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Abstract

The global phenomenon of population ageing results in a larger number of elderly individu-
als living with disability. Despite the importance of investigating the disability burden due
to its social and economic impacts, few methods have been proposed to address the impact
of chronic diseases on disability using cross-sectional data, which are cheaper and less time
consuming than longitudinal studies. The attribution method based on the additive haz-
ards model for binary outcomes is an attractive option, as it enables the partition of the
disability prevalence into additive contributions of chronic diseases, taking into account
comorbidity. The link function used in the model imposes a constraint on the parameter
space, which limits the use of the method, as it is not available in standard software. Cur-
rently, the software to fit the binomial additive hazards model is available in R, but since it
was developed to non R-users, it has limited efficiency when bootstrap confidence intervals
are requested. Additionally, the constraints on the parameter space are taken into account
by including a penalty term in the likelihood function. In this study, we propose an ex-
tension of the binomial model to a multinomial response and the use of linear constrained
optimization to estimate the disability rates using the R function "constrOptim". For il-
lustration, we assess the contribution of chronic diseases to the disability prevalence using
the data from the Belgian Health Interview Surveys of 2001, 2004, and, 2008, with the
Global Activity Limitation Indicator (GALI) as the binary and three-category outcome.
The use of the parallel option to obtain the bootstrap confidence interval for the binomial
model speeded up the analysis compared to the original R code. The models proposed
can be used by health professionals to provide information to assist policy-makers on the
development of strategies to tackle the disability burden. Further research should focus on
the extension of the multinomial model to ordinal multi-category outcomes.
Keywords: Binomial likelihood, multinomial likelihood, additive hazards model, cross-
sectional data, chronic diseases, disability burden
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1
Introduction

The increase in longevity accompanied by the growing prevalence of chronic diseases con-
tributes to the disability burden observed worldwide1. Chronic diseases are among the
main causes of disability2, which affects the quality of life of the elderly and increases
the health care use, resulting in higher social burden. Given the growing occurrence and
impact of disability especially in the older population, mortality measures, such as life
expectancy, are no longer sufficient to assess population health. The investigation of popu-
lation health should take into account both mortality and morbidity. Health expectancies,
i.e. the number of remaining years spent in a health state from a particular age assuming
current rates of morbidity and mortality, are examples of such health metrics3.
The overall mortality can be obtained from the death certificates and disability can be
assessed in national surveys. However, this information is not sufficient, as the knowledge
of the main causes of mortality and morbidity are important to define prevention, interven-
tion, and treatment strategies. Thus, information on cause-specific mortality and disability
are also required in the assessment of population health. The cause-specific mortality data
can also be obtained from the death certificates, but the assessment of disability by cause
is more challenging4.
Several methods have been proposed to assess the causes of disability. Although longitu-
dinal studies can be considered the gold standard, they are usually expensive and with
restricted sample size. Thus, the use of cross-sectional data under certain assumptions has
become a popular alternative to estimate the disability prevalence by cause5. Most of the
existing methods using cross-sectional data are based on logistic regression, with focus on
the effect of elimination of specific causes on disability. However, the results are affected by
the order that a cause is removed, which can produce inconsistent results in the presence
of comorbidity6. Furthermore, since these methods are based on a multiplicative model,
they do not yield additive contributions of the causes5.
Recently, Nusselder and Looman (2004)4 proposed the attribution method to assess the
contribution of chronic diseases to the disability prevalence using cross-sectional data.
The method is based on a binomial additive hazards model, which allows the partition of
the disability prevalence into additive contributions of chronic diseases in the presence of
comorbidity. The implementation of the model is challenging, as it requires a constraint
on the parameter space to provide probabilities that lie between 0 and 1. The attribution
method has been used to assess the disability prevalence by cause in several countries,
including the Netherlands5, Belgium6, Germany7, and China8. The software to fit the
model was developed in R9 and is available upon request to the authors of the method4.
In the original R code, the constraints are implemented by including a penalty term in the
likelihood function when the probabilities are less or equal than 0.
The main objective of this study was to extend the binomial model to a multinomial
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response. Also, we aimed at modifying the existing R software for the binomial model
to improve efficiency in the calculation of the bootstrap confidence interval. This thesis
is organized as follows: in section 2, the description of the data used to fit the models is
presented. In section 3, the attribution method, including the binomial and multinomial
additive hazards models, are defined. In section 4, the application of the models to the
Belgian Health Interview Survey data is shown. The discussion is presented in section 5.
Finally, the conclusions and further recommendations are presented in section 6. The R
code is included in the appendix.

2
Data description

The pooled data from three Health Interview Surveys (HIS) conducted in Belgium −
2001, 2004, and 2008 − were used in this study. The HIS is a national household survey
representative of the Belgian population, including approximately 10,000 individuals per
year, selected based on multi-stage sampling with geographical stratification and clustering.
The response rate varied from 61% (2001 and 2004) to 55% (2008). The sample included
elderly individuals living in nursing homes and homes for the elderly and proxy interviews.
The complex sample design was taken into account by the inclusion of sample weights in
the analysis. A detailed description of the HIS methodology can be found elsewhere10.
Since the disability prevalence was low in young individuals (<5%), this analysis was
restricted to men aged 55 years or older. The outcomes, both binary and multinomial,
were based on the global activity limitation indicator (GALI)11, defined by the question:
For at least the past six months, to what extent have you been limited because of a health
problem in activities people usually do?
0. Not limited at all
1. Limited, but not severely
2. Severely limited
For the binomial model, options 1 and 2 were combined to represent the disabled individuals
and for the multinomial model, the three options of answer were used. In both models,
the category "0. Not limited at all" was the reference category.
The covariates included in this analysis were age, categorized in 10-years age groups (55-64
years; 65-74 years; 75-84 years; ≥85 years) and five diseases: chronic respiratory dis-
eases, diabetes, heart attack, stroke, and arthritis. The GALI was included in the self-
administered questionnaire and the disease questions were included in the face-to-face
questionnaire in the three HIS. After excluding individuals with missing data on the re-
sponse and diseases (N = 2810), the sample size was N = 4356. The age distribution and
the prevalence of the diseases are presented in Table 1.
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Table 1. Number of individuals and percentage according to each covariate included in the
model. Health Interview Survey, Belgium, 2001, 2004, and 2008.

Covariate N %
Age
55−64 years 1721 39.8
65−74 years 1387 32.1
75−84 years 834 19.3
≥85 years 384 8.9
Diseases
Chronic respiratory diseases 593 13.7
Diabetes 417 9.6
Heart attack 538 12.4
Stroke 81 1.9
Arthritis 1153 26.7

3
Methods

3.1 Attribution method

The attribution method was used to estimate the disability prevalence by cause using
cross-sectional data. Similar to the cause-specific mortality data, in which one disease is
assigned as underlying cause of death according to the death certificate, the method aims
to attribute each disability case reported in a survey to a single cause, taking into account
that individuals can have more than one disease (comorbidity) and that disability can be
present in individuals without any of the diseases included in the study4.
Even if an individual reports a disease in the survey, this is not necessarily the cause
of the disability. The disability that is not associated with the diseases included in the
analysis is labelled "background". Disability in individuals who did not report any disease
is entirely attributed to background, while disability in individuals who reported diseases
is partitioned among the diseases and background. The background is represented by the
intercepts (one for each age group) in the model.
The main assumptions of the method are: (i) the distribution of disability by cause is
entirely explained by diseases that are still present at the time of the survey and by the
background; (ii) the cause-specific disability rates for each disease were proportionally equal
in the time preceding the survey; (iii) individuals from the same age group are exposed to
the same background rate; and (iv) the start of the time at risk for disability is the same
for all causes.
Analogous to the mortality analysis in the presence of competing risks, in which under
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the assumption of independence between causes of death, an exponential transformation
is applied to the cumulative force of mortality to obtain the cause-specific probability of
death12,13,14, we used hazards rates to obtain the probability of being disabled by cause.
Under the additive assumption of the rates, the total disability rate can be obtained by
adding up the cause-specific disability rates14.
The attribution method was initially based on the binomial additive hazards model, for
binary outcomes. In the next sections, the binomial and the its extension to a multinomial
response are presented.

3.2 Binomial additive hazards model

Let (yi,xi) represent the data for each individual i(i = 1, ..., n) of a cross-sectional study,
where x′

i = (xi1, ..., xid) is the vector of covariates included in the model and yi is the vector
of the binary response variable for each individual i, defined as shown below.

yi =

1, if individual i is disabled
0, otherwise

The covariates in the model can be continuous, dichotomous or non-linear combinations of
them. The binomial additive hazards model is defined in (1).

Yi ∼ Bernoulli(πi)
πi = 1− exp(−ηi)
ηi = x′

iβ
(1)

To obtain the parameter estimates in model (1), the binomial log-likelihood function shown
in (2) is maximized.

L(β) =
n∑
i=1

yi log(πi) + (1− yi) log(1− πi) (2)

The covariance matrix of the parameter estimates was estimated based on the inverse of
the observed information matrix, defined in (3).

−∂
2L(β)
∂βh∂βj

=
n∑
i=1

xijxik
yi(1− πi)

(πi)2

(3)
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The regression coefficients in (1) represent the disability hazards rates for each covariate in
the model, i.e. the the rate at which each covariate causes disability among the individuals
with the covariate present (usually, chronic diseases and age) for categorical variables. For
continuous covariates, the regression coefficients represent the change in the disability rate
for one-unit increase in the covariate. In order to assess the contribution of each covariate
to the disability prevalence, we calculate the probability of being disabled due to cause d,
as shown in (4).

P (yi = 1|xid) = xidβd

ηi
× πi (4)

Next, we estimate the number of disabled individuals by each cause according to (5).

Nd = ∑n
i=1 P (yi = 1|xid) (5)

Finally, the prevalence of disability by cause can be calculated as shown in (6):

Prevd = Nd

N
(6)

where N is total number of individuals in the sample.

3.3 Multinomial additive hazards model

In the multinomial version of the additive hazards model, since the response variable yi
can have more than two categories, indicator variables are created for the response. Let
yij = (yi0, yi1, . . . , yiJ) denote the vector of responses for individual i for each j category
of the response, defined as shown below:

yij =

1, if yi = j

0, otherwise

with ∑J
j=0 yij = 1.

Model (1) is now extended to multinomial responses as shown in (7).

Yij ∼Multinomial(ni, πij)
πij = 1− exp(−ηij)
ηij = x′

iβj

(7)

Where x′
i = (xi1, ..., xid) is the vector of covariates included in the model and βj is the

vector of parameter estimates for each j category of the response. Since ∑J
j=0 πij = 1,

results in one redundant response category (for example, consider the first category j = 0
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as the reference), we can restrict j in (7) to be j = 1, . . . , J , with yi0 = 1 −∑J
j=1 yij and

πi0 = 1−∑J
j=1 πij.

The multinomial log-likelihood function is defined as shown in (8).

L(β) =
n∑
i=1
{
J∑
j=1

yij log(πij) + (1−
J∑
j=1

yij) log(1−
J∑
j=1

πij)} (8)

The covariance matrix can also be defined as the inverse of the information matrix, as in
the binomial case. The information matrix now consists of (J − 1)2 blocks of size d × d,
and is defined as shown (9), for j = j:

− ∂2L(β)
∂βjk∂βjk′

= −∑n
i=1 xikxik′

{
(1−∑J

j=1 yij)
[

(1−πij)(1−
∑J

j=1 πij)−(1−πij)2

(1−
∑J

j=1 πij)2

]
+ ∑J

j=1 yij
[

(πij−1)
(πij)2

]}
(9)

and for j 6= j′:

− ∂2L(β)
∂βjk∂βj′k′

= −∑n
i=1 xikxik′

{
(1−∑J

j=1 yij)
[

(1−πij)(1−πij′ )
(1−

∑J

j=1 πij)2

]}
(10)

The contribution of each covariate to the total disability prevalence can be obtained in the
same way as in the binomial case, with equations (6), (7), and (8) applied to each J − 1
category of the response, as shown below.
Probability of being disabled due to cause d for each category j of the outcome:

P (yij = 1|xid) = xidβdj

ηij
× πij (11)

Number of disabled individuals by each cause d in each j category of the outcome:

Ndj = ∑n
i=1 P (yij = 1|xid) (12)

Prevalence of disability by cause d in each j category of the outcome:

Prevdj = Ndj

N
(13)

3.4 Constrained optimization

One of the challenges when fitting the binomial and multinomial additive hazards models
(1) and (7) is the constrained parameter space, which must satisfy the conditions, for the
binomial model:

x′
iβ > 0 (14)

9



and for the multinomial case:
x′
iβj > 0 (15)

These constraints must be satisfied in order to produce probabilities (πi and πij) that
lie between 0 and 1. Therefore, if models (1) and (7) are fitted using the available soft-
ware (for example, using the function "glm" in R), convergence problems may occur or
wrong estimates may be provided. In this analysis, the likelihood functions (2) and (8)
were maximized over the restricted parameter space using an adaptive barrier algorithm.
The constrained optimization was implemented using the R function "constrOptim" in the
"stats" package.

3.5 Bootstrap confidence intervals

The functions to fit the binomial and multinomial models give the user the option to
choose between the Wald confidence interval (CI) or the bootstrap CI. When analysing
cross-sectional data, weights can be used to take into account the complex sample design
in the data analysis. In the presence of wide range of individual weights in the sample,
the likelihood theory may not apply, and the use of standard errors based on (3), (9),
and (10) may lead to wrong conclusions. In this case, the bootstrap CI can be used as an
alternative to the Wald CI. In the function proposed, the bootstrap CI is based on the 2.5th
and 97.5th percentiles of the bootstrap replicas. Additionally, bootstrap CIs are provided
for the calculation of the contribution of the covariates to the disability prevalence. In both
cases, the calculation of the bootstrap CIs is done by calling the R package "boots", which
has the advantage of allowing parallel computations using all the cores of the computer,
speeding up the computation. The bootstrap CIs presented in this study were based on
1000 replicas, using the parallel option with 4 cores in the Windows operating system.

4
Data analysis

In this section the binomial and multinomial models are applied to the HIS data in Belgium.
Five chronic diseases and one intercept for each age group were included in the models.
Also, since the prevalence of chronic diseases increases over age, the two-way interactions
between age and disease were included in the models.
The attribution of disability to chronic diseases is a function of the disease-specific disability
rate and the disease prevalence in the population. Table 2 shows the prevalence of chronic
diseases in men by age group, taking into account the survey weights of each individual.
Arthritis was the most common disease among men, followed by chronic respiratory diseases
in men aged 55−84 years and heart attack in men aged 85 years or older.
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Table 2. Disease prevalence and confidence intervals. Health Interview Survey, Belgium,
2001, 2004, and 2008.

Diseases 55−64 years 65−74 years 75−84 years ≥ 85 years
Chronic respiratory diseases 9.1 (7.5;10.7) 13.2 (11.1;15.5) 19.5 (16.0;23.1) 17.2 (10.4;25.2)
Diabetes 7.3 (5.8;9.0) 9.2 (7.3;10.9) 11.6 (8.7;14.7) 7.9 (4.7;11.7)
Heart attack 6.9 (5.4;8.6) 12.1 (10.0;14.2) 18.1 (14.4;22.0) 27.5 (19.5;35.8)
Stroke 0.6 (0.3;0.9) 1.4 (0.7;2.3) 2.9 (1.6;4.4) 3.6 (0.7;7.9)
Arthritis 20.6 (18.1;23.1) 28.6 (25.0;32.6) 29.0 (25.4;33.2) 36.6 (27.4;45.2)

4.1 Binomial additive hazards model

Table 3 shows the hazard rates, the Wald 95% CI and the bootstrap CI calculated with 1000
replicas. The Wald CI was obtained in 33 seconds while the boostrap CI was obtained in
2 hours. Despite the difference in the length of intervals, as expected, the conclusions were
the same: stroke was not significant in men aged 55-64 and 65-74 years and diabetes was
not significant for individuals aged 75-84 years. In oldest old men only chronic respiratory
diseases were statistically significant. Heart attack was the most disabling disease in men
aged 55−74 years, while stroke and chronic respiratory diseases were the most disabling
diseases in men aged 75−84 years and 85 years or older, respectively.

Table 3. Disability hazards rates, Wald 95% confidence intervals (Wald CI), and bootstrap
confidence intervals (Boot CI) for the binomial additive hazards model. Health Interview
Survey, Belgium, 2001, 2004, and, 2008.

Cause 55−64 years 65−74 years 75−84 years ≥85 years
Est Wald CI Boot CI Est Wald CI Boot CI Est Wald CI Boot CI Est Wald CI Boot CI

Background 0.15 0.13;0.17 0.12;0.18 0.19 0.16;0.23 0.15;0.24 0.39 0.32;0.46 0.30;0.50 0.54 0.42;0.67 0.35;0.82
CRD1 0.53 0.36;0.70 0.32;0.80 0.50 0.33;0.66 0.29;0.74 0.55 0.30;0.79 0.23;0.89 1.56 0.79;2.33 0.69;2.58
Diabetes 0.35 0.19;0.52 0.13;0.63 0.15 0.01;0.28 0.00;0.31 -0.02 -0.21;0.16 -0.21;0.26 -0.08 -0.40;0.24 -0.46;0.34
Heart attack 0.75 0.51;1.00 0.43;1.25 1.03 0.78;1.28 0.74;1.40 0.43 0.18;0.67 0.14;0.78 0.23 -0.08;0.53 -0.23;0.99
Stroke 0.53 -0.08;1.15 -0.15;1.24 0.12 -0.27;0.52 -0.21;0.84 1.46 0.44;2.47 0.48;3.45 0.58 -0.52;1.68 -0.55;7.31
Arthritis 0.31 0.21;0.40 0.20;0.43 0.19 0.10;0.27 0.07;0.34 0.48 0.31;0.66 0.25;0.73 0.16 -0.06;0.39 -0.21;0.64
1CRD: Chronic respiratory diseases

Table 4 shows the contribution of each chronic disease to the total disability prevalence.
The bootstrap CI with 1000 replicas was obtained in 1 hour. As a result of the additivity
of rates, the contribution of each covariate sum to the total disability prevalence. For all
age groups, background was the main contributor to the disability prevalence, followed
by arthritis in men aged 55-64 years and 75-84 years and by chronic respiratory diseases
in men aged 65-74 years and the oldest old men. The total disability prevalence and the
background increased over age group.
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Table 4. Contribution of chronic diseases and background to the disability prevalence.
Health Interview Survey, Belgium, 2001, 2004, and, 2008.

Cause 55−64 years 65−74 years 75−84 years ≥85 years
Background 13.02 (12.93;13.11) 15.96 (15.80;16.12) 28.00 (27.58;28.40) 36.66 (35.17;38.09)
Chronic respiratory diseases 3.19 (2.57;3.78) 4.28 (3.54;5.10) 6.10 (5.01;7.24) 10.56 (6.20;15.68)
Diabetes 1.84 (1.42;2.28) 0.97 (0.78;1.17) -0.21 (-0.27;-0.15) -0.45 (-0.70;-0.26)
Heart attack 3.13 (2.41;3.86) 6.65 (5.40;7.93) 4.58 (3.63;5.61) 3.60 (2.48;4.88)
Stroke 0.19 (0.10;0.31) 0.12 (0.06;0.20) 1.74 (0.91;2.79) 1.17 (0.21;2.48)
Arthritis 4.75 (4.20;5.31) 4.02 (3.46;4.57) 8.51 (7.43;9.72) 3.70 (2.80;4.59)
Total disability prevalence 26.12 (25.11;27.11) 31.99 (30.66;33.33) 48.72 (47.16;50.33) 55.24 (51.86;58.65)

4.2 Multinomial additive hazards model

Table 5 shows the results for the multinomial additive hazards model. The model with
the Wald CI was obtained in 10.5 minutes. The most disabling diseases in individuals
who reported limitations, but not severe, were heart attack for men aged 55−74 years and
stroke in men aged 75−84 years. None of the diseases were significant in the oldest old
men. The most disabling diseases for the severely disabled men were chronic respiratory
diseases in the young and oldest old individuals, heart attack in men aged 65−74 years
and stroke in men aged 75−84 years.

Table 5. Disability hazards rates and Wald 95% confidence intervals for the multinomial
additive hazards model. Health Interview Survey, Belgium, 2001, 2004, and, 2008.

Cause 55-64 years 65-74 years 75-84 years ≥85 years
Limited
Background 0.06 (0.05;0.07) 0.08 (0.06;0.09) 0.19 (0.16;0.22) 0.57 (0.46;0.68)
CRD1 0.20 (0.14;0.27) 0.18 (0.12;0.24) 0.15 (0.07;0.24) 0.15 (-0.11;0.40)
Diabetes 0.12 (0.06;0.19) 0.12 (0.05;0.18) -0.02 (-0.09;0.05) 0.03 (-0.22;0.27)
Heart attack 0.33 (0.23;0.43) 0.40 (0.30;0.49) 0.11 (0.03;0.20) -0.10 (-0.24;0.03)
Stroke 0.17 (-0.07;0.41) 0.06 (-0.09;0.20) 0.45 (0.18;0.73) 0.00 (-0.32;0.32)
Arthritis 0.12 (0.09;0.16) 0.08 (0.05;0.12) 0.18 (0.11;0.25) -0.03 (-0.16;0.10)
Severely limited
Background 0.01 (0.01;0.01) 0.02 (0.02;0.02) 0.04 (0.03;0.04) 0.14 (0.11;0.17)
CRD1 0.11 (0.08;0.14) 0.11 (0.08;0.14) 0.11 (0.07;0.15) 0.31 (0.09;0.54)
Diabetes 0.06 (0.03;0.08) 0.03 (0.01;0.05) 0.05 (0.02;0.08) 0.03 (-0.09;0.15)
Heart attack 0.12 (0.08;0.15) 0.13 (0.10;0.17) 0.03 (0.01;0.05) 0.15 (0.05;0.25)
Stroke 0.11 (-0.01;0.24) 0.08 (-0.01;0.17) 0.16 (0.06;0.26) 0.09 (-0.24;0.42)
Arthritis 0.03 (0.02;0.04) 0.03 (0.02;0.05) 0.10 (0.07;0.12) 0.13 (0.06;0.21)

1CRD: Chronic respiratory diseases

A binomial additive hazards model was fitted to the J − 1 levels of the three-category
outcome, with the category "0. Not limited at all" as the reference, for comparison with
the results of the multinomial model in Table 5. Despite the difference in the parameter
estimates, as expected15, the overall conclusions were similar.
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Table 6. Disability hazards rates and Wald 95% confidence intervals (CI) for the binomial
additive hazards model. Health Interview Survey, Belgium, 2001, 2004, and, 2008.

Cause 55−64 years 65−74 years 75−84 years ≥85 years
Limited
Age 0.13 (0.10;0.15) 0.17 (0.13;0.20) 0.31 (0.25;0.38) 0.35 (0.25;0.44)
Chronic respiratory diseases 0.37 (0.22;0.52) 0.31 (0.18;0.44) 0.39 (0.17;0.60) 1.42 (0.52;2.32)
Diabetes 0.29 (0.12;0.46) 0.12 (0.01;0.23) -0.05 (-0.19;0.09) -0.01 (-0.28;0.26)
Heart attack 0.59 (0.38;0.81) 0.91 (0.65;1.17) 0.34 (0.13;0.56) 0.16 (-0.07;0.39)
Stroke 0.40 (-0.32;1.12) -0.04 (-0.28;0.20) 1.18 (0.26;2.10) 0.01 (-0.53;0.55)
Arthritis 0.27 (0.19;0.36) 0.09 (0.03;0.16) 0.40 (0.23;0.56) 0.17 (-0.02;0.36)
Severely limited
Age 0.03 (0.02;0.04) 0.03 (0.02;0.04) 0.10 (0.06;0.14) 0.25 (0.14;0.37)
Chronic respiratory diseases 0.28 (0.15;0.40) 0.31 (0.18;0.45) 0.39 (0.18;0.61) 0.93 (0.36;1.50)
Diabetes 0.11 (0.01;0.20) 0.04 (-0.02;0.09) 0.05 (-0.07;0.17) -0.11 (-0.30;0.08)
Heart attack 0.37 (0.17;0.57) 0.44 (0.25;0.63) 0.15 (-0.02;0.33) 0.14 (-0.10;0.38)
Stroke 0.22 (-0.24;0.69) 0.18 (-0.14;0.50) 0.92 (-0.07;1.92) 0.73 (-0.47;1.94)
Arthritis 0.06 (0.02;0.10) 0.14 (0.07;0.20) 0.23 (0.11;0.35) 0.06 (-0.10;0.22)

Table 7 shows the contribution of chronic diseases to the disability prevalence, for each
outcome category. For both outcome categories the background was the main contributor
to the disability burden across all age groups. For men who reported limitation, but
not severe, the second disease in the rank was arthritis, for men aged 55-64 years and
75-84 years, heart attack was the main contributor in men aged 65-74 years and chronic
respiratory diseases were the main contributor in the oldest old men. In severely limited
individuals, chronic respiratory diseases contributed most to the disability burden in men
aged 55-74 years and arthritis was the main contributor in men aged 75 years or older. The
prevalence of non-severe limitations was higher than the prevalence of severe disability in
all age groups.

Table 7. Contribution of chronic diseases and background to the disability prevalence,
according to levels of the outcome. Health Interview Survey, Belgium, 2001, 2004, and,
2008.

5
Discussion

In this project, the existing R software to fit the binomial additive hazards model and
to calculate the attribution of chronic diseases to disability was modified, resulting in
more flexible and efficient code. Additionally, the R software for the multinomial additive
hazards model was developed.
The main challenge in implementing the binomial and multinomial additive hazards model
is the constraint on the parameter space. This constraint is required due to the link function
(1− exp(−ηi) and 1− exp(−ηij)) used in the models: for ηi and ηij ≤ 0, the probability of
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Cause 55−64 years 65−74 years 75−84 years ≥85 years
Limited
Background 5.78 6.93 16.54 43.64
Chronic respiratory diseases 1.33 1.66 2.06 1.65
Diabetes 0.71 0.92 -0.20 0.19
Heart attack 1.50 3.18 1.51 -1.91
Stroke 0.07 0.06 0.77 0.00
Arthritis 2.18 1.95 3.93 -0.84
Total disability prevalence 11.57 14.70 24.60 42.74
Severely limited
Background 1.09 1.98 3.49 12.32
Chronic respiratory diseases 0.71 1.12 1.71 2.41
Diabetes 0.32 0.22 0.61 0.22
Heart attack 0.51 0.87 0.45 3.38
Stroke 0.05 0.10 0.27 0.33
Arthritis 0.53 0.89 2.17 3.68
Total disability prevalence 3.22 5.17 8.69 22.34

being disabled, πi and πij can be zero or negative. In the existing software for the binomial
model, the constraint is included by adding a penalty term = 0.0001 when ηi ≤ 0. In our
software, the linear inequality constraint was included in the optimization routine.
The original R code to estimate the attribution of disability to chronic diseases using the
binomial model also allows the estimation of the bootstrap CI for the attribution and
the parameter estimates. However, the original software does offer the parallel option,
drastically decreasing efficiency: the results for the same binomial model fitted in tables 3
and 4 were obtained in 8 hours. In this case, the use of the "boot" package in R, which
already has the parallel option built in the R function "boot", reduced the duration of the
analysis by approximately 4 times, when 4 cpus were used and 1000 bootstrap replicas
were requested.
It is important to mention that the attribution method presented in this study has some
limitations. Disability can be incorrectly attributed to chronic diseases in cases that dis-
ability onset precedes disease onset. Also, the use of survey data usually rely on self-reports
of disability and chronic diseases, which are not as accurate as medical examination. More-
over, the background contribution can be overestimated when important causes of disability
are not included in the analysis. For instance in our example, dementia and injuries, im-
portant disability causes, were not included in the analysis, as it was not systematically
available in the three HIS.
Also, the software developed has some limitations. The use of the R function "constrOptim"
for both binomial and multinomial models requires that the initial values provided by the
user are in a feasible region, i.e. on the parameter space. Therefore, the user can have
difficulties in defining the initial values for the models. Furthermore, the calculation of
the bootstrap CI for the parameter estimates and attribution for the multinomial model
is very time consuming. Due to this time limitation the bootstrap CIs for the multinomial
model are not presented in this report. Therefore, alternative methods to calculate the
confidence intervals for the regression coefficients, such as based on the Bayesian inference,
should be considered. Finally, it is important to keep in mind that the software proposed
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was only applied to one data set. In order to assess the behaviour of the models in different
scenarios, it is important to perform simulations and application to other data.

6
Conclusion

In conclusion, the use of linear constrained optimization seems to perform well when fitting
the binomial and multinomial additive hazards models, provided that the initial values lie
inside the parameter space. No convergence problems were encountered when applying
the method to HIS data in Belgium. However, it is important to keep in mind that the
computation of the bootstrap CI for the multinomial model can be very time consuming,
depending on the size of the data and the number of parameters included in the model.
The functions presented in the appendix can be used to assess the disability prevalence
using cross-sectional data and the results can subsidize policy-makes to tackle the disability
burden. Further research can focus on performing simulations to assess the behaviour of the
models in different scenarios, extending the multinomial model to ordinal multi-category
responses, and using Bayesian inference to estimate the regression coefficients and standard
errors in the models, using prior distributions to constraint the parameter space.
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7
Appendix

7.1 R code

# BINOMIAL ADDITIVE HAZARDS MODEL -------------------------------------------------------

BinAddHazEst <- function(param, data, y, x, WGT = 1, std.weight = FALSE,
Boots = FALSE, NBoots = 0, paral = FALSE,
typepar = "snow", ncpus = 4){

if (is.data.frame(x)){
x <- as.matrix(x, nrow = nrow(x), ncol = ncol(x))

}

BinAddHazLogLik <- function(param, data, y, x, WGT = 1, std.weight = FALSE){
if((sum(is.na(y)) > 0) | (sum(is.na(x)) > 0)) {
stop("Missing values (NA) are not allowed")}

wgt <- NULL
if (is.null(WGT)){
wgt = rep(1, nrow(data))}

if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
wgt = WGT}

beta <- param[1: length(param)]

eta_i <- as.vector(x %*% beta)
pi_i <- 1 - exp(-eta_i)

dev.resid <- function(y, pi_i, wgt){
2 * wgt * (y * log(ifelse(y == 0, 1, y/pi_i)) + (1 - y) *

log(ifelse(y == 1, 1, (1 - y)/(1 - pi_i))))}

LL <- sum(dev.resid(y, pi_i, wgt))
return(LL)}

BinLL <- constrOptim(theta = param, f = BinAddHazLogLik, ui = x, ci = rep(0, nrow(x)),
method = "Nelder-Mead", data = data, y = y, x = x,
std.weight = std.weight, WGT = WGT)

# Wald CI
if(Boots == FALSE){

CovAddHaz <- function(data, param, x, y){
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eta_i <- as.vector(x %*% param)
pi_i <- 1 - exp(-eta_i)

WA <- diag(drop(-y*(1 - pi_i)/(pi_i)^2))

V <- -1 * (t(x) %*% WA %*% x)
return(V)

}

Vcov <- CovAddHaz(data = data, param = BinLL$par, x = x, y = y)
InvCov <- solve(Vcov)
StdError <- as.vector(sqrt(diag(InvCov)))

CILow <- BinLL$par - (1.96 * StdError)
CIHigh <- BinLL$par + (1.96 * StdError)
pvalue <- round(2 * pnorm(-abs(BinLL$par/StdError)), 4)

Results <- list(coefficients = BinLL$par, ResidualDeviance = BinLL$value,
df = nrow(data) - length(BinLL$par), CILow = CILow, CIHigh = CIHigh,
pvalue = pvalue, StdError = StdError, Vcov = Vcov)} else {

# Bootstrap CI
require(boot)

mystat <- function(data, indices) {
m <- constrOptim(theta = BinLL$par, f = BinAddHazLogLik, ui = x[indices,], ci = 0,

method = "Nelder-Mead", data = data[indices,], y = y[indices],
x = x[indices,],
std.weight = std.weight,
WGT = WGT[indices])

return(m$par)
}

set.seed(224)
if (paral == TRUE){
BootResult <- boot(data = data, statistic = mystat, R = NBoots, parallel = typepar,

ncpus = ncpus)
} else {

BootResult <- boot(data = data, statistic = mystat, R = NBoots)
}

BootCI <- matrix(NA, ncol = 2, nrow = length(param))

for (i in 1:length(param)){
BootCI[i,] <- boot.ci(BootResult, conf = 0.95, type = "perc", index = i)[[4]][, 4:5]
colnames(BootCI) <- c("CILow", "CIHigh")
rownames(BootCI) <- names(BinLL$par)

}

Results <- list(coefficients = BinLL$par, CILow = BootCI[, "CILow"],
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CIHigh = BootCI[, "CIHigh"],
df = nrow(data) - length(BinLL$par),
ResidualDeviance = BinLL$value)

}
return(Results)

}

# ATTRIBUTION - BINOMIAL ADDITIVE HAZARDS MODEL ----------------------------------------

AttBinAddHaz <- function(param, BinAddHaz.coef, attvar.coef, data, y, x.mat, attvar,
WGT = NULL, std.weight = FALSE, attrib = "abs", NBoots = 1000,
paral = TRUE, typepar = "snow", ncpus = 4){

if (is.data.frame(x.mat)){
x.mat <- as.matrix(x.mat, nrow = nrow(x.mat), ncol = ncol(x.mat))}

BinAddHazLogLik <- function(param, data, y, x.mat, WGT = 1, std.weight = FALSE){
if((sum(is.na(y)) > 0) | (sum(is.na(x.mat)) > 0)) {

stop("Missing values (NA) are not allowed")}

wgt <- NULL
if (is.null(WGT)){

wgt = rep(1, nrow(data))}

if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
wgt = WGT}

beta <- param[1: length(param)]

eta_i <- as.vector(x.mat %*% beta)
pi_i <- 1 - exp(-eta_i)

dev.resid <- function(y, pi_i, wgt){
2 * wgt * (y * log(ifelse(y == 0, 1, y/pi_i)) + (1 - y) *

log(ifelse(y == 1, 1, (1 - y)/(1 - pi_i))))}

LL <- sum(dev.resid(y, pi_i, wgt))
return(LL)}

attvar.mat <- model.matrix(~attvar - 1)
x <- cbind(attvar.mat, x.mat)

BinAddHazAtt <- function(param, data, y, x, WGT = 1, std.weight = FALSE){

BinLL <- constrOptim(theta = param, f = BinAddHazLogLik, ui = x, ci = rep(0, nrow(x)),
method = "Nelder-Mead", data = data, y = y, x = x, std.weight
std.weight, WGT = WGT)
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return(BinLL$par)
}

Attrib <- function(BinAddHaz.coef, attvar.coef, data, y, x.mat, attvar, WGT = NULL,
std.weight = FALSE, attrib = "abs"){

if((sum(is.na(y)) > 0) | (sum(is.na(x)) > 0)) {
stop("Missing values (NA) are not allowed")

}

wgt <- NULL
if (is.null(WGT)){

wgt = rep(1, nrow(data))}

if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
wgt = WGT}

if (is.factor(attvar)){
attvar = attvar} else {

attvar = factor(attvar)
}

haz.dis <- t(BinAddHaz.coef * t(x.mat))
haz.back <- attvar.coef[attvar]

eta_i <- haz.back + apply(haz.dis, 1, sum)
pi_i <- 1 - exp(-eta_i)

att.x.mat <- (haz.dis/eta_i) * pi_i
att.back <- (haz.back/eta_i) * pi_i

att.mat <- matrix(NA, nrow = (ncol(x.mat) + 3), ncol = nlevels(attvar))

att.mat[1,] <- tapply(wgt, attvar, sum)
att.mat[2,] <- tapply(pi_i * wgt, attvar, sum)
att.mat[3,] <- tapply(att.back * wgt, attvar, sum)

for (i in 1: ncol(x.mat)){
att.mat[3 + i,] <- tapply(att.x.mat[, i] * wgt, attvar, sum)

}

dimnames(att.mat) <- list(c("nn","disab","backgrnd", colnames(x.mat)), levels(attvar))

attribution <- list()
attribution2 <- list()
att.final <- list()

for(i in 1: ncol(att.mat)){
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attribution[[i]] <- att.mat[, i]
row_sub <- attribution[[i]] != 0
attribution2[[i]] <- attribution[[i]][row_sub]

if(attrib=="rel"){
att.final[[i]] <- attribution2[[i]][3: length(attribution2[[i]])]/

attribution2[[i]][2]
} else {

att.final[[i]] <- attribution2[[i]][2: length(attribution2[[i]])]/
attribution2[[i]][1]}

}

names(att.final) <- levels(attvar)
final.list <- unlist(att.final)
final.names <- vector()
for(i in 1:length(att.final)){

final.names <- c(final.names, paste0(names(att.final[[i]]), names(att.final)[i]))
}
Output <- matrix(unlist(att.final), ncol =1, byrow = TRUE,

dimnames = list(final.names, "Contribution"))
return(Output)

}

# Bootstrap CI
require(boot)

mystat.att <- function(data, indices) {
m1 <- BinAddHazAtt(param = c(abs(attvar.coef), abs(BinAddHaz.coef)),

data = data[indices,], y = y[indices],
x = cbind(model.matrix(~ attvar - 1), x.mat)[indices,],
WGT = WGT[indices], std.weight = std.weight)

m2 <- Attrib(BinAddHaz.coef = BinAddHaz.coef, attvar.coef = attvar.coef,
data = data[indices,], y = y[indices], x.mat = x.mat[indices,],
attvar = attvar[indices], WGT = WGT[indices], std.weight = std.weight,
attrib = attrib)

return(m2)
}

set.seed(224)

if (paral == TRUE){
BootResult <- boot(data = data, statistic = mystat.att, R = NBoots, parallel = typepar,

ncpus = ncpus)
} else {

BootResult <- boot(data = data, statistic = mystat.att, R = NBoots)
}

BootCI <- matrix(NA, ncol = 2, nrow = nrow(BootResult$t0) * ncol(BootResult$t0))

for (i in 1:(nrow(BootCI))){
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BootCI[i,] <- boot.ci(BootResult, conf = 0.95, type = "perc", index = i)[[4]][, 4:5]
colnames(BootCI) <- c("CILow", "CIHigh")
rownames(BootCI) <- rownames(Attrib(BinAddHaz.coef = BinAddHaz.coef,

attvar.coef = attvar.coef,
data = data, y = y, x.mat = x.mat, attvar = attvar,
WGT = WGT, std.weight = std.weight, attrib = attrib))

}

Attribution <- as.vector(Attrib(BinAddHaz.coef = BinAddHaz.coef, attvar.coef = attvar.coef,
data = data, y = y, x.mat = x.mat, attvar = attvar,
WGT = WGT, std.weight = std.weight, attrib = attrib))

AttResult <- cbind(BootResult$t0, BootCI)
AttRes <- round(AttResult, 4)

return(AttRes)
}

# MULTINOMIAL ADDITIVE HAZARDS MODEL ------------------------------------------------------

MultAddHaz <- function(param, data, y, x, WGT = 1, std.weight = FALSE, Boots = FALSE,
NBoots = 0, paral = FALSE, typepar = "snow", ncpus = 4){

if (is.data.frame(x)){
x <- as.matrix(x, nrow = nrow(x), ncol = ncol(x))}

y.levels <- sort(unique(y))

if(is.factor(y)){
y. <- model.matrix(~ y - 1)}

if(!is.factor(y)){
y.. <- factor(y, levels = y.levels, labels = y.levels)
y. <- model.matrix(~ y.. -1)}

colnames(y.) <- y.levels
y.resp <- y.[, -1]

MultAddHazLogLik <- function(param, data, y, x, WGT = 1, std.weight = FALSE){

if(any(is.na(y)) | (any(is.na(x)))) {
stop("Missing values (NA) are not allowed")

}

wgt <- NULL
if (is.null(WGT)){
wgt = rep(1, nrow(data))}

if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
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wgt = WGT}

beta_ij <- matrix(unlist(split(param, cut(seq_along(param), ncol(y.resp),
labels = FALSE))), ncol = ncol(y.resp))

eta_ij <- matrix(NA, ncol = ncol(beta_ij), nrow = nrow(x))

for (i in 1:ncol(beta_ij)){
eta_ij[,i] <- as.vector(x %*% beta_ij[,i])

}

pi_ij <- apply(eta_ij, 2, function(x) {1 - exp(-x)})

sum.y <- apply(y.resp, 1, sum)
sum.pi_ij <- apply(pi_ij, 1, sum)

LL <- -sum(2 * wgt * ((1 - sum.y) * log(ifelse(sum.y == 1, 1, (1 - sum.pi_ij)))) +
apply((y.resp * log(ifelse(y.resp == 0, 1, (pi_ij)))), 1, sum))

return(LL)}

require(Matrix)
sparse.mat <- paste0("bdiag(", paste0(rep("x,", ncol(y.resp)-1), collapse=""), "x)")
ui.const <- eval(parse(text = sparse.mat))
MultLL <- constrOptim(theta = param, f = MultAddHazLogLik, ui = ui.const,

ci = rep(0, nrow(ui.const)), control=list(maxit=1000),
method = "Nelder-Mead", data = data, y = y, x = x,
std.weight = std.weight, WGT = WGT)

Coeff <- matrix(unlist(split(MultLL$par, cut(seq_along(MultLL$par), ncol(y.resp)))),
ncol = ncol(y.resp))

colnames(Coeff) <- colnames(y.resp)

# Wald CI
if(Boots == FALSE){

CovMultAddHaz <- function(param, x, y.resp){

beta_ij <- param
eta_ij <- matrix(NA, ncol = ncol(beta_ij), nrow = nrow(x))

for (i in 1:ncol(beta_ij)){
eta_ij[,i] <- as.vector(x %*% beta_ij[,i])

}

pi_ij <- apply(eta_ij, 2, function(x) {1 - exp(-x)})

sum.y <- apply(y.resp, 1, sum)
sum.pi_ij <- apply(pi_ij, 1, sum)

# j = j
jj.1 <- matrix(NA, nrow = nrow(x), ncol = ncol(y.resp))
jj.2 <- matrix(NA, nrow = nrow(x), ncol = ncol(y.resp))
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for (i in 1: ncol(y.resp)){
jj.1[, i] <- (1 - sum.y) * ( (((1 - pi_ij[,i]) * (1 - sum.pi_ij)) -

(1 - pi_ij[,i])^2)/(1 - sum.pi_ij)^2)
jj.2[, i] <- sum.y * ((pi_ij[, i] - 1)/(pi_ij[, i])^2)

}
jjd <- jj.1 + jj.2

jj <- list()
for (i in 1:ncol(y.resp)){

jj[[i]] <- t(x) %*% diag(jjd[,i]) %*% x
}

# j != j’
jj.prime <- list()

for (i in 1:ncol(y.resp)){
jj.prime[[i]] <- (1 - sum.y) * ( ((1 - pi_ij) * (1 - pi_ij[, i]))/(1 - sum.pi_ij)^2)

}

jjp.mat <- matrix(unlist(jj.prime), ncol = ncol(y.resp)*ncol(y.resp))

seq <- NULL
for (i in 0:(ncol(y.resp) -1)){

seq[i] = 1 + (i * ncol(y.))
}

jjp.mat2 <- jjp.mat[,-c(1,seq)]

if(ncol(y.resp) > 2) {
dup.col <- duplicated(t(jjp.mat2))
jjp.mat3 <- jjp.mat2[, !dup.col]

} else {
jjp.mat3 <- jjp.mat2

}

jjp.d <- list()

for (i in 1:ncol(y.resp)){
jjp.d[[i]] <- t(x) %*% diag(jjp.mat3[,i]) %*% x

}

if (ncol(y.resp) == 2){

cov1 <- cbind(jj[[1]], jjp.d[[1]])
cov2 <- cbind(jjp.d[[2]], jj[[2]])

Vcov <- -1 * rbind(cov1, cov2)

} else {
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require(Matrix)
cov.mat <- bdiag(jj)

used <- 0

a <- ncol(x)
b <- ncol(y.resp)

for (irow in 1:(b - 1)){

tempMat <- jjp.d[[used + 1]]

if ((used + 1) != length(jjp.d)){
for (k in (used + 2):(used + b - irow)){

tempMat <- cbind(tempMat, jjp.d[[k]])
}

}
rows <- seq((irow - 1) * (a + 1), irow * a, length = a)
columns <- seq(irow*a+1, a*b, length=a*b-irow*a)
cov.mat[rows, columns] <- tempMat

used <- used+b-irow
}

usedL <- 0

for (irow in 2:b){

tempMat <- jjp.d[[usedL+1]]

if ((usedL+1) > 1){
for (k in (usedL+2):(usedL+2-b+irow)){

tempMat <- cbind(tempMat, jjp.d[[k]])
}

}
rows <- seq((irow-1)*a+1, irow*a, length=a)
columns <- seq(1, a*(irow-1), length=a*(irow-1))
cov.mat[rows, columns] <- tempMat

usedL <- usedL+2-b+irow
}
Vcov <- -1 * cov.mat

}
return(Vcov)}

Vcov <- CovMultAddHaz(param = Coeff, x = x, y.resp = y.resp)
InvCov <- solve(Vcov)
StdError <- as.vector(sqrt(diag(InvCov)))

Std <- matrix(unlist(split(StdError, cut(seq_along(StdError), ncol(y.resp)))),
ncol = ncol(y.resp))
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colnames(Std) <- colnames(y.resp)

CILow <- Coeff - (1.96 * StdError)
CIHigh <- Coeff + (1.96 * StdError)
pvalue <- round(2 * pnorm(-abs(Coeff/StdError)), 4)

colnames(CILow) <- colnames(y.resp)
colnames(CIHigh) <- colnames(y.resp)
colnames(pvalue) <- colnames(pvalue)

Results <- list(coefficients = Coeff, ResidualDeviance = MultLL$value,
df = nrow(data) - length(MultLL$par), CILow = CILow, CIHigh = CIHigh, pvalue = pvalue,
StdError = Std, Vcov = Vcov)} else {

# Bootstrap CI
require(boot)

mystat <- function(data, indices) {

if (is.data.frame(x)){
x <- as.matrix(x, nrow = nrow(x), ncol = ncol(x))}

y.levels <- sort(unique(y))

if(is.factor(y)){
y. <- model.matrix(~ y - 1)}

if(!is.factor(y)){
y.. <- factor(y, levels = y.levels, labels = y.levels)
y. <- model.matrix(~ y.. -1)}

colnames(y.) <- y.levels
y.resp <- y.[, -1]

require(Matrix)
sparse.mat <- paste0("bdiag(", rep("x[indices,],", ncol(y.resp)-1), "x[indices,])")
ui.const2 <- eval(parse(text = sparse.mat))

m <- constrOptim(theta = rep(0.02, ncol(y.resp) * ncol(x)), f = MultAddHazLogLik,
ui = ui.const2, ci = rep(0, nrow(ui.const2)), control=list(maxit=1000),
method = "Nelder-Mead", data = data[indices,], y = y[indices],
x = x[indices,], std.weight = std.weight, WGT = WGT[indices])

return(m$par)
}

set.seed(224)

if (paral == TRUE){
BootResult <- boot(data = data, statistic = mystat, R = NBoots, parallel = typepar,

ncpus = ncpus)
} else {

BootResult <- boot(data = data, statistic = mystat, R = NBoots)
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}

BootCI <- matrix(NA, ncol = 2, nrow = length(param))

for (i in 1:length(param)){
BootCI[i,] <- boot.ci(BootResult, conf = 0.95, type = "perc",

index = i)[[4]][, 4:5]
colnames(BootCI) <- c("CILow", "CIHigh")
rownames(BootCI) <- names(MultLL$par)

}

Results <- list(coefficients = MultLL$par, CILow = BootCI[, "CILow"],
CIHigh = BootCI[, "CIHigh"], df = nrow(data) - length(MultLL$par),

ResidualDeviance = MultLL$value)
return(Results)

}
}

# ATTRIBUTION - MULTINOMIAL ADDITIVE HAZARDS MODEL ----------------------------------------

AttMultAddHaz <- function(param, MultAddHaz.coef, attvar.coef, data, y, x.mat, attvar,
WGT = NULL, std.weight = FALSE, attrib = "abs", NBoots = 1000,
paral = TRUE, typepar = "snow", ncpus = 4){

if (is.data.frame(x)){
x <- as.matrix(x, nrow = nrow(x), ncol = ncol(x))

}

y.levels <- sort(unique(y))

if(is.factor(y)){
y. <- model.matrix(~y - 1)}

if(!is.factor(y)){
y.. <- factor(y, levels = y.levels, labels = y.levels)
y. <- model.matrix(~y.. -1)

}
colnames(y.) <- y.levels
y.resp <- y.[,-1]

MultAddHazLogLik <- function(param, data, y, x, WGT = 1, std.weight = FALSE){

if(any(is.na(y)) | (any(is.na(x)))) {
stop("Missing values (NA) are not allowed")

}

wgt <- NULL
if (is.null(WGT)){

wgt = rep(1, nrow(data))}
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if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
wgt = WGT}

beta_ij <- matrix(unlist(split(param, cut(seq_along(param), ncol(y.resp), labels = FALSE))),
ncol = ncol(y.resp))

eta_ij <- matrix(NA, ncol = ncol(beta_ij), nrow = nrow(x))

for (i in 1:ncol(beta_ij)){
eta_ij[,i] <- as.vector(x %*% beta_ij[,i])

}

pi_ij <- apply(eta_ij, 2, function(x) {1 - exp(-x)})

sum.y <- apply(y.resp, 1, sum)
sum.pi_ij <- apply(pi_ij, 1, sum)

LL <- -sum(2 * wgt * ((1 - sum.y) * log(ifelse(sum.y == 1, 1, (1 - sum.pi_ij)))) +
apply((y.resp * log(ifelse(y.resp == 0, 1, (pi_ij)))), 1, sum))

return(LL)}

attvar.mat <- model.matrix(~attvar - 1)
x <- cbind(attvar.mat, x.mat)

require(Matrix)
sparse.mat <- paste0("bdiag(", rep("x,", ncol(y.resp)-1), "x)")
ui.const <- eval(parse(text = sparse.mat))

MultLL <- constrOptim(theta = param, f = MultAddHazLogLik, ui = ui.const,
ci = rep(0, nrow(ui.const)), control=list(maxit=1000),
method = "Nelder-Mead", data = data, y = y, x = x,
std.weight = std.weight, WGT = WGT)

MultAddHazAtt <- function(param, data, y, x, WGT = 1, std.weight = FALSE){
MultLL <- constrOptim(theta = param, f = MultAddHazLogLik, ui = ui.const,

ci = rep(0, nrow(ui.const)), control=list(maxit=1000),
method = "Nelder-Mead", data = data, y = y, x = x,
std.weight = std.weight, WGT = WGT)

Estimate <- MultLL$par
return(Estimate)

}

Attrib <- function(MultAddHaz.coef, attvar.coef, data, y, x.mat, attvar, WGT = NULL,
std.weight = FALSE, attrib = "abs"){

if(any(is.na(y)) | (any(is.na(x)))) {
stop("Missing values (NA) are not allowed")

}
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wgt <- NULL
if (is.null(WGT)){

wgt = rep(1, nrow(data))}

if (any(WGT != 1) & std.weight == TRUE){
wgt = WGT/mean(WGT)}

if (any(WGT != 1) & std.weight == FALSE){
wgt = WGT}

id.disab <- list()
hdis <- list()
haz.back <- list()
eta_ij <- list()
pi_ij <- list()
att.x.mat <- list()
att.back <- list()
att.mat <- list()

for (i in 1:ncol(y.resp)){
id.disab[[i]] <- which(y == 0 | y == i)
hdis[[i]] <- t(MultAddHaz.coef[, i] * t(x.mat))
haz.back[[i]] <- attvar.coef[,i][attvar]
eta_ij[[i]] <- haz.back[[i]] + apply(hdis[[i]], 1, sum)
pi_ij[[i]] <- 1 - exp(-eta_ij[[i]])
att.x.mat[[i]] <- (hdis[[i]]/eta_ij[[i]]) * pi_ij[[i]]
att.back[[i]] <- (haz.back[[i]]/eta_ij[[i]]) * pi_ij[[i]]

att.mat[[i]] <- matrix(NA, nrow = (ncol(x.mat) + 3), ncol = nlevels(attvar))
att.mat[[i]][1,] <- tapply(wgt[id.disab[[i]]], attvar[id.disab[[i]]], sum)
att.mat[[i]][2,] <- tapply(pi_ij[[i]][id.disab[[i]]] * wgt[id.disab[[i]]],

attvar[id.disab[[i]]], sum)
att.mat[[i]][3,] <- tapply(att.back[[i]][id.disab[[i]]] * wgt[id.disab[[i]]],

attvar[id.disab[[i]]], sum)
for (j in 1: ncol(x.mat)){

att.mat[[i]][3 + j,] <- tapply(att.x.mat[[i]][, j][id.disab[[i]]] * wgt[id.disab[[i]]],
attvar[id.disab[[i]]], sum)

}

dimnames(att.mat[[i]]) <- list(c("nn","disab","backgrnd", colnames(x.mat)),
levels(attvar))

}

attribution <- rep( list(list()), ncol(y.resp))
attribution2 <- rep( list(list()), ncol(y.resp))
att.final <- rep( list(list()), ncol(y.resp))
names(att.final) <- colnames(y.resp)
final.list <- list()

for(i in 1: ncol(y.resp)){
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for(j in 1: ncol(att.mat[[1]])){
attribution[[i]][[j]] <- att.mat[[i]][, j]
row_sub <- attribution[[i]][[j]] != 0
attribution2[[i]][[j]] <- attribution[[i]][[j]][row_sub]

if(attrib=="rel"){
att.final[[i]][[j]] <- attribution2[[i]][[j]][3: length(attribution2[[i]][[j]])]/

attribution2[[i]][[j]][2]
} else {
att.final[[i]][[j]] <- attribution2[[i]][[j]][2: length(attribution2[[i]][[j]])]/

attribution2[[i]][[j]][1]}
}
names(att.final[[i]]) <- levels(attvar)
final.list[[i]] <- unlist(att.final[[i]])

}

final.list <- unlist(att.final)
final.names <- vector()
for(j in 1:ncol(att.mat[[1]])){

final.names <- c(final.names, paste0(names(att.final[[1]][[j]]),
names(att.final[[1]])[j]))

}

Output <- matrix(unlist(att.final), ncol = ncol(y.resp),
dimnames = list(final.names, paste0("Contribution", 1:ncol(y.resp))))

return(Output)

}

# Bootstrap CI
require(boot)

mystat.att <- function(data, indices) {

if (is.data.frame(x)){
x <- as.matrix(x, nrow = nrow(x), ncol = ncol(x))

}

y.levels <- sort(unique(y))

if(is.factor(y)){
y. <- model.matrix(~y - 1)}

if(!is.factor(y)){
y.. <- factor(y, levels = y.levels, labels = y.levels)
y. <- model.matrix(~y.. -1)

}
colnames(y.) <- y.levels
y.resp <- y.[,-1]
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require(Matrix)
sparse.mat <- paste0("bdiag(", rep("x[indices,],", ncol(y.resp)-1), "x[indices,])")
ui.const2 <- eval(parse(text = sparse.mat))

m1 <- constrOptim(theta = rep(0.02, ncol(y.resp) * ncol(x)), f = MultAddHazLogLik,
ui = ui.const2, ci = rep(0, nrow(ui.const2)),
control=list(maxit=1000), method = "Nelder-Mead",
data = data[indices,], y = y[indices], x = x[indices,],
std.weight = std.weight, WGT = WGT[indices])

m2 <- Attrib(MultAddHaz.coef = MultAddHaz.coef, attvar.coef = attvar.coef,
data = data[indices,], y = y[indices], x.mat = x.mat[indices,],
attvar = attvar[indices], WGT = WGT[indices], std.weight = std.weight,
attrib = attrib)

return(m2)
}

set.seed(224)

if (paral == TRUE){
BootResult <- boot(data = data, statistic = mystat.att, R = NBoots, parallel = typepar,

ncpus = ncpus)
} else {

BootResult <- boot(data = data, statistic = mystat.att, R = NBoots)
}

BootCI <- matrix(NA, ncol = 2, nrow = nrow(BootResult$t0) * ncol(BootResult$t0))

for (i in 1:(nrow(BootCI))){
BootCI[i,] <- boot.ci(BootResult, conf = 0.95, type = "perc", index = i)[[4]][, 4:5]
colnames(BootCI) <- c("CILow", "CIHigh")
rownames(BootCI) <- rep(rownames(Attrib(MultAddHaz.coef = MultAddHaz.coef,

attvar.coef = attvar.coef, data = data,
y = y, x.mat = x.mat, attvar = attvar,
WGT = WGT, std.weight = std.weight,
attrib = attrib)), ncol(y.resp))

}

Attribution <- as.vector(Attrib(MultAddHaz.coef = MultAddHaz.coef, attvar.coef = attvar.coef,
data = data, y = y, x.mat = x.mat, attvar = attvar, WGT = WGT,
std.weight = std.weight, attrib = attrib))

AttResult <- cbind(Attribution, BootCI)
AttRes <- round(AttResult, 4) *100

return(AttRes)
}
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