BIC(Final_Model1$lme, Final_Model2$lme, Final_Model3$lme)

Final_Model=gamm(hemog~s(time, bs="tp", by=ART,m=2)+

NRTI +

NNRTI +

Gender +

Gender*NRTI +

Age_at_ARVstart +

I(Age_at_ARVstart^2),

data=Hemog, method="REML", correlation=NULL,

random=list(ID=pdSymm(~time)))

summary(Final_Model$gam)

summary(Final_Model$lme)

anova(Final_Model$lme)

GammObj1=Final_Model

########### Contrast ################
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library(multcomp)

library(mvtnorm)

f1=Final_Model$lme

f2=Final_Model$gam

length(coef(f2))

names(coef(f2))

contrast.matrix1 <- rbind("AZT vs. TDF given Gender= Female" = c(0, 1, 0, rep(0, times=40)))

contrast.matrix2 <- rbind("AZT vs. TDF given Gender= Male" = c(0, 1, 0, 0, 0, 1, rep(0, times=37)))

summary(glht(f2, contrast.matrix1))

summary(glht(f2, contrast.matrix2))

#------------------------- Smoothed Mean Plots-----------------------------#

###-------------------------predict---------------------------------------------

yfit1<-predict(GammObj1$lme, asList=F, level = 0:1)

#names(yfit1)

t=seq(0,1439, 1)

time=rep(t, times=8)

v=length(t)

age=rep(33, length(time))

#who=rep(rep(c("T1", "T2", "T3", "T4"), each=v), times=8)

#who=rep(rep(c("T1", "T2", "T34"), each=v), times=8)

sex=rep(rep(c("Fema", "Male"), each=v), times=4)

nnrti=rep(rep(c("NVP", "EFV"), each=2*v), times=2)

nrti=rep(rep(c("AZT", "TDF"), each=4*v), times=1)

hlp1<-data.frame(time=time, NRTI=nrti, NNRTI=nnrti,

Gender=sex,Age_at_ARVstart=age)

R=NULL

for(i in 1:dim(hlp1)[1]){

if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="NVP") R[i]=1

else if(hlp1$NRTI[i]=="AZT" & hlp1$NNRTI[i]=="EFV") R[i]=2

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="NVP") R[i]=3

else if(hlp1$NRTI[i]=="TDF" & hlp1$NNRTI[i]=="EFV") R[i]=4

}

hlp1$ART=factor(R)

yfitfixef1<-predict(GammObj1$gam,hlp1, se.fit=T)# is it the mean at each time point?

hlp1a=data.frame(hlp1, yfitfixed=as.data.frame(yfitfixef1))

hlp1a=data.frame(hlp1a, lower=hlp1a$yfitfixed.fit-2*(hlp1a$yfitfixed.se.fit)^1.0,

upper=hlp1a$yfitfixed.fit+2*(hlp1a$yfitfixed.se.fit)^1.0)

#Function to create Transparent Color

addTrans <- function(color,trans)

{

# This function adds transparancy to a color.

# Define transparancy with an integer between 0 and 255

# 0 being fully transparant and 255 being fully visable

# Works with either color and trans a vector of equal length,

# or one of the two of length 1.

if (length(color)!=length(trans)&!any(c(length(color),length(trans))==1)) stop("Vector lengths not correct")

if (length(color)==1 & length(trans)>1) color <- rep(color,length(trans))

if (length(trans)==1 & length(color)>1) trans <- rep(trans,length(color))

num2hex <- function(x)

{

hex <- unlist(strsplit("0123456789ABCDEF",split=""))

return(paste(hex[(x-x%%16)/16+1],hex[x%%16+1],sep=""))

}

rgb <- rbind(col2rgb(color),trans)

res <- paste("#",apply(apply(rgb,2,num2hex),2,paste,collapse=""),sep="")

return(res)

}

win.graph()

par(mfrow=c(2,2))

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(a)",

main="NVP Vs EFV given NRTI=AZT",ylab="Hemoglobin Conc. (g/dL)",

xlim=c(0,1440), ylim=c(9, 16), xlab="Time on ART (in months)", xaxt="n")
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axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="EFV"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(800, 11, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(b)",

main="NVP Vs EFV given NRTI=TDF",ylab="Hemoglobin Conc. (g/dL)",

xlim=c(0,1440), ylim=c(9, 16), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="EFV"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(800, 11, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(c)",

main="AZT Vs TDF given NNRTI=NVP \n and Gender=Female",ylab="Hemoglobin Conc. (g/dL)",

xlim=c(0,1440), ylim=c(9, 16), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Fema" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(800, 11, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)
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plot(c(0:1439), seq(min(hlp1a$lower), max(hlp1a$upper), length=1440), type="n", sub="(d)",

main="AZT Vs TDF given NNRTI=NVP \n and Gender=Male",ylab="Hemoglobin Conc. (g/dL)",

xlim=c(0,1440), ylim=c(9, 16), xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("black",5))

segments(hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$lower[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$upper[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=addTrans("red",5))

lines(hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Male" & hlp1a$NRTI=="AZT" & hlp1a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp1a$time[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

hlp1a$yfitfixed.fit[hlp1a$Gender=="Male" & hlp1a$NRTI=="TDF" & hlp1a$NNRTI=="NVP"],

lwd=2, col=2)

abline(h=5.86, lty=2)

legend(800, 11, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

############################################################################################

################################### The difference in the Profile ##########################

t=seq(0,1439, 2)

time=rep(t, times=8)

v=length(t)

age=rep(33, length(time))

#who=rep(rep(c("T1", "T2", "T3", "T4"), each=v), times=8)

#who=rep(rep(c("T1", "T2", "T34"), each=v), times=8)

sex=rep(rep(c("Fema", "Male"), each=v), times=4)

nnrti=rep(rep(c("NVP", "EFV"), each=2*v), times=2)

nrti=rep(rep(c("AZT", "TDF"), each=4*v), times=1)

hlp1z<-data.frame(time=time, NRTI=nrti, NNRTI=nnrti, Gender=sex,

Age_at_ARVstart=age)# sequence for time and ranges from 0 to 60

Rz=NULL

for(i in 1:dim(hlp1z)[1]){

if(hlp1z$NRTI[i]=="AZT" & hlp1z$NNRTI[i]=="NVP") Rz[i]=1

else if(hlp1z$NRTI[i]=="AZT" & hlp1z$NNRTI[i]=="EFV") Rz[i]=2

else if(hlp1z$NRTI[i]=="TDF" & hlp1z$NNRTI[i]=="NVP") Rz[i]=3

else if(hlp1z$NRTI[i]=="TDF" & hlp1z$NNRTI[i]=="EFV") Rz[i]=4

}

hlp1z$ART=factor(Rz)

############

memory.limit()

memory.limit(size=8000)

Xp02<-predict(GammObj1$gam,hlp1z,type="lpmatrix")#?

fv3=Xp02%*%GammObj1$gam$coef

#fv3=as.vector(predict(GammObj1$gam, hlp1z))

Vall3=Xp02%*%GammObj1$gam$Vp%*%t(Xp02)

win.graph()

par(mfrow=c(2,2))

#NVP - EFV

def2=NULL

sddef2=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*4)){

ind.extract <- c(tp, (2*length(t)+tp))

VarVini2 <- Vall3[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

def2[i]=L %*% VintE
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sddef2[i]=sqrt(t(L) %*% VarVini2 %*%L)

if(i==(length(t)*2)) tp=(4*length(t)+1)

else tp=tp+1

}

NVP_EFV=data.frame(Time=rep(t, times=4)

, NRTI=hlp1z$NRTI[c(1:(length(t)*2), (length(t)*4+1):(length(t)*6))],

Gender=hlp1z$Gender[c(1:(length(t)*2), (length(t)*4+1):(length(t)*6))],

Dif=def2, SD.Dif=sddef2, lb=def2-2*sddef2, ub=def2+2*sddef2)

plot(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

type="n", ylim=c(-3,3), ylab="Difference",

main="NVP-EFV given NRTI=AZT", sub="(a)", xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

NVP_EFV$lb[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

NVP_EFV$ub[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

col=addTrans("blue",12))

lines(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="AZT"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

type="n", ylab="Difference", sub="(b)",

main="NVP-EFV given NRTI=TDF", ylim=c(-3,3),xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

NVP_EFV$lb[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

NVP_EFV$ub[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

col=addTrans("blue",12))

lines(NVP_EFV$Time[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

NVP_EFV$Dif[NVP_EFV$Gender=="Fema" & NVP_EFV$NRTI=="TDF"],

col="blue",lwd=3)

abline(h=0, lty=2)

#AZT - TDF

def=NULL

sddef=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*4)){

ind.extract <- c(tp, ((length(t)*4)+tp))

VarVini2 <- Vall3[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

def[i]=L %*% VintE

sddef[i]=sqrt(t(L) %*% VarVini2 %*%L)

tp=tp+1

}

AZT_TDF=data.frame(Time=rep(t, times=4), NNRTI=hlp1z$NNRTI[1:(length(t)*4)],

Gender=hlp1z$Gender[1:(length(t)*4)],

Dif=def, SD.Dif=sddef,

lb=def-2*sddef, ub=def+2*sddef)

plot(AZT_TDF$Time[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

AZT_TDF$Dif[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

type="n", ylim=c(-3,3), ylab="Difference",

main="AZT-TDF given NNRTI=NVP and \n Gender = Female", sub="(c)",

xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(AZT_TDF$Time[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

AZT_TDF$lb[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

AZT_TDF$Time[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

AZT_TDF$ub[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

col=addTrans("blue",12))

lines(AZT_TDF$Time[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],
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AZT_TDF$Dif[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="NVP"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(AZT_TDF$Time[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="EFV"],

AZT_TDF$def[hlp1z$Gender=="Fema" & hlp1z$NNRTI=="EFV"],

type="n", ylab="Difference", sub="(d)",

main="AZT-TDF given NNRTI=NVP and \n Gender = Male", ylim=c(-3,3),

xlim=c(0, 1440),

xlab="Time on ART (in months)", xaxt="n")

axis(1, at=c(seq(0, 1437, 200)), labels=c(seq(0, 42, 6)))

segments(AZT_TDF$Time[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

AZT_TDF$lb[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

AZT_TDF$Time[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

AZT_TDF$ub[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

col=addTrans("blue",12))

lines(AZT_TDF$Time[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

def[hlp1z$Gender=="Male" & hlp1z$NNRTI=="NVP"],

col="blue",lwd=3)

abline(h=0, lty=2)

#####################################################################################

#-------------------------------Model 1: first order derivatives ------------------------

t.mesh<-seq(0,1439,1)

delta<-1e-5

hlp2a=hlp1

hlp2a$time<-hlp1$time-delta

X01a<-predict(GammObj1$gam,hlp2a,type="lpmatrix")#?

hlp2a$time<-hlp1$time+delta

X11a<-predict(GammObj1$gam,hlp2a,type="lpmatrix")#?

Xp1a<-(X11a-X01a)/delta

v1a<-Xp1a%*%GammObj1$gam$coef

v.sd1a<-rowSums(Xp1a%*%GammObj1$gam$Vp*Xp1a)^.5

#XDer1<-cbind(0,1,2*t.mesh)

#DerRan1<-GammObj$lme$coef$random$ID%*%t(XDer1)# the deriative of the random effect

hlp3a=data.frame(hlp1, Deriv=v1a, lowerDer=v1a-2*v.sd1a, upperDer=v1a+2*v.sd1a)

win.graph()

par(mfrow=c(2,2))

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(a)",

xlim=c(0,1440), ylim=c(-0.05, 0.05), ylab="First derivative of g(mu)",

xlab="Time on ART (in days)", main="NVP Vs EFV given NRTI=AZT")

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="EFV"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(b)",

xlim=c(0,1440), ylim=c(-0.05, 0.05), ylab="First derivative of g(mu)",

xlab="Time on ART (in days)", main="NVP Vs EFV given NRTI=TDF")

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],
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lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="EFV"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("NVP", "EFV"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(c)",

xlim=c(0,1440), ylim=c(-0.05, 0.05), ylab="First derivative of g(mu)",

xlab="Time on ART (in days)", main="AZT Vs TDF given NNRTI=NVP and \n Gender=Female")

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Fema" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

plot(c(0:1439), seq(min(hlp3a$lowerDer), max(hlp3a$upperDer), length=1440), type="n", sub="(d)",

xlim=c(0,1440), ylim=c(-0.05, 0.05), ylab="First derivative of g(mu)",

xlab="Time on ART (in days)", main="AZT Vs TDF given NNRTI=NVP and \n Gender=Male")

segments(hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=addTrans("black", 5))

segments(hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$lowerDer[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$upperDer[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

lwd=2, col=addTrans("red", 5))

lines(hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Male" & hlp3a$NRTI=="AZT" & hlp3a$NNRTI=="NVP"],

lwd=2, col=1)

lines(hlp3a$time[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

hlp3a$Deriv[hlp3a$Gender=="Male" & hlp3a$NRTI=="TDF" & hlp3a$NNRTI=="NVP"],

lwd=2, col=2)

abline(h=0, lty=2)

legend(0, -0.01, c("AZT", "TDF"), lty=1, col=c(1,2),lwd=3)

#----------------------difference of CD4 First Derivative over time for NRTI(AZT-TDF)------------------

######################plot of difference in rate of change for NRTI(AZT-TDF) ######------------------

t.mesh<-seq(0,1439,1)

delta<-1e-5

hlp2z=hlp1z

hlp2z$time<-hlp1z$time-delta

X01a<-predict(GammObj1$gam,hlp2z,type="lpmatrix")#?

hlp2z$time<-hlp1z$time+delta

X11a<-predict(GammObj1$gam,hlp2z,type="lpmatrix")#?

Xp12<-(X11a-X01a)/delta

v12<-Xp12%*%GammObj1$gam$coef
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v.sd1a<-rowSums(Xp12%*%GammObj1$gam$Vp*Xp12)^.5

Xp02<-predict(GammObj1$gam,hlp1z,type="lpmatrix")#?

fv3=Xp12%*%GammObj1$gam$coef

Vall <- Xp12%*% GammObj1$gam$Vp %*% t(Xp12)

#NVP - EFV

derdef4=NULL

sdderdef4=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*4)){

ind.extract <- c(tp, (2*length(t)+tp))

VarVini2 <- Vall[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], fv3[ind.extract[2]])

derdef4[i]=L %*% VintE

sdderdef4[i]=sqrt(t(L) %*% VarVini2 %*%L)

if(i==(length(t)*2)) tp=(length(t)*4 +1)

else tp=tp+1

}

dNVP_EFV=data.frame(Time=rep(t, times=4), NRTI=hlp1z$NRTI[c(1:(length(t)*2),(length(t)*4+1):(length(t)*6)) ],

Gender=hlp1z$Gender[c(1:(length(t)*2),(length(t)*4+1):(length(t)*6)) ],

Dif=derdef4, SD.Dif=sdderdef4, lb=derdef4-2*sdderdef4^1, ub=derdef4+2*sdderdef4^1)

win.graph()

par(mfrow=c(2,2))

plot(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

type="n", xlab="Time on ART (in days) ", ylim=c(-0.03,0.03), ylab="Difference",

main="NVP-EFV given NRTI=AZT", sub="(a)")

segments(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$lb[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$ub[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

col=addTrans("blue",12))

lines(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="AZT"],

type="n", xlab="Time on ART (in days) ", ylim=c(-0.03,0.03), ylab="Difference",

main="NVP-EFV given NRTI=TDF", sub="(b)")

segments(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

dNVP_EFV$lb[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

dNVP_EFV$ub[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

col=addTrans("blue",12))

lines(dNVP_EFV$Time[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

dNVP_EFV$Dif[dNVP_EFV$Gender=="Fema" & dNVP_EFV$NRTI=="TDF"],

col="blue",lwd=3)

abline(h=0, lty=2)

#AZT - TDF

derdef3=NULL

sdderdef3=NULL

tp=1 # you can change depending on the group you want to test

L=c(1,-1)

for(i in 1:(length(t)*4)){

ind.extract <- c(tp, (2*length(t)+tp))

VarVini2 <- Vall[ind.extract, ind.extract]

VintE <- c(fv3[ind.extract[1]], v12[ind.extract[2]])

derdef3[i]=L %*% VintE

sdderdef3[i]= sqrt(t(L) %*% VarVini2 %*%L)

tp=tp+1

}

dAZT_TDF=data.frame(Time=rep(t, times=4), NNRTI=hlp1z$NNRTI[1:(length(t)*4)],
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Gender=hlp1z$Gender[1:(length(t)*4)],

Dif=derdef3, SD.Dif=sdderdef3,

lb=derdef3-2*sdderdef3^1, ub=derdef3+2*sdderdef3^1)

plot(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

type="n", xlab="Time on ART (in days) ", ylim=c(-0.03,0.03), ylab="Difference",

main="AZT-TDF given NNRTI=NVP and \n Gender=Female", sub="(c)")

segments(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$lb[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$ub[hlp1z$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

col=addTrans("blue",12))

lines(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

col="blue",lwd=3)

abline(h=0, lty=2)

plot(dAZT_TDF$Time[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Fema" & dAZT_TDF$NNRTI=="NVP"],

type="n", xlab="Time on ART (in days) ", ylim=c(-0.03,0.03), ylab="Difference",

main="AZT-TDF given NNRTI=NVP and \n Gender=Male", sub="(d)")

segments(dAZT_TDF$Time[dAZT_TDF$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$lb[dAZT_TDF$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Time[dAZT_TDF$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$ub[hlp1z$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

col=addTrans("blue",12))

lines(dAZT_TDF$Time[dAZT_TDF$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

dAZT_TDF$Dif[dAZT_TDF$Gender=="Male" & dAZT_TDF$NNRTI=="NVP"],

col="blue",lwd=3)

abline(h=0, lty=2)

#---------------------Residual Analysis and Model check-----------------------------------------------

#Estimate of random effects and residual Anlaysis

rand=as.data.frame(ranef(GammObj1$lme))

head(rand)

re=rand[,c(dim(rand)[2]-1, dim(rand)[2])]

head(re)

names(re)=c("b0", "b1")

r=residuals(GammObj1$lme, type = "normalized")

win.graph()

par(mfrow=c(2,2))

plot(re$b0[re$b0], re$b1[re$b0], xlab="Random intercept",

ylab="Random Slope", main="Random Intercept Vs Slope", sub="(a)")

qqnorm(r, xlab="Residuals", sub="(b)")

qqline(r)

qqnorm(re$b0 , xlab="Random Intercepts", sub="(c)")

qqline(re$b0)

qqnorm(re$b1, xlab="Random Slopes", sub="(d)")

qqline(re$b1)

Hemb=Hemog

Hemb$pp=predict(GammObj1$lme)

attach(Hemb)

win.graph()

par(mfrow=c(2,2))

plot(Hemb$hemog[Hemb$time==0],Hemb$pp[Hemb$time==0],xlim=c(min(pp),max(pp)),

ylim=c(min(pp),max(pp)),ylab="Predected",xlab="log CD4 count",main="at observation time 0")

abline(0,1)

plot(Hemb$hemog[Hemb$time==161],Hemb$pp[Hemb$time==161],xlim=c(min(pp), max(pp)),

ylim=c(min(pp),max(pp)),ylab="Predected",xlab="Hemoglobin Level",main="at observation time 161")

abline(0,1)

plot(Hemb$hemog[Hemb$time==182],Hemb$pp[Hemb$time==182],xlim=c(min(pp), max(pp)),

ylim=c(min(pp),max(pp)),ylab="Predected",xlab="Hemoglobin Level",main="at observation time 182")

abline(0,1)

plot(Hemb$hemog[Hemb$time==189],Hemb$pp[Hemb$time==189],xlim=c(min(pp), max(pp)), ylim=c(min(pp),
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max(pp)), ylab="Predected",xlab="Hemoglobin Level",main="at observation time 189")

abline(0,1)

par(mfrow=c(3,3))

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 79")

lines(Hemb$time[Hemb$ID==79],Hemb$hemog[Hemb$ID==79],col="blue")

lines(Hemb$time[Hemb$ID==79],Hemb$pp[Hemb$ID==79],lty="dashed",col="blue")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 180")

lines(Hemb$time[Hemb$ID==180],Hemb$hemog[Hemb$ID==180],col="blue")

lines(Hemb$time[Hemb$ID==180],Hemb$pp[Hemb$ID==180],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 271")

lines(Hemb$time[Hemb$ID==271],Hemb$hemog[Hemb$ID==271],col="blue")

lines(Hemb$time[Hemb$ID==271],Hemb$pp[Hemb$ID==271],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 1110")

lines(Hemb$time[Hemb$ID==1110],Hemb$hemog[Hemb$ID==1110],col="blue")

lines(Hemb$time[Hemb$ID==1110],Hemb$pp[Hemb$ID==1110],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 1")

lines(Hemb$time[Hemb$ID==1],Hemb$hemog[Hemb$ID==1],col="blue")

lines(Hemb$time[Hemb$ID==1],Hemb$pp[Hemb$ID==1],lty="dashed",col="blue")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 280")

lines(Hemb$time[Hemb$ID==280],Hemb$hemog[Hemb$ID==280],col="blue")

lines(Hemb$time[Hemb$ID==280],Hemb$pp[Hemb$ID==280],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 321")

lines(Hemb$time[Hemb$ID==321],Hemb$hemog[Hemb$ID==321],col="blue")

lines(Hemb$time[Hemb$ID==321],Hemb$pp[Hemb$ID==321],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 910")

lines(Hemb$time[Hemb$ID==910],Hemb$hemog[Hemb$ID==910],col="blue")

lines(Hemb$time[Hemb$ID==910],Hemb$pp[Hemb$ID==910],col="blue",lty="dashed")

plot(c(0,1439),c(min(pp), max(pp)),type="n",xlab="Days on ART", ylab="Fitted and Observed",

main="Subject 527")

lines(Hemb$time[Hemb$ID==527],Hemb$hemog[Hemb$ID==527],col="blue")

lines(Hemb$time[Hemb$ID==527],Hemb$pp[Hemb$ID==527],col="blue",lty="dashed")

###########################################################################################

###########################################################################################

###########################################################################################

*--------------------------- Joint Analysis ------------------------

libname thesis "C:\Users\Alemu\Desktop\Thesis2";

*Preparing the data for joint analysis

PROC IMPORT OUT=thesis.aa

DATAFILE="C:\Users\Alemu\Desktop\Thesis2\aa.csv"

REPLACE;

getnames=yes;

RUN;

proc freq data=thesis.aa;

table WHOs;

run;

PROC IMPORT OUT=thesis.bb

DATAFILE="C:\Users\Alemu\Desktop\Thesis2\bb.csv"

REPLACE;

getnames=yes;

RUN;

proc sort data=thesis.aa;
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by PTIDNO tdisc;

run;

proc sort data=thesis.bb;

by PTIDNO tdisc;

run;

proc sort data=b out=sorted;

by PTIDNO Gender Age_at_ARVstart Agegroup_at_ARVstart NRTI NNRTI WHOs ART blcd4 blhemog tdisc;

proc transpose data=sorted out=b1;

by PTIDNO Gender Age_at_ARVstart Agegroup_at_ARVstart NRTI NNRTI WHOs ART blcd4 blhemog tdisc;

var logCD4 hemog;run;

proc means data=b1 n;

var col1 col2;

run;

data b2;

set b1;

rename _NAME_=outcome;

rename Age_at_ARVstart=Age;

drop col2 Agegroup_at_ARVstart ART blhemog;

run;

data thesis.joint2;

set b2;

rename Col1=Y;

*if Col1 ^=.;

tclass=tdisc;

run;

proc export data=thesis.joint2

outfile=’C:\Users\Alemu\Desktop\j.txt’

dbms=dlm;

delimiter=’&’;

run;

*Some Analysis were undertaken in Excel file (not reported)

PROC IMPORT OUT=thesis.joint3

DATAFILE="C:\Users\Alemu\Desktop\j.csv"

REPLACE;

getnames=yes;

RUN;

data b;

set thesis.joint3;

if outcome="logCD4" then int_1=1;

else int_1=0;

if outcome="hemog" then int_2=1;

else int_2=0;

if outcome="logCD4" then T_1=tdisc;

else T_1=0;

if outcome="hemog" then T_2=tdisc;

else T_2=0;

if outcome="logCD4" then T2_1=tdisc*tdisc;

else T2_1=0;

if outcome="hemog" then T2_2=tdisc*tdisc;

else T2_2=0;

if outcome="logCD4" then T3_1=tdisc*tdisc*tdisc;

else T3_1=0;

if outcome="hemog" then T3_2=tdisc*tdisc*tdisc;

else T3_2=0;

if outcome="logCD4" then x1_1=NRTI;

else x1_1=0;

if outcome="hemog" then x1_2=NRTI;

else x1_2=0;

if outcome="logCD4" then x2_1=NNRTI;

else x2_1=0;

if outcome="hemog" then x2_2=NNRTI;
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else x2_2=0;

if outcome="logCD4" then x12_1=NNRTI*NRTI;

else x12_1=0;

if outcome="hemog" then x12_2=NNRTI*NRTI;

else x12_2=0;

if outcome="logCD4" then x1t_1=NRTI*tdisc;

else x1t_1=0;

if outcome="hemog" then x1t_2=NRTI*tdisc;

else x1t_2=0;

if outcome="logCD4" then x1t2_1=NRTI*tdisc*tdisc;

else x1t2_1=0;

if outcome="hemog" then x1t2_2=NRTI*tdisc*tdisc;

else x1t2_2=0;

if outcome="logCD4" then x1t3_1=NRTI*tdisc*tdisc*tdisc;

else x1t3_1=0;

if outcome="hemog" then x1t3_2=NRTI*tdisc*tdisc*tdisc;

else x1t3_2=0;

if outcome="logCD4" then x2t_1=NNRTI*tdisc;

else x2t_1=0;

if outcome="hemog" then x2t_2=NNRTI*tdisc;

else x2t_2=0;

if outcome="logCD4" then x2t2_1=NNRTI*tdisc*tdisc;

else x2t2_1=0;

if outcome="hemog" then x2t2_2=NNRTI*tdisc*tdisc;

else x2t2_2=0;

if outcome="logCD4" then x2t3_1=NNRTI*tdisc*tdisc*tdisc;

else x2t3_1=0;

if outcome="hemog" then x2t3_2=NNRTI*tdisc*tdisc*tdisc;

else x2t3_2=0;

if outcome="logCD4" then x3_1=Gender;

else x3_1=0;

if outcome="hemog" then x3_2=Gender;

else x3_2=0;

if outcome="logCD4" then x3t_1=Gender*tdisc;

else x3t_1=0;

if outcome="hemog" then x3t_2=Gender*tdisc;

else x3t_2=0;

if outcome="logCD4" then x3t2_1=Gender*tdisc*tdisc;

else x3t2_1=0;

if outcome="hemog" then x3t2_2=Gender*tdisc*tdisc;

else x3t2_2=0;

if outcome="logCD4" then x3t3_1=Gender*tdisc*tdisc*tdisc;

else x3t3_1=0;

if outcome="hemog" then x3t3_2=Gender*tdisc*tdisc*tdisc;

else x3t3_2=0;

if outcome="logCD4" then x4_1=Age;

else x4_1=0;

if outcome="hemog" then x4_2=Age;

else x4_2=0;

if outcome="logCD4" then x4t_1=Age*tdisc;

else x4t_1=0;

if outcome="hemog" then x4t_2=Age*tdisc;

else x4t_2=0;

if outcome="logCD4" then x4t2_1=Age*tdisc*tdisc;

else x4t2_1=0;

if outcome="hemog" then x4t2_2=Age*tdisc*tdisc;

else x4t2_2=0;

if outcome="logCD4" then x4t3_1=Age*tdisc*tdisc*tdisc;

else x4t3_1=0;
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if outcome="hemog" then x4t3_2=Age*tdisc*tdisc*tdisc;

else x4t3_2=0;

if outcome="logCD4" then x5_1=WHOs;

else x5_1=0;

if outcome="hemog" then x5_2=WHOs;

else x5_2=0;

run;

data thesis.c;

set b;

if outcome="logCD4" then outc=1;

else if outcome="hemog" then outc=2;

drop outcome PTIDNO;

run;

* Fitting Joint mixed model

proc mixed data=thesis.C covtest noclprint PLOTS(MAXPOINTS=20000) method=REML;

class ID tdisc outc

X1_1 (ref="0") X1_2 (ref="0") X2_1 (ref="0") X2_2 (ref="0") X12_1 (ref="0")

X12_2 (ref="0") X3_1 (ref="0") X3_2 (ref="0") X5_1 (ref="1");

*X1t_1 X1t_2 X2t_1 X2t_2 X3t_1 X3t_2;

*X1t2_1 X1t2_2 X2t2_1 X2t2_2 X3t2_1 X3t2_2

X1t3_1 X1t3_2 X2t3_1 X2t3_2 X3t3_1 X3t3_2;

model Y=int_1 int_2 X1_1 X2_1 X12_1 X3_1 X4_1 X5_1 T_1 T2_1 T3_1

X1_2 X2_2 X3_2 X1_2*X3_2 X4_2 X4_2*X4_2 T_2 T2_2 T3_2

/noint solution outpm=resid_1;

random int_1 T_1

int_2 T_2/subject=ID type=UN g gcorr;

repeated outc/subject=ID*tdisc type=CS;

ods output covparms=cov_1 solutionF=Fixed_1;

run;

*Calculating Correlaions

proc iml;

D = {

0.03135 0.000803 0.1886 -0.00284,

0.000803 0.00001 -0.00385 0.000109,

0.1886 -0.00385 2.0928 -0.02693,

-0.00284 0.000109 -0.02693 0.001361};

D_slope=

{2.0928 -0.02693,

-0.02693 0.001361};

R={0.8081 0.8237,

0.8237 0.8081};

T = {1 2}; /*Here 2 is used to calculate marginal correlation at time 2*/

D_marg=T*D*t(D) + R;

/*Association between slopes*/

corr_bet_evol=j(nrow(D_slope), nrow(D_slope), 0);

do i=1 to nrow(D_slope);

do j=1 to ncol(D_slope);

corr_bet_evol[i,j] = D_slope[i,j]/sqrt(D_slope[i,i]*D_slope[j,j]);

end;

end;

print corr_bet_evol;

/*Marginal correlation at time 2*/

Marg_corr=j(nrow(D_marg), nrow(D_marg), 0);

do i=1 to nrow(D_marg);

do j=1 to ncol(D_marg);

Marg_corr[i,j]=D_marg[i,j]/sqrt(D_marg[i,i]*D_marg[j,j]);

end;

end;

print Marg_corr;

run;

quit;
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