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SUMMARY:

The availability of high throughput technologies such as microarrays and next generation sequencing

have made it possible to cheaply collect large amounts of drug-gene expression data sets. Combining

compounds and their characteristics with gene expression data is called connectivity mapping and holds

promise for in-depth analysis and understanding of biological processes, discovery of new drug targets

and new drugs and prediction of toxic potential of unknown compounds. These goals can be achieved

using the connectivity map data base and using appropriate methods.

For studying relationships between gene expression profiles of human cells following the introduction

of chemical compounds and the fingerprints of the compounds, the recently developed Multiple factor

analysis (MFA) which seeks patterns in data consisting of quantitative as well as qualitative variables can

be applied. The results of the MFA can often be made more robust by applying hierarchical clustering

analysis. In addition, ignoring the gene expression profiles and working only with fingerprints of com-

pounds, it was determined whether groups of compounds are associated with groups of fingerprints using

five different methods: Multiple correspondence analysis (MCA), Binary inclusion-maximal biclustering

(Bimax) algorithm, Factor analysis for Bi-cluster acquisition (FABIA), Iterative Binary biclustering of

gene sets and Factor analysis for binary data. These biclustering approaches simultaneously cluster rows

and columns of the data matrix.

The performance of the biclcustering methods applied in this study appeared to be similar except for

BiMax and FABIA. MCA, IBBiGS and Factor analysis for binary data yielded very similarly results

on most of the biclusters. Given the different approaches to biclustering the methods all identified the

compounds: 4,5-dianilinophthalimide, N-phenylanthranilic acid, flufenamic acid, phenyl and biguanide

except for BiMax which only identified 4,5-dianilinophthalimide, N-phenylanthranilic acid and flufenamic

acid. In addition, these compounds were found to exhibit the fingerprints: FP47, FP105, FP140 and

FP215. These were consistently present in these compounds across the different methods except for

BiMax where none of the fingerprints featured. The poor performance of BiMax could be attributed

to the sparsity in the data whereas FABIA is not intended for binary data and should be cautiously

interpreted.

In conclusion, for exploring local patterns, no one method could be judged superior over the others as

evidenced in the literature. However, for sparse binary data like the one we presented in this study,

a combination of the results from the three methods: factor analysis for binary data, multiple corre-

spondence analysis (MCA) and Iterative Binary biclustering of gene sets (IBBiGs) will be the most

optimal approach as they appear to be robust especially to sparse binary data. In addition, for a

combination of groups of variables (quantitative and qualitative), the multiple factor analysis (MFA)

combined with hierarchical clustering should be used. Finally the compounds 4,5-dianilinophthalimide,

N-phenylanthranilic acid, flufenamic acid, phenyl and biguanide with their fingerprints FP47, FP105,

FP140, FP215 should be further investigated.
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1 Introduction

The most recent advances in biotechnology have lead to the generation of huge amounts of data such as

drug-treatment gene expression data which could be used to understand biological processes, discover

new targets and new drugs and predict toxic potential of unknown compounds. In modern drug discovery

pipelines, the data collected, includes three important sources:

1. Chemical properties of the compounds being investigated (Fingerprints)

2. Bio-assay data for targets of interest (targets), and more recently

3. Micro-array gene expression data.

These data sets are hosted within the Connectivity Map (CMap) database (Lamb et al., 2006) which

provides the basis for a data-driven study of drug-effect relationships at a genome- wide level. In effect,

CMap is host to the largest collection of high-dimensional gene expression profiles derived from treatment

of three different cultured human cells with over one thousand bioactive small molecules (Lamb et al.,

2006). The idea is that any perturbation to the gene expression profiles can be summarized by a gene

signature. These gene signatures are often obtained using microarray technologies and used as proxies

of disease phenotypes and drug effects. The matching of different diseases to chemical compounds based

on gene signatures is known as connectivity mapping (Parkkinen and Kaski, 2014).

Connectivity mapping has been used in several different studies revealing new biological links between

drugs and between drugs and diseases. In addition, genome-wide gene expression responses from the

CMap have been used to discover clusters of drugs having similar mechanisms of action in turn resulting

in novel findings, such as effects of heat shock protein inhibitors and identification of modulators of

autophagy (Iorio et al., 2010). Finally the CMap data have also been successfully used in large scale

integrative studies including the analysis of regulation of drug targets (Iskar et al., 2010) and interactions

of drugs with protein networks (Laenen et al., 2013).

A particular challenge is the separate or integrated statistical analysis of these multiple data sources

from the CMap database in order to uncover local patterns. To this regard, several methods have been

used. The particular methods to be used depend on the particular data type to be analyzed and on the

goals of the analysis.

A traditional, popular and very successful method that has been used to discover patterns in data of

such nature is clustering. Most clustering algorithms such as the unsupervised hierarchical clustering

(EisenMB et al. 1998) or partitioning methods such as Partitioning around Medoids (PAM) (Kauf-

man,1990) try to group data (compounds) into classes in which within-group similarity is maximized, or

for which between-group similarity is minimized, all based on a well defined similarity measure. In ad-

dition, most of these clustering methods are one-dimensional: they can only cluster the rows or columns

of a matrix separately or for one then followed by the other (Eren et al. 2012). This aspect imposes

a limitation to traditional clustering methods on microarray data especially in drug design, where re-

searchers want to reveal how compounds affect gene expression. For example many chemical structures

or drug targets are common to a given set of compounds and vice versa. In addition, certain genes can
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be co-expressed only under the influence of a given set of chemical compounds. These same genes might

be expected to behave differently in the presence of other sets of compounds. The discovery of local

patterns of this nature holds promise for mining and possibly discovering new pathways or biomarkers.

A recent and more complete and promising approach is called biclustering which allows for the simul-

taneous clustering of both rows and columns in the data matrix. Thus whereas clustering seeks for

global patterns, biclustering is after local patterns. The idea of biclustering was first introduced to gene

expression analysis by Cheng and Churh (2000). Following this, several algorithms have been proposed

for finding biclusters in data tables.

Such clusters are biologically interesting since they not only allow us to capture the correlated genes,

but also enable the identification of genes that do not behave similar in all conditions (Eren et al. 2012).

Hence, biclustering is more likely to yield the discovery of biological clusters that a clustering algorithm

might fail to recover.

A rather different approach to biclustering is to find clusters of compounds for example and then de-

termine genes and chemical structures that are associated with these clusters. This is the case with

the recently redeveloped approach that can handle different data types such as gene expressions and

fingerprints called Multiple Factor Analysis (MFA) (Escofier, B. and Pagès, J. ,1990; Bécue-Bertaut M

and Pagès J, 2008). This method enables us to study a combination of quantitative and qualitative

variables in order to determine the association between chemical structure of compounds and gene ex-

pression profiles obtained on the same compounds. This has the tendency to increase the power for

detecting compound fingerprint features that are associated with groups of compounds which in turn

up or down-regulate groups of genes. MFA also provides a balanced group representation that makes it

possible to identify specific and common structures.

Motivated by an appetite for local patterns in the CMap database, this thesis aimed at applying different

data reduction, clustering and visualisation techniques to identify local patterns.

The main objectives of this study were to identify groups of compounds with defined fingerprints that

co-regulate groups of genes. More specifically,

• the gene expression profiles of cells following the introduction of chemical compounds with defined

fingerprints will be explored to determine which compounds with which chemical structures co-

regulate which genes.

• In addition using only the fingerprint matrix, several biclustering methods will be used to determine

if they identify similar groups of compounds associated with similar fingerprint structures.

• Account for sparseness in the binary data matrix

10



2 Material and Methods

2.1 Data description and pre-processing

2.1.1 The CMAP database

The CMAP database supplied is a subset of the larger cmap database and consisted of a gene expression

matrix with 2434 genes, a target matrix with 477 targets and a fingerprint matrix with 250 chemical

structures on 56 chemical compounds. A target was coded on the 0-1 binary scale where 1 reflected

affinity of the chemical compound to the target and zero for lack of affinity of the compound to the

target. We note that many compounds can have affinity to the same target. Since the names of these

targets were too long, an alternative renaming scheme was applied so that the new names were bio1 up

until bio477 to represent the 477 targets. On the other hand, a fingerprint was coded on a 0-1 binary

scale to give the representation of the molecular structure of the compounds where 1 coded for the

presence of the sub-structure (referred to as a fingerprint structure which can be an atom, or an atom

with several bonds) and 0 to code for the absence of the fingerprint feature. In a similar manner, since

the names of the fingerprints were rather too long, we renamed to FP1 to FP250 to represent the 250

fingerprints.

Table 1: Gene and fingerprint matrix showing the gene expression levels and the molecular structure of
the compounds where 1 codes for the presence of the sub-structure and 0 otherwise

LOC100129361 PDCD6IP SH2B3 SAE1 FP2 FP3 FP4 ...
metformin -0.07 -0.06 -0.06 -0.10 0.00 0.00 0.00 ...

phenformin -0.02 -0.06 -0.01 -0.04 0.00 0.00 0.00 ...
phenyl biguanide 0.06 -0.02 0.01 0.02 0.00 0.00 0.00 ...

estradiol -0.00 0.02 -0.02 -0.00 0.00 0.00 0.00 ...
dexamethasone -0.04 -0.06 -0.06 -0.03 0.00 0.00 0.00 ...

verapamil -0.09 -0.11 0.27 -0.45 0.00 0.00 0.00 ...
exemestane -0.04 -0.12 0.19 -0.10 0.00 0.00 0.00 ...

rofecoxib -0.00 -0.04 0.01 0.02 0.00 0.00 0.00 ...
amitriptyline -0.12 -0.08 0.06 -0.07 0.00 0.00 0.00 ...

15-delta prostaglandin J2 0.07 -0.02 0.13 -0.21 0.00 0.00 0.00 ...
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

.. ...

Table 1 is a juxtaposed table containing in its first 2434 columns the genes and in the next 250 columns,

the fingerprints. Each row on the table represents a chemical compound.

Table 2 represents the fingerprint matrix for the 56 compounds under consideration. Since these are all

binary matrices, the same biclustering methods were applied to them.

In this study, focus will be on Tables 1 and 2. The motivation for studying Table 1 is to explore the

MFA method which combines quantitative and qualitative data. On the other hand, for Table 2, the

motivation was to compare several methods for biclustering binary data.

2.1.2 Gene filtering and processing of the fingerprint matrix

Filtering was applied to reduce the number of genes prior to the MFA analysis. The idea of the filtering

was to remove genes where the intensities are consistently very low across all the compounds (say

11



Table 2: Fingerprint matrix showing the representation of the molecular structure of the compounds
where 1 coded for the presence of the sub-structure and 0 otherwise

Compound FP1 FP2 FP3 FP4 FP5 ...
metformin 0.00 0.00 0.00 0.00 0.00 ...
phenformin 0.00 0.00 0.00 0.00 0.00 ...
phenyl biguanide 0.00 0.00 0.00 0.00 0.00 ...
estradiol 0.00 0.00 0.00 0.00 0.00 ...
dexamethasone 0.00 0.00 0.00 0.00 0.00 ...
verapamil 0.00 0.00 0.00 0.00 0.00 ...
exemestane 0.00 0.00 0.00 0.00 1.00 ...
rofecoxib 0.00 0.00 0.00 0.00 0.00 ...
amitriptyline 0.00 0.00 0.00 0.00 0.00 ...
15-delta prostaglandin J2 0.00 0.00 0.00 0.00 0.00 ...
...

...
...

...
...

... ...

more than 25% of the compounds). A filtering based on variance and intensity was applied using the

filterVarInt() function under the a4base package. Typically an inter-quartile range (IQR) filtering

was applied with the option to cut off genes for which their intensity scores have IQR of less than 0.05

on the log base 2 scale. Here the normal IQR range of 0.5 was modified to 0.05 because at 0.5 no genes

were retained since the intensities were very low. In fact, the IQRs per gene for our data set were found

to be around 0.05.

Many of the fingerprints had very low frequencies for a given category or even the same value i.e values

were either only 0 or 1, so there was no variability in these variables. The MFA method does not work

when there is a categorical variable which has only one category because this causes what is known as

”separation” in the data matrix. Therefore, all fingerprint variables with only one level for the response

(1 or 0) were removed from the data base.

2.2 Methodology

In this subsection, the various methods that were applied across the two different data tables are briefly

described. Additional analysis steps that were performed to render the methods more comparable across

the different data tables are also discussed.

2.2.1 Multiple Factor Analysis

MFA is a multivariate ordination method that permits examination of common structures in data sets

with many variables that can be separated into different groups (Escofier and Pagès 1990) such as

gene expression profiles and fingerprints for chemical compounds. In other words, MFA is a principal

component/Multiple correspondence analysis method which allows to explore and visualise blocks of

data like those of Table 1 where the chemical compounds are described by their chemical structures and

gene expression profiles. The aim of the MFA is to study the similarities between compounds as viewed

by their chemical structures and also their corresponding gene expression profiles. In addition, MFA

also studies the links between groups of variables and compares the information brought by each group.

MFA proceeds in three steps:

12



• First it performs a principal component analysis (PCA) on the gene expression matrix, and a

multiple correspondence analysis (MCA) on the fingerprint matrix separately and ”normalizes”

each data table by dividing all its elements by the square root of the first eigenvalue obtained from

its PCA. This brings out the information that is common to each data table. The different data

tables are then juxtaposed as shown on Figure 1.

• Secondly, all the normalized data tables are aggregated into a grand data table that is analyzed via

a global (non-normalized) PCA that gives a set of factor scores for the compounds and loadings

for the different groups of variables. The global PCA amounts to computing a Singular Value

Decomposition (SVD) of the grand data table.

• Finally the individual datasets are then projected onto the global analysis. In this way, variables in

each group are permitted to maintain free covariances amongst themselves, and the relationships

between groups of variables can be examined without the influence of within-group covariance.

Compounds Genes Fingerprints  

 1 to  2434 1 to 250 
1   
. 
. 
. 
. 
. 

  

56   
 

MCA PCA 

Figure 1: Juxtaposed matrix showing the quantitative (gene expression) and qualitative (fingerprint)
variables for the 56 compounds

MFA provides for each data table a set of partial factor scores for the observations that reflect the specific

”view-point” of this data table. Interestingly, the common factor scores could be obtained by replacing

the original normalized data tables by the normalized factor scores obtained from the PCA/MCA of

each of these tables.

MFA was implemented using the mfa() function in the FactoMineR package in R (R Core Team,

2014) which takes as input, the data matrix in Table 1 with the fingerprints converted into characters.

Following the MFA, clustering was performed to take into account most of the information considered
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as relevant in the separate analyses (Bécue-Bertaut & Pages, 2007). In fact, as suggested by Lebart

(1994), MFA and MCA can be used as a pre-processing step for hierarchical cluster analysis.

The FactoMineR package contains a hierarchical clustering analysis function called HCPC (Hierar-

chical Clustering on Principal Components) that performs clustering to visualize and highlight the main

features of a dataset. It was used to draw a hierarchical cluster tree, select the clusters of compounds

and provide a description of the clusters as viewed by the genes and by the fingerprints.

2.2.2 Factor Analysis for Bicluster Acquisition (FABIA)

Factor Analysis for Bicluster Acquisition (FABIA) (Hochreiter et al., 2010) is a biclustering method that

biclusters gene expression profiles or fingerprints and compounds using Factor analysis. It is based on

a multiplicative model, which accounts for linear dependencies between gene expression or fingerprints

and compounds, and also captures heavy-tailed distributions as observed in real-world gene expression

data. In this framework, two vectors are similar if one is a multiple of the other and the angle between

them is zero. The algorithm selects the model parameters that best explain the data using a variational

expectation maximization (EM) algorithm (Hochreiter et al., 2006; Talloen et al., 2007).

The biclusters are found by sparse factor analysis where both the factors and the loadings are sparse

(Vectors containing many zeros or values close to zero are called sparse vectors) and ranked based on

their mutual information content. Weaker members of a bicluster are optionally pruned with a threshold.

This method was applied to Table 2. It is worth mentioning that FABIA was developed for continuous

data even though it is being used here on the binary (0,1) data. This was motivated by the fact the

method has been claimed to work well on binary data (Personal communication with Prof. Ziv Shkedy)

so we wanted to evaluate once more its performance.

Biclusters were generated using the fabia() function in the fabia package in R Bioconductor.

2.2.3 Binary inclusion-maximal biclustering algorithm: BiMax

Binary inclusion-maximal biclustering algorithm (BiMax) is a simple reference algorithm that seeks

biclusters of 1’s in a binary matrix. It was introduced as a reference algorithm for comparing other

methods by Prelic et al. (2006). It biclusters the data matrix using a divide-and-conquer approach,

recursively dividing it into a checker board format. The algorithm works only on binary data and thus

is only applicable to Table 2.

Essentially, considering Table 2=M as an example with rows from 1 to 56 and labelled Cpd1,...,Cpd56

and columns from 1:250 denoted FP=(FP1,...,FP250), the biclustering according to BiMax proceeds as

follows:

1. The algorithm starts by randomly choosing any row labelled Cpd* containing a mixture of 0’s and

1’s. If the chosen row has only 1’s then it is a bicluster otherwise there is no bicluster

2. The selected row (Cpd*) is used to cleave the matrix into two submatrices each of which can be

separately analyzed in turn.

14



3. The submatrices are found by diving the FP1,..,FP250 columns into two different groups: those

for which row Cp* is 1 and those for which it is 0.

• FPa = {fp : M [Cpd∗, fp] = 1}

• FPb = FP − FPa

4. Next, the 56 rows of M are split into three sets

• Cpda : Rows with 1’s only in FPa

• Cpdb : Rows with 1’s only in FPb

• Cpdc : Rows with 1’s in both FPa and FPb

5. The submatrix formed by (Cpda, FPb) is empty and cannot contain any biclusters.

6. The submatrix U (Cpda ∪ Cpdc, Cpda) and the submatrix V=(Cpdb ∪ Cpdc, FPa ∪ FPb) contain

all possible biclusters in M

7. The procedure continues by recursively processing U and V and ends if the current matrix repre-

sents a bicluster (contains only 1s).

The biclust package (Kaiser and Leisch, 2008) consists of biclustering algorithms including Bimax. To

run BiMax, the exact size of the expected biclusters has to be provided, because otherwise it would halt

prematurely, recovering only a small portion of the expected biclusters.

A bicluster in this study based on Table 2 was considered as a cluster of compounds with a strong co-

expression (association) across given fingerprints. The differential co-expression score for each bicluster

SB() was used to rank the biclusters. The score was computes using Chia and Karuturi Function ( Chia

and Karuturi, 2010). The function computes row (T) and column (B) effects for a chosen bicluster. The

scores for Strong positive SB scores indicated strong co-expression in the bicluster and weaker or no

co-expression out of the bicluster and vice versa.

2.2.4 The Iterative Binary Biclustering of Genesets (iBBiG)

The iBBiG algorithm (Gusenleitner et al. 2012) identifies bi-clusters (or modules) in a matrix of binary

data. iBBiG is optimized for discovering clusters in sparse noisy binary genomics data. iBBiG uses

an iterative approach which enables it to discover weak signals, even if they are potentially masked by

stronger ones. An advantage of iBBiG relative to other methods is that it does not require a priori

knowledge of the true number of clusters. Although iBBiG includes several parameters, it has been

shown that most impact is only on computation time and not on effective cluster discovery.

When applied to Table 2, iBBiG will extract clusters or ’modules’ of groups of compounds with similar

fingerprints. The clusters of compounds from iBBiG are ranked by an information score, and within

each cluster, compounds are ranked by a fitness score that measures its weight in the cluster. It uses

a genetic algorithm to maximize the size and entropy of each bi-cluster producing a small number of

bi-clusters. Finds overlapping clusters and has been shown to perform better than FABIA, bimax
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The number of true clusters can be estimated from the weighted cluster scores and RowScorexNumber of

the extracted clusters. RowScorexNumber gives the score for each compound (row) in each cluster and

can be used to select the top compounds in each cluster. A threshold of importance for each compound

was set as 5. Thus compounds with RowScorexNumber≥5 were considered as contributing highly to the

cluster in question. In addition, NumberxCol gives the number of fingerprints (columns) in each module

or cluster. The score for each module, the fingerprints and the compounds linked to the cluster were

presented in a table.

The iBBiG algorithm was applied using the iBBiG() function in the iBBiG package in R.

2.2.5 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA)(Greenacre, 1984) is an exploratory technique to identify and

visualize the relation(s) between fingerprints and compounds in Table 2.

A useful information provided by a MCA is that the original table is reduced to latent dimensions. These

dimensions are computed according to their contribution to the global χ2-statistic for the complete data

matrix. Only a limited number of latent dimensions are used for interpretation based on the inertia they

explain. Next, the fingerprints and compounds values are assigned a position with respect to these latent

dimensions which are the axes of two-dimensional (or three-dimensional) plots. In those plots, variable

values assigned to the same quadrant are associated. Taking into account our aim, viz. explaining the

origin of four instances of confounding, the relative positions of the variables values rather than the

interpretation of the latent dimensions are our main concern. The MCA was performed by means of

the of the MCA() function in the FactoMineR library in R. The input for the MCA is Table 2 and

analysis is based on an indicator matrix created from the table.

Methodologically, the interest in using MCA on the CMap data for uncovering local patterns can be

summarized as follows: First, it allows identifying the association between the different compounds and

their fingerprints. In addition, it allows creating a typology of the compounds based on the fingerprints,

Finally, the MCA points out which compounds are more similar amongst themselves, and what types of

fingerprints are predominant in their characterization.

For MFA and MCA, to search for variables that characterise each of the dimensions, the function

dimdesc() was used to observe which variables are highly correlated to a certain principal component.

It returns not only the correlation coefficients, but also performs a test if the variables are significant.

For each dimension for all genes with a p-value smaller than 0.05 the results are returned. For our study

we selected only genes that had an absolute correlation coefficient greater than 0.65 with each principal

component. For compounds, a useful heuristic is to base the interpretation of each dimension on the

compounds that have contributions larger than the average contribution.

For qualitative variables, a one-way ANOVA model is used where the response is each time the principal

component (dim or factor) and the categorical explanatory variable is the fingerprint or target. A list

is returned with the p-values based on an F-test for the overall significance of each variable. The list is

sorted so that at the top, we have the most characteristic variables and the least characteristic are at

the bottom.
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2.2.6 Exploratory Factor analysis for binary data

Factor analysis (Bartholomew ,1980) is a method to find similarities between variables and use these

similarities to group the variables into a smaller amount of factors. Factor analysis uses a correlation

matrix to compare if variables are similar to each other or not.

Standard methods of performing factor analysis assume that the variables are continuous and follow

a multivariate normal distribution. When the data includes variables that are binary such as those of

Table 2 a factor analysis can be performed using a polychoric correlation matrix.

The polychoric correlation matrix was computed using the function fa.poly() which computes a het-

erogenous correlation matrix, consisting of polychoric correlations between the binary variables.

The polychoric correlations were used to determine the number of interpretable factors based on the

verse simple structure criterion (VSS) of Revelle and Rocklins (1978). The VSS criterion compares the

fit of the simplified model to the original correlations and for a given complexity will tend to peak at

the optimal (most interpretable) number of factors (Revelle and Rocklin, 1979).

The compounds and fingerprints related to the selected factors were obtained using the fa.poly() func-

tion with a varimax rotation in the psych package (Revelle, 2012) in R. The varimax rotation is an

orthogonal rotation method, which tries to reach a minimum correlation between the different factors

and a high variance for each factor.

Studying the compounds means understanding the similarities between them in terms of their chemical

structures. In other words, to provide a typology of the compounds: which are the most similar (and

most dissimilar) compounds ? Are there groups of compounds which are consistent in terms of their

chemical structure similarities?. Two compounds will for instance be considered similar if they have the

same chemical structure. Compounds are compared on a basis of presence or absence of the chemical

structure in question. From this perspective alone, the distance between two compounds depends entirely

on their characteristics and not on those of the other compounds. However, it is important to account

for the characteristics of the other compounds when calculating this distance.

For computing the distance between two compounds consider the following:

• If two compounds respond positive to the same chemical structure, the distance which separates

them should be zero.

• If two compounds both respond positive to the same chemical structures, they should be close

together.

• If two compounds respond to all of the same chemical structures except for one which is selected

by one of the compounds and only rarely by all of the other compounds, they should be distanced

to account for the uniqueness of one of the two.

• If two compounds share a rare chemical structure, they should be close together despite their

differences elsewhere in order to account for their common distinctiveness.

These different examples can be used to show that the compounds must be compared category by
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category whilst at the same time taking into account the rarity or the universal nature of that category.
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3 Results

Based on the filtering by variance and intensity, 629 (25.8%) genes were retained and following the check

for separation in the data and removal of variables with only 0’s or 1’s, 249 out of the 250 fingerprints

were retained. Only a summary of the main results will be presented for each method. The R codes are

attached on the appendix.

3.1 MFA on Gene expression profiles and Fingerprints

The MFA() function under the FactoMineR package was used to perform a multiple factor analysis on

the two groups of variables. The fingerprints and gene expression profiles were all considered as active

sets of variables.

Prior to interpreting the results, the first step was to determine the number of factors to retain. Table

3 shows the proportion of variance explained based on the first few components. It was decided to keep

only components which explain at least 5% of the total variance. Besides only the first two eigen values

are greater than 1. Therefore only dimensions 1 and 2 (Factor 1 and Factor 2) were interpreted. It is

worth noting that the very small proportion of variances explained could be due to the sparseness of the

binary matrix for the fingerprints.

Table 3: Eigenvalues of the MFA and % of variance explained

eigenvalue % of variance cumulative % of variance
dim 1 1.37 7.11 7.11
dim 2 1.04 5.41 12.52
dim 3 0.92 4.77 17.28
dim 4 0.76 3.94 21.23
dim 5 0.73 3.79 25.02
dim 6 0.68 3.56 28.57
dim 7 0.66 3.41 31.98
dim 8 0.62 3.21 35.19
dim 9 0.57 2.94 38.13
dim 10 0.56 2.91 41.05

3.1.1 Group and partial axes representation

Figure 2 shows that the first dimension of the MFA is closely linked to the gene expression profiles for

the compounds whereas the second dimension in more closely linked to the fingerprints. In addition, the

gene expression profiles loaded very low on the second dimension whereas the fingerprints loaded fairly

high on the first dimension. The first two dimensions together explain only 12.5% of the total variance.

Figure 3 shows the projection of the PCA of the gene expression levels, and the MCA results of the

fingerprint data on the global PCA analysis. The circle of radius 1 represents the maximum length of a

partial standardized axes. The first two axes together explain only 12.5% of the total variance. The first

dimension from each group of variables are well represented on the global PCA. The first dimensions of
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Figure 2: Relationship square: representation of the different groups of variables indicating the gene
expression profiles of the compounds were more closely linked to dimension 1 whereas the fingerprints
were more closely linked to dimension 2

the gene expressions is highly linked to the first dimension of the MFA whereas the first dimension of

fingerprint appears to be highly linked to the second dimension of the MFA.

Based on Table 4, the fingerprints appear to have the highest influence on the overall results of the MFA

analysis followed by the gene expression. The RV coefficients (generalized correlation measure) between

groups of variables and the MFA consensus plot were > 0.5 implying that the consensus are sufficient.

In addition, the fingerprints appear to be only partially linked to the genes.

Table 4: RV-Coefficients showing the correlation between the overall MFA and each data set and between
datasets

Gene Fingerprt MFA
Gene 1.00 0.39 0.72

Fingerprint 0.39 1.00 0.92
MFA 0.72 0.92 1.00

Table 5: Contributions of gene expression profiles and fingerprints in each of the dimensions of the MF

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Gene 61.06 27.03 10.59 47.86 57.06

Fingerprint 38.94 72.97 89.41 52.14 42.94

Table 5 gives the contributions of the gene expression and the chemical structures of the compounds

20



●

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Partial axes

Dim 1 (7.11%)

D
im

 2
 (

5
.4

1
%

)

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Dim1.Gene

Dim2.Gene Dim3.Gene

Dim4.Gene

Dim5.Gene

Dim1.Fingerprt

Dim2.Fingerprt

Dim3.Fingerprt
Dim4.Fingerprt

Dim5.Fingerprt

Gene
Fingerprt

Figure 3: Representation of the partial axes (principal components of the PCA/MCA) on the first plane
of the MFA

to each component of the MFA. Dim2 and Dim3 appears to be due mainly to the fingerprint matrix.

Dim1 was mainly dominated by the gene expression whereas both have a weak association with Dim4

and Dim5.

Table 6 shows that overall, the first few dimensions were highly linked to the gene expression and the

fingerprints with the fingerprint being consistently highly linked to all dimensions.

Table 6: Correlations of gene expression profiles and fingerprints in each of the dimensions of the MFA

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Gene 0.92 0.64 0.66 0.84 0.93

Fingerprt 0.84 0.91 0.99 0.86 0.88

3.1.2 Lead compounds and genes for Factor 1 and Factor 2

For Factors 1 and 2 (dim 1 and 2), the average contribution was 1.785714 thus lead compounds were con-

sidered as those with contributions larger than 1.785714. The most important genes and lead compounds

for Factor 1 and Factor 2 are as shown on Figures 4 and 5 respectively.
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Figure 4: Lead compounds (contributions > the mean contribution) and highly correlated genes for Dim
1 (Factor 1)

From Figure 4 it can clearly be seen that all the compounds with high contributions to factor 1 im-

portantly regulated (up or down) all the genes highly correlated with factor 1. Compounds such as

verapamil, prednisolone and calmidazolium appeared to exert higher regulation activities compared to

the other compounds linked to factor 1. Similarly, from Figure 5, it appears that trifluoperazine and

LY-294002 exerted higher gene regulations on average compared to the other compounds linked to factor

2

3.1.3 Qualitative variables highly characteristic of Factor 1 and Factor 2

Among all the fingerprint categories that were significant (p-value < 0.05) based on the t-test comparing

the average of the category with the general mean, the top 10 for factor 1 and 2 are as presented on

Table 7 and 8 respectively. For factor 1, it can be concluded that the compounds which are linked to

factor 1, lacked fingerprints such as FP184, FP188 and FP19 and possessed the fingerprints FP211 and

FP218.

On the other hand, all the compounds with high contributions to factor 2 possessed fingerprints such as

FP240, FP151, FP92 and FP129 and did not contain fingerprints such as FP111, FP24 and FP196.

3.1.4 Hierarchical Cluster analysis
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Figure 5: Lead compounds (contributions > the mean contribution) and highly correlated genes for Dim
2 (Factor 2)

Table 7: Top 10 fingerprint categories that highly characterise Dim 1. These are ranked using p-values
of a t-test to compare the average of the category with the general mean.

Fingerprint Code Estimate p.value
FP184 0 1.15 <0.001
FP188 0 1.29 <0.001
FP19 0 2.08 <0.001

FP218 1 0.54 <0.001
FP66 0 1.42 <0.001

FP167 0 0.50 <0.001
FP239 0 0.63 <0.001
FP61 0 0.91 <0.001

FP162 0 0.82 <0.001
FP211 1 0.48 <0.001

Table 8: Top 10 fingerprint categories that highly characterise Dim 2. These are ranked using p-values
of a t-test to compare the average of the category with the general mean.

Fingerprint Code Estimate p.value
FP240 1 0.81 <0.001
FP151 1 1.19 <0.001
FP92 1 0.98 <0.001

FP129 1 1.30 <0.001
FP8 1 1.13 <0.001

FP111 0 0.94 <0.001
FP24 0 1.28 <0.001
FP91 0 0.99 <0.001

FP196 0 0.72 <0.001
FP46 1 0.95 <0.001
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Following the MFA, a HCPC (Hierarchical Clustering on Principal Components) analysis was performed

and it suggested 3 clusters of compounds as shown on Figure 6.
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Figure 6: Results of the clusters made by the cluster analysis using the Ward method. Cutting point
indicates the minimum possible groups that maximized the explained variance which was 3 in this case

The partitioning into 3 clusters is represented on the map produced by the first two principal components

and the compounds are coloured according to their cluster (Figure 7). The barycentre of each cluster

is also represented by a square. The graph shows that the 3 clusters are well-separated on the first two

principal components.

Table 9: Paragons: Compounds closest to the center of each cluster

CLUSTER
CLUSTER 1 chlorpromazine haloperidol thioridazine fluphenazine prochlorperazine

0.7996771 1.2681776 1.2796898 1.5208936 2.0682367
CLUSTER 2 dopamine tetraethylenepentamine celecoxib SC-58125 phenformin

0.4373451 0.4712053 0.5208013 0.5369278 0.5981553
CLUSTER 3 estradiol dexamethasone fludrocortisone fulvestrant exemestane

1.001026 1.154125 1.339470 1.569099 1.881981

Table 9 shows the compounds that are closest to the center of each cluster. As indicated, estradiol was

closest the center of cluster 3, dopamine to the center of cluster 2 and chlorpromazine to the center of

cluster 1. Therefore these compounds each best represent the various clusters to which they are closest

to the center.

On the other hand, compounds furthest from the barycenter of the other clusters from the one considered

are as shown on Table 10. As indicated, prednisolone is specific to cluster 3 but it is furthest from the
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Figure 7: Representation of the clusters on the map induced by the first two principal components

Table 10: Distance: Compounds furthest from the barycenter of the other clusters from the one consid-
ered

CLUSTER
CLUSTER: 1

calmidazolium verapamil trifluoperazine prochlorperazine fluphenazine
5.208793 5.114140 4.352992 3.994919 3.728681

CLUSTER: 2
trichostatin A N-phenylanthranilic acid 4,5-dianilinophthalimide imatinib genistein

5.664240 3.667819 3.635855 3.509624 3.503030
CLUSTER: 3
prednisolone fludrocortisone dexamethasone exemestane estradiol

4.692733 3.621239 3.533220 3.413393 2.113561
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center of clusters 1 and 2. Similarly, calmidazolium is specific to cluster 1 and is furthest from the centers

of cluster 2 and 3 whereas trichostatin A , specific to cluster 2 is furthest from the centers of cluster 1

and 3.

The three clusters obtained are characterised by quantitative (gene expression) as well as categorical

variables (fingerprints). When the clusters are characterized by categorical variables, such as ours, an

association test is performed between the categorical variables and the cluster variable and only the

categorical variables with a p-value <=0.02 are presented. The ranking is based on the values of the

test statistic with negative values indicating negative associations.

Description of cluster 1: Table 11 is a shortened version of the the full table showing the fingerprints

significantly associated with cluster 1. We have selected only the top 10 fingerprints according to the

significance of the correlation test (v.test) between the fingerprint and the cluster. Cla/Mod gives the

proportion of compounds which indicate presence of the chemical structure (FP) indicated and which are

present in cluster 1 whereas Mod/Cla gives the proportion of compounds in the cluster which indicate

presence of indicated chemical structure. For example, considering the fingerprint FP46, the value of

Cla/Mod is 100%. This says that of all the compounds in the study which indicate presence of the

chemical structure, all 100% of them are in cluster 1. On the other hand, Mod/Cla has a value of

62.5% stating that 62.5% of compounds in the cluster indicate presence of the chemical structure. The

percentage is different because the cluster is made of compounds which indicate presence of the chemical

structure and others which do not indicate presence of the chemical structure. From a global point of

view, the compounds in cluster 1 turn not to have the fingerprints listed (FP=0) as they were found to

be more significantly and negatively correlated with cluster 1 (global scores were all ≥ 55).

Table 11: Top 10 fingerprints highly positively or negatively correlated (based on v.test) with cluster 1

Cla/Mod Mod/Cla Global p.value v.test
FP239=FP239 1 70.00 87.50 17.86 <0.001 4.61

FP46=FP46 1 100.00 62.50 8.93 <0.001 4.33
FP200=FP200 1 83.33 62.50 10.71 <0.001 3.93
FP139=FP139 1 100.00 50.00 7.14 <0.001 3.73

FP67=FP67 1 100.00 50.00 7.14 <0.001 3.73
FP201=FP201 1 43.75 87.50 28.57 <0.001 3.58
FP167=FP167 1 32.00 100.00 44.64 <0.001 3.37
FP227=FP227 1 80.00 50.00 8.93 <0.001 3.32
FP107=FP107 1 55.56 62.50 16.07 <0.001 3.16
FP188=FP188 1 100.00 37.50 5.36 <0.001 3.09

FP99=FP99 0 9.43 62.50 94.64 <0.001 -3.09
FP107=FP107 0 6.38 37.50 83.93 <0.001 -3.16
FP227=FP227 0 7.84 50.00 91.07 <0.001 -3.32
FP167=FP167 0 0.00 0.00 55.36 <0.001 -3.37
FP201=FP201 0 2.50 12.50 71.43 <0.001 -3.58
FP139=FP139 0 7.69 50.00 92.86 <0.001 -3.73

FP67=FP67 0 7.69 50.00 92.86 <0.001 -3.73
FP200=FP200 0 6.00 37.50 89.29 <0.001 -3.93

FP46=FP46 0 5.88 37.50 91.07 <0.001 -4.33
FP239=FP239 0 2.17 12.50 82.14 <0.001 -4.61

Table 12 shows the top 10 up-regulated genes associated with cluster 1. These genes are mostly up-

regulated by the compounds in cluster 1.

Table 13 shows the top 10 down-regulated genes associated with cluster 1. These genes are mostly

down-regulated by the compounds that make up cluster 1
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Table 12: Top 10 up-regulated genes that characterise cluster 1

v.test Mean in category Overall mean sd in category Overall sd p.value
INSIG1 5.09 0.49 0.10 0.26 0.23 <0.001

LDLR 4.37 0.14 0.01 0.14 0.08 <0.001
BHLHE40 4.35 0.23 0.04 0.25 0.14 <0.001
CYP26A1 4.32 0.08 0.00 0.08 0.05 <0.001

SQLE 4.29 0.19 0.03 0.13 0.11 <0.001
HMGCS1 4.22 0.12 0.03 0.07 0.07 <0.001

LPIN1 4.10 0.21 0.05 0.19 0.12 <0.001
PLAU 4.02 0.10 0.01 0.09 0.06 <0.001

CCNG2 3.79 0.26 0.08 0.17 0.14 <0.001
HMGCR 3.78 0.18 0.05 0.13 0.10 <0.001

Table 13: Top 10 down-regulated gene that characterise cluster 1

v.test Mean in category Overall mean sd in category Overall sd p.value
NAT10 -3.48 -0.11 -0.03 0.07 0.06 <0.001

CDC123 -3.56 -0.09 -0.01 0.07 0.07 <0.001
PTDSS1 -3.67 -0.09 -0.01 0.07 0.06 <0.001

PTER -3.67 -0.09 -0.00 0.05 0.07 <0.001
ZMPSTE24 -3.69 -0.09 -0.00 0.09 0.07 <0.001

FPGT -3.85 -0.06 0.01 0.05 0.06 <0.001
ZNHIT6 -3.87 -0.14 -0.01 0.15 0.10 <0.001

ILF2 -4.02 -0.12 -0.01 0.15 0.08 <0.001
TM2D3 -4.25 -0.11 -0.01 0.08 0.07 <0.001

PNO1 -4.62 -0.12 -0.01 0.07 0.07 <0.001

Description of cluster 2

The compounds closest to the center of cluster 2 are: dopamine, tetraethylenepentamine, celecoxib,SC-

58125 and phenformin . Table 14 is a shortened version of the the full table showing the fingerprint

categories significantly associated with cluster 2.

Table 14: Description of Cluster 2 by the top 10 fingerprint categories

Cla/Mod Mod/Cla Global p.value v.test
FP176=FP176 0 84.00 100.00 89.29 0.00 3.91
FP111=FP111 0 84.00 100.00 89.29 0.00 3.91

FP89=FP89 0 89.74 83.33 69.64 0.00 3.60
FP185=FP185 0 85.11 95.24 83.93 0.00 3.52

FP46=FP46 0 82.35 100.00 91.07 0.00 3.47
FP239=FP239 0 84.78 92.86 82.14 0.00 3.23
FP231=FP231 0 80.77 100.00 92.86 0.00 3.00
FP230=FP230 0 80.77 100.00 92.86 0.00 3.00
FP139=FP139 0 80.77 100.00 92.86 0.00 3.00

FP67=FP67 0 80.77 100.00 92.86 0.00 3.00
FP219=FP219 1 33.33 7.14 16.07 0.01 -2.78
FP232=FP232 1 16.67 2.38 10.71 0.00 -2.99
FP200=FP200 1 16.67 2.38 10.71 0.00 -2.99
FP231=FP231 1 0.00 0.00 7.14 0.00 -3.00
FP230=FP230 1 0.00 0.00 7.14 0.00 -3.00
FP139=FP139 1 0.00 0.00 7.14 0.00 -3.00

FP67=FP67 1 0.00 0.00 7.14 0.00 -3.00
FP239=FP239 1 30.00 7.14 17.86 0.00 -3.23

FP46=FP46 1 0.00 0.00 8.93 0.00 -3.47
FP185=FP185 1 22.22 4.76 16.07 0.00 -3.52

From a global point of view, the compounds in cluster 2 turn not to possess the fingerprints listed (FP=0)

as they were found to be more significantly and positively correlated with cluster 2 (global scores were

all ≥ 83).
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Table 15 shows the top 10 up-regulated genes associated with cluster 2 whereas Table 16 shows the top

10 down-regulated genes associated with cluster 2. These genes are up-regulated and down-regulated

respectively following the introduction of the compounds in cluster 2.

Table 15: Top 10 up-regulated genes that characterise cluster 2

v.test Mean in category Overall mean Overall sd p.value
FPGT 3.54 0.03 0.01 0.05 0.06 <0.001

MTERFD1 3.25 0.00 -0.02 0.07 0.08 <0.001
VAMP3 3.23 0.00 -0.01 0.05 0.07 <0.001
TM2D3 2.99 0.00 -0.01 0.05 0.07 <0.001

ILF2 2.94 0.01 -0.01 0.04 0.08 <0.001
PNO1 2.80 0.00 -0.01 0.05 0.07 0.01

PCYOX1 2.80 0.05 0.03 0.09 0.10 0.01
TTC19 2.75 0.01 -0.01 0.04 0.05 0.01
PTER 2.68 0.01 -0.00 0.07 0.07 0.01

NUP37 2.60 0.00 -0.01 0.05 0.06 0.01

Table 16: Top 10 down-regulated genes that characterise cluster 2

v.test Mean in category Overall mean Overall sd p.value
SQLE -2.62 0.00 0.03 0.09 0.11 0.01
LPIN1 -2.73 0.02 0.05 0.08 0.12 0.01

HMGCR -2.74 0.03 0.05 0.08 0.10 0.01
HMGCS1 -2.82 0.01 0.03 0.05 0.07 <0.001

PLAU -3.09 -0.00 0.01 0.04 0.06 <0.001
LDLR -3.22 -0.01 0.01 0.05 0.08 <0.001

INSIG1 -3.28 0.04 0.10 0.15 0.23 <0.001
BHLHE40 -3.33 0.00 0.04 0.07 0.14 <0.001
CYP26A1 -3.48 -0.01 0.00 0.04 0.05 <0.001

DNMBP -4.07 -0.01 0.01 0.04 0.05 <0.001

Description of cluster 3

The compounds that closest to the center of cluster 3 are: estradiol , dexamethasone, fludrocortisone,

fulvestrant and exemestane. Table 17 is a shortened version of the the full table showing the fingerprints

significantly associated with compounds in cluster 3.

Table 17: Description of Cluster 3 by the categories of the fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP111=FP111 1 100.00 100.00 10.71 <0.001 5.54
FP219=FP219 1 66.67 100.00 16.07 <0.001 4.70
FP185=FP185 1 66.67 100.00 16.07 <0.001 4.70
FP232=FP232 1 83.33 83.33 10.71 <0.001 4.43
FP176=FP176 1 83.33 83.33 10.71 <0.001 4.43
FP231=FP231 1 100.00 66.67 7.14 <0.001 4.10
FP126=FP126 1 80.00 66.67 8.93 <0.001 3.72

FP91=FP91 1 80.00 66.67 8.93 <0.001 3.72
FP196=FP196 1 50.00 83.33 17.86 <0.001 3.56

FP89=FP89 1 35.29 100.00 30.36 <0.001 3.55
FP89=FP89 0 0.00 0.00 69.64 <0.001 -3.55

FP196=FP196 0 2.17 16.67 82.14 <0.001 -3.56
FP126=FP126 0 3.92 33.33 91.07 <0.001 -3.72

FP91=FP91 0 3.92 33.33 91.07 <0.001 -3.72
FP231=FP231 0 3.85 33.33 92.86 <0.001 -4.10
FP232=FP232 0 2.00 16.67 89.29 <0.001 -4.43
FP176=FP176 0 2.00 16.67 89.29 <0.001 -4.43
FP219=FP219 0 0.00 0.00 83.93 <0.001 -4.70
FP185=FP185 0 0.00 0.00 83.93 <0.001 -4.70
FP111=FP111 0 0.00 0.00 89.29 <0.001 -5.54
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From a global point of view, the compounds in cluster 3 possess the fingerprints listed (FP=1) as they

were found to be more significantly and positively correlated with cluster 3 (global scores were all ≥ 66)

Table 18 shows the top 10 up-regulated genes associated with cluster 3 one down-regulated gene associ-

ated with cluster 3. In the presence of the compounds in cluster 3, these genes are regulated.

Table 18: Top 10 Up-regulated genes and one down regulated gene that characterise cluster 3

v.test Mean in category Overall mean sd in category Overall sd p.value
SNAI2 2.79 0.10 0.02 0.09 0.08 0.01
CLPP 2.78 0.06 0.01 0.05 0.04 0.01
PPAN 2.52 0.10 0.01 0.09 0.09 0.01

COMMD3 2.41 0.12 0.04 0.10 0.09 0.02
DNMBP 2.38 0.05 0.01 0.04 0.05 0.02

RDBP 2.36 0.05 -0.00 0.05 0.06 0.02
ACTG1 2.33 0.06 -0.01 0.11 0.08 0.02

ZIC1 2.23 0.08 -0.01 0.13 0.11 0.03
NAV2 2.19 0.07 0.02 0.07 0.07 0.03
NAT1 2.17 0.04 -0.01 0.04 0.06 0.03

APOBEC3C -2.64 -0.06 0.01 0.03 0.07 0.01

3.2 MCA on Fingerprints (Table 2)

The MCA was applied to Table 2 which does not include gene expression, and the results were used to

perform a hierarchical clustering analysis. For the first two factors (dimensions), the lead compounds

and the fingerprints were obtained and are represented in the subsections that follow:

Prior to interpreting the results from the MCA, the first step was to determine the number of factors to

retain. Table 19 shows the proportion of variance explained based on the first few components. It was

decided to keep only components which explain at least 5% of the total variance. Besides only the first

two eigen values are greater than 1. Therefore only dimensions 1 and 2 (Factor 1 and Factor 2) were

interpreted. It is worth noting that the very small proportion of variances explained could be due to the

sparseness of the binary matrix for the fingerprints.

Table 19: Eigenvalues of the MCA and % of variance explained

eigenvalue % of variance cumulative % of variance
dim 1 0.07 6.94 6.94
dim 2 0.06 5.80 12.74
dim 3 0.04 4.39 17.13
dim 4 0.04 4.19 21.32
dim 5 0.04 3.96 25.28
dim 6 0.04 3.74 29.02
dim 7 0.03 3.39 32.41
dim 8 0.03 3.35 35.76
dim 9 0.03 3.10 38.87
dim 10 0.03 2.94 41.81
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3.2.1 Lead compounds highly contributing to factor 1 and 2 based on the MCA

For Factors 1 and 2 (dim 1 and 2) based on the MCA, the average contribution for all compounds was

1.785714 thus lead compounds were considered as those with contributions larger than 1.785714. The

lead compounds for Factor 1 and Factor 2 are as presented on Table 20.

Table 20

Table 20: Compounds with high contributions to factors 1 and 2

Factor % Var explained Compounds
Factor 1 6.94 estradiol, dexamethasone, exemestane , prednisolone, fludrocortisone,

chlorpromazine , trifluoperazine, prochlorperazine , fluphenazine,
fulvestrant, imatinib , clozapine

Factor 2 5.80 estradiol , dexamethasone , prednisolone
fludrocortisone, fulvestrant, N-phenylanthranilic acid , diclofenac,
chlorpromazine , trifluoperazine , prochlorperazine , fluphenazine,
4,5-dianilinophthalimide, exemestane

3.2.2 Qualitative variables highly characteristic of Factor 1 and Factor 2

Among all the fingerprint categories that were significant (p-value < 0.05) based on the t-test comparing

the average of the category with the general mean, the top 10 for factor 1 and 2 are as presented on

Table21 and 22 respectively. For factor 1, it can be concluded that the compounds which are highly

linked to factor 1, did not contain the listed fingerprints with the exception of FP150.

Table 21: Top 10 fingerprint categories that highly characterise Dim 1. These are ranked using p-values
of a t-test to compare the average of the category with the general mean.

Fingerprint Code Estimate p.value
FP111 0 0.32 <0.001
FP91 0 0.31 <0.001

FP232 0 0.28 <0.001
FP219 0 0.23 <0.001
FP18 0 0.37 <0.001

FP185 0 0.22 <0.001
FP126 0 0.28 <0.001
FP77 0 0.35 <0.001

FP150 1 0.16 <0.001
FP237 0 0.35 <0.001

Table 22: Top 10 fingerprint categories that highly characterise Dim 2. These are ranked using p-values
of a t-test to compare the average of the category with the general mean.

Fingerprint Code Estimate p.value
FP99 1 0.36 <0.001
FP67 1 0.31 <0.001
FP46 1 0.27 <0.001

FP139 1 0.30 <0.001
FP227 1 0.25 <0.001
FP151 1 0.27 <0.001
FP239 1 0.18 <0.001
FP96 1 0.37 <0.001

FP200 1 0.22 <0.001
FP89 1 0.15 <0.001
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The HCPC (Hierarchical Clustering on Principal Components) analysis on the coordinates of the com-

pounds resulting from the MCA suggested 6 clusters as shown on Figure 8.
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Figure 8: Result of the clusters made by the cluster analysis using the Ward method. Cutting point
indicates the minimum possible groups that maximized the explained variance. There were 6 clusters in
total

The partitioning into six clusters is represented on the map produced by the first two principal com-

ponents and the compounds are coloured according to their cluster (Figure 9). The barycentre of each

cluster is also represented by a square. The graph shows that the six clusters are fairly well-separated

on the first two principal components.

The first cluster is made up of: dexamethasone , fludrocortisone , prednisolone and exemestane which

are closest to its centre. Table 23 is a shortened version of the the full table showing the fingerprint

categories significantly associated with cluster 1.

Table 23: Description of Cluster 1 by fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP237=FP237 1 100.00 75.00 5.36 < 0.001 3.80

FP77=FP77 1 100.00 75.00 5.36 < 0.001 3.80
FP24=FP24 1 100.00 75.00 5.36 < 0.001 3.80
FP18=FP18 1 100.00 75.00 5.36 < 0.001 3.80

FP148=FP148 1 100.00 50.00 3.57 < 0.001 2.89
FP121=FP121 1 100.00 50.00 3.57 < 0.001 2.89
FP120=FP120 1 100.00 50.00 3.57 < 0.001 2.89

FP31=FP31 1 100.00 50.00 3.57 < 0.001 2.89
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Figure 9: Representation of the clusters on the map induced by the first two principal components

The second cluster is made up of: 15-delta prostaglandin J2 , arachidonic acid and arachidonyltriflu-

oromethane. Table 24 is a shortened version of the the full table showing the fingerprint categories

significantly associated with cluster 2.

The third cluster is made up of: estradiol, raloxifene, nordihydroguaiaretic acid, tomelukast, genistein,

fulvestrant, dopamine, resveratrol, butein, and benserazide. However, those that are closest to its

barycenter are:resveratrol, nordihydroguaiaretic acid , dopamine, butein and benserazide. Table 25 is

a shortened version of the the full table showing the fingerprint categories significantly associated with

cluster 3.

The fourth cluster is made up of metformin, phenformin, verapamil, rofecoxib, amitriptyline, cele-

coxib, LM-1685, SC-58125, LY-294002, ciclosporin, indometacin, MK-886, sulindac, exisulind, stau-

rosporine, trichostatin A, diclofenac, fasudil,valproic acid, imatinib, tetraethylenepentamine, clozapine,

thioridazine, haloperidol, chlorpromazine, W-13, quinpirole, calmidazolium, bucladesine, probucol, noco-

dazole, tioguanine. However those that are closest to its center are: SC-58125, celecoxib, fasudil, stau-

rosporine and trichostatin A . Table 26 is a shortened version of the the full table showing the fingerprint

categories significantly associated with cluster 4.

The fifth cluster is made up of: 4,5-dianilinophthalimide, N-phenylanthranilic acid, flufenamic acid,

phenyl, biguanide. Table 27 is a shortened version of the the full table showing the fingerprints signifi-

cantly associated with cluster 5. Based on the global scores (>75), it can be concluded that the cluster

is made up of compounds without the listed fingerprints.
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Cla/Mod Mod/Cla Global p.value v.test
FP126=FP126 1 80.00 100.00 8.93 < 0.001 4.35

FP91=FP91 1 80.00 100.00 8.93 < 0.001 4.35
FP111=FP111 1 66.67 100.00 10.71 < 0.001 4.10
FP237=FP237 1 100.00 75.00 5.36 < 0.001 3.80

FP77=FP77 1 100.00 75.00 5.36 < 0.001 3.80
FP24=FP24 1 100.00 75.00 5.36 < 0.001 3.80
FP18=FP18 1 100.00 75.00 5.36 < 0.001 3.80

FP219=FP219 1 44.44 100.00 16.07 < 0.001 3.58
FP185=FP185 1 44.44 100.00 16.07 < 0.001 3.58
FP230=FP230 1 75.00 75.00 7.14 < 0.001 3.44
FP230=FP230 0 1.92 25.00 92.86 < 0.001 -3.44
FP219=FP219 0 0.00 0.00 83.93 < 0.001 -3.58
FP185=FP185 0 0.00 0.00 83.93 < 0.001 -3.58
FP237=FP237 0 1.89 25.00 94.64 < 0.001 -3.80

FP77=FP77 0 1.89 25.00 94.64 < 0.001 -3.80
FP24=FP24 0 1.89 25.00 94.64 < 0.001 -3.80
FP18=FP18 0 1.89 25.00 94.64 < 0.001 -3.80

FP111=FP111 0 0.00 0.00 89.29 < 0.001 -4.10
FP126=FP126 0 0.00 0.00 91.07 < 0.001 -4.35

FP91=FP91 0 0.00 0.00 91.07 < 0.001 -4.35

Table 24: Description of Cluster 2 by fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP123=FP123 1 100.00 100.00 5.36 < 0.001 4.13
FP207=FP207 1 75.00 100.00 7.14 < 0.001 3.80
FP146=FP146 1 75.00 100.00 7.14 < 0.001 3.80
FP195=FP195 1 60.00 100.00 8.93 < 0.001 3.57
FP203=FP203 1 42.86 100.00 12.50 < 0.001 3.22
FP143=FP143 1 100.00 66.67 3.57 < 0.001 3.10

FP68=FP68 1 100.00 66.67 3.57 < 0.001 3.10
FP223=FP223 1 37.50 100.00 14.29 < 0.001 3.09
FP234=FP234 1 66.67 66.67 5.36 0.01 2.76
FP132=FP132 0 20.00 100.00 26.79 0.02 2.40
FP132=FP132 1 0.00 0.00 73.21 0.02 -2.40
FP234=FP234 0 1.89 33.33 94.64 0.01 -2.76
FP223=FP223 0 0.00 0.00 85.71 < 0.001 -3.09
FP143=FP143 0 1.85 33.33 96.43 < 0.001 -3.10

FP68=FP68 0 1.85 33.33 96.43 < 0.001 -3.10
FP203=FP203 0 0.00 0.00 87.50 < 0.001 -3.22
FP195=FP195 0 0.00 0.00 91.07 < 0.001 -3.57
FP207=FP207 0 0.00 0.00 92.86 < 0.001 -3.80
FP146=FP146 0 0.00 0.00 92.86 < 0.001 -3.80
FP123=FP123 0 0.00 0.00 94.64 < 0.001 -4.13

The sixth cluster is made up of:trifluoperazine , fluphenazine and prochlorperazine. Table 28 is a

shortened version of the the full table showing the fingerprint categories significantly associated with

cluster 6. Based on the global scores, it can be concluded that the cluster is made up of compounds

without the listed fingerprints.

3.3 BiMax on Fingerprints (Table 2)

Table 29 shows the results of 5 biclusters obtained using the BiMax algorithm. The clusters were

ranked using the SB score. The resulting biclusters contain large groups of compounds which exhibit
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Table 25: Description of Cluster 3 by fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP226=FP226 1 90.91 100.00 19.64 < 0.001 6.29
FP153=FP153 1 100.00 60.00 10.71 < 0.001 4.51
FP136=FP136 1 100.00 50.00 8.93 < 0.001 3.99
FP218=FP218 1 34.48 100.00 51.79 < 0.001 3.45
FP141=FP141 1 100.00 40.00 7.14 < 0.001 3.44
FP117=FP117 1 100.00 40.00 7.14 < 0.001 3.44
FP147=FP147 1 100.00 30.00 5.36 < 0.001 2.85
FP115=FP115 1 100.00 30.00 5.36 < 0.001 2.85
FP150=FP150 0 27.78 100.00 64.29 0.01 2.69
FP167=FP167 0 29.03 90.00 55.36 0.02 2.39
FP167=FP167 1 4.00 10.00 44.64 0.02 -2.39
FP150=FP150 1 0.00 0.00 35.71 0.01 -2.69
FP147=FP147 0 13.21 70.00 94.64 < 0.001 -2.85
FP115=FP115 0 13.21 70.00 94.64 < 0.001 -2.85
FP141=FP141 0 11.54 60.00 92.86 < 0.001 -3.44
FP117=FP117 0 11.54 60.00 92.86 < 0.001 -3.44
FP218=FP218 0 0.00 0.00 48.21 < 0.001 -3.45
FP136=FP136 0 9.80 50.00 91.07 < 0.001 -3.99
FP153=FP153 0 8.00 40.00 89.29 < 0.001 -4.51
FP226=FP226 0 0.00 0.00 80.36 < 0.001 -6.29

Table 26: Description of Cluster 4 by fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP167=FP167 1 84.00 65.62 44.64 < 0.001 3.62
FP226=FP226 0 68.89 96.88 80.36 < 0.001 3.51
FP218=FP218 0 77.78 65.62 48.21 < 0.001 2.95
FP153=FP153 0 64.00 100.00 89.29 < 0.001 2.87
FP111=FP111 0 64.00 100.00 89.29 < 0.001 2.87
FP136=FP136 0 62.75 100.00 91.07 0.01 2.54

FP91=FP91 0 62.75 100.00 91.07 0.01 2.54
FP56=FP56 1 100.00 21.88 12.50 0.01 2.44

FP209=FP209 1 90.00 28.12 17.86 0.02 2.28
FP161=FP161 1 90.00 28.12 17.86 0.02 2.28
FP209=FP209 0 50.00 71.88 82.14 0.02 -2.28
FP161=FP161 0 50.00 71.88 82.14 0.02 -2.28

FP56=FP56 0 51.02 78.12 87.50 0.01 -2.44
FP136=FP136 1 0.00 0.00 8.93 0.01 -2.54

FP91=FP91 1 0.00 0.00 8.93 0.01 -2.54
FP153=FP153 1 0.00 0.00 10.71 < 0.001 -2.87
FP111=FP111 1 0.00 0.00 10.71 < 0.001 -2.87
FP218=FP218 1 37.93 34.38 51.79 < 0.001 -2.95
FP226=FP226 1 9.09 3.12 19.64 < 0.001 -3.51
FP167=FP167 0 35.48 34.38 55.36 < 0.001 -3.62

small groups of fingerprints. An additional observed characteristic of the biclusters is that there is

an overlap with respect to the compounds and the finger prints. The compounds raloxifene, MK-888,

butein, genistein, sulindac and N-phenylanthranilic acid were present in all the 5 biclusters reported by

BiMax algorithm indicating that a strong grouping tendency for these compounds. The corresponding

fingerprint that were common to all top 4 clusters were FP76, FP83, and FP132 with FP83 present all

the compounds in all the biclusters.

In comparison with the results of MCA, it can be seen that the first two compounds closest to the

center of cluster 4 of the MCA: SC-58125 and celecoxib were all present in the top 3 biclusters based

on BiMax. However the corresponding fingerprints related to these compounds were different. Those

based on BiMax FP76; FP83 and FP132 were not among those based on MCA for cluster 4. In addition,

three top compounds for cluster 5 of the MCA: 4,5-dianilinophthalimide, N-phenylanthranilic acid and
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Table 27: Description of Cluster 5 by fingerprints

Cla/Mod Mod/Cla Global p.value v.test
FP215=FP215 1 100.00 100.00 7.14 < 0.001 4.69
FP105=FP105 1 80.00 100.00 8.93 < 0.001 4.35
FP245=FP245 1 100.00 75.00 5.36 < 0.001 3.80
FP157=FP157 1 100.00 75.00 5.36 < 0.001 3.80
FP140=FP140 1 40.00 100.00 17.86 < 0.001 3.44
FP171=FP171 1 28.57 100.00 25.00 < 0.001 3.00
FP102=FP102 0 28.57 100.00 25.00 < 0.001 3.00

FP81=FP81 1 50.00 75.00 10.71 < 0.001 2.99
FP47=FP47 1 50.00 75.00 10.71 < 0.001 2.99
FP72=FP72 1 100.00 50.00 3.57 < 0.001 2.89
FP44=FP44 0 3.70 50.00 96.43 < 0.001 -2.89
FP81=FP81 0 2.00 25.00 89.29 < 0.001 -2.99
FP47=FP47 0 2.00 25.00 89.29 < 0.001 -2.99

FP171=FP171 0 0.00 0.00 75.00 < 0.001 -3.00
FP102=FP102 1 0.00 0.00 75.00 < 0.001 -3.00
FP140=FP140 0 0.00 0.00 82.14 < 0.001 -3.44
FP245=FP245 0 1.89 25.00 94.64 < 0.001 -3.80
FP157=FP157 0 1.89 25.00 94.64 < 0.001 -3.80
FP105=FP105 0 0.00 0.00 91.07 < 0.001 -4.35
FP215=FP215 0 0.00 0.00 92.86 < 0.001 -4.69

Table 28: Description of Cluster 6 by fingerprints.

Cla/Mod Mod/Cla Global p.value v.test
FP99=FP99 1 100.00 100.00 5.36 < 0.001 4.13

FP151=FP151 1 75.00 100.00 7.14 < 0.001 3.80
FP139=FP139 1 75.00 100.00 7.14 < 0.001 3.80

FP67=FP67 1 75.00 100.00 7.14 < 0.001 3.80
FP227=FP227 1 60.00 100.00 8.93 < 0.001 3.57

FP46=FP46 1 60.00 100.00 8.93 < 0.001 3.57
FP200=FP200 1 50.00 100.00 10.71 < 0.001 3.38

FP92=FP92 1 50.00 100.00 10.71 < 0.001 3.38
FP101=FP101 1 100.00 66.67 3.57 < 0.001 3.10

FP96=FP96 1 100.00 66.67 3.57 < 0.001 3.10
FP101=FP101 0 1.85 33.33 96.43 < 0.001 -3.10

FP96=FP96 0 1.85 33.33 96.43 < 0.001 -3.10
FP200=FP200 0 0.00 0.00 89.29 < 0.001 -3.38

FP92=FP92 0 0.00 0.00 89.29 < 0.001 -3.38
FP227=FP227 0 0.00 0.00 91.07 < 0.001 -3.57

FP46=FP46 0 0.00 0.00 91.07 < 0.001 -3.57
FP151=FP151 0 0.00 0.00 92.86 < 0.001 -3.80
FP139=FP139 0 0.00 0.00 92.86 < 0.001 -3.80

FP67=FP67 0 0.00 0.00 92.86 < 0.001 -3.80
FP99=FP99 0 0.00 0.00 94.64 < 0.001 -4.13

flufenamic acid, were subsets in bicluster 4 based on BiMax

Overall, based the chemical compounds, some clusters for MCA and some biclusters BiMax were similar.

However none of the fingerprints exhibited by the compounds were similar across the two methods for

neither of the clusters nor biclusters.

3.4 Results of iBBiGs on Fingerprints (Table 2)

Table 30 shows all the biclusters obtained using the iBBiG method. The results indicated that the

compounds in bicluster 4: nocodazole,4,5-dianilinophthalimide , imatinib, diclofenac, phenyl, biguanide

exhibiting the fingerprints: FP47, FP75, FP105 ,FP138, FP140, FP150, FP171 and FP215 constitute a
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Table 29: Biclusters obtained using the BiMax algorithm

Bicluster Score Fingerprints Compounds
1 3.53 FP76, FP83 ,FP127, estradiol, verapamil, raloxifene,

FP132 nordihydroguaiaretic acid, celecoxib, LM-1685,
SC-58125 indometacin, MK-886, genistein, sulindac,
exisulind, fulvestrant, flufenamic acid, imatinib,
clozapine, thioridazine, chlorpromazine, trifluoperazine,
W-13, prochlorperazine, calmidazolium, fluphenazine,
dopamine, resveratrol, butein, nocodazole, 4,5-dianilinophthalimide

2 3.47 FP76, FP83, rofecoxib, raloxifene, celecoxib, LM-1685,
FP132, FP211 SC-58125, tomelukast, LY-294002, indometacin,

MK-886, genistein, sulindac, exisulind, fulvestrant,
staurosporine, flufenamic acid,
N-phenylanthranilic acid, trichostatin A, diclofenac,
fasudil, imatinib, haloperidol, W-13, butein,
nocodazole, 4,5-dianilinophthalimide, benserazide

3 3.46 FP76, FP83, FP127, raloxifene, celecoxib, LM-1685 ,SC-58125,
FP132, FP211 indometacin, MK-886 ,genistein,

sulindac, exisulind, fulvestrant,
flufenamic acid, imatinib, W-13 ,
butein, nocodazole, 4,5-dianilinophthalimide

4 3.45 FP76 ,FP83, dexamethasone, exemestane, rofecoxib ,
FP211, FP229 15-delta prostaglandin J2, raloxifene,

LM-1685, tomelukast ,LY-294002 ,ciclosporin ,
indometacin ,MK-886 ,prednisolone, genistein,
fludrocortisone, sulindac ,exisulind ,staurosporine,
flufenamic acid, N-phenylanthranilic acid ,
trichostatin A, diclofenac, imatinib ,
haloperidol, bucladesine ,butein,
nocodazole, 4,5-dianilinophthalimide ,benserazide

5 3.38 FP83, FP211, dexamethasone, 15-delta prostaglandin J2,
FP218, FP229 raloxifene, tomelukast, ciclosporin ,

indometacin, MK-886 ,prednisolone ,
genistein, fludrocortisone ,sulindac
exisulind, flufenamic acid,
N-phenylanthranilic acid, trichostatin A ,diclofenac
haloperidol, arachidonic acid ,
bucladesine, butein, benserazide

bicluster which is similar to the bicluster obtained by cluster 5 of the the MCA method. In fact all the

compounds obtained in cluster 5 of the MCA form a subset of those obtained by the IBBiG algorithm.

However, only a subset (FP215, FP105, FP140, FP47) of the fingerprints exhibited by cluster 4 of iBBiG

were found based on cluster 5 of the MCA. In addition, cluster 1 of the MCA and cluster 2 of IBBiG

were similar with respect to the compounds in each bicluster but only fairly agreed on the fingerprints

(only FP18 and FP4 were found across the two methods). Finally cluster 1 and 3 of iBBiGs has similar

bicluster contents with respect to the compounds present as those of biclusters 4 and 6 of the MCA

respectively. Their fingerprints did not match.

3.5 FABIA on Fingerprints (Table 2)

For interpreting the biclusters and ranking their components, two different scores were used: bixv and

biypv. bixv gives the values of the extracted compounds that have absolute values above a threshold

whereas biypv gives the values of the extracted fingerprints that have absolute values above a threshold.

Table 31 shows the results of 4 biclusters obtained using the FABIA method.
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Table 30: IBBiG results

Factor Score Fingerprints Compounds
1 203.9 FP76 , FP83, FP102, raloxifene, LM-1685 , tomelukast, indometacin,

FP108 FP127 FP229, MK-886, sulindac, exisulind, fulvestrant, imatinib
FP132 FP211 FP218

2 47.3 FP18 , FP24, FP75 , FP89 dexamethasone, prednisolone ,fludrocortisone
FP111 ,FP126 ,FP144 ,
FP91 FP95 , FP178, FP185,
FP176 FP232,
FP196, FP219, FP230 ,FP231

3 47.2 FP76 , FP79 , FP83, thioridazine, trifluoperazine, prochlorperazine
FP102, FP132, FP239, FP240 ,
FP138, FP150, FP167, FP201

4 36.3 FP47, FP75, FP105 ,FP138 , flufenamic acid N-phenylanthranilic acid ,
FP140 ,FP150 ,FP171, FP215 nocodazole ,4,5-dianilinophthalimide ,

imatinib, diclofenac, phenyl, biguanide
5 33.3 FP8 , FP46, FP67 , FP92 , FP96, trifluoperazine, prochlorperazine, fluphenazine

FP98 , FP99 ,FP101 ,FP104,
FP107 ,FP129 ,FP139, FP151,
FP184, FP188 ,FP200 ,FP227

Table 31: FABIA results

Factor Score Fingerprints Compounds
1 670 FP102 FP171 FP228 FP243 tetraethylenepentamine, W-13

FP177 FP103 FP20
2 521 FP161 FP172 FP140 FP76 tioguanine

FP83 FP241 FP244
FP55 FP220 FP177

3 501 FP171 FP132 FP150 FP138 N-phenylanthranilic acid,
FP140 FP83 FP105 4,5-dianilinophthalimide, phenyl,
FP76 FP47 FP81 FP229 FP74 biguanide , diclofenac,
FP75 FP157 FP245 and flufenamic acid
FP215 FP211 FP145
FP72 FP218 FP192 FP44 FP225

4 488 FP165 FP75 FP160 metformin
FP79 FP167 FP220
FP108 FP78 FP177

3.6 Factor analysis on Fingerprints (Table 2)

The very simple structure (VSS) procedure indicated that 8 factors should be retained for this analysis.

The results of the first four factors are as presented on Table 32. All compounds with absolute scores

≥10 and all fingerprints with weights≥0.7 were considered as the most linked to the factors. The results

obtained appear to be quite similar to those of MCA and iBBiG in terms of the content of the biclusters.

In addition cluster 4 was similar to cluster 5 of MCA method, cluster 4 of iBBiG and cluster 3 of FABIA.
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Table 32: Factor analysis results

Factor Score Fingerprints Compounds
1 52.74 FP10, FP12 ,FP14 , phenyl, biguanide , raloxifene , LM-1685 ,

FP25 ,FP39 ,FP40 ,FP93 MK-886 , genistein , trichostatin A ,
valproic acid , imatinib
W-13 butein, tioguanine,

2 23.61 FP18, FP24 , FP77, FP91 phenyl, biguanide , estradiol, dexamethasone,
FP120, FP121, FP126, exemestane ,15-delta prostaglandin J2 , LM-1685,
FP219, FP230 ,FP231, indometacin , prednisolone , fludrocortison
FP176, FP185, FP237, fulvestrant , fasudil , imatini
FP111, FP232 clozapine , chlorpromazine , W-13,

nocodazole , 4,5-dianilinophthalimide
3 19.87 FP8 , FP46 , FP67 ,FP139 , verapamil, 15-delta prostaglandin J2 , sulindac

FP151 ,FP188 ,FP200 ,FP227 , exisulind , valproic acid , imatinib
FP98 , FP99 ,FP101, FP129, clozapine , thioridazine , chlorpromazine
FP92 , FP239 ,FP96 trifluoperazine , arachidonic acid , prochlorperazine

fluphenazine , bucladesine , butein,benserazide
4 19.04 FP47 FP105 FP140 phenyl biguanide , estradiol , verapamil,

FP145 ,FP157 ,FP215, raloxifene , fulvestrant , flufenamic acid,
FP245 N-phenylanthranilic acid , diclofenac , imatinib

4,5-dianilinophthalimide

4 Discussion and Conclusions

The availability of high throughput technologies such as microarrays and next generation sequencing

is making it possible to cheaply and rapidly collect large amounts of drug-gene expression datasets.

Combining compounds and their characteristics with gene expression data is called connectivity mapping

and holds promise for in-depth analysis and understanding of biological processes, discovery of new drug

targets and new drugs and prediction of the toxic potential of unknown compounds. These goals can be

achieved using the connectivity map data base and using appropriate statistical analysis methods.

The first objective of this study was to identify groups of compounds with defined fingerprints that co-

regulate groups of genes using the CMap database. This was achieved using the MFA method developed

by Escofier and Pagès (1990) and used in many different studies (Abdi et al. 2013, de Tayrac et al. 2009).

The MFA revealed groups of compounds with or without particular fingerprints that co-regulated groups

of genes and which are all linked to latent factors (dimensions). The results of the MFA were beefed

with those of hierarchical clustering analysis which also indicated clusters of compounds with particular

chemical structures inducing activity in groups of genes. Regarding the MFA, it is worth noting that the

low proportions of variance explained by the first few principal components of the global MFA analyses is

related to the heterogeneity of the matrices for the fingerprints that were used, in which the proportions

of some of the fingerprints were too low. This is why the MFA results should be combined with those of

a hierarchical cluster analysis to improve performance and viability of the MFA (Cardillo Alberti, 2013).

A limitation of stopping the analysis at this stage is that the pathways associated with the groups of

genes were not identified and thus the interpretation of the results is limiting. It is recommended to

combine the results of this method with those of a pathway analysis (Subramanian et al. 2005, de

Tayrac, 2009) to identify biological processes involved.

The second objective of this study was to use only the fingerprint matrix and apply several biclustering

methods and determine if they identify similar groups of compounds associated with similar fingerprint

structures. This goal was achieved using different techniques under the theme of biclustering. The
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five different methods applied are : Multiple correspondence analysis (MCA), Binary inclusion-maximal

biclustering (Bimax) algorithm, Factor analysis for Bi-cluster acquisition (FABIA), Iterative Binary

biclustering of gene sets and Factor analysis for binary data.

The MCA identified 6 clusters based on the hierarchical clustering analysis containing compounds with

or without a group of fingerprints. A subset of the large clusters were identified as those closest to

the center of the clusters and thus more representative of the clusters. Based on the results of BiMAx,

several compounds and fingerprints were found to be common to the top 4 biclusters namely: raloxifene,

MK-888, butein, genistein, sulindac and N-phenylanthranilic acid and for the fingerprints: FP76, FP83

and FP132. It can thus be concluded that these compounds and fingerprints form a true bicluster.

Overall, both MCA and BiMax reported similar compounds in their clusters and biclusters respectively

but there was a complete mismatch with respect to the fingerprints. The disparities are pronounced

probably because of the sparse nature of the fingerprint data set that was used. Since MCA has a more

robust option to spareness, the results were considered to be more reliable compared to those of BiMax.

All the compounds obtained in cluster 5 of the MCA form a subset of those obtained by cluster 4 of the

the iBBiG algorithm. However, only a subset (FP215, FP105, FP140, FP47) of the fingerprints exhibited

by cluster 4 of iBBiG were found based on cluster 5 of the MCA. In addition, cluster 1 of the MCA and

cluster 2 of IBBiG were similar with respect to the compounds in each bicluster but only fairly agreed

on the fingerprints (only FP18 and FP4 were found across the two methods). Finally cluster 1 and 3

of iBBiGs have similar bicluster contents with respect to the compounds present as those of biclusters

4 and 6 of the MCA respectively. However, their fingerprints did not match. These two methods are

the most robust in terms of their ability to work on sparse binary data and thus the similarities in their

results. In all the clusters obtained with BiMAx, subsets were also found by cluster 4 of iBBiG. However,

the fingerprints did not match at all.

FABIA performed fairly well in terms of the biclusters identified as the results for cluster 3 matched

those of cluster 5 using MCA and biclusters 4 using Factor analysis for binary data and bicluster 4 using

iBBiG. However, the results of FABIA were not over interpreted given that the method was initially

designed for continues data.

The results of the factor analysis for binary data were quite similar to those of MCA and iBBiG in

terms of the content of the biclusters. The method is robust to sparse data as it works with polychoric

correlations instead of the raw data.

The performance of the biclustering methods applied in this study appeared to be similar except for

BiMax and FABIA. MCA, iBBiGS and Factor analysis for binary data yielded very similarly results

on most of the biclusters. Given the different approaches to biclustering, the methods all identified the

compounds: 4,5-dianilinophthalimide, N-phenylanthranilic acid, flufenamic acid, phenyl and biguanide

except for BiMax which only identified 4,5-dianilinophthalimide, N-phenylanthranilic acid and flufenamic

acid. In addition, these group of compounds were found to exhibit the fingerprints: FP47, FP105, FP140

and FP215. These were consistently present in these compounds across the different methods except

for BiMax where none of the fingerprints featured. The poor performance of BiMax could be attributed

to the sparsity in the data whereas FABIA is not intended for binary data and should be cautiously

interpreted.
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Since only a subset of the CMAP data was analyzed, it is obvious that the results presented in this study

do not cover the complete picture of patterns that exist in the CMAP database. Future similar studies

based on the full CMAP database are therefore needed to fully appreciate the findings of this study.

In conclusion, for exploring local patterns, no one method could be judged superior over the others as

evidenced in the literature (Prelić et al. 2006, Oghabian et al. 2014). However, for sparse binary data

like the one we presented in this study, a combination of the results from the three methods: factor

analysis for binary data, multiple correspondence analysis (MCA) and Iterative Binary biclustering of

gene sets (IBBiGs) will be the most optimal approach. In addition, for a combination of groups of

variables (quantitative and qualitative), the multiple factor analysis (MFA) combined with hierarchical

clustering should be used. Finally, even though the different data sources can be explored independently,

an integrated analysis is encouraged since it can reveal patterns or features of interest that may not be

detected when analyzing the data sources one-by-one.
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Appendix

########################MFA

setwd("C:\\Users\\enjiabatih\\Documents\\MAsters in BioInformatics\\2014 Second\\AGE")

cmap <- load(file = "Emmanuel1.Rdata")

cmap

##fingerprintMat<-as.matrix(fingerprintMat)

##fingerprintMat<- ifelse(fingerprintMat=="TRUE",1,0)

head(geneMat)

head(fingerprintMat)

###"Filtering Genes

gene.exprs <- new("ExpressionSet", exprs=geneMat)

selEset <-filterVarInt(object = gene.exprs,IntCutOff = log(0.9), IntPropSamples = 0.9, VarCutOff = 0.05)

propSelGenes <- round((dim(selEset)[1]/dim(gene.exprs )[1])*100,1)

propSelGenes

Sel.geneMat<-exprs(selEset)

head(Sel.geneMat)

######Fingerprint Matrix

namesfinger<-as.vector(paste("FP", 1:250, sep = ""))

fingerprintMat1<-as.data.frame(fingerprintMat)

names(fingerprintMat1)<-namesfinger

##names(fingerprintMat1)<-namesfinger

fingerprintMat3<- ifelse(fingerprintMat1=="TRUE",1,0)

####check which of the tegets is present or absent for all compounds

for (i in 1:250){

print(sum(fingerprintMat3[,i]))

}

vectorp<-matrix(1:250,250,2)

for (j in 1:250){

vectorp[j,2]<-sum(fingerprintMat3[,j])

}
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vectorp3<-subset(vectorp,vectorp[,2]>5)

for (i in 1:ncol(fingerprintMat3))

{fingerprintMat3[1,i]<-as.character(fingerprintMat3[1,i])}

str(fingerprintMat3)

dim(mergeddata2)

xtable(mergeddata2[1:10,c(1:4,630:632)])

mergeddata2<-data.frame(t(Sel.geneMat),fingerprintMat3[,-1])

head(mergeddata2)

names(mergeddata2)

resmfa <- MFA(mergeddata2, group=c(nrow(Sel.geneMat),

ncol(fingerprintMat3[,-1])),type=c("s","n"),name.group=c("Gene","Fingerprt"), ncp=5)

summary(resmfa )

resultsdesc<-dimdesc(resmfa )

###Find lead compounds and lead genes

leadcpds3<-which(resmfa$ind$contrib[,1]>mean(resmfa$ind$contrib[,1]))

leadcpds3

mean(resmfa$ind$contrib[,3])

leadcpds3<-which(resmfa$ind$contrib[,1]>3)

leadcpds3

summary(round(resmfa$ind$contrib[,1],3))

data0<-as.matrix(geneMat[,leadcpds3])

data1<-data0[genelist1, ]

rownames(data1)

names(data1)

library(ggplot2)

library("reshape2")

data2 <- melt(t(data1), id.vars=rownames(t(data1)), value.name="value")

names(data2)<-c("Var1","Genes","value")

ggplot(data=data2 , aes(x=Var1, y=value, group = Genes,colour=Genes)) +

geom_line() +
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xlab("Compounds") +

ylab("Log2 Concentration") +

geom_point( size=1, shape=21, fill="black")+theme_bw() +

theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

##Find genes highly correlated with factor 2

hicorrgenes3<-which(resultsdesc$Dim.2$quanti[,1]>=0.51|resultsdesc$Dim.2$quanti[,1]<=-0.34)

hicorrgenes3

genelist2<-as.character(names(hicorrgenes3))

c("PPP2R1A", "COL6A3", "PPAN", "PRTN3", "SRGN", "AKR1C1", "MSN")

###Find lead compounds and lead genes

leadcpds3<-which(resmfa$ind$contrib[,2]>mean(resmfa$ind$contrib[,2]))

leadcpds3

data0<-as.matrix(geneMat[,leadcpds3])

data1<-data0[genelist2, ]

library(ggplot2)

library("reshape2")

data2 <- melt(t(data1), id.vars=rownames(t(data1)), value.name="value")

names(data2)<-c("Var1","Genes","value")

ggplot(data=data2 , aes(x=Var1, y=value, group = Genes,colour=Genes)) +

geom_line() +

xlab("Compounds") +

ylab("Log2 Concentration") +

geom_point( size=1, shape=21, fill="black")+theme_bw() +

theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

########################MCA

cmap <- load(file = "Emmanuel1.Rdata")

cmap

##fingerprintMat<-as.matrix(fingerprintMat)

##fingerprintMat<- ifelse(fingerprintMat=="TRUE",1,0)

head(geneMat)

head(fingerprintMat)

######Fingerprint Matrix

namesfinger<-as.vector(paste("FP", 1:250, sep = ""))
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fingerprintMat1<-as.data.frame(fingerprintMat)

names(fingerprintMat1)<-namesfinger

##names(fingerprintMat1)<-namesfinger

fingerprintMat3<- ifelse(fingerprintMat1=="TRUE",1,0)

####check which of the tegets is present or absent for all compounds

for (i in 1:250){

print(sum(fingerprintMat3[,i]))

}

for (i in 1:ncol(fingerprintMat3))

{fingerprintMat3[1,i]<-as.character(fingerprintMat3[1,i])}

str(fingerprintMat3)

####MCA

###Binary data must first be categorized

for (i in 1:ncol(fingerprintMat3))

{fingerprintMat3[1,i]<-as.character(fingerprintMat3[1,i])}

str(fingerprintMat3)

res.mcafg<- MCA(fingerprintMat3[,-1])

desresults<-dimdesc(res.mcafg)

res.mcafg$var

leadcpds1<-which(res.mcafg$ind$contrib[,1]>mean(res.mcafg$ind$contrib[,1]))

leadcpds1

leadcpds2<-which(res.mcafg$ind$contrib[,2]>mean(res.mcafg$ind$contrib[,2]))

leadcpds2

resultsfin<-dimdesc(res.mcafg)

clustermod<-HCPC(res.mcafg)

###Cat variables for cluster 1

indices1<-names(which(clustermod$desc.var$category$‘1‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘1‘[indices1,]

xtable(clustermod$desc.var$category$‘1‘)

###Cat variables for cluster2

indices1<-names(which(clustermod$desc.var$category$‘2‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘2‘[indices1,]

xtable(clustermod$desc.var$category$‘2‘)

###Cat variables for cluster 3

indices1<-names(which(clustermod$desc.var$category$‘3‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘3‘[indices1,]

xtable(clustermod$desc.var$category$‘3‘)

###Cat variables for cluster 4

indices1<-names(which(clustermod$desc.var$category$‘4‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘4‘[indices1,]

xtable(clustermod$desc.var$category$‘4‘)

###Cat variables for cluster 5
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indices1<-names(which(clustermod$desc.var$category$‘5‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘5‘[indices1,]

xtable(clustermod$desc.var$category$‘5‘)

###Cat variables for cluster 6

indices1<-names(which(clustermod$desc.var$category$‘6‘[,1]>=100))

catvar1<-clustermod$desc.var$category$‘6‘[indices1,]

xtable(clustermod$desc.var$category$‘6‘)

########################BIMAX

##install.packages("biclust")

library(biclust)

res.biclustfg <- biclust(x=fingerprintMat3[,-1], method=BCBimax(), minr=4, minc=4, number=10)

res.biclustfg

##biclustbarchart(fingerprintMat3[,-1],res.biclustfg, col="#A3E0D8")

###"heatmapBC(x = fingerprintMat3[,-1], res.biclustfg)

bubbleplot(fingerprintMat3[,-1], res.biclustfg, showLabels=TRUE)

#################SBSCORE to rank Clusters

sb1<-ChiaKaruturi(fingerprintMat3[,-1], res.biclustfg,1)

csb1<-c(1,sb1$SBscore)

sb2<-ChiaKaruturi(fingerprintMat3[,-1], res.biclustfg, 2)

csb2<-c(2,sb2$SBscore)

sb3<-ChiaKaruturi(fingerprintMat3[,-1], res.biclustfg, 3)

csb3<-c(3,sb3$SBscore)

sb4<-ChiaKaruturi(fingerprintMat3[,-1], res.biclustfg,4)

csb4<-c(4,sb4$SBscore)

sb5<-ChiaKaruturi(fingerprintMat3[,-1], res.biclustfg, 5)

csb5<-c(5,sb5$SBscore)

###ranking of the biclusters, the higher the sb score the better

rankbs<-rbind(csb1,csb2,csb3,csb4,csb5)

rankbs[order(rankbs[,2]),]

####save and open biclust results

writeBiclusterResults("results.txt", res.biclustfg,"Bimax", dimnames(fingerprintMat3[,-1])[1][[1]],

dimnames(fingerprintMat3[,-1])[2][[1]])

##################IBBIgs

library(iBBiG)

install.packages("clValid")

resfgm<- iBBiG(fingerprintMat3[,-1],nModules=10)

plot(resfgm)

statClust(resfgm)

summary(resfgm)
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order(resfgm@Clusterscores)

par(mfrow=c(1,1))

drawHeatmap(fingerprintMat3[,-1], resfgm, number=1)

par(mfrow=c(1,1))

drawHeatmap(fingerprintMat3[,-1], resfgm, number=2)

par(mfrow=c(1,1))

drawHeatmap(fingerprintMat3[,-1], resfgm, number=9)

which(NumberxCol(resfgm)[1,]==TRUE)

which(RowScorexNumber(resfgm)[,1]>0)

sort(RowScorexNumber(resfgm)[,1])

which(NumberxCol(resfgm)[2,]==TRUE)

which(RowScorexNumber(resfgm)[,2]>0)

###bicluster 3

which(NumberxCol(resfgm)[3,]==TRUE)

which(RowScorexNumber(resfgm)[,3]>0)

sort(RowScorexNumber(resfgm[,3]))

###bicluster 4

which(NumberxCol(resfgm)[4,]==TRUE)

which(RowScorexNumber(resfgm)[,4]>0)

sort(RowScorexNumber(resfgm)[,4])

###bicluster 9

which(NumberxCol(resfgm)[9,]==TRUE)

which(RowScorexNumber(resfgm)[,9]>0)

sort(RowScorexNumber(resfgm)[,9])

par(mfrow=c(2,1))

drawHeatmap(fingerprintMat3[,-1], resfgm, number=2)

drawHeatmap(fingerprintMat3[,-1], resfgm, number=3)

#drawHeatmap(fingerprintMat3[,-1], resfgm, number=3)

#drawHeatmap(fingerprintMat3[,-1], resfgm, number=4)

par(mfrow=c(1,1))

#####FABIA

library(fabia)

resgenefing <- fabia(fingerprintMat3[,-1],25,0.01,5000)

show(resgenefing)

myextractPlot(resgenefing ,ti=’FABIA’,mergeddata2,which=2)

myextractPlot(resgenefing ,ti=’FABIA’,mergeddata2,which=3)

myextractPlot(resgenefing ,ti=’FABIA’,mergeddata2,which=4)

myextractPlot(resgenefing ,ti=’FABIA’,mergeddata2,which=5)

myextractPlot(resgenefing ,ti=’FABIA’,fmergeddata2,which=6)
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####Fabia plot with subgroups

plot(resgenefing ,dim=c(2,4),label.tol=0.03,lab.size=0.8)

head(mergeddata2)

extractPlot(resgenefing )

resgenefing1<- extractBic(resgenefing)

###showw info content of billusters

resgenefing@avini

#####First Bicluste

resgenefing1$bic[1,]

plot(1:12,abs(resgenefing1$bic[1,]$bixv),xlab="" )

axis(1, at=1:12, labels=resgenefing1$bic[1,]$bixn)

xtable(data.frame(resgenefing1$bic[1,]$bixv))

xtable(data.frame(resgenefing1$bic[1,]$biypv))

#####Second Bicluster

resgenefing1$bic[2,]

xtable(data.frame(resgenefing1$bic[2,]$bixv))

xtable(data.frame(resgenefing1$bic[2,]$biypv))

#####Third Bicluster

resgenefing1$bic[3,]

xtable(data.frame(resgenefing1$bic[3,]$bixv))

xtable(data.frame(resgenefing1$bic[3,]$biypv))

#####Third Bicluster

resgenefing1$bic[4,]

xtable(data.frame(resgenefing1$bic[4,]$bixv))

xtable(data.frame(resgenefing1$bic[4,]$biypv))

#########Plotr bicuster 1

plotBicluster(resgenefing1,1,opp=TRUE)

####Factor Analysis

library(polycor)

library(psych)

######Fingerprint Matrix

namesfinger<-as.vector(paste("FP", 1:250, sep = ""))

fingerprintMat1<-as.data.frame(fingerprintMat)

names(fingerprintMat1)<-namesfinger

##names(fingerprintMat1)<-namesfinger

fingerprintMat3<- ifelse(fingerprintMat1=="TRUE",1,0)
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faPCdirect <- fa.poly(fingerprintMat3[,-1], nfactors=8, rotate="varimax")

####determinie number of factors:

polycorr<-polychoric(fingerprintMat3[,-1])

vss(polycorr$rho)

########Fingerprints tied to factor 1:4

which(abs(as.matrix(faPCdirect$scores$weights)[,1])>0.7)

which(abs(as.matrix(faPCdirect$scores$weights)[,2])>0.7)

which(abs(as.matrix(faPCdirect$scores$weights)[,3])>0.7)

which(abs(as.matrix(faPCdirect$scores$weights)[,4])>0.7)

########Compounds tied to factors 1:4

compds<-faPCdirect$scores$scores

compds2<-as.data.frame(compds)

which(abs(compds[,1])>1)

which(abs(compds[,2])>1)

which(abs(compds[,3])>1)

which(abs(compds[,4])>1)

#####Plots

factor.plot(faPCdirect$fa,cut=0.7)

fa.diagram(faPCdirect,simple=TRUE,cut=0.6 )
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