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Abstract

Herpes zoster is a reactivated form of the latent varicella-zoster virus, commonly known as chickenpox,
causing damage to the nervous system, followed by persistent neuropathetic pain. �is characteristic
pain can be divided into three phases: acute, following the exanthema phase, sub-acute and chronic
or Post-Herpetic Neuralgia (PHN) when the pain persists for 4 weeks or more regardless the healing
state. In change-point analysis of Desmond (2002) antiviral treatments, Acyclovir and Valacyclovir have
been used and piecewise exponential model with two change-points was applied to obtain treatment
e�ect and corresponding hazard rates, for both cases when the change-point is known or has to be
estimated. Main objective of this study was to evaluate the use of a piecewise exponential model with
two change-points in a paradigm data set, similar to the one used in Desmond analysis. Applying �rst
the Cox model, Valacyclovir has been proven more e�ective than Acyclovir, regardless the dose group.
�en, proportional hazards assumption was tested both graphically and computationally. Results led to
the use of a more complex model; piecewise exponential model was applied for two change-points, in
two cases. First for known change-points (30,120) as initially de�ned by Dworkin and Portenoy in 1994.
Hazard rate estimates showed a decline as patient moves from acute to chronic phase, while there was
statistically signi�cant e�ect evident only during sub-acute phase. Moreover, the pair of change-points
was estimated via exhaustive grid search in R and in SAS via the macro code of Mahdi Sadat-Hashemi et
al. Corresponding hazard rate estimates appeared to be close in both models. Graphical representation
of the cumulative hazard was used, where the �rst cut-o� points were visible in the area around the 1st
trimester, yet it was not that distinct where the second one lies on. Based on graphical representation
again, it was shown that above the 140th day the likelihood becomes ”�at” and the detection of a
change-point there is rather di�cult. Even though method applied in SAS was an ad-hoc procedure
while in R cuto� estimates were jointly found, the results were close. Furthermore, it occurs that the
length of the chosen grid ma�ers signi�cantly, since the same one was used in both methods. In the end,
it is questioned whether a direct comparison of treatments across the di�erent phases of pain is possible
within the context of a randomized clinical trial, based on discussions of Arani [4], Goodman [5] and
Kay [14].
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Chapter 1

Introduction

1.1 Varicella - Zoster Virus

Herpes Zoster occurs when latent varicella-zoster virus (VZV) reactivates and multiplies within a
sensory ganglion and travels along the sensory nerve to the skin. Varicella virus is most commonly
known as chickenpox; zoster is the evolution of varicella infection. Patients above 50 years of age are
usually tormented by this neurological disease, whose main symptom is pain. �is neuropathetic pain
is a result of the damage caused to patient’s nervous system. Pain is divided into three di�erent phases,
depending on its volume and duration. Acute pain is a symptom appearing during the homonymous
acute exanthem phase, following a dermatomal rash. Especially in the areas of the a�ected sensory
nerves, the pain discomfort can be prolonged for days, weeks, or months and in some cases even years.
A pain that persistent is termed chronic or Post-Herpetic Neuralgia (PHN) and usually appears a�er
the healing of skin lesions or 4 weeks a�er the onset of lesions regardless the stage of healing. Although
accute pain stimulates one’s immune system to avoid further damage of the tissue area, PHN leads only
to discomfort and distress. Main cause of PHN is the activity appearing in the spinohypothalamic and
pontine - hypothalamic pathways. Next, the stress response is initiated and once this stress response
is extended it becomes dysregulated and maladaptive. �is leads to fatigue, impaired functioning and
adaptive behavior, experienced as sickness. �e further psychological e�ect renders one to be incapable
of performing a daily routine at home, community or workplace, making PHN a burden not only to the
patient but also to the healthcare system and society at large [1].

Main target of the treatment is to minimize the risk of further pain discomfort. �e medication used in
order to reduce complications and limit PHN are: steroids, nerve blocks, analgesics, antidepressants and
antivirals. �e most suitable way to minimize pain is to prevent any further nerve damage; antivirals
achieve that by canceling the replication of VZV. Acyclovir is an orally administrated drug and the �rst
one proved to be e�ective. Wood states based on clinical trials conducted in the past, that Acyclovir
reduces signi�cantly zoster-associated pain (ZAP) duration, without having the same e�ect on PHN
though. Valacyclovir, a bioavailable prodrug of Acyclovir, also showed signi�cant advantages regarding
pain resolution.
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Nonetheless, assessing the e�ect of antiviral therapies on the di�erent phases of pain is the most
challenging part. �e main di�culty that needs to be overcome is to detect the time point where acute
pain ends and chronic pain begins respectively. As a solution, piecewise regression modeling of the
hazard function of ZAP has been proposed. Detection of the areas where curve’s exponential decline
changes, combined with the estimation of corresponding change - points, will explain how zoster pain
evolves from acute to chronic.

Transition points. Dworkin and Portenoy [2] suggested as transition points τ1 and τ2, the time
points of 30 and 120 days respectively. �ese suggestions were based on the fact that acute infection
usually heals a�er 4 weeks. However it is mentioned that criteria used by International Association
for the Study of Pain (IASP) for the de�nition of PHN were rather arbitrary. �ree months time was
considered to be the most convenient way to describe persisting pain symptoms a�er the end of acute
period. Finally, for patients experiencing pain in between, subacute phase was de�ned.

1.2 Objectives

Main objective of this dissertation is to evaluate the behavior of a piecewise exponential model (PEM)
with multiple change-points, applied in real data. �e data set used was similar to the one applied in
the change-point analysis made by Desmond in 2002 [3]. �ough a direct comparison cannot be made,
the results of the paper will be used as as a benchmark. More importantly, the ways of estimating
these change-points will be explored based on the methodology described by Arani et al (2001) [4].
�e analysis is done step by step, applying �rst Cox proportional hazards model and computing the
Kaplan-Meier product limit estimate, followed by corresponding graphical representation. �en, the
proportionality of the hazard function is tested, given the nature of PEM (constant within de�ned time
intervals). Finally, PEM is applied in both cases: (i) given the pair of change - points is known (30 and
120 days) and (ii) in the case of the change points being unknown. In the la�er case, an exhaustive grid
search is applied in order to detect and estimate the suitable pair of transition points, using a maximum
likelihood optimization technique. For these purposes, two di�erent types of statistical so�ware and
techniques were used and compared (SAS 9.4 and R 3.1.2).

1.3 Data Description

�e analyses done by Desmond [3] was based upon two studies, thus two di�erent data sets. Both
studies focus on the computation of hazard rates for treatment e�ect and baseline pain resolution
across each of the phases of pain and the comparison of parameters related to herpes zoster. It must
be underlined that only the �rst study will be used as a benchmark, while only treatment e�ect was
considered for the model.
On the data set used as paradigm, 1141 patients are enrolled in a controlled clinical trial of Acyclovir
(ACV) versus Valacyclovir (VACV). Treatment was administrated orally and doses among treatment
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groups di�er as follows: VACV at 1000 mg for 7 days, VACV at 1000 mg for 14 days and ACV at 800
mg for 7 days. Time to complete cessation of ZAP was used as survival time, were patients declared
the number of days completed feeling pain, starting from 0 days and reaching maximum of almost 6
months (174 days). Moreover, average age of patients is approximately 69 years, the majority of which
consists of caucasian (94.65%), con�rming baseline pain (90.23%), while the percentages of male and
female population are kept almost in balance.
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Chapter 2

Methodology

2.1 Survival Analysis

Cox semi-parametric proportional hazards model is applied �rst, introducing only treatment e�ect to
the model. Plot of Kaplan - Meier (KM) estimator will help to compare pain duration among di�erent
treatment groups, examine the scenario of switching to a binary treatment variable and search for
possible hints of change-point existence. �en, proportionality hypothesis is tested by introducing
time-varying covariates to the model and plo�ing the Schoenfeld residuals. �at will eventually show
whether the proportional hazards assumption holds or the use of a more complex model is really
necessary.

Graphical representation holds a main part in the analysis; it cannot replace hypothesis testing though.
Its role is to reveal the areas in which transition point lies upon, if there is one. Furthermore, what is
expected from one to see is a ”jump” of the hazard function at the transition point of one (time) interval
to another, while the hazard function must look (approximately) constant within those intervals de�ned.
It must be mentioned that no hypothesis testing was done when proceeding from Cox model to PEM.
Normally a Wald test is applied �rst as to test the need of a more simple model (1 change-point) [5].
Primary goal is to duplicate the analysis procedure carried out by Desmond and explore the complexities
of this model. �us, the need of a two-change point model was considered known from the start.

In paradigm data set, PEM was applied for both known transition times, where (τ1, τ2) are set to 30 and
120 days respectively, and unknown. However, since the estimation method applied by the author is
di�erent, in the second case the scenario of having slightly di�erent estimates should be mentioned.
Parameter estimates obtained from single change - point piecewise model were used as initial values for
the �nal one. Before exploring the use of PEM in real data though, the model was applied on simulated
data and the sample size produced was close to the one of herpes zoster study. Several cases were
examined (e.g. data with and without censoring) and various number of replications were tried.
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2.2 Exhaustive Grid Search

Grid search was used in order to estimate the pair of transition times. In simulated data, known
transition times of 50 and 120 units were used, whereas the grid expected to detect the transition times
de�ned by intervals (21,70) and (91,140). A�er taking all possible pairs (2500 in total), the program
targets the pair that achieves the global maximum likelihood estimate (MLE) from a vector of estimates
for all possible pairs. Consequently, since it is both a computationally intensive and time consuming
method:

(i) the smaller the grid is the closer the estimates will be to its boundaries.

(ii) the less the repetitions are, the faster the estimation will complete.

Grid searchwas applied in both statistical packages. In R programming, cases of both one and two change-
point models were considered on simulated data �rst while 2 change-point model was also used on real
data. �e choice of the intervals, (21,70) and (91,140) respectively, was based on graphical representation
(e.g. Kaplan - Meier plot). An e�ort was made to obtain similar results in SAS. For that ma�er, macro code
created by researchers Mahdi Sadat-Hashemi, Emmanouil Rampakakis, John S. Sampalis and Behrooz
Kavehie was used http://www.runmycode.org/companion/view/675 . �is macro aims to
�nd a transition point in the hazard curve by optimizing the likelihood function over an interval (l,u)
set by the programmer, where l = pl and u = pu for pl < pu , are respectively the lower and upper
bound of the grid. In the end, a data set is produced containing all candidate break points in descending
order MLE outcome, along with their corresponding hazard rates estimated before and a�er cut-o�
point, hazard ratios and a KM plot automatically produced with the cut-o� point of the global MLE.
However, this code replies to a single change - point estimation; thus, for a two-point estimation in this
case, the program was applied twice each time to each of the chosen grids.

2.3 �eoretical Background

2.3.1 Cox Semi-Parametric Model

Cox Semi-parametric proportional hazards modeling lies upon two basic assumptions: (i) the hazard
ratio to be constant over time across groups and (ii) the hazard functions of two compared groups (e.g.
treatment groups) must run in parallel over time. If the la�er condition holds, then covariate - adjusted
hazard ratios can be produced. Its semi - parametric nature is due to the constant baseline hazard which
remains unspeci�ed. �erefore, a partial likelihood maximization technique is used for estimation of
model parameters. �e model is de�ned as follows:

hi (t) = λ0(t) exp(β1xi1, . . . , βk xik ) (2.1)

where λ0(t) indicates the baseline hazard, constant for all i units, (x1, . . . , xk ) are the k covariates
included to the model and β = (β1, . . . , βk )′ is the vector of coe�cients. In case of ties, there is a
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variety of methods that can be applied (depend on the statistical program). Efron’s approximation
is preferred, a method similar to the exact conditional probability based-method [7]. Given the fact
that proportionality assumption holds, the expression for the Hazard ratio of two categories i and j

respectively is:

H Ri, j =
hi (t)
h j (t)

=
λ0(t) exp(β1xi1, . . . , βk xik )
λ0(t) exp(β1x j1, . . . , βk x jk )

= exp(β1(xi1 − x j1), . . . , βk (xik − x jk )) (2.2)

�e proportional hazards assumption can be however very restricting. It can be examined by applying
a formal test or graphically. Moreover, in the �rst case, an interaction term of the covariate of interest
with the time variable (or its logarithmic form) is added in the model and a Wald test is performed. If
the interaction is not statistically signi�cant, the assumption holds. In the la�er, (weighted) Schoenfeld
residuals are plo�ed against time; if the hypothesis holds then no time-dependent pa�ern is expected
to be seen.

2.3.2 Piecewise Exponential Model

Piecewise exponential model appears to be more �exible than Cox regression in ma�ers of hypothesis
testing. Given j intervals, baseline hazard λ j will be constant along the interval, but not necessarily
across the di�erent intervals de�ned by the change-points [8]. A discussion on how likelihood function
is de�ned follows above [9].

General Case. Given a sample of n units in total, where unit i is observed at time point ti . For a
given unit that fails at time ti its contribution to the likelihood function will be as follows:

Li = f (ti ) = λ(ti )S(ti ) (2.3)

In addition, for a given unit i that is still alive at time ti (censored observation), its contribution to the
likelihood will be S(ti ). Hence, likelihood function is de�ned as follows:

L =
n∏
i=1

f (ti ) =
n∏
i=1

λ(ti )δi S(ti )1−δi (2.4)

�us, the logarithm of the likelihood function will be:

log(
n∏
i=1

λ(ti )δi S(ti )) =
n∑
i=1

log(λ(ti )δi S(ti )) = δi log(λ(ti )) + log(S(ti )) (2.5)

where δi is the binary event indicator (e.g. 1: failure), while S(ti ) and λ(ti ) indicate the survival and the
hazard function respectively.
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PEM case. Let τ0, τ1, τ2, . . . , τκ ,where κ = 1, . . . , j − 1 be speci�ed values that de�ne j time intervals.
For these intervals it is known that τ0 = 0 and τκ = ∞. Consequently, hazard rates within each interval
will be wri�en as follows:

h0(t; λ, τ1, τ2) =




λ1, 0 < t ≤ τ1

λ2, τ1 < t ≤ τ2

· · ·

λκ , τj−1 < t ≤ τj=∞

(2.6)

In Herpes Zoster virus study the phases of pain studied are 3 thus, the related hazard rates will be
formed as follows:

h0(t; λ, τκ ) =




λ1, 0 < t ≤ τ1

λ2, τ1 < t ≤ τ2

λ3, t > τ2

(2.7)

where the general expression λi j indicates the hazard rate of the jth patient observed in the ith interval,
here j = 1,2,3; or else in each phase of ZAP. �e hazard function can also be rewri�en as follows:
h(t |x; θ) = h0(t; λ) exp(β′x) , where θ = (λ, β) are the unknown parameters to be included into the
model, representing baseline hazard and vector of coe�cients respectively.

�us, Survival function is formed accordingly:

S(t, λ, τ1, τ2) =




exp[−λ1t], 0 < t ≤ τ1

exp[−λ1τ1 − λ2(t − τ1)], τ1 < t ≤ τ2

exp[−λ1τ1 − λ2(τ2 − τ1) − λ3(t − τ2)], t > τ2

(2.8)

Finally, combined with equation (3), the log-likelihood will be wri�en as follows:

logL(λ, τ1, τ2) =
n∑
i=1

δi log h(yi , λ, τ1, τ2) + log S(yi , λ, τ1, τ2) (2.9)

where (y1, δ1), (y2, δ2), . . . , (yn , δn ) are values of the vector ( Y, ∆) with δi being the event indicator and
yi being the observed survival times though rescaled, in a way that indicates in which interval they
belong to.
Moreover, there is an equivalent expression of likelihood by Friedman [9] that can be applied. Instead
of rescaling data points, an indicator I j for j intervals can be used:

Ii j =



1, if the j th individual fails during ith interval

0, otherwise
(2.10)
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with ti j = max[0, min(Ti - Ti−1, t j - Ti−1)] and l being the vector with components li j = log(λi j ),
l ∈ Ω(n) for a given linear subspace Ω(n) of RnI (n) . Whereas where λi j indicates the hazard rate of
the jth patients observed in the ith interval. Finally the expression of log-Likelihood function will be:

L(l) =
∑
i, j

li j −
∑
i, j

ti j exp li j (2.11)

Let (i,j) be partitioned in A = (i, j) : ti, j > 0 and B = (i, j) : ti, j = 0; the value of L(l) does not change
when the summation is only over A. If the likelihood function has a maximum, the following condition
reassures that MLE exists.

Condition 1: For any pair of vectors x,y ∈ Ω(n), if xi j = yi j for every (i,j) ∈ A, then x = y. Let L’
and L” have the �rst and the second di�erentials respectively of the likelihood at l (likelihood estimate).
�en for any x,y ∈ Ω(n), it is known:

L′l (x) =
∑

xi j Ii j −
∑

xi j ti j exp(li j )

L′′l (x) =
∑

xi j yi j ti j exp(li j )
(2.12)

From previous Condition it is evident that L(l) is a concave function.

Note. As far as change-point estimation is concerned, a problem occurs regarding the second deriva-
tive, when the change - point is introduced as a parameter to the model (τj ). Consequently, the calculated
Hessian matrix (square matrix of second order partial derivatives) appears not to be positive de�nite.
�is particular type of modeling can be rather complex and sometimes implausible even, as the hazard
function will be discontinuous at the time point of transition [10]. However, if boundaries are properly
de�ned and the correct number of cut-o� points is used (avoid over��ing), this model can approximate
arbitrary shapes of the hazard and the survival function and eventually, provide a be�er insight to the
data [4].

2.4 So�ware

�e analysis was carried out partially with SAS 9.4 and R 3.1.2. Flexibility and potential of NLMIXED
procedure makes it a suitable for many non-standard applications (e.g. non-linear models), even when
random e�ects are not applied [8]. Piecewise exponential modeling was applied in SAS via NLMIXED
procedure. Other ways suggested are via PHREG procedure with bayes statement or MCMC procedure
for bayesian analysis. For a classical frequentist approach, NLMIXED procedure in SAS allows the user
to set the Likelihood via general statement. PHREG on the other hand, uses a di�erent calculation
method based on the partial likelihood [11]. A partial Likelihood estimation approach in PEM -for
one change-point- has been described by Liang et al. (1990) [12]. Nevertheless, the sensitivity of this
procedure to initial values must be underlined. Moreover, when change-points were added as individual
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parameters to the model lead to problems regarding Hessian matrix calculation and optimization
procedure. Normally problems as such can be overheld by rescaling or choosing more appropriate
initial values [13]. Here, however, it is a ma�er of how likelihood occurs to be ”�at” at some time points.

Finally, for time e�ciency, R programming was used in the part of simulation and grid search. Library
msm provided the environment to generate data points directly from a piecewise exponential model.
Grid search was also applied ad-hoc in SAS, based on a macro code wri�en by Mahdi Sadat-Hashemi,
Emmanouil Rampakakis, John S. Sampalis and Behrooz Kavehiel.

Note : Library msm was created under version 3.1.2 of R. In case of an earlier version, one can install
library(installr) as to apply the latest version and updates of R program.
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Chapter 3

Results

3.1 Exploratory Data Analysis

�e mean duration of time until complete pain cessation is approximately 2 months (60.67 days) with
median time of 36 days. �e minimum amount of observed time till complete pain cessation is 0 days.
�us, patient stopped experiencing any pain symptoms right a�er taking the assigned treatment. Also,
the maximum number of days with pain symptoms was almost 6 months (174 days). According to
histogram of time till pain cessation variable in �gure B.1 it is evident that most patients have declared
pain continuation before the 90th day of observation. In addition, almost 32% of observations are
censored. Finally, there seems to be patients declaring 0 days of pain who are censored at the same time.
Apart from that, there were only 3 (censored) observations missing and therefore have been omi�ed.
No other intervention has been made to the data.

Note: Hypothesis testing was carried out in a 5% level of signi�cance.

3.2 Cox Semi-Parametric Proportional Hazards Model

Kaplan - Meier plots were considered for both cases: including both distributions of Valacyclovir and
the case were the dose categories are merged. According to �gure B.2 survival curves for di�erent
distribution of Valacyclovir are really close, following a common trend. In the case of ACV versus VACV
in �gure 3.1, there is an instant drop close to the 30th day of observation, while both curves seem to
develop in time.
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Figure 3.1: Plot of Kaplan - Meier product limit estimator for Acyclovir (ACV) versus Valacyclovir
(VACV) with merged dose categories in one.

Moreover, according to results of Cox regression in table A.6, both doses of VACV seem to have
statistically signi�cant e�ect on zoster-associated pain resolution. Using ACV level of treatment as
reference category, it is evident that patients treated with VACV have greater hazard of a ZAP - cessation
event. Consequently, patients in either VACV group are expected to experience pain for a smaller
amount of time compared to those treated with ACV. Based on the same table, there seems to be no
di�erence in survival for the two dose groups of Valacyclovir (HR approximately equal to 1). �us, from
this moment on, the two categories of VACV distribution to patients, will be merged in one.
In addition, in order to test proportional hazards assumption a time-varying covariate of treatment
e�ect is added to the model. Based on Wald test results, it is found to be statistically not signi�cant
(p-value: 0.8410) and therefore, the assumption holds. Nevertheless, the conclusion made when plo�ing
Schoenfeld residuals against time B.3 is contradictory. �ere seems to be a time pa�ern regarding
treatment e�ect, thus, the use of a more complex model (i.e. PEM) is explored below.

3.3 Piecewise Exponential Proportional Hazards Model

For the exploration of the piecewise exponential proportional hazards model, two approaches were
made: one using known transition times of τ1=30 and τ2=120 days and one for unknown transition
times. In both cases, phase - speci�c hazard rates were obtained, de�ning the level of hazard for all
units based on the state of pain. On the la�er case, exhaustive grid search was applied as to obtain
jointly the transition times based on their maximum likelihood estimate (MLE). Finally, standard errors
and 95% con�dence intervals of the estimates were obtained with bootstrap re-sampling method.
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3.3.1 Known Change-Points

According to table 3.1, there both treatments seem to a�ect signi�cantly pain relief in patients experi-
encing sub-acute pain (p− valueV ACV=0.0082 and p− valueACV <0.001 respectively), while the hazard
rate appears to be slightly smaller for patients treated with Acyclovir. Hazard rate for patients treated
with Valacyclovir equals: exp(−(β0 + β1)) = 0.0124.

Moreover, hazard rates for both treatments in acute and chronic phase are relatively close. �ere is an
obvious decrease in baseline hazard as moving to PHN phase of pain, with the larger drop appearing
as we move from the sub-acute to patients feeling chronic pain. Consequently, it will take longer for
patients in PHN state to be in a painless state.

Table 3.1: Parameter estimates of the piecewise exponential model, using change-points of 30 and 120
days. Last column contains baseline hazards (λi ) as caluclated for Acyclovir (ACV) and Valacyclovir
(VACV) respectively.

Phases Parameters Estimate (s.e.) p-value λACV λV ACV

I
α0 4.3675 (0.0945) <0.001
α1 -0.1161 (0.1144) 0.3103 0.0127 0.0142

II
β0 4.6849 (0.0921) <0.001
β1 -0.2941 (0.1110) 0.0082 0.0092 0.0124

III
γ0 5.3916 (0.2357) <0.001
γ1 -0.1655 (0.2981) 0.579 0.0046 0.0054

-2Loglik: 8482 AIC: 8494

3.3.2 Unknown Change-Points

First, 2000 data points were simulated from a piecewise exponential model. �e purpose of this was to
apply grid search method and evaluate its �ndings. Moreover, half of the observations were generated
from a PEM with known change - points set at 50 and 120 respectively and vector of baseline hazards
λ j for j=1,2,3 intervals set at λ j =(0.02,0.01,0.005), while censored observations were generated from a
simple exponential model with rate equal to 0.002. �e grid was initially set for a small number of pairs
(e.g. 100) close to the region of change-points (τ1, τ2). �e program executed in R 3.1.2 was set for 2500
candidate pairs of points, taken from intervals (21,70) for τ1 and (91,140) for τ2 respectively. However,
this approach is considered computationally intensive and involves quite an amount of time to complete
its replications. �erefore, the procedure was only repeated up to maximum 50 times. Estimates of
change - points and baseline hazards were really close to their initial values as seen in table A.7.
Grid - search on zoster paradigm data set was applied next. �e �rst and second cut-o� point are
estimated τ1=52 and τ2=136 respectively. Standard errors of the estimates appear to be really small,
based on results of table 3.2 a�er reproducing 100 bootstrap samples. According to the results, there is a
decreasing trend in hazard rate with respect to di�erent phases of pain and di�erent treatment groups.
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According to the table of change-point estimates, a bigger decline is visible as one goes from sub-acute
to chronic phase of pain.

Table 3.2: For i=1,0 treatments Acyclovir (ACV) and Valacyclovir (VACV) respectively and j=1,2,3
intervals, standard errors and 95% CI for baseline hazards (λi j ) are produced from Bootstrap for B= 100

replications.

Parameters Estimate (s.e.) 95% CI

change-point
τ1 52 (7.104) (39, 60)
τ2 136 (3.7346) (131, 139)

Hazard λ01 0.0134 (0.0011) (0.0117, 0.0155)
rate λ02 0.0069 (0.0008) (0.0057, 0.0087)
for ACV λ03 0.0016 (0.0011) (0.0, 0.0040)
Hazard λ11 0.0156 (0.0009) (0.0146, 0.0177)
rate λ12 0.0092 (0.0009) (0.0076, 0.0109)
for VACV λ13 0.0023 (0.0010) (0.0010, 0.0040)

MLE: 4204.902

Note. It would be legitimate to test the signi�cance of hazard rate di�erences among di�erent treat-
ment groups, across di�erent phases of pain. Desmond (2002) [3] applied this hypothesis testing which
appears to be the same used in Arani (2001) [4]. However, there is an interesting review by Kay [14],
according to which, even though it is clinically meaningful to consider di�erent phases of pain, the
di�erent treatment e�ects cannot be evaluated across those phases within the context of randomized
clinical trial.

Furthermore, it is interesting to see the �ndings of the graphical representation -likelihood estimates
for each candidate pair of change-points- in �gure 3.2. A black region appears around all pairs for
which, the 1st ”jump” is from the 40th day and above and it takes up to the 145th until the second
one appears. Around the 145th day of observation, there is almost a black line ”drawn”, proving that
likelihood function is ”�at” around that area. As a result, detecting an instant change, either increase or
drop, around that day is rather di�cult. In addition, ”�atness” is related to the calculation of the 2nd

derivative and thus, the Hessian matrix. Hence, that leads back to the main drawback of this complex
model: MLE cannot be calculated at all time points observed.
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Figure 3.2: Graphical representation of the log likelihood estimates regarding the pair of candidate
change-point

Even though estimates di�er yet they appear to be in the ”neighborhood” of the initial values. In
addition, the small standard errors produced vanish any doubts regarding the validity of the estimation
method. It should be underlined though, that the choice of initial values applied as well as the length of
the chosen grid play both a crucial role in this procedure. If the grid is forced to be minimized around 30
and 120 minimizing the amount of candidate pairs to a 100, the estimates will occur closer to boundaries
and therefore, closer to the initial change-point values. In addition, according to graph B.1 it is evident
that there is more information gathered until the 3rd trimester (90 days) of the observational period.
Combining those two facts, a strong argument can be made about the variation of the current results
compared to the estimations made by Desmond [3]. In addition, according to �gure B.4 estimated curve
of cumulative hazard rates for each treatment (i.e. negative logarithm of survival plo�ed against time till
pain cessation), there seems to be a ”break” close to the 30th and 130th day. Nonetheless, in �gure B.5
describing the ��ed cumulative hazards curves for each pair of change-points, seems that the ”break” is
more visible in the right plot, where estimated points of 52 and 136 days were applied.

Grid search in SAS. Moreover, a macro code programmed by Mahdi Sadat-Hashemi and his fellow
researchers http://www.runmycode.org/companion/view/675 that applies grid search for
1 change-point in SAS was used. �is program not only detects the change-point but also produces a
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Kaplan-Meier plot indicating the estimated ”jump”. �is time, the pair of change-points was detected
not jointly yet separately. �us, the code is applied twice, using each time each one of the intervals
previously de�ned ((21,70) and (91,140) respectively). �e procedure is based on likelihood estimation
according to theory discussed by Friedman [9]. Results are quite close to the ones produced in R,
with the two change-points estimates being 59 and 135 respectively. However this procedure can be
considered ad-hoc; maximum likelihood function is be�er to take both cut-o� points into consideration
when calculated. Finally, regardless the di�erences of these two methods, it is evident from table A.9
that the �t of these models does not di�er much. �at is something to be expected from the models
applying similar change-points, with reference to the 2nd and 3rd model of the table, still it is not
necessarily expected compared to the 1st model.
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Chapter 4

Discussion

Herpes Zoster occurs when latent varicella-zoster virus (or zoster) is reactivated, damaging patient’s
nervous system. Most common symptom of zoster is neuropathetic pain. �is characteristic pain can be
divided into three phases: acute, which follows the appearance of exanthemas, chronic or Post-Herpetic
Neuralgia (PHN) which usually appears 4 weeks a�er the onset of lesions regardless the healing process
and the sub-acute phase which lies in between. Antiviral treatment, like Acyclovir and Valacyclovir,
aims at cancelling the replication of zoster [1].

Main objective of this study was to evaluate the use of a piecewise exponential model with multiple
change-points. For that purpose, the model was applied within data similar to the one analyzed by
Desmond in 2002. Hence, this analysis [3] was used as a benchmark, while it was considered known
from the beginning that a two change-point model is needed. Moreover, treatment groups are de�ned
as follows: Acyclovir, 800mg 5 times per day for 7 days, Valacyclovir 1000mg, 3 times per day for 14
days and last, Valacyclovir, 1000mg for 7 days.
Data analysis begins with the Cox semi-parametric proportional hazards model, followed by a propor-
tionality assumption test, done both graphically and computationally. �en, the piecewise exponential
model is applied for 2 change-points in both cases: (i) known change-points (30,120) as de�ned by
Dworkin and Portenoy [2] and (ii) unknown, where they have to be estimated. In the la�er case, grid
search was applied both in R and SAS, �rst by taking all possible pairs among two intervals subjectively
chosen (exhaustive grid search) in R. Next, by applying one change-point macro in SAS using the same
intervals as before but with an ad-hoc way and comparing the two methods.
From the start, the Cox model has proven that Valacyclovir is more e�ective than Acyclovir, regardless
the way it was administrated. Hence, the two doses of Valacyclovir were merged in one category and
treatment was used in binary form. Passing forward to piecewise regression, hazard rates show a
decline as patient moves from acute to chronic phase. However, both treatments had a statistically
signi�cant e�ect regarding sub-acute phase only . Moreover, patients in Valacyclovir group appear to
have a higher hazard rate, leading as a consequence to a lower amount of time experiencing pain.

�en, change-points were estimated and corresponding hazard rates for each treatment were obtained
regarding each phase of zoster associated pain. Estimates appear to be close, regardless the fact that both
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change - points are estimated to be approximately 20 days later in time (τ1 =52 and τ2= 136 respectively).
Nonetheless, in the graphical representation of the ��ed cumulative hazard of the two models, when
cut-o� points are known and estimated respectively, it seems that the expected ”breaks” are more
distinct the second model rather than the �rst one. Another ma�er that puzzles, is the fact that results
from SAS macro and exhaustive grid search applied in R seem to be close. In a way, it can be justi�ed
from the fact that above the 140th day the likelihood gets ”�a�er” and the observations le� to estimate
are much less a�er the 90th day of observation, where only PHN patients are more likely to be found.
In the �rst method an ad-hoc procedure is followed, while in the last one the estimation is done jointly
and thus is preferred. It occurs that the length of the chosen grid ma�ers signi�cantly, as well as the
initial values used.

In the end, it is practically proven that a shorter observational period can be de�ned, for change-points
being 30 and 120 days, and have the same results as if the change-point were set approximately 15 -
20 days later. �us, a series of questions arise; �rst it is questionable whether a direct comparison of
treatments across di�erent states of pain can be made. Although Goodman [5] has thoroughly discussed
the use of Wald test statistic for that ma�er and Arani [4] applied a test as such, Kay [14] �nds it
statistically implausible to do so, under the context of randomized clinical trials. Second, it would be
interesting to test the e�ect of other zoster-associated covariates and evaluate the risk factors. From
that moment on, it is a ma�er of sample size requirements and appropriate level of signi�cance in order
for a researcher to detect a treatment e�ect, in suitable level of power.
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Appendix A

Tables

Table A.1: �antitave data description.

Variable Description mean (median) std dev (min , max) missing

ZTIMETO Time till pain cessation 60.67 (36.0) 58.13 (0, 174) 3
Age 68.48 (69.0) 9.96 (49, 99)

Total: 1141 observations

Table A.2: �alitative data description.

Variable N (%)

Sex
Male 493 (43.21)
Female 648 (56.79)
Race
White 1080 (94.65)
Black 35 (3.07)
Other 26 (2.28)
Baseline Pain 5 obs. missing

Yes 1025 (90.23)
No 111 (9.77)

Total 1141 observations

Table A.3: Treatment and corresponding dose in herpes zoster study.

Treatment Dose N(%)

Acyclovir 800mg,5/day for 7 days 376 (32.95)
Valacyclovir 1000mg,3/day for 14 days 381 (33.39)
Valacyclovir 1000mg for 7 days 384 (33.65)
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Table A.4: Censoring in herpes zoster study.

Censored N (%)

Yes (0) 359 (31.55)
No (1) 779 (68.45)
Missing 3 (0.26)

Table A.5: Summary of events for Acyclovir at 800 mg 5 times daily for 7 days (ACV-7d), Valacyclovir at
1000 mg for 7 days (VACV-7d) and Valacyclovir at 1000 mg 3 times daily for 14 days.

Treatment Events Censored (%)

ACV-7d 248 127 (33.87)
VACV-14d 268 112 (29.47)
VACV-7d 263 120 (31.33)

Table A.6: Hazard ratios between treatment groups: Acyclovir at 800 mg 5 times daily for 7 days
(ACV-7d), Valacyclovir at 1000 mg for 7 days (VACV-7d) and Valacyclovir at 1000 mg 3 times daily for
14 days with corresponding p-values and 95% Wald Con�dence Limits.

Parameters HR p-value 95 % Wald CL

ACV vs VACV - 7d 0.824 0.0290 (0.693, 0.980)
ACV vs VACV - 14d 0.833 0.0387 (0.701, 0.991)
VACV - 7d vs VACV - 14d 0.989 0.8993 (0.834, 1.173)

Table A.7: Standard errors and 95% CI produced a�er B= 50 replications, on censored data simulated
from piecewise exponential model with τ1=50 τ1=120.

Parameters Estimates (s.e.) 95% CI

change-point
τ1 50 (2.9829) (46,52)
τ2 117 (7.1407) (100.675 126.0)

baseline
λ1 0.02 (0.0009) (0.0188,0.0214)

hazard λ2 0.0102 (0.0009) (0.0089,0.0214)
λ3 0.005 (0.0004) (0.0039,0.0061)

Table A.8: Estimates of change-points (τest ), corresponding hazard rates (h1,h2) and (absolute) value of
maximum likelihood, a�er applying separately SAS Macro.

τest MLE h1 h2

59 4221.65 0.0146 0.0066
135 4234.31 0.0122 0.0020

22



Table A.9: Fit Statistics of 3 di�erent piecewise exponential model: (i) de�ned by Desmond, (ii) estimated
change - points with Grid search from R and (iii) estimated change-points ad-hoc, with macro in SAS

2 change-point PEM -2Loglik AIC

(30,120) 8482.0 8494.0
(52,136) 8409.8 8421.8
(59,135) 8422.4 8434.4
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Appendix B

Figures

Figure B.1: Histogram of variable describing time in days until termination of zoster-associated pain.
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Figure B.2: Plot of Kaplan - Meier product limit estimator for Acyclovir versus Valacyclovir for the 3
di�erent doses, whith merged dose categories.

Figure B.3: Plot of Schoenfeld residuals, for the case of Acyclovir versus Valacyclovir of merged dose
categories.
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Figure B.4: Plot of Estimated Cumulative Hazard rated for Acyclovir (red) and Valacyclovir (blue).

(a) PEM with change points: 30 & 120 days (b) PEM with change points: 52 & 136 days

Figure B.5: Fi�ed Cumulative Hazards plot of piecewise exponential models for given and estimated
change-points (a) (30,120) and (b) (52,136) respectively. Each curve belongs to a treatment (Acyclovir:
red, Valacyclovir: blue).
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Appendix C

Codes

C.1 SAS Code

/* EDA */

DATA trial1; SET aa.trial1;

KEEP ZTIMETO LTRT TRT

AGE RACE SEX BASEPAIN

CENS_Z RASHON;

RUN;

/* QUALITATIVES */

PROC FREQ DATA=trial1;

TABLE CENS_Z TRT LTRT

RACE SEX BASEPAIN;

RUN;

/* QUANTITATIVES */

PROC MEANS N MEAN MIN MAX

MEDIAN STD DATA=aa.trial1;

VAR ZTIMETO AGE RASHON;

run;

/* CENSORING INDICATOR */

DATA trial1; SET trial1;

IF CENS_Z="Y" THEN DO;

CENSOR=0; END;

IF CENS_Z="N" THEN DO;

CENSOR=1; END;

RUN;

/* MISSING VALUES */

PROC FREQ DATA= trial1;

TABLE ZTIMETO AGE RASHON;

RUN;/*check freq of 0 obs.*/

/* Binary trt */

/* 1138 obs */

DATA trial; SET trial1;

LENGTH LTRT2 $10.;

IF LTRT="Acyclovir 7 days"

THEN DO;

TRT2=0;LTRT2="ACV";END;

IF LTRT="Valaciclovir 7 days"

THEN DO;

TRT2=1;LTRT2="VACV";END;

IF LTRT="Valaciclovir 14 days"

THEN DO;

TRT2=1;LTRT2="VACV";END;

/* Variables of interest */

KEEP ZTIMETO TRT LTRT TRT2

LTRT2 CENSOR;

IF CENSOR=. THEN DELETE;

RUN;

/* 1138 obs to analyze */

/* COX MODEL. PART */
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/*LOG-RANK test for TRT*/

ODS GRAPHICS OFF;

PROC LIFETEST DATA=TRIAL

PLOTS=(s,ls,h) CS=NONE;

TIME ZTIMETO*CENSOR(0);

STRATA LTRT;

/*TRT can be used as well*/

/*LTRT has trt with dose*/

RUN;

/*COX REGRESSION*/

/* initial trt variable */

/* VACV14 -->baseline */

ODS GRAPHICS ON;

PROC PHREG DATA=TRIAL;

CLASS LTRT(REF="VACV14");

MODEL ZTIMETO*CENSOR(0)=LTRT

/TIES=EFRON RL;

HAZARDRATIO LTRT2;

RUN;

/* binary trt*/

PROC PHREG DATA=TRIAL;

CLASS TRT2;

MODEL ZTIMETO*CENSOR(0)= TRT2

/TIES= EFRON RL;

run;

/* PROPORTIONALITY TEST */

/*Add time-dep covariate*/

PROC PHREG DATA=TRIAL;

CLASS TRT2;

MODEL ZTIMETO*CENSOR(0)=TRT2

TRT_TIME;

TRT_TIME=TRT2*ZTIMETO;

RUN;

/*Schoenfeld resid plot*/

PROC PHREG DATA=TRIAL;

CLASS LTRT2(ref="ACV");

MODEL ZTIMETO*CENSOR(0)=LTRT2;

OUTPUT OUT= PROPOTEST

RESSCH = SCHOENRES;

RUN;

PROC SGPLOT DATA=PROPOTEST;

LOESS X=ZTIMETO

Y=SCHOENRES /CLM;

RUN;

/*Empirical estim of Cum Haz*/

/*method=ch= NA estim*/

PROC PHREG DATA= trial;

MODEL ZTIMETO*censor(0)=TRT2;

output out=figure

LOGSURV=ls

/method = ch;

run;

DATA fig;

set figure;

haz=-ls;

run;

PROC SORT

DATA= fig;

by TRT2 ZTIMETO;

run;

proc gplot data = fig;

plot haz*ZTIMETO=TRT2 ;

symbol1 i=sm50

line=1 c =red;

symbol2 i=sm50

line=2 c =blue;

label haz="Estimated CH";

run;

/*** PEM ***/

/*for known change-points*/

PROC LIFEREG DATA=TRIAL;
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MODEL ZTIMETO*CENSOR(0)=TRT2

/DIST=EXPONENTIAL;

RUN;

PROC NLMIXED DATA=TRIAL;

PARMS a0=4.6558 a1=-0.2155;

*Interval Indicators;

D1= (ZTIMETO <30);

D2= (ZTIMETO>=30);

linp1 = a0 + a1*TRT2;

linp2 = b0 + b1*TRT2;

* Baseline hazard ;

l1= exp(-linp1);

l2= exp(-linp2);

* Hazard function ;

h = l1*D1 + l2*D2;

* Survival function ;

S = exp(-l1*ZTIMETO)*D1 +

exp(-l1*30 -l2*(ZTIMETO-30))*D2;

loglik = CENSOR*log(h) + log(S);

MODEL ZTIMETO ˜ GENERAL(loglik);

RUN;

/* 2 CP PEM*/

PROC NLMIXED DATA=TRIAL;

PARMS a0=4.3591 a1=-0.182

b0=5.1296 b1=-0.2359;

*automatically set c0=c1=1;

D1= (ZTIMETO<30);

D2= ( (ZTIMETO>=30)

and (ZTIMETO<120) );

D3= (ZTIMETO>=120);

linp1= a0 + a1*TRT2;

linp2= b0 + b1*TRT2;

linp3= c0 + c1*TRT2;

l1 = exp(-linp1);

l2 = exp(-linp2);

l3 = exp(-linp3);

h = l1*D1 + l2*D2 + l3*D3;

S = exp(-l1*ZTIMETO)*D1 +

exp(-l1*30 -l2*(ZTIMETO-30))*D2 +

exp(-l1*30 - l2*(120-30)

-l3*(ZTIMETO-120))*D3;

loglik = censor*log(h) + log(S);

MODEL ZTIMETO ˜ GENERAL(loglik);

PREDICT 1-S out=cdfnew;

RUN;

C.2 R Code

install.packages("msm")

library(msm)

### SIMULATION ###

loglik<-function(lambda,censor,

data,points=c(50,120)){

n<-length(data)

fx<-dpexp(data,rate=lambda,

t=c(0,points))*(censor==0)+

(1-ppexp(data,rate=lambda,

t=c(0,points)))*(censor==1)

-sum(log(fx))

}

candidates<-cbind(rep(21:70,

each=50),rep(91:140,50))

## 50 repetitions ##

myestimates<-NULL

for (j in 1:50) {

print(j)

data<-rpexp(1000,

rate=c(0.02,0.01,0.005),

t=c(0,50,120))

censd<-rexp(1000,0.002)

censor<-as.numeric(censd<data)

data<-apply(cbind(data,censd),
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1,min)

## for each grid point

## calculate maxim. likel.

logl<-estim<-NULL

for (i in 1:dim(candidates)[1]){

points<-candidates[i,]

myml<-optim(c(0.05,0.02,0.01),

loglik,censor=censor,

data=data, points=points)

logl<-c(logl,myml$value)

estim<-rbind(estim,myml$par)

}

maxML<-candidates[which.min(logl),]

maxMLlambda<-estim[which.min(logl),]

myestimates<-rbind(myestimates,

c(maxML,maxMLlambda))

}

## for s.e. and 95% CI

## Check at the end of Bootstrap

## HERPES ZOSTER DATA

## named zoster data set

## 3 columns:

## ZTIMETO, TRT2, censor

## Set the likelihood function

loglik<-function(lambda,censor,

data,trt,points=c(30,120)){

lambda1<-lambda[1:3] #ACV

lambda2<-lambda[4:6] #VACV

n<-length(data)

## censor==1 for events

## censor==0 for censored

t<- trt==0

fx1<-dpexp(data[t],rate=lambda1,

t=c(0,points))*(censor[t]==1)+

(1-ppexp(data[t],rate=lambda1,

t=c(0,points)))*(censor[t]==0)

t<- trt==1

fx2<-dpexp(data[t],rate=lambda2,

t=c(0,points))*(censor[t]==1)+

(1-ppexp(data[t],rate=lambda2,

t=c(0,points)))*(censor[t]==0)

-sum(log(fx1))-sum(log(fx2))

}

## choose grid

## form all possible pairs

candidates<-cbind(rep(20:60,

each=40),

rep(90:130,40))

## Grid search

logl<-estim<-NULL

for(i in 1:dim(candidates)[1]){

print(i)

points<-candidates[i,]

## initialvalues= vector of

## initial values for lambda

myml<-optim(initialvalues,

loglik,

censor=zoster$censor,

data=zoster$ZTIMETO,

points=points,trt=zoster$TRT2,

control=list(maxit=5000))

logl<-c(logl,myml$value)

estim<-rbind(estim,myml$par)}

maxML<-candidates[which.min(logl),]

maxMLlambda<-estim[which.min(logl),]

## BOOTSTRAP ##
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keepmaxML<-logl

keepmaxMLlambda<-estim

myestim<-NULL

n<-dim(zoster)[1]

## for j=100 reps

for (j in 1:100) {

print(j)

nn<-sample(1:n,n,replace=TRUE)

new<-zoster[nn,]

logl<-estim<-conv<-NULL

for(i in 1:dim(candidates)[1]){

points<-candidates[i,]

myml<-optim(keepmaxMLlambda,

loglik,

censor=new$censor,

data=new$ZTIMETO,

points=points,trt=new$TRT2,

control=list(maxit=5000))

logl<-c(logl,myml$value)

conv<-c(conv,myml$conergence)

estim<-rbind(estim,myml$par)

}maxML<-candidates[which.min(logl),]

maxMLlambda<-estim[which.min(logl),]

myestim<-rbind(myestim,

c(maxML,maxMLlambda))}

## s.e. and 95% CI

se<-apply(estim,2,sd);se

CI<-matrix(NA,ncol(bootzost),2)

for (i in 1:nrow(CI)){

CI[i,]<-round(quantile(bootzost[,i],

prob=c(0.025, 0.975)),4)

};CI

## image plot (Likelihood)

image(seq(21,70,by=1),

seq(91,140,by=1),matrix(logl,50,50),

col=gray((0:32)/32),

xlab="1st change point",

ylab="2nd change point")
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